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Abstract. In this paper, we propose a novel approach for segmenting
the skeletal muscles in MRI automatically. In order to deal with the
absence of contrast between the different muscle classes, we proposed
a principled mathematical formulation that integrates prior knowledge
with a random walks graph-based formulation. Prior knowledge is repre-
sented using a statistical shape atlas that once coupled with the random
walks segmentation leads to an efficient iterative linear optimization sys-
tem. We reveal the potential of our approach on a challenging set of real
clinical data.

1 Introduction

Segmentation of the skeletal muscles is of crucial interest when studding my-
opathies. Diseases understanding, patient monitoring, etc. rely on discriminat-
ing the muscles in anatomical images. However, delineating the muscle contours
manually is an extremely long and tedious task, and thus often a bottleneck
in clinical research. Simple automatic segmentation methods rely on finding
discriminative visual properties between objects of interest, accurate contour
detection or clinically interesting anatomical points. However, skeletal muscles
show none of these features and as a result, automatic segmentation is a chal-
lenging problem. In spite of recent advances on segmentation methods, their
application in clinical settings is difficult, and most of the times, manual seg-
mentation/correction is still the only option.

Among the limited amount of work on this specific subject, in [1,2] a method
based on deformable models was proposed to perform the segmentation of all the
muscles in one limb. Deformable models are surface models which are fitted to
the target image by minimizing a functional balancing a data term - pushing the
model towards the target contours - and a regularization term - which imposes a
smooth solution along the curve. Such models only reach a local optimum of the
functional, which can be far from the desired solution, and depend heavily on



their initial position. In [3], a more efficient shape representation was introduced
where prior knowledge was encoded through diffusion wavelets to reduce the
space of solutions and thus relax the smoothing constraints. The surface of one
muscle was modeled through a hierarchical representation, and the set of allowed
deformations at each scale was learned from an annotated training set. Model-
ing the surface of one muscle with landmark points is an efficient alternative, as
proposed in [4] with a graph-based method. The shape variability was modeled
through high-order pose-invariant priors and the data term relied on classifica-
tion and detection of the landmark points. The graph-based framework allowed
to perform an efficient non-local optimization, without initialization. However,
such method requires to be able to learn consistent image features in order to de-
tect the landmarks, which is difficult to insure in practice in the case of muscles.
More generally, all surface models suffer from the absence of reliable contours
in MRI images of skeletal muscles. Recently, in [5], a model-based method oper-
ating in the image domain with promising results was proposed. This approach
consisted in modeling a segmentation though Principal Component Analysis in
an Isometric Log-ratio space. Then, a gradient descent was performed with re-
spect to the PCA coefficients to minimize an energy functional which allows
label transition only along detected contours. In this method, contour detection
is explicit, achieved in a pre-processing stage, and could be a weak link in the
chain in cases of undetected or spurious contours.

Our approach builds upon the general Random Walker Segmentation algo-
rithm proposed in [6]. The strength of this method relies on its robustness in the
case of incomplete contours and its efficient optimization. While originally this
method required manual interaction - an user had to annotate a few pixels of
each desired object - the possibility of using prior knowledge based on intensity
distribution was introduced in [7]. In this paper, we propose to build a prior
model of the shape of the thigh muscles from a training data set, to be used in
the RW framework. The prior term of our functional is derived from learning
a Gaussian model of the RW unknown probability vector. We also propose to
modulate the strength of the model constraints according to the strength of the
contours found in the segmented image.

This paper is organized as follows: in section 2 we briefly recall the principle of
the RW segmentation and detail the formulation of our model. Then, in section
3, we present segmentation results obtained on 3D MR volumes of the right
thigh. Section 4 concludes the paper.

2 Random Walks Segmentation With Prior Knowledge

Notations Let us consider an image I with N pixels, and Ii the gray-level of
pixel i. The segmentation is formulated as a labeling problem of an undirected
weighted graph G = (V, E), where V is the set of nodes and E is the set of edges.
Given S, a set of labels, we want to assign a label s ∈ S to each node p ∈ V.
In this framework, the node vi is the i-th pixel, and to each label corresponds a
muscle.



Fig. 1. (left) Cross-section of an MR volume of the thigh. (center) Manual seg-
mentation of the muscles. (right) Confidence map.

2.1 Random Walks Formulation

Let us proceed with a review of the random walks algorithm for image segmen-
tation. We refer the reader to [6] for an extensive description of this method.

The RW approach provides the probability xsi that the node vi ∈ V is assigned
to the label s. In its original formulation, one has to provide the algorithm with
a few already labeled (marked) nodes, also called “seeds”. Typically, the user will
manually mark some pixels of each object to be segmented with a different label.
Lets denote VM the set of marked nodes and VU the set of unmarked nodes, such
that VU∩VM = Ø and VU∪VM = V. It was shown [6] that all unknown entries of

xs = [xs1, x
s
2, . . . , x

s
N ]
T

- i.e. the probabilities that each node vi ∈ VU is assigned
to label s - can be obtained through the minimization of:

EsRW (xs) = xsTLxs (1)

where the known entries of xs (the seeds) are set as follow:

∀vi ∈ VM , xsi =

{
1 if pixel iis marked with label s

0 if pixel iis marked with another label
(2)

and where L is the combinatorial Laplacian matrix of the graph, defined as:

Li,j =


∑
k wkj if i = j

−wij if i 6= j

0 otherwise

(3)

with

wij = ω + exp−β (Ii − Ij)2 (4)

where β is a scaling parameter to be set according to the contrast of the image,
and ω is a regularization parameter which amounts to penalizing the gradient
norm of xs (no regularization if ω = 0). After minimizing EsRW for each label
s, the segmentation is obtained by retaining the label of maximum probability:
li = arg maxs x

s
i .



2.2 Prior Knowledge

In [7], prior appearance knowledge to the RW formulation was introduced through
an estimate of the probability distribution of the gray-level intensity for each la-
bel. A prior appearance term is simply added to the RW cost function, balanced
by a parameter γ:

EsRWP (xs) = xs TLxs + γ
(
xsTDxs − 2xsT ds

)
(5)

where ds (i) is the probability that the intensity at pixel i belongs to the inten-
sity distribution for label s, and D = diag (

∑
s d

s) (we refer the reader to [7] for
details). In the context of muscle segmentation, the intensity distributions of the
labels (the muscles) are extremely similar resulting in an inefficient prior. More-
over, we could think of no other discernible and discriminative features (textures,
remarkable points, etc.) to use within this framework. Thus, we decided to learn
a pixel-based model of the shape based on previous segmentations of images in
a training set D.

Assume we know x̄si and σs 2
i , respectively the mean and the variance of xsi .

Our model simply penalizes the deviation of vector xsi from x̄si , weighted by the
inverse of σs 2

i . In vector form, we obtain the following functional:

Esmodel (xs) = (xs − x̄s)T Λsσ (xs − x̄s) (6)

where Λsσ is a diagonal matrix such that Λsσ (i, i) = 1/σs 2
i .

This is equivalent to modeling xsi as a random variable with Normal distribu-
tion N

(
x̄si , σ

s 2
i

)
, and maximizing the log probability of xsi . Since xsi is a prob-

ability, such Gaussian modeling can only be a rough approximation. The mean
and variance are estimated by computing, respectively, the empirical mean and
the empirical variance over a training base of non-rigidly registered segmented
images. When one owns only a small number of training examples, the empirical
variance is known to be a particularly inefficient estimator. In [8], an improved
locally-smooth estimator was proposed, for using as a similar shape prior in the
level-set framework. The new estimate is computed, through a gradient descent,
as the minimum of a functional which combines the log-likelihood of the training
data and a spatial regularization term :

σ̃s = arg min
σ

N∑
i=1

∑
d∈D

log σ2
i +

(
xsd,i − x̄si

)2
σ2
i

+ α

N∑
i,j=1

δi,j
(
σ2
i − σ2

j

)2
(7)

where xsd,i = 1 if pixel i of training data d has label s (xsd,i = 0 otherwise),
δi,j = 1 if pixels i and j are neighbors (δij = 0 otherwise), and α is a weighting
parameter setting the degree of smoothing.

We combine energy functionals (1) and (6) by introducing a balancing pa-
rameter λs:

Estotal1 (xs) = EsRW (x) + λsEsmodel (x) (8)



It is possible to set a different value of λs for each label s, as some muscles
may require a stronger influence from the prior model than others. The solution
which minimizes (8) verifies:

(L+ λsΛsσ)x = λsΛsσx̄
s (9)

As noted in [7], when one adds such a prior term to the RW functional, it
is no longer necessary to own pre-labeled nodes (seeds) in order to compute the
segmentation. Indeed, the system of equations (9) is directly invertible, even
when all entries of x are unknown. However, it is still possible - and useful - to
use seeds to obtain more robust segmentations.

2.3 Confidence Map

As we saw previously , the functional Esmodel (xs) penalizes the deviation of xs

from the mean x̄s. Such prior is all the more useful as the local uncertainty of
contour presence is large. One can impose such a condition by adjusting the
influence of the model according to the strength of the contours in the test
image: the stronger the contours, the least we should rely on the model. Assume
we possess such a “confidence map” c, with values close to 0 on strong contours,
and values close to 1 in homogeneous regions, we replace the term (6) by the
following:

Esmodel (xs) = (xs − x̄s)T ΛcΛsσ (xs − x̄s)T (10)

where Λc is a diagonal matrix with c on the diagonal.
The local confidence of the image can be easily determined using a decreasing

function inversely proportional to the image variance (see figure 1):

ci = exp−kvσ2
r (i) (11)

where σ2
r (i) is the variance at pixel i computed on a patch with radius r, and

kv is a free parameter. The system to solve is now:

(L+ λsΛcΛ
s
σ)xs = λsΛcΛ

s
σx̄

s (12)

3 Experimental Validation

Our data set comprises 14 3D volumes of the right thigh of healthy subjects,
covering a wide range of morphologies (7 females, 7 males, ages range: 14 to 60),
acquired with a 3T Siemens scanner and using 3pt Dixon sequence (TR=10ms,
TE1=2.75 ms TE2=3.95 ms TE3=5.15 ms, rf flip angle =3°) of resolution:
1mm×1mm×5mm. We manually segmented each volume in order to evaluate
the quality of the segmentation results. We focused our evaluation on clinically
relevant muscles of the thigh (13 muscles).

In order to compute the empirical mean x̄s and the empirical variance σs 2
i ,

we non-rigidly register all the volumes and their segmentation map in the train-
ing set to the same target volume. The registration process is achieved using



Fig. 2. Box-plot presentation of the Dice coefficients of our segmentation algo-
rithm. (Right) Individual muscles; (Left) All muscles. Average dice values for:
registration only: 0.81± 0.08; RW + shape prior: 0.84± 0.08; RW + shape prior
+ c. map: 0.86± 0.07; automatic seeds ([9]): 0.80± 0.19.

the method presented in [10] and the related registration software (Drop©,
www.mrf-registration.net). This way, we ensure that all the registered volumes
belong to the same space. We adopted a leave-one-out cross-validation protocol:
each test volume is used as the target volume for the registration of the 13 other
volumes. Then we compute the estimates of x̄s and σs 2

i on the 13 registered vol-
umes, and perform the segmentation of the test volume. After the registration
process, all volumes had the size: 191× 178× 63.

Due to the size of the matrices involved in the RW process, the system of
equation cannot be solved directly. Instead, we used iterative algorithms, such
as Bi-conjugate Gradient, to minimize (12). Computing the segmentation takes
around 5 min on a 2.8 GHz Intel® processor with 4 GB of RAM. From a series
of tests, we computed the best value for parameter λs = 10−3, except for the
Gracilis muscle which we had to constrain more: λs = 10−1.

The quality of the segmentation is measured by computing Dice coefficients
with the box-plot presentation 1 (See figure 2). The expression of the Dice co-
efficient is: D = 2 |T ∩R| / (|T |+ |R|), where T and R are the pixel sets for the
same muscle in the computed segmentation and the ground truth segmentation
respectively. We also compare the different methods with p-values obtained using
the non-parametric statistical test Wilcoxon rank-sum (cf. scipy.stats for more
information).

1 Box-plot presentation: the boxes contain the middle 50% of the data and the median
value, and the extremities of the lines indicate the min and max values, excluding
the outliers (for more details, see the documentation of Matplotlib).

http://www.mrf-registration.net


Fig. 3. Segmentation results obtained with the RW algorithm with shape prior
and confidence map. Segmentation errors are shown in white.

In figure 2, for comparision with a simple segmentation by atlas registra-
tion method, we compute the Dice coefficients of the segmentation which we
obtain when retaining the label of maximum probability of the mean probabil-
ity: li = arg maxs x̄

s
i . This method yielded inferior results as compared to our

method (without confidence map) with a p-value of 2 × 10−10. In figure 3, we
show cross-sections of segmentation results obtained with the RW method using
the prior model and the confidence map. Segmentation errors tend to affect pri-
marily small muscles (e.g. Gracilis) and muscles located on the extreme upper
part of the volumes (e.g Tensor Fasciae Latae) which reveals the limitations of
the mean model. These errors are due to the large registration errors on the same
muscles. This shows that our model is too constraining, as it does not allow the
segmentation to deviate enough from the mean. In figure 2, we compared the seg-
mentations obtained when adding the confidence map, which slightly improves
the segmentation results (p-value: 6.6 × 10−2), yielding an average Dice coeffi-
cient value of 0.86±0.07. Due to the few number of training examples, we noted
that the variance estimate had little influence on the results: replacing Λsσ with
the identity matrix gave us no significantly different results. This suggests that
we should add more data to the training set in order to improve the statistical
validity of our estimates.

In figure 2, we compare our results with a previous method of ours [9] which
has been accepted for publication. This method consisted in automatically de-
termining appropriate seed positions with respect to the different muscle classes.
A number of unlabeled seeds were generated in the image domain in a sampling
process, and the labeling of these seeds was achieved through a graph-based
approach considering visual and geometric properties. The output of this opti-
mization process was then fed to the standard RW algorithm (1). We obtained
inferior results to the method presented here (average Dice: 0.80± 0.19; p-value
when compared to confidence map method: 7.0× 10−4).



4 Conclusion

The inherent difficulties of segmenting the skeletal muscles in MR images -
namely: partial contours, no discernible texture differences, large variation inter-
individuals and unremarkable shapes - render standard segmentation methods
inoperative on this issue. One has to search for methods which perform ro-
bustly on inconsistent images cues (partial contours), and flexible models, al-
lowing enough freedom to account for large inter-subject shape variations. We
propose a prior model method, resting on the strengths of the Random Walks
segmentation algorithm. Due to its robustness when faced with missing contours,
the RW algorithm appears to be a good candidate for combination with a trained
shape model. We believe to have achieved promising results which demonstrate
the potential of our fully automatic approach.

Future work will consist in designing a model which allows more shape vari-
ability. We could obtain such model by building a low dimensional space through
computing a PCA on the training base. Furthermore, the similarities between
the RW algorithm and Markov Random Fields formulations let us envision ap-
plying the recent advances in MRF learning to the estimation of the Laplacian
matrix.
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