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ABSTRACT 

The business rules that govern the behaviour of a business process can be hardcoded in different ways in a 

software application. The modernization or improvement of these applications to a process-oriented 

perspective implies typically the modification of the business rules. Frequently, legacy systems are not 

well-documented, and almost always, the documentation they have is not updated. As a consequence 

many times is necessary the analysis of source code and databases structures to be transformed into a 

business language more understandable by the business experts involved in the modernization process. 

Database triggers are one of the artefacts in which business rules are hardcoded. We focus on this kind of 

artefacts, having in mind to avoid the manual analysis of the triggers by a database expert, and bringing it 

closer to business experts. To get this aim we need to discover business rules that are hardcoded in 

triggers, and translate it into vocabularies that are commonly used by business experts. In this paper we 

propose an ADM-based architecture to discover business rules and rewrite then into a language that can 

be understood by the business experts. 

KEY TERMS: Model Driven Modernization, Legacy Systems, Architecture-Driven Modernization 

(ADM), SQL, Metamodel, ECA Rules, Triggers. 
 

INTRODUCTION 

In recent year’s management theory, it has been attached high relevance to a process-oriented perspective 

on organizational (re)structuring. One of the main reasons for the evolution of information systems in 

organizations is the need for changing their business processes and requirements. Yet to date, 

organizations still experience difficulties to adapt their information systems to this process-oriented 

perspective, especially because it requires them to undergo a modernization process, in which business 

experts are involved. Unfortunately, it is common to find that the documentation about business rules is 

outdated and, as a consequence, the only source of information about current business rules is databases 

and source code. But these technical artefacts are hard to understand by business experts.  

Modernization processes typically start with a discovery phase in which technical artefacts, such as 

source code and databases structures, are analyzed. Triggers or integrity constraints are one of the 

technical artefacts in which business rules are hardcoded. These represent rules for correct persistent 
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states that a database can take and define the bounds for well-formed transactions that are allowed against 

database. 

The modernization of software applications in a system described by means of a business process model 

involve two important activities: the definition of the model and the description of the business rules. The 

process model is described in a language such as Business Process Model and Notation (BPMN) (OMG, 

2010b). However, the policies or statements that govern the behaviour of the company need to be 

described by means of business rules, for example with a language such as Business Vocabulary and 

Business Rules (SBVR) (OMG, 2008).  Business rules can be seen as a common language between the 

business-side and the IT-side of organizations. The necessity to combine both perspectives (imperative 

and declarative) has been analyzed in papers such as (Skersys, T. et al., 2012a), (Skersys, T. et al., 

2012b). This paper is focuses on the modernization process of the declarative description of the business 

process by means of business rules. Therefore, the business rules need to be captured from legacy 

information systems, since often the documentation is outdated or, simply, does not exist. In these cases, 

several types of sources must be analyzed to discover the business rules. Legacy Information Systems 

represent a serious problem for software maintenance process (Bisbal J., Lawless D., Wu B., Grimson J., 

1999).  (Stavru S., Krasteva I., Ilieva S., 2013) analyze the challenges for legacy information systems in 

the scope of Model Driven Modernization, with an enumeration of the main organizational and technical 

categories of challenges 

One type of source is triggers, which are hardcoded in databases. They describe the relation between data 

values and are commonly written in proprietary languages, such as PL*SQL or Transact*SQL, which are 

difficult to understand by a non-database expert. In these cases, it is common to manually translate the 

source code of triggers to natural language or a business language, in order to make it easier to understand 

by the business expert. Triggers are, on the one hand, a well-structured knowledge base, linked to tables 

in databases and, on the other hand, a clear specification of the events that launch actions or methods to 

be executed. However, the procedural code of triggers is close to programmers but too distant from 

natural language, and, therefore, far from the language that business experts handle. 

To bring these two worlds closer, in this work we consider a model-driven reverse engineering process, in 

which a set of metamodels at different levels of abstraction are provided. The levels of abstraction are 

proposed in Architecture Driven Modernization (ADM) (OMG, 2010), that correspond, bottom-up, to 

Platform-Specific Model (PSM), Platform-Independent Model (PIM) and Computation-Independent 

Model (CIM). As is analysed in the section of related works, although there are several solutions that 

analyse the modernization process in business processes, none of them tackling all the steps of the 

problem. 

 

The paper is organized as follows:  

• First section exposes foundations for most of relevant aspects and technologies used in this paper 

in order to help the reader to understand the context of the paper.   

• Second section shows a running example to illustrate our proposal. 

• Third section presents the details for artefacts needed to discover business rules hardcoded inside 

a set of triggers.  

• Next section describes the ADM-based architecture proposed in this paper and the metamodels 

used in the different levels of modelling defined in the architecture.  

• Then, an analysis of the main works related to our proposal and the gaps that can be covered is 

made. 

• Finally, conclusions and further work are presented. 
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FUNDAMENTALS  

The aim of this section is to lay the foundations of the approach presented in this paper. For that, and in 

order to better understand the paper, some terminology and technologies are introduced. Firstly, the 

technologies and artefacts used in a model-driven modernization process are explained. Then, the most 

relevant business rule classifications are presented in the subsection Business Rules Classification and 

Data Rules. After that, SBVR as a language to describe business rules is briefly presented. Finally, a tour 

of the technologies used to implement database triggers is made.  

 

Model-Driven Modernization  

Modernization or reengineering processes are guided by the horseshoe model (Kazman, R., et al., 1998), a 

well-known framework which integrates the different activities and abstraction levels involved in this 

kind of processes.  The horseshoe model aims to obtain an abstract representation of the source system 

(legacy system) in order to improve its understandability and its transformation to the target system 

(improved system. Figure 1 shows a picture representing the horseshoe model. In this model there are 

three main phases: reverse engineering, restructuring and forward engineering. Firstly, reverse 

engineering is the process of analyzing a subject system to identify the systems’ components and their 

interrelationships and create representations of the system in another form or at a higher level of 

abstraction (Chikofsky, E. & Cross, J., 1990). Secondly, restructuring takes as input the abstract 

representation obtained previously and converts it into an enhanced representation at the same level of 

abstraction, while maintaining its external behaviour. Finally, forward engineering takes the abstract 

representation and generates the physical implementation of the target system to one lower level of 

abstraction. This paper presents an approach focused on the reverse engineering phase. 

 
Figure 1.The horseshoe model 

Model-driven development (MDD) is a style of software development in which the primary software 

artefacts are models from which code and other artefacts are generated by the application of successive 

transformations. A model is a description of a system from a particular perspective, omitting irrelevant 

details so the characteristics of interest are seen more clearly. MDD is gaining acceptance mainly because 

it raises the level of abstraction and automation of software construction (Deltombe et al., 2012).  MDD 



 4 

techniques such as metamodelling and model transformation can be used not only to develop new 

software, but also in reverse engineering (Favre, 2010) (Bruneliere et al., 2010). 

Architecture Driven Modernization (ADM) (OMG 2010) is the OMG initiative that has as mission to 

standardize techniques, methods and tools for modernization processes using the horseshoe model as 

framework. ADM deals with all the software artefacts involved in modernization processes as models, 

and it facilitates the formalization of transformations between those models. It also advocates carrying out 

re-engineering processes following the standard Model Driven Architecture (MDA), which makes it 

possible to work with all the software artefacts in legacy systems as models and using different levels of 

abstraction.  

MDA (OMG, 2003) is the particular realization of MDD proposed by the OMG and uses models at 

different levels of abstraction to separate the logic that underlies a specification from the particular 

properties of the middleware where the application is going to be deployed. The different modelling 

levels of which the architecture is composed are: Computation Independent Model (CIM), Platform 

Independent Model (PIM) and Platform Specific Model (PSM). In this context, model transformations are 

the way of obtaining one model in one level (target model) from another model or set of models from 

other level (source model).  

Figure 2 shows the adaptation of the horseshoe model to ADM. As it can be seen, the different levels of 

modelling proposed in MDA (CIM, PIM and PSM) are used to guide the whole modernization process. 

The forward engineering stage starts from a Computer-Independent Model (CIM) that serves as the basis 

for code generation. According to the MDA specification (OMG, 2003), a CIM is a “view of a system 

from a computation independent viewpoint”. CIMs do not include any details about the structure of 

systems, and sometimes they are called domain models or business models. They are responsible of 

bridging the gap between domain experts and design experts. Code generation is the result of successive 

model transformation stages. CIMs are transformed into Platform Independent Models (PIM). A PIM is a 

model without any details of the platform in which the application is deployed. That is, it describes the 

system, but it does not show any details of the platform. Afterwards, PIM models are transformed into 

Platform Specific Models (PSM), models that combine the specifications in the PIM with the details that 

define how that system uses a particular type of platform.  

 
Figure 2. Adaptation of the horseshoe model to ADM 

 

The reverse engineering stage extracts elements from legacy code and data description, rendering them 

into a PSM. For extracting code into a PSM the OMG’s task force on modernization promoted two 
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metamodels: the Abstract Syntax Tree Metamodel (ASTM) (OMG, 2011c), which is a metamodel 

focused on syntax trees, and the Knowledge Discovery Metamodel (KDM ) (OMG, 2011a), which is the 

pivot metamodel for modelling the whole software system and it is based on representing artefacts of 

existing software as entities, relationships and attributes. PIM’s (or technology-neutral models) are 

obtained by means of applying model transformations to KDM/ASTM models.  Figure 3 shows a scheme 

of the code extraction process proposed by the OMG’s task force on modernization.  The process starts by 

representing legacy code as ASTM models. ASTM is composed of the Generic Abstract Syntax Tree 

Metamodel (GASTM ), a standardized language-independent metamodel and the Specific Abstract 

Syntax Tree Metamodel (SASTM ), a user-defined metamodel which defines the concepts that are related 

to a particular language (Java, PL/SQL and so on). Finally, KDM is used to represent the code at flow 

level. 

 

 

Figure 3. Code extraction process according to OMG's task force on modernization 

 

Business Rules Classification 

Although there is not a standard definition of Business Rule, it is generally understood as a rule that 

defines or constraints the behaviour of a company, the policies, or the used standardized. Business rules 

were also defined by Ronald G. Ross (Ross, Ronald G, 2003) as rules that are under business jurisdiction. 

This means that the business experts can enact, revise, and discontinue their business rules as they see. If 

a rule is not under business jurisdiction in that sense, then it is not a business rule. For example, the 'law' 

of gravity, obviously, is not a business rule. As there are many different types of rules, there is not a 

single way to treat them. In (Goedertier, S., et al., 2007) a total of sixteen business rule types are 

identified, that can be classified depending on the feature used to catalogue the rules. 

 

One of the main important classifications is shown in Figure 4. This classification scheme of rules was 

defined by Gerd Wagner in the RuleML Initiative (Wagner, G., 2005). The classification divides the rules 

into five different types: Integrity, Derivation, Reaction, Production and Transformation. Since our 

proposal is based on the extraction of business rules from triggers, we focus on Reaction Rules, which 

state under which conditions actions must be taken in response to events. Reaction Rules are divided into 

Event-Condition-Action-Postcondition (ECAP)   Rule and Event-Condition-Action (ECA) rule (Wagner, 

G., 2005).  The semantics of ECA rule is: “when the event has been detected, evaluate the condition, and 

if the condition is satisfied, execute the action”. Broadly speaking, triggers represents the same concepts 

as ECA rules, and for this reason, Trigger or Reaction Rule can be used as synonyms of ECArules. 

 



 6

 
Figure 4. OMG Rules Classification 

 

Unfortunately, the classification of Gerd Wagner is a bit far from the business process description, being 

necessary another classification oriented to aspects such as: control flow, for the relation that defines the 

ordering on the activities; organization, for the process management; and data, for the description of the 

data values during the instances.  Figure 5 shows the classification of business rules according to the 

aspect they describe proposed in (Jablonski, S. & Bussler, C., 1996). Note that the types of business rules 

have been identified by Wagner are also included in this classification: integrity, derivation and reaction 

rules, but related to business process aspects. 
 

 

Figure 5. Business Rules Classification  
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In this paper we focus on those rules that can be classified as “data rules” (static integrity and derivation 

rules) and the data aspect of the reaction rules. Furthermore, we propose a refinement of static integrity 

rules, classifying them according to the kind of elements they constrain. This refinement is highlighted in 

Figure 5. We classify static integrity rules in: those that constrain the static model of the database; those 

that constrain the cardinality of the relationships between tables; and those that constrain the data values 

of the tuples.  

 

A static integrity constraint is a business rule that constrains the domain over which business facts can 

range by expressing a logical assertion that can, cannot, must or must not remain true (Wagner, 2003). 

The execution of manipulation operations (addition, removal or update) can imply the evaluation of the 

static integrity constraints. Only those types of static integrity constraints that are related to cardinality or 

data values should be evaluated if the constraint is related to data involved in the operation. 

A derivation rule is a business rule that defines a business fact in terms of existing business facts 

(Wagner, 2003). In case of derivation rules, they can be also found hardcoded as triggers that fill 

attributes in function of the value of other attributes, or by means of views where derived attributes are 

included. It means that a reaction rule can also be understood as a derivation rule that is executed when 

any involved data is modified. As occurred with static integrity constraints, only rules related to data that 

are being modified have to be evaluated. In both cases, if rules are implemented by means of triggers its 

evaluation is automatic, and is done exclusively for data involved in the rules. 

 

 The implementation of these “data rules” can be found in different parts of an application: triggers, 

embedded in source code, in the declaration of business process models. Table 2 shows a set of examples 

of “data rules”. Each example is placed in one row of the table. The Example column holds the rule, the 

Type column represents the type of rule, according to the classification shown in Figure 5, and, finally, 

the ‘Implementation in the database’ column indicates the artefact used to implement the data rule. 

 

Example Type Implementation in the 

database 

The employees have name, address, department, 

ID, … 

Model Integrity Relational model 

Each sale has mandatory one and only one agent in 

charge 

Model Integrity and required 

attribute 

Relational model 

Each order has at least one order line Cardinality Integrity of an 

association between two entities 

Trigger 

A responsible of a department cannot have more 

than 10 agents in charge 

Cardinality Integrity of an 

association between two entities 

Trigger 

The agreed price of a sales item is less than or 

equal to the standard price of the sales item 

Integrity Constraint Trigger or with a check 

constraints 

A luxury product has a value-added-tax of 20 

percent 

Derivation Rule Trigger or a view with derived 

fields 

The evaluation of quality of each employee is the 

minimum between his personal quality and his 

department quality  

Derivation Rule Trigger or a view with derived 

fields 

 

Table 2. Examples of data rules and the type of implementation 
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SBVR: A language to specify the business rules 

In 2008 the Object Management Group (OMG) released the Semantics of Business Vocabulary and 

Business Rules (SBVR) (OMG, 2008b).  SBVR provides vocabulary and rules to define the semantics of 

business vocabularies, facts, and rules. Business-level specification aims at enterprises to formally 

express their operations.  

SBVR proposes Structured English to specify a business model. Structure English is based on a fusion of 

linguistics, logic, and computer science. SBVR is a declarative language, instance of other imperative 

languages used in business processes, and it is close to business experts. The use of SBVR improves the 

understanding, creation, finding, validation, and management of business rules, and it can be further used 

to formalize complex compliance rules related to software. The use of natural language in SBVR provides 

explicitly a model of formal logic that includes concepts and terms that are more natural to business 

experts.  

There are various candidate ontology languages (or metamodelling languages) that can be used to define a 

metamodel for declarative process modelling: the tandem Meta Object Facility (MOF) / Unified 

Modelling Language (UML), or the combination of Web Ontology Language (OWL) and Web Service 

Modelling Language (WSML) (Roman et al., 2005).  

In (Goedertier, S. et al., 2007), the advantages of the use of SBVR were analyzed, for our approximation, 

these advantages have or not influence when SBVR is used to express implemented triggers: 

• Model granularity. Information models can use different levels of granularity to represent 

concepts in the world, and postpones implementation decisions. This allows the representation of 

the same business rule can be implemented with different triggers, or even with another type of 

artefact. 

• Local Closure. In SBVR it is possible to indicate the predicates (fact types) over which the model 

has complete knowledge. This is an aspect that can occur in the conceptual model implementation 

by means of databases such as production rules implemented in the business process engine. 

• Business Rules as natural language expressions. Business rules are most often expressed in 

natural language. Consequently, the SBVR combines linguistics and formal logic. For the 

triggers, the formal logic is necessary for the existing formulas that describe the relation between 

data values. 

• Rule modality. One of the characteristics of declarative process models is that they make a 

distinction between those business rules that cannot be violated, those ones that can be violated 

and guidelines. The current SBVR specification requires business rules to be a necessity, an 

obligation, a prohibition or a possibility. This cannot be expressed by means of triggers, where 

they only have the capacity to implement mandatory rules. 

SBVR is situated at CIM modelling level. This level constructs business solutions for business problems.  

SBVR allows representing a set of concepts of a community, in which there is a shared understanding. 

These concepts contain noun concepts, fact types and business rules. Noun concepts represent the 

meaning of business objects such as Order. In the same way, fact types represent the meaning of a relation 

between concepts, i.e. Order contains OrderLine. Business rules are built on top of fact types and allow to 

constraint these fact types: Order contains at least one OrderLine.. In SBVR a vocabulary and a set of 

rules make up a so called conceptual schema. A conceptual schema with an additional set of facts that 

adheres to the schema is called a conceptual model.  
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Different language or speech communities can then assign a representation to these concepts making 

possible to talk about the same concepts in different languages. One way of representing concepts in 

SBVR is by means of a structured, English vocabulary for expressing vocabularies and rules, called 

SBVR Structured English. A technique used by SBVR structured English is the use of font styles to 

designate statements with formal meaning. In particular, 

• the term (written in green font) is used to designate a noun concept. 

• the name (written in green font) designates an individual concept. 

• the verb (written in blue font)is used for designation for a verb concept. 

• the keyword (written in red font)is used for linguistic particles that are used to construct 

statements. 

 

 

Triggers implementation technologies 

Triggers are a well-structured knowledge base, linked to tables in the database. They have a clear 

specification of the events that launch the action or method to be executed.  However, the procedural code 

is closer to the programmer but too distant to natural language or language that commonly handles a 

business expert. Database triggers have been extended widely used technique to enforce business rules 

with database transactions. A trigger in a database is a common way to specify complex restrictions that 

cannot be declared with other clauses of the Data Definition Language (DDL) (uniqueness, referential, 

ranges, etc.). Triggers are closed to the ECA-rules in the sense that they are executed when a database 

event related to a table or attribute is reached. 

 

There is a large sample of complex legacy systems, whose persistence layer is represented by databases 

supported by robust Database Management Systems (DBMS) like ORACLE, SQL*Server, Postgres, 

MySQL, etc. These systems allow the encapsulation of significant number of business rules, but are hard 

to understand because, typically, database administrators and programmers structure these rules by 

triggers written in proprietary languages such as PL*SQL, Transact*SQL, PL/pgSql, SPL, etc. 

 

DBMS software vendors recommend triggers as the way for implementing a variety of rules, like more is 

not expressive enough to allow these assertions.  It is recommended that triggers do not have more than 

fifty or one hundred lines of code, however, it would be able to find programs including simple code or 

very complex code. 

 

RUNNING EXAMPLE 

 

In order to understand the different levels of abstraction, and what can be obtained in each phase of the 

reverse engineering process, we propose an example where some simple triggers are associated to a table 

(Figure 6a); the triggers are coded in PL/SQL for Oracle 9i (Figures 6b and 6c).  
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Figure 6a. Running example: Oracle table definition 

 

 
Figure 6b. Running example: trigger for salaryLastDate state change 

 

 

 
Figure 6c. Running example: trigger for salary state change 

 
"R01_Remp_001" trigger encodes a single reaction rule for the applicable date to a new established 

salary:  

 

Rule A: “The date to apply a new salary must be not before the starting date of working in the company 

and the date applied to the last salary. It must be the greatest one of the three dates”. 

 

"R02_Remp_002" trigger is a representation of a ruleset; each rule is a constraint rule.  The rule set is: 

 

Rule A:  "The salary cannot grow over 20%" 

Rule B:  "The salary cannot decrease fewer than 15%" 

 

These triggers, implemented at the PSM level, are transformed into a more abstract model at a PIM level, 

for example, using UML and OCL. In a PIM scenario, with UML2 and OCL, we can capture inside 

classes the corresponding entities that are associated to database tables, and also, their declarative 

constraints, but not, all the rest of rules inside triggers. Those additional rules can be represented in OCL. 

In Figure 6d, we show the OCL rules equivalent to the above triggers. 

 

create or replace trigger "R02_Remp_002"   

before update of salary,salaryLastdate on employees 

for each row 

  begin 

    if (:old.salary is not null and :new.salary is not null) then 

if :new.salary>1.2*:old.salary then 

               raise_application_error(-20000, 'R02_Remp_002_A02: The salary cannot grow over 20%'); 

 end if; 

         if :new.salary<0.85*:old.salary then   

               raise_application_error(-20000, 'R02_Remp_002_A02: The salary cannot decrease under 15%'); 

 end if; 

    end if; 

  end; 

create or replace trigger "R01_Remp_001" 

before insert or update of startDate,salaryLastDate on employees 

for each row 

when (new.salaryLastDate<new.startDate OR new.salaryLastDate is null) 

begin 

 :new.salaryLastDate := Greatest(:new.startDate,:new.salaryLastDate, :old.salaryLastDate); 

end; 

 

create table employees    -- Table employees 

( oidEmp  smallint,  

         employee varchar(25) NOT NULL, 

salary number(11,2) NOT NULL CHECK (salary between 0 and 10000), 

startDate date NOT NULL, -- Date of entrance in the company 

endDate date,  -- Date of leaving the company 

salaryLastDate date, -- Date to apply the salary 

primary key(oidEmp) 

); 
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Figure 6d. Running example: a PIM model in UML+OCL 

 
In order to transform the trigger into a model described in UML and OCL, it is necessary to define the 

transformation of the ‘conditions’, ‘events’ and temporal logic represented by the table columns 

referenced by ‘:new.x’ and ‘:old.x’, that allow the programmer to show values before and after the trigger 

is executed.  In OCL, one way to represent this behaviour is the use of pre-conditions and post-conditions 

associated to the execution of methods. Thus, we map the behaviour of the updateSalary() method and we 

put the corresponding pre-conditions and post-conditions. In Figure 6e we show two possible scenarios or 

running states: the first one illustrates a scenario in which changes are committed, while the second one 

illustrates a scenario in which changes are rollback because of rule violation.  

 

 
Figure 6e. Running example: Dynamic scenarios for salary updating 
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In order to represent the semantics of triggers in a CIM level, SBVR can be used. Figure 6f shows the 

SBVR rules, which correspond to the triggers shown in Figures 6b and 6c, respectively. This 

representation of triggers is more understandable by the business expert. In following sections, details of 

the different metamodels in the different levels of abstractions are presented. 

 

 
 

 
Figure 6f. Running example: SBVR corresponding rules  

 

PROPOSED ADM-BASED ARCHITECTURE  

 

As it has been introduced in the previous section, triggers need to be transformed from the code 

implemented in the database, to a language that can be better understood by business experts. The process 

consists of a set of successive transformations that involved models expressed in different levels of 

abstraction (PSM, PIM and CIM). In this section we explain an ADM-based architecture and the 

metamodels that we propose to model artefacts at each modelling level. Figure 7a illustrates the three 

levels of modelling, the type of transformations between them and the metamodels used at each level. As 

it can be seen, a SBVR metamodel is used at CIM level, an ECA Rules metamodel is used at PIM level, 

and a trigger metamodel based on the SQL99 standard is used at PSM level. 

It is not possible that the salary of an employee was updating more than 1.2 or less than 0.85 of the 

old salary. 

The value of salary last date modification of an employee is equal to the maximum between the value 

of the date where started to work, the new salary last date or the old value of salary last date. 
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Figure 7a. The modelling levels in the reverse engineering phase of our ADM-based approach. 

 

CIM: SBVR 

The SBVR specification essentially defines two metamodels in the form of “vocabularies”:  

• the SBVR vocabulary for Describing Business Vocabularies, and  

• the SBVR vocabulary for Describing Business Rules, which builds on the Vocabulary for 

Describing Business Vocabularies. A business vocabulary is defined to contain “all the 

specialized terms and definitions of concepts that a given organization or community uses in their 

talking and writing in the course of doing business”. The SBVR business vocabulary metamodel 

is rather large with more than one hundred concept definitions. The SBVR business rule 

metamodel, containing 33 concept definitions, is more handy but still sizeable. 

Rules that describe data_rules, and that can be implemented by means of triggers, correspond with the 

definition of structural (business) rules in SBVR definition (OMG SVBR, 2008). A structural (business) 

rule is a (business) rule that is intended as a definitional criterion. A structural rule expresses a necessity 

that cannot be violated.  
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In SBVR, meaning remains separate from expression. The SBVR provides a vocabulary called the 

Logical Formulation of Semantics Vocabulary to describe the structure and the meaning of vocabulary 

and business rules in terms of formalized statements about the meaning. Such formalized statements are 

semantic formulations (Baisley et al., 2005)(See a reduced version of the MOF metamodels for 

vocabularies and logical formulas in Figures 7b and 7c). 

 

 

Figure 7b. Reduced Business Vocabulary Metamodel of SBVR 

 

 

 
 

Figure 7c. Reduced Business Rules Metamodel of SBVR 

 

SBVR allows business rules to be written by the business experts and for the business experts regardless 

of IT. However SBVR does not mention how these business rules can be enforced. Simple and durable 

rules can easily be converted into a database model and OCL constraints. But more complex and volatile 

rules cannot be hardcoded and thus they need another approach.  How complex and volatile business rules 

can be translated into a uniform event mechanism is analyzed in (De Roover,W. & Vanthienen,J., 2010), 

such that the event handling could provide an integrated enforcement of business rules, providing a 

pattern mechanism to transform SBVR rules into event-driven enforcement rules. 

 

The most related to database persistence layer is the vocabulary aspects, where describe that the 

performer of an activity can perform particular manipulations (addition, removal or update) of business 

facts. These state transitions can be constrained by integrity constraints, derivation rules, or reaction rules. 
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PIM: An extension of PRR 

OMG has not yet included the ECA rules metamodel between their proposals. But production rules (PRR- 

Production Rule Representation) have been included, whose definition is related to ECA rules. A 

production rule is a statement of programming logic that specifies the execution of one or more actions in 

the case that its conditions are satisfied. Between the future extensions that the OMG wants deal with, it is 

possible to find:  
• To include Event-Condition-Action (ECA) rules.  

• Perform transformations between PRR and other MDA models such as SBVR. 

 

 

Both proposals are exactly what we need, for this reason, in order to model ECA rules; we follow the 

guidelines described to model the PRR. For that purpose it is necessary to include the event aspect in the 

model (as shown in Figure 8a, as a derived metamodel from the current proposal included in PRR, where 

production rules are the only kind of computer executable rules that are allowed, but in this sense, there 

exist RFPs for including ECA Rule support in new versions of PRR.). ECA Rule inherits from Computer 

Executable Rule like current Production Rule in the PRR MOF Metamodel.  In the same sense that PRR 

is based on a subset of OCL expressions (OMG, 2006) (Cabot J.& Gogolla M., 2012), the metamodel of 

ECA rule that we propose follows it as well. Although OCL has been used as a specification language for 

integrity values in databases (Demuth,B., Hußmann ,H., 1999) (Demuth, B. et al, 2001), the main 

characteristics of triggers, as when they are thrown, are omitted.  Following the use of OCL, we propose 

the association of the event to the context where the triggers need to be validated. When data changes, 

generally, triggers that are fired for each row contains actions that involves managing :old.variable and 

:new.variable.  We use of OCL contracts to catch this behaviour of triggers, expressing it with pre and 

post condition as it is shown in the example of the following section.  

 

 
Figure 8a. ECA Rule Metamodel based on PRR Metamodel 
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For the running example (Figures 6a,6b,6c,6d,6e), the ECA rule model is shown in Figure 8b. 

 

 

 

Figure 8b. ECA Rule Model for running example 

 

PSM: An adaptation of SQL:1999 

 

Depending on the database management system that is used, the syntax and other details of the triggers 

can change. Between the more relevant proposals of languages for triggers we can find PL/SQL by Oracle 

and Transact-SQL used in SQL Server databases. From SQL:1999 standard, among all SQL sentences, a 

BNF grammar for triggers was firstly defined. A simplified MOF representation for triggers is shown in 

Figure 9a. The adaptation of the metamodel of PL/SQL for ASTM Metamodel is presented in (Cánovas 

Izquierdo J.L., García Molina J., 2010).  

 

To define our proposal of a metamodel for triggers on relational databases we have analyzed existing 

metamodels for relational artefacts; for example, the general proposal of the OMG: Information 

Management Metamodel (IMM), although there are more recent and specific works as proposed in 

(Cánovas Izquierdo J.L., García Molina J., 2010), and (Gra2Mol(2013)) for the Gra2Mol DSL employed 

in Oracle PL/SQL legacy systems modernization. Based on this latest work, we have taken artefacts 

related to triggers. 

 

The authors use two packages to specify Abstract Syntax Tree Metamodel (ASTM):  a base metamodel 

called the Generic Abstract Syntax Tree Metamodel (GASTM), with factors common elements of most 

programming languages, and a metamodel called the Specialized Abstract Syntax Tree Metamodel 

(SASTM), that represents specific properties of each programming language (in our case: language to 

write triggers). 
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Figure 9a. ECA Rule MetaModel Package Diagram 

We select only the classes that are related to the representation of triggers and we have added a new 

package to extend the SASTM, we call this SASTM-EXT. So classes are displayed with yellow fill 

pattern colour (classes extracted from GASTM), white fill pattern colour (extracted from SASTM) and 

new classes and enumerations with blue fill pattern colour (for classes included in our SASTM-EXT).  

 

 
Figure 9b. ECA Rule MetaModel Class Diagram 

 

We also have added attributes actiontime and granularity to RDBTrigger class whose domains are the 

enumerations RDBActionType and RDBGranularityType to represent this trigger behavior. 
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RELATED WORK 

Related works can be found in different areas of research. The following subsections analyze the related 

works in the areas of modernization, metamodelling and model transformation.  

Solution of modernization 

 

This subsection analyses those works related to the reverse engineering of databases in the context of the 

modernization of systems. The analysis of databases in the modernization of systems is an active area. 

Works as (Pérez-Castillo R. et al.., 2011b), (Pérez-Castillo, R., et al., 2012a) and (Manzón, J. N. & 

Trujillo, J. 2007) present how it is possible to extract the conceptual model from databases or from the 

queries embedded in the code of the application. The necessity to extract from the legacy systems the 

business process knowledge was detected and treated in papers such as (Ricardo Pérez-Castillo, et al, 

2011a),  (Pérez-Castillo R. et. Al., 2012b) and (Pérez-Castillo, R. et al, 2012c), but neither of them 

oriented to business rules engine. Others works about modernization oriented to business rules are 

(Sánchez Ramón O., et al.., 2010) and (Heckel, R. et al., 2008) that use code mining in GUI interfaces for  

business rules extraction. 

 

 

Related to business rules and their implementation by means of trigger, to the best of our knowledge, 

neither solution addresses the whole problem of business rules modernization discovered from trigger 

representation. Although there are works and standards that try to solve some parts of the problem, 

helping business experts to understand the business rules hardcoded in the persistence layer, the problem 

has not been completely analyzed. In the next subsection, some proposals for each part of the 

modernization process are studied. 

Metamodels related to the problem 

Model-Drive Architecture (OMG, 2003) defines three levels of abstraction CIM (Computation 

Independent Model), PIM (Platform Independent Model) and PSM (Platform Specific Model). This 

subsection analyses the metamodels proposed by other authors that can be used in these different levels of 

modeling. 

• PSM: As this paper is focused on inferring business rules implemented in databases by means of 

triggers, at this level we need a metamodel to describe the constructs used in triggers and their 

relationship. It deserves to highlight that each database management system has a proprietary 

language to describe the triggers. In order to be independent of the database management system 

used, at this level is necessary to define one metamodel that includes the commonalities among 

the different trigger proprietary languages. Although a proposal as IMM (OMG, 2009a) focuses 

on the definition of a metamodel for triggers, the complete model  of trigger is not proposed. The 

metamodel which includes the commonalities could be based on the standard SQL:1999 (Türker, 

C. & Gertz, M.,2001). There is no metamodel for SQL:1999 triggers, however, a BNF grammar 

for this language can be found  in (Türker, C. & Gertz, M.,2001), and also there are bridges 

between grammar technical space and model technical space (Wimmer, M. & Kramler, G., 2005), 

(Alanen, M.&Porres, I (2003)) 

• PIM: Triggers are close to the definition of ECA Rules (Event-Condition Action rules), since 

triggers describe when a modification over a table of the database is done. At this level, the 

metamodel for production rules (Production Rule Representation -PRR) is proposed in (OMG, 

2009b). Production rules are similar to reaction rules. The main difference between them is that 

ECA rules include events, while Production Rules do not support this concept.  OMG plans to 
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include the ECA rule in its next version of the standard PRR, but currently does not support it. 

Although there is not a standard, there is other proposal that has tried to model ECA rules (Viana, 

S., et al., 2007). However, the metamodel is not detailed, and then it cannot be included in the 

transformation process for the modernization.  

• CIM: The most used business rules language in CIM level is Semantics of Business Vocabulary 

and Business Rules Business (SVBR) (OMG, 2008b). This language permits to express different 

types of rules and is very close to business experts, since it allows the inclusion the concepts and 

vocabulary widely used by the community of specialists. 

Transformations between the levels of abstraction 

As it is stated in the previous section, it is important to model the artefact using different levels of 

abstraction. But it is not less important how the transformation between these levels of abstraction can be 

performed. There are some proposals that work in this field. These transformations are important from 

bottom-up and top down. 

• Transformation from PSM to PIM: There are several works that use reverse engineering in the 

database area, as (Reus, T. et al., 2006). Also related to databases in (Manzón, J.-N.&Trujillo, J., 

2007), a set of heuristics are presented to construct a conceptual model by using as source a 

relational model. As the body of triggers can contain procedures, also would be interesting to 

analyse how the code can participate in the modernization process, as was done in (Cánovas 

Izquierdo J.L & García Molina J., 2009) and (Cánovas Izquierdo J.L & García Molina J., 2012). 

For the triggers transformation from PSM to CIM, a combination of both disciplines will be 

necessary. 

• Transformation from PIM to CIM: As the most used metamodel in the CIM level is SBVR, 

most of the proposals are centred in how to transform a PIM metamodel into a SBVR metamodel. 

One of the most important metamodels related to rules is OCL (OMG, 2006), a PIM language 

that can be associated to the conceptual model. Works as (Cabot, J. et al., 2010) and (Pau, R., &, 

Cabot, J., 2008) have proposed the transformation between OCL and SBVR. 

• Transformation from CIM to PIM: In (Sellner, A., et al., 2011) a proposal on how SBVR can 

be translated to triggers in SQL but for IT Service Management and not using MDA for a 

generalization is presented. In (Marinos, A. et al., 2010) and (Moschoyiannis, S., et al., 2010), an 

automatic transformation from SBVR to SQL is proposed but not for triggers specifically, and 

ignoring the necessity of an intermediate level between SBVR and SQL. In (De Roover, W. & 

Vanthienen, J., 2010), the necessity of an intermediate level translating the business rules to an 

uniform event mechanism is analyzed, in such a way that the event handling could provide an 

integrated enforcement of business rules, but for a reduced set of patterns that follows SBVR. 

(Kamada, A., et al., 2010) presents another transformation from SBVR to Executable FCL Rules. 

(Kleiner, M., et al., 2009) propose how to transform a SBVR model extracted from a text and 

transform it into a UML class diagram. 

• From PIM to PSM:  We have not found any transformation from a PIM model to triggers in 

PSM.  

 

FUTURE RESEARCH DIRECTIONS 

Related to business rules discovery process, only simple types of triggers have been analyzed, where the 

action of the rule implies the assignation of variables depending on a condition. But it is possible to find 

in the body of the trigger very complex programs, SQL statement, procedures or function. For future 

work, we propose to enlarge our proposal with more complex triggers. 
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Also, in order to complete the modernization process, we think that would be very interesting to define 

heuristics to divide the implemented rules or combine them in new rules to be more understanding for the 

business expert. Also, it can be interesting them combine the rules inferred from the triggers with other 

types of rules of data implemented in the applications. We are also plan to analyze how to integrate our 

proposal in the Modisco framework (MODISCO) for testing real use cases. 

 

CONCLUSION 

In order to obtain a business process model from a legacy system, not only the activities that form the 

model are important, the business rules associated to the process need to be also extracted. Sometimes, 

these rules can be implemented by means of triggers. In order to transform the triggers hardcoded in an 

understanding language, in this work we propose an architecture based on ADM. The metamodels 

proposed are the use of SBVR metamodel, the extension of PPR metamodel for ECA rules, and the 

trigger metamodel adapted from SQL:1999 standard. 
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