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ABSTRACT 33 

 34 

DNA replication ensures the correct copying of the genome and the faithful transfer of 35 

the genetic information to the offspring. However, obstacles to replication fork (RF) 36 

progression cause RF stalling and compromise efficient genome duplication. Since 37 

replication uses the same DNA template as transcription, both transcription and 38 

replication must be coordinated to prevent Transcription-Replication Conflicts (TRCs) 39 

that could stall RF progression. Several factors contribute to limit the occurrence of 40 

such conflicts and their harmful impact on genome integrity. Increasing evidence 41 

indicates that chromatin homeostasis plays a key role in the cellular response to TRCs 42 

as well as in the preservation of genome integrity. Indeed, chromatin regulating 43 

enzymes are frequently mutated in cancer cells, a common characteristic of which is 44 

genome instability. Therefore, understanding the role of chromatin in TRC occurrence 45 

and resolution may help identify the molecular mechanism by which chromatin protects 46 

genome integrity, and the causes and physiological relevance of the high mutation 47 

rates of chromatin regulating factors in cancer. Here we review the current knowledge 48 

in the field, as well as the perspectives and future applications. 49 
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Introduction 70 

 71 

Genome stability ensures cell viability, even though certain variability is required for 72 

species adaptation and survival. DNA is constantly subjected to either exogenous or 73 

endogenous damaging agents that might result in DNA damage and eventually 74 

genome instability if not properly addressed.  75 

In eukaryotes, DNA replication is bidirectional and initiates at multiple origins to 76 

produce a new copy of the whole genome. During this process, replication forks (RFs) 77 

have to deal with multiple obstacles to their progression that may compromise accurate 78 

genome duplication (1,2). Obstacles include DNA-bound proteins, DNA damage, 79 

topological stress, chromatin structure or transcription. Replication and transcription 80 

use the same DNA substrate, and several reports have shown the potential of 81 

transcription to stall DNA replication, thus compromising genome integrity (3–5). 82 

Interestingly, hazardous RF stalling may be further enhanced by the formation of 83 

transcription-associated obstacles, including non-B DNA structures. Consequently, 84 

cells have developed several mechanisms to prevent and solve transcription-85 

replication conflicts (TRCs). 86 

TRCs are actively prevented via different pathways that avoid the formation of 87 

transcription-associated obstacles (2). Nevertheless, when occurring, transcription-88 

mediated RF stalling may be solved via a coordinated response involving checkpoint 89 

activation, RF stabilization and obstacle removal. Thus, cancer-associated genes as 90 

BRCA1/2 and Fanconi Anemia factors have been shown to play a key role during this 91 

process (6–9). Recently, however, chromatin remodeling has also emerged as a major 92 

player in this response. Indeed, the SWItch/Sucrose Non-Fermentable (SWI/SNF), 93 

INOsitol requiring 80 (INO80) or FAcilitates Chromatin Transcription (FACT) chromatin 94 

remodeling complexes counteract TRC occurrence (10–13). Interestingly, SWI/SNF 95 

components, in particular its main ATPase activity SMARCA4, best known as Brahma-96 

Related Gene 1 (BRG1), are frequently altered in cancer, reaching mutation 97 

frequencies only surpassed by Tumor Protein P53 (TP53) (14). 98 

Increasing evidence suggests that genes highly mutated in cancer play key 99 

roles during tumorigenesis, which may pose an important endogenous instigator of 100 

genome instability. Therefore, understanding the underlying mechanisms through 101 

which cells prevent TRCs from resulting in genome instability-associated diseases is 102 

essential to achieve new therapeutic opportunities against the disease. In this review, 103 

we try to gather our current knowledge on how the chromatin network impacts on TRC 104 

occurrence and resolution to preserve genome stability. Other reviews have been 105 

published on the causes and consequences of TRCs (1,15–17). 106 
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Transcription as a source of replication stress 107 

The essential fine-tuned process of transcription uses as template the DNA, which has 108 

to be replicated at each cell cycle. Consequently, it is possible that conflict scenarios 109 

between transcription and replication raise during S phase at regions in which both 110 

processes occur concomitantly. Indeed, numerous reports show that transcription is a 111 

potential source of RF stalling and DNA replication stress (1). Thus, the transcription 112 

machinery itself and transcription-induced structures such as DNA supercoiling, non-B 113 

DNA structures (DNA-RNA hybrids; G4s), DNA damage or closed chromatin states 114 

may pose an obstacle to RF progression (Figure 1). 115 

 116 

The transcription machinery 117 

Similar to tightly-bound proteins, the transcription machinery may become a roadblock 118 

to RF progression. Indeed, yeast mutants undergoing RNA Polymerase II (RNAPII) 119 

retention at chromatin result in DNA replication stress (18) and RNAPII has been 120 

shown to be released from chromatin after replication stress thru a process involving 121 

INO80C and the RNA processing PAF complex in yeast (11). Ongoing RNAPs may 122 

also pause, arrest and/or backtrack when facing DNA damage, from which cells take 123 

advantage by promoting transcription-coupled repair (TCR) (19). In human cells, the 124 

RECQL5 helicase of the RecQ family has been shown to prevent RNAPII backtracking 125 

and promote transcription elongation, thus avoiding TRCs (20,21), and supporting the 126 

view that backtracked RNAPs may be important obstacles to advancing RFs. 127 

Transcription termination factors (TTFs) also prevent RNAPs from becoming a barrier 128 

to replication. Thus, yeast transcription termination mutants affecting RNA 5’ and 3’ 129 

end processing factors Rna14 and Rna15, Fip1, Usp6/Hrp1, the 5'-3' Exoribonuclease 130 

2 Xrn2 or the RNA helicase Sen1 (ortholog of human Senataxin) present inefficient 131 

termination and transcription-dependent replication hampering (22–24). Altogether, the 132 

data indicate that cells have developed several mechanisms acting at different steps 133 

during the transcription process to avoid that the transcription machinery becomes a 134 

barrier to RF progression.  135 

 136 

Transcriptional topological stress 137 

Positive and negative supercoiling accumulate ahead and behind RNAP, respectively, 138 

during transcription elongation (25). While positive supercoiling limits further unwinding 139 

of DNA, negative supercoiling can result in DNA alterations making it prone to open 140 

and form non-B DNA structures. On the other hand, positive supercoiling accumulated 141 

between RNAP and an RF advancing in head-on orientation may stall RF progression 142 

without the need of a physical collision between the transcription and replication 143 
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machineries (Figure 1). Nevertheless, topoisomerases are capable of dealing with 144 

transcription-induced supercoiled DNA structures ensuring they do not compromise 145 

genome integrity (26–29). Therefore, enzymatic activities acting on supercoiled DNA 146 

such as topoisomerases plus their interacting partners might play an important role in 147 

preventing transcription-associated genome instability. 148 

 149 

Co-transcriptional DNA-RNA hybrids 150 

Current evidence indicates that nascent transcripts can hybridize with the template 151 

DNA resulting in the formation of a DNA-RNA hybrid, which may further interfere with 152 

the DNA replication process (1) (Figure 1). Hybrids may form during transcription in the 153 

form of an R-loop containing in addition the displaced ssDNA identical to the RNA 154 

moiety of the hybrid. R-loops can also form at the vicinity of double strand breaks 155 

(DSBs) and evidence has also been provided that TRCs may lead to R loops (30,31), 156 

In addition, the cell cycle phase is a major determinant of the type of molecular event 157 

resulting in an R-loop  (32,33). R-loops may occur naturally with a physiological role, as 158 

in the S regions of the Immunoglobulin genes. Nevertheless, unscheduled R-loop 159 

formation compromises genome integrity (2). Current data supports the view that 160 

persistent unscheduled R-loop accumulation results in DNA damage mainly as a 161 

consequence of replication blockage, even though other mechanisms, such as the 162 

action of nucleotide excision repair (NER) nucleases XPG or XPF can also cause such 163 

DNA breaks (34). Consequently, cells have developed mechanisms to prevent 164 

unscheduled R-loop accumulation (Figure 1). These strategies include proper 165 

assembly of the messenger ribonucleoprotein (mRNP), activities to resolve the R-loops 166 

as DNA-RNA helicases or ribonuclease H (RNH), which degrades the RNA moiety of 167 

the hybrids, and the DNA Damage Response (DDR), as recently reviewed (35). 168 

 169 

A role of chromatin in the coordination of transcription and replication 170 

The involvement of chromatin in regulation of gene expression has been largely 171 

explored and several epigenetic mechanisms have been described to help regulate 172 

transcription (36). In the last years, growing evidence indicates that chromatin 173 

homeostasis must also be properly preserved to prevent transcription-associated 174 

genomic instability. DNA methylation, histone post-translational modifications, ATP-175 

dependent chromatin remodeling and even RNA modifications have been described to 176 

influence TRC-mediated DNA damage (Figure 2).  177 

 178 

 179 

 180 
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DNA methylation  181 

Initial genome-wide analysis of DNA-RNA hybrids unveiled that they are enhanced at 182 

CpG island (CGI)-promoters and its occurrence correlates with unmethylated states of 183 

CGIs. Indeed, R-loops protect CGI from the methyltransferase 3B1 (DNMT3B1) 184 

activity, a major de novo DNMT in early development (37) (Figure 2a). Interestingly, 185 

low R-loop levels lead to high DNA methylation and gene silencing in Amyotrophic 186 

Lateral Sclerosis (ALS) 4 patient cells, as suggested by the observation that DNMTs 187 

bind much more efficiently to dsDNA than to DNA-RNA hybrid-prone sequences (38). 188 

A different study also points to a role for the GADD45 factor in this process (39). 189 

Notably, GADD45A was found to bind R-loop-prone regions next to promoters and 190 

trigger DNA demethylation thru recruitment of Ten-Eleven Translocation 1 (TET1) 191 

(Figure 2a), suggesting that GADD45A might work as an epigenetic reader that 192 

induces promoter CGI demethylation in response to R-loop formation. Thus, R-loops 193 

formed at CGI-promoters seems to favor gene transcription by reducing DNMTs’ 194 

affinity to genomic DNA containing DNA-RNA hybrids thus leading to promoter 195 

demethylation. 196 

  197 

Histones and their post-translational modifications 198 

Physiological R-loops occurring at promoter regions have been found enriched in 199 

histone post-translational modifications (PTMs) associated with active transcription 200 

(40). In particular, high levels of histone H3 lysine 4 di/trimethylation (H3K4me2/me3), 201 

lysine 9/27 acetylation (H3K9/K27ac) and of certain H3.3 histone variants, but low 202 

histone H3 lysine 9 trimethylation (H3K9me3) are observed close to TSSs at R-loop-203 

prone promoters. Instead, histone H3 lysine 4 mono-methylation (H3K4me1) and lysine 204 

36 methylation (H3K36me) are enhanced at the R-loop-accumulating sites of such 205 

promoters. On the other hand, R-loops emerging at transcription termination 206 

sequences show an association with increased H3K4me1 levels. Interestingly, 207 

H3K4me has been shown to play a key role ensuring S-phase checkpoint activity and 208 

reliable DNA duplication under replication stress as seen in highly transcribed yeast 209 

genes (41). Histone H3 lysine 9 dimethylation (H3K9me2) has also been reported to 210 

promote efficient transcription termination in mammalian protein-coding genes prone to 211 

R-loop formation at transcription termination sites (TTSs) (42). 212 

Unscheduled R-loops have been associated with increases in repressive 213 

epigenetic marks such as histone H3 serine 10 phosphorylation (H3S10P) and 214 

H3K9me2/3 (Figure 2b). R-loop-dependent H3S10P accumulation was found in R-215 

loop-prone mutants in yeast, C. elegans and human cells, suggesting the effect is 216 

conserved among species (43). Further investigation in yeast unveiled that such a 217 



7 
 

modification was causative of the observed genomic instability, as yeast mutants 218 

impaired in histone H3S10P formation result in R-loop accumulation not associated 219 

with increased DNA damage (44). Interestingly, Aurora Kinase A (AURKA) was 220 

recently revealed to mediate R-loop-dependent H3S10P deposition during S phase 221 

and its inhibition results in TRCs and checkpoint activation in MYCN-amplified 222 

neuroblastoma cells (45). Thus, H3S10P and AURKA, might play key roles preventing 223 

transcription-dependent RF stalling and its deleterious consequences in S phase. 224 

Aberrant R-loops have also been reported in triplet-repeat expansions, a feature of 225 

Friedrich's ataxia and Fragile X syndrome that are associated with ectopic repressive 226 

H3K9me2/3 that impedes RNAPII progression and results in gene silencing (46). 227 

Linker histone H1, which has been related to chromatin compaction and 228 

heterochromatin, prevents R-loop-mediated DNA damage as well (Figure 2b). Histone 229 

H1 depletion in Drosophila results in R-loop-dependent genome instability in 230 

heterochromatin (47), and accumulation of transcription-dependent stalled forks and 231 

DNA damage are observed in histone H1 triple knock-out (TKO) human cells (48). 232 

Therefore, linker histones might help coordinate transcription and DNA replication to 233 

prevent transcription-induced DNA damage. 234 

 235 

Chromatin modifiers 236 

Genome-wide analyses have revealed that components of COMPASS (RBBP5), 237 

PAF1C (PAF1), SIN3 complex (SIN3A; SAP30; HDAC2), p300 acetyltransferase, 238 

EZH2 methyltransferase and KDM4A and PHF8 histone demethylases are found at 239 

high frequency at R-loop-prone promoters, and higher abundance of PAF1, CTCF and 240 

cohesin components ZNF143 and RAD21 are detected at R-loop-prone TTSs (40).  241 

However, deficiencies in several chromatin-modifying activities have been 242 

observed to promote R-loop-dependent genome instability. Regulators of histone 243 

acetylation/deacetylation might play a key role in this process, as several reports have 244 

connected deficiencies in such activities with unscheduled R-loop formation and DNA 245 

damage. Thus, depletion of Sin3A histone deacetylase (HDAC) complex factors (SIN3; 246 

SAP130) as well as histone deacetylation inhibition produced by trichostatin A (TSA), 247 

suberoylanilide hydroxamic acid (SAHA) results in an accumulation of R-loops and R-248 

loop-dependent DNA damage in human cells (49) (Figure 2c). Similarly, R-loop-249 

dependent genome instability phenotypes are also induced by deficiencies in sirtuins 250 

(NAD+-dependent deacetylases). R-loop-dependent DSBs arise in hst3 and hst4 yeast 251 

mutants of the hSIRT6 homologs (50) and in SIRT7-deficient human cells (51). In 252 

human cells the HDAC inhibitor romidepsin also causes R-loop-mediated ssDNA 253 

breaks (52). On the other hand, the Tip60-400 histone acetyltransferase complex 254 
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associates with genes harboring promoter-proximal R-loops and influence genome-255 

wide occupancy of polycomb repressor complex (PRC)-2 (PRC2) histone 256 

methyltransferase (53). Deficiency of Bromodomain-containing protein 4 (BRD4), a 257 

reader that recognizes and binds acetylated histones, was also shown to cause an 258 

increase in R-loops, TRCs and DNA damage, consistent with a major role for histone 259 

acetylation state on R-loop homeostasis (54). 260 

Chromatin-modifying enzymes regulating other epigenetic marks different from 261 

histone acetylation participate either in this process. PRC1 was reported to act in 262 

parallel with Mdm2, a chromatin modifier modulating PRC-driven histone modifications, 263 

suppressing R-loop formation and promoting productive DNA replication via a direct 264 

impact on histone H2A lysine 118/119 (K118/K119) ubiquitination (55). Indeed, R-loops 265 

drive Polycomb repression at a subgroup of developmental genes (56) (Figure 2c). At 266 

these genes, decreased PRC1 and PRC2 abundance, RNAPII activation and 267 

productive transcript elongation were observed upon R-loop removal. Furthermore, a 268 

connection between R-loop formation and Euchromatic Histone Lysine 269 

Methyltransferase 2 (EHMT2), also known as G9a, has also been described at TTSs 270 

(42) (Figure 2c). At these sites, R-loop formation was suggested to drive G9a 271 

recruitment and results in histone H3K9me2, promoting RNAPII pausing and facilitating 272 

termination. 273 

 274 

Histone chaperones 275 

In agreement with a major impact of the content of histones and their PTMs, histone 276 

turnover also mediates transcription-associated RF stalling. The histone chaperone 277 

FACT was observed to prevent transcription-mediated genome instability, since its 278 

deficiency results in transcription-associated DNA damage and RF progression 279 

impairment in yeast and human cells (13) (Figure 2d). The observation that the MCM2-280 

7 helicase dissociates from chromatin in FACT-deficient cells causing loss of ssDNA-281 

RPA binding and checkpoint activation (57) may be behind the replication deficiency, 282 

even though it needs experimental evidence. 283 

FACT and Chromatin Assembly Factor-1 (CAF1) histone chaperones have 284 

been described to be specifically recruited at transcribing loci to facilitate RF 285 

progression (58) (Figure 2d). Notably, CAF-1 depletion was shown to slow down DNA 286 

replication and promote CHK1 phosphorylation at serine 317, a mark associated with 287 

DNA replication stress (59). Similarly, the Anti-Silencing Function 1 (ASF1) factor has 288 

also been implicated in promoting RF progression by driving recycling of H3-H4 289 

tetramers in conjunction with CAF-1 (60). Indeed, ASF1 deficiency promotes 290 

replication-dependent genome instability and sensitizes cells to replication stress-291 
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inducing compounds (61,62). The results suggest that histone turnover must be 292 

properly regulated to ensure efficient RF progression, especially at regions enriched in 293 

transcription-associated obstacles. 294 

 295 

ATP-dependent chromatin remodeling 296 

Nucleosome positioning on chromatin depends directly on the coordinated action of 297 

histone chaperons and ATP-dependent chromatin remodelers. Consistent with the idea 298 

of a major contribution of chromatin to the resolution of TRCs, remodeling activities are 299 

also emerging as required to prevent transcription-associated genome instability. 300 

Indeed, members of different chromatin remodeling families (SWI/SNF, INO80, ISWI) 301 

have been shown to protect against transcription-dependent DNA damage. 302 

The SWI/SNF complex, the ATP-dependent chromatin remodeling complex 303 

most frequently altered in cancer (63), has recently being shown to control TRCs (10). 304 

Depletion of BRG1, the main SWI/SNF ATPase, is epistatic to FANCD2 deficiency in 305 

its capacity to help solve TRCs, especially those occurring in a head-on orientation 306 

(Figure 2e). Consistently, BRG1 co-localizes with DNA replication factors and promote 307 

RF progression. In addition, AT-Rich Interaction Domain 1A (ARID1A) and Polybromo 308 

1 (PBRM1), members of the canonical BRG1-associated factor (cBAF) and polybromo 309 

BRG1-associated factor (PBAF) SWI/SNF complex subtypes, respectively, were also 310 

reported to protect from transcription-associated DNA damage. Similalry, ARID1A and 311 

PBRM1 deficiencies also induce R-loop-dependent DNA damage. Additionally, a 312 

recently observed connection between ARID1A and topoisomerase IIa (TOP2A) at 313 

TRCs (64) and high levels of replication stress, micronuclei and R-loops in PBRM1-314 

deficient human cells (65), further supports the involvement of SWI/SNF at TRCs. 315 

Interestingly, another member of the SWI/SNF family, Alpha Thalassemia/Mental 316 

Retardation Syndrome X-Linked (ATRX), suppress R-loop formation in telomeric 317 

repeats (66). All these factors present high mutation frequencies in malignant cells, 318 

suggesting a possible relation with the high mutation rates observed in cancer. 319 

INO80C has been implicated in RNAPII release from chromatin together with 320 

the PAF RNA processing complex thus limiting TRCs in budding yeast (11). 321 

Interestingly, INO80 prevents R-loop-dependent DNA damage in prostate cancer PC3 322 

human cells (12) (Figure 2e), and R-loops promote recruitment of INO80 protein to 323 

chromatin. In agreement, yeast Ino80, the ATPase component of the INO80 complex, 324 

was reported to function in parallel with Isw2, the catalytic component of the ISW2 325 

complex, promoting RF progression (67). Transcription-dependent hyper-326 

recombination was shown to increase also in yeast cells lacking Isw1, the catalytic 327 

subunit of the yeast ISW1 complex (68). Similar mechanisms might also exist in human 328 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/enzyme-active-site
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/enzyme-active-site
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cells as the human Isw1 orthologue SMARCA5, best known as SNF2H, the core 329 

subunit in several ISWI-family complexes in human cells, has also been reported to be 330 

recruited to DNA breaks and prevent genome instability (69). 331 

 332 

RNA modification and editing 333 

Novel regulatory mechanisms involving RNA modification and editing have been 334 

reported as suppressors of unscheduled R-loop formation. Methylation of the N6 335 

position of adenosine (m6A) of RNA has been described to promote co-transcriptional 336 

R-loops at TTSs and, thus, prevent RNAPII readthrough and favor termination (70). 337 

m6A methyltransferase METTL3 depletion results in diminished R-loops at TTSs and 338 

aberrant termination in m6A+ genes. Interestingly, METTL3 has been reported to 339 

methylate m6A in DNA damage-associated RNAs, thus inducing recruitment of the 340 

m6A reader YTHDC1 (71), and that METTL3-m6A-YTHDC1 joint action regulates 341 

DNA-RNA hybrid accumulation at DSBs. Similarly, the “tonicity-responsive enhancer 342 

binding protein” (TonEBP) is able to recognize R-loops and recruit METTL3 and RNase 343 

H1 to promote R-loop suppression (72) (Figure 2f).  344 

m6A RNA modification was also identified in DNA-RNA hybrids from human 345 

pluripotent stem cells (73). Such a modification was found to regulate R-loop 346 

accumulation through the cell cycle by promoting m6A+ RNA degradation in dividing 347 

cells, a process involving the m6A reader YTHDF2 (Figure 2f). In Arabidopsis, R-loops 348 

promote chromatin silencing via a mechanism involving also m6A RNA modification at 349 

the FLC gene (74). 350 

In addition to m6A, methylation of N5 position of cytosine (m5C) in mRNAs 351 

promoted by methyltransferase TRDMT1 also occurs at DSBs (75) (Figure 2f). 352 

Interestingly, m5C increases the affinity of RAD52 recombination factor to DNA-RNA 353 

hybrids, suggesting a direct involvement of the m5C modification in the DDR. 354 

Recently, RNA editing by ADAR RNA adenosine deaminase enzymes has also 355 

been unveiled to influence on R-loop homeostasis (76). Nuclear-localized ADAR1p110 356 

was shown to mediate R-loop-dependent genome instability at telomeres in cancer 357 

cells carrying non-canonical variants of telomeric repeats (Figure 2f). Notably, editing 358 

of A-C mismatches to I:C matched pairs by ADAR1p110 at DNA-RNA hybrids was 359 

observed to promote R-loop resolution by RNase H2. On the other hand, recent 360 

observations indicate that ADAR2 edits DNA-RNA hybrids to facilitate its dissolution 361 

close to DSBs and promote efficient DNA end resection and repair (77).  362 

 363 

 364 

 365 
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Conclusions and future perspectives 366 

 367 

TRCs are an important endogenous source of DNA damage and genome instability, a 368 

hallmark of cancer cells. Interestingly, the epigenome is emerging as a key regulator of 369 

such TRCs and increasing evidence indicates that the functional chromatin network 370 

needs to be properly preserved to ensure genome integrity. Epigenetic mechanisms 371 

including DNA methylation, histone turnover and PTMs, histone chaperones, chromatin 372 

modifying and remodeling enzymes and RNA modification and edition limit TRCs 373 

helping preserve genome stability. Notably, chromatin factors involved in these 374 

processes are frequently altered in cancer, pointing to a direct connection between 375 

their deficiencies and the transformation process. Defining the molecular basis of this 376 

connection is essential to understand the causes and consequences of genome 377 

instability, frequently associated with cancer and some genetic diseases. Therefore, 378 

determining the underlying molecular mechanisms used by the cell to limit TRCs as a 379 

source of genome instability should help understand the transformation process and 380 

explore new therapeutic approaches of the disease. Future investigations should better 381 

define the impact of the chromatin network on the mechanisms that help prevent and 382 

resolve TRCs, as well as to test novel strategies such as those based on synthetic 383 

lethality, to specifically target malignant cells with high levels of TRC-driven genome 384 

instability. Thus, drugs targeting specific factors involved in this process may be used 385 

to selectively kill cancer cells and improve patient’s prognosis. 386 
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FIGURE LEGENDS 643 

 644 

Figure 1. Transcription-associated obstacles to DNA replication. 645 

Transcription occurs at the same template as DNA replication, posing an obstacle to 646 

RF progression that needs to be surpassed to proceed with efficient DNA duplication. 647 

The transcription machinery itself is tightly bound to DNA and this may impede RF 648 

progression. In addition, transcription induces the occurrence of additional structures 649 

such as DNA supercoiling, non-B DNA structures (R-loops; G4s), DNA damage or 650 

closed chromatin states that can further hinder DNA replication. Coordinated action of 651 

several cellular activities (messenger ribonucleoprotein (mRNP) biogenesis factors, 652 

RNA helicases, nucleases or topoisomerases) prevents the accumulation of such 653 

structures, and the DNA Damage Response (DDR) helps solve transcription-replication 654 

conflicts (TRCs). 655 

 656 

Figure 2. Epigenetic mechanisms at transcription-replication collisions. 657 

Multiple chromatin factors contribute to the prevention of TRCs to warrant genome 658 

integrity. a, Promoter proximal R-loops prevent DNMTs and promote DNA 659 

demethylation of CpG islands (CGI) and gene activation. b, Linker histones prevent 660 

unscheduled R-loops, which induce repressive epigenetic marks that may block RF 661 

progression. Aurora-A phosphorylate histone H3 serine 10 in S phase in response to 662 

R-loop formation. G9a and PRC are well-known interphase methyltransferase 663 

complexes that could be involved in histone H3 di/tri-methylation of lysine 9 in 664 

response to unscheduled R-loop accumulation. c, FACT and CAF-1 histone chaperons 665 

promote RF progression at transcribing loci. Evidence also indicates that ASF-1 could 666 

have a role in this process. d, Histone deacetylation complexes (Sin3A, Sirtuins) 667 

protect against R-loop-mediated genome instability. BRD4, which binds histone 668 

acetylated residues through its bromodomain, prevent R-loop-dependent genome 669 

instablity. Polycomb-repressive complexes 1 and 2 (PRC1, PRC2) and the G9a 670 

complex are also connected to R-loop metabolism. e, ATP-dependent chromatin 671 

remodelers have a major impact on TRCs. The SWI/SNF complex would act together 672 

with FANCD2 preventing TRCs, while INO80 complex prevent unscheduled R-loop 673 

formation and promote RNAPII release in response to TRCs. f, RNA modifications also 674 

influences R-loop occurrence. METTL3 methylates N6 position of adenosine 675 

ribonucleotides that have been suggested to drive cell cycle regulation of R-loop 676 

homeostasis through YTHDF2. TonEBP binds R-loops and recruits METTL3. 677 

Methylation of N5 position of cytosine ribonucleotide by TRDMT1 was shown to 678 

increase RAD52 affinity for DNA-RNA hybrids. 679 
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