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Abstract. This is an experimental paper in which we introduce the pos-
sibility to analyze and to synthesize 3D medical images by using multi-
variate Gabor frames with Gaussian windows. Our purpose is to apply a
space-variant filter-like operation in the space-frequency domain to cor-
rect medical images corrupted by different types of acquisitions errors.
The Gabor frames are constructed with Gaussian windows sampled on
non-separable lattices for a better packing of the space-frequency plane.
An implementable solution for 3D-Gabor frames with non-separable lat-
tice is given and numerical tests on simulated data are presented.

1 Introduction

The study of noise removal in medical images was approached in different ways
by numerous authors. From the first studies involving only convolutional filters
[12], to the rank algorithms [13,14] and most recently to methods to average
pixels depending on their neighborhood statistics [10,11], the search was both
for maximizing the filter capabilities and to propose fast algorithms. While very
successful for various signal analysis applications in medicine or telecommuni-
cations, time-frequency analysis and especially the Gabor frames expansions for
image processing in 2D or 3D was of limited interest due to the large indexing
problems i.e. a 3D image is analysed with a 6D lattice, and to the problems
related to time consuming implementation.

In a fairly recent paper [15], the first author introduced a procedure to effi-
ciently perform an nD Gabor frames decomposition. Based on that result, we
propose in this paper a method to decompose, to filter and to reconstruct 3D
medical images that overcomes both problems. We are using a tensor product
decompositions [4] to reduce the decomposition to only 2D lattice case and also
fast algorithms to implement this case. The result is an experimental framework
for fast Gabor frames construction used to analyze 3D-data images sampled on
quincunx-type lattices. The research is in the simulation stage and we present
in here only tests done on the MATLAB MRI data set.

Therefore the main contribution of this conference paper is to introduce a
completely invertible 3D Gabor transform applied to filter 3D medical images,
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different from existing examples in literature that present only 3D Gabor
filters [7,9].

This paper is structured as follows: In the second section we recall the nec-
essary results from Gabor analysis, while in the third section we present the
3D Gabor frames construction. The application to 3D medical imaging is given
in the fourth section. In the last section, we present timings for the 3D Gabor
construction and the conclusions are drawn.

2 Theoretical Preliminaries

Frames (gi)i∈I generalize the idea of a basis in a Hilbert space H and they are
formally defined as:

Definition 1. A family (gi)i∈I in a Hilbert space H is called a frame if there
exist constants A,B > 0 such that for all g ∈ H

A‖g‖2 ≤
∑

i∈I

|〈g, gi〉|2 ≤ B‖g‖2 (1)

Every element f ∈ H has an expansion of the form:

f = SS−1f =
∑

i∈I

〈S−1f, gi〉gi =
∑

i∈I

〈f, S−1gi〉gi

where S denotes the invertible frame operator [3]: Sf =
∑

i∈I 〈f, gi〉gi. The
family (γi)i∈I = (S−1gi)i∈I is again a frame with frame bounds B−1 and A−1

and is called a canonical dual frame. The main tool for time-frequency analysis
is the Short-Time Fourier Transform in short STFT, defined for functions
in L2(R) as

Vgf(λ) = Vgf(a, b) = 〈f,MbTag〉 = 〈f, π(λ)g〉 (2)

where Taf(t) = f(t − a) is the translation (time shift) and Mbf(t) = e2πib·tf(t)
is the modulation (frequency shift), for λ = (a, b)inR

2. The operators MbTa are
called time-frequency shifts. Their composition is denoted by π(λ). In order
to obtain Gabor frames, the STFT is sampled over a time-frequency lattice. In
the standard 1D case the regular lattice is of the form Λ = aZ × bZ with the
condition ab < 1. Therefore a Gabor frame is defined as:

G(g, a, b) := {g k, l = MblTakg, k, l ∈ Z}, (3)

i.e. the elements of the Gabor frame are translated and modulated versions of
one atom g.
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Theorem 1 (Dual Gabor Frames [5]). If G(g, a, b) is a frame for L2(R),
then the canonical dual frame takes the form G(γ, a, b) for γ = S−1g. where the
Gabor frame operator S is defined as:

S :=
∑

k, l∈Z

〈f,MblTakg〉MblTakg (4)

We introduce also the result of Bourouihiya [2], which extends the classical
results of Lyubarski and Seip to higher dimensions [6] for g0(x) = 2−1/4e−πx2

with x ∈ R:

Lemma 1. Let g = g0⊗·· ·⊗g0 (n factors) and Λab = (a1Z×·· ·×anZ)×(b1Z×
· · · × bnZ). Then G(g, Λab) is a frame if and only if ajbj < 1 for 1 ≤ j ≤ n.

Based on this result, another extension to non-separable lattices of the form
NΛa,b is possible, which besides a multi-variate sampling in each dimension,
give us a better packing of the time-frequency plane by using a (non-separable)
hexagonal lattice that match with the circular contour lines of the Gaussian.

The representation of the non-separable lattice is based on the rectangular
lattice via a shear operation. Therefore, we can give the following lemma:

Lemma 2. Given a window g = g0 ⊗ · · · ⊗ g0 (n factors) and a lattice of the
form NΛa,b, where Λ is a rectangular lattice and N is a shear lattice, the system
G(g, Λab) is a frame if and only if ajbj < 1 for 1 ≤ j ≤ n.

Proof. The shear matrix N is a symplectic matrix hence the determinant
det(N) = 1. Therefore the volumes vol(NΛa,b) = vol(Λa,b) are equal and the
Lemma 1 extends to non-separable lattices.

In applications sampled data of finite lengths are analysed; the process of
sampling and periodization are employed [16]. In this way also the number of
shifts in time and frequency becomes finite. The redundancy of a discrete system,
not necessarily a Gabor system, is defined as the fraction of the number of used
discrete function over the length of the domain, #shift

L .

3 3D Gabor Frame Construction

In this section we present how to construct numerically a 3D Gabor transform
for 3D image filtering. We will exploit the possibilities given by the Lemma2 for
choosing a non-separable lattice of quincunx-type. This situation can be easily
expanded to more dimensions or can be reduced to less dimensions following
the same procedure. We write n for data cube length in one direction and the
modulation and translation operator are defined on Zn. For further discretization
details [8] is a comprehensive source.
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For the 3D case, we will use a multi-variate generalized Gaussian window,
obtained as a tensor product of 1D windows in the form:

G3 = g1 ⊗ g2 ⊗ g3

We consider our 3D Gaussian window of size n1 × n2 × n3 as a complex-
valued function on the additive Abelian group G = n1 × n2 × n3. The joint
position-frequency space is

G × Ĝ = n1 × n2 × n3 × ̂n1 × n2 × n3.

Now, let’s pay attention to the lattice. We would like to use a non-separable
lattice obtained as in the hypothesis of the Lemma 2 by applying a shear matrix
to the matrix generating the regular standard lattice. There are other symplectic
matrices like the rotation matrix using the fractional Fourier transform [1] that
can be used to transform a rectangular lattice into a quincunx-like lattice.

For our 3D case using a non-separable lattice, we will consider the following
quincunx-like lattice:

Λ3 =
(

I3×3 Q3

O3 I3×3

)
A6 · Z

6

where

Q3 =

⎛

⎝
a1/2b1 0 0

0 a2/2b2 0
0 0 a3/2b3

⎞

⎠

and

A6 = diag(a1, a2, a3, b1, b2, b3)

This 6D non-separable lattice can be reduced to the case of 2D non-
separability in time and frequency by the expansion in the canonical basis.
Moreover, we can write the following tensor product:

(
1 a1/2b1
0 1

)
⊗

⎛

⎝
1 0 0
0 0 0
0 0 0

⎞

⎠ +
(

1 a2/2b2
0 1

)
⊗

⎛

⎝
0 0 0
0 1 0
0 0 0

⎞

⎠ +
(

1 a3/2b3
0 1

)
⊗

⎛

⎝
0 0 0
0 0 0
0 0 1

⎞

⎠

In this conditions it is feasible to perform a Gabor analysis followed by a
Gabor synthesis at level of the constituting vectors, and therefore reducing the
case of applying 3D matrices to the faster case of applying the transform over
each dimension. Therefore, we can compute the coefficients of the expansion (e.g.
the 3D Gabor filter) by using any fast algorithms developed for the 1D Gabor
transform [8]. For a complete Gabor transform, we use the Theorem1 and we
invert the frame operator in order to obtain the dual frame. Using the computed
dual frame, we can recover the 3D data cube.
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4 Applications to 3D Medical Image Processing

We have tested our implementation for the MRI data set that comes with MAT-
LAB2017. Loading mri.mat adds two variables to the workspace: D (128-by-128-
by-1-by-27, class uint 8) and a grayscale colormap, map (89-by-3, class double).
D comprises 27 128-by-128 horizontal slices from an MRI data scan of a human
cranium. Values in D range from 0 through 88, so the colormap is needed to
generate a figure with a useful visual range.

The procedure takes as inputs D = 3D medical image and the G = the
Gaussian analysing atoms. The parameters a = time shift and b = frequency
shift are defined depending of the application and under the liniar independence
contraints. The output is DG = data cube recovered after Gabor analysis. The
complete algorithm is summarized below:

Algorithm 1. 3D Gabor transform filtering with quincunx lattice
Input: G - Gaussian atom, D- 3D medical image
Output: DG - 3D Gabor filtered medical image

1: Generate Gabor matrix G for a quincux sampling lattice;
2: Compute the Gabor coefficients GC over each dimension
3: Remove the low energy Gabor coefficients
4: Recover DG over each dimension with the use of the dual atom

In the Figs. 1 and 2, we present the results of the applying the Gabor filtering.

Fig. 1. Unfiltered 3D image

We observed that due to the reconstruction after the removal of the low
energy coefficients the image becomes much smoother. The next step is to cor-
roborate this results with the needs of medical practitioners or radiologists.
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Fig. 2. Gabor filtered 3D image

5 Conclusions

In this paper, we described the construction of Gabor frames beyond the stan-
dard Gabor processing on regular lattices for signal and image processing. In
this way, one has the freedom to choose a non-separable lattice and to sample
the nD-Gaussian window in a multi-variate way, while still being assured that
the result will be a Gabor frame. This added flexibility will be useful for appli-
cation like 3D space-variant filtering or decomposition in the 3D Gabor domain
for different features identifications (e.g. 3D plane waves).

The matrix we used for generating the lattice in our example, verifies the con-
ditions under which the hypothesis of the Lemma2 are true (i.e. shear matrix).
The lattice parameters aj , bj should be chosen according to the time-frequency
concentration of the corresponding windows gj to obtain well concentrated sys-
tems. Therefore, under the conditions ajbj < 1 for j = 1, 2, 3, we obtain Gabor
frames for decompositions and analysis. The timings for the implementation in
MatlabTM on a notebook with Intel core i5 at 2.3 GHz and with 8.00 GB of
RAM memory are given in Table 1.

Table 1. Timings comparison. The case 1. With redundancy 2, ab = 1
2

the case 2.,
with redundancy 4, ab = 1

4
.

Timings for 3D MRI data

1. n = 128 2. n = 128

Quincunx lattice Coefficients 12.438 s 72.103 s

Synthesis 13.134 s 78.363 s
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