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émanant des établissements d’enseignement et de
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Tree methods in finance

Tree methods are amongst the most popular
numerical methods to price financial derivatives.
They are mathematically speaking easy to un-
derstand and they do not require severe impl-
mentation skills to obtain algorithms to price fi-
nancial derivatives. Tree methods basically con-
sist in approximating the diffusion process mod-
eling the underlying asset price by a discrete ran-
dom walk. In fact, the price of a European op-
tion of maturity T can always be written as an
expectation either of the form

E(e−rTψ(ST )),

in the case of vanilla options or of the form

E(e−rTψ(St, 0 ≤ t ≤ T )),

in the case of exotic options, where (St, t ≥ 0) is
a stochastic process describing the evolution of
the stock price, ψ is the payoff function and r is
the instantaneous interest rate. The basic idea
of tree methods is to approximate the stochastic
process (St, t ≥ 0) by a discrete Markov chain
(S̄N

n , n ≥ 0), such that

E(e−rTψ(St, 0 ≤ t ≤ T )) ≈
E(e−rTψ(S̄N

n , 0 ≤ n ≤ N)),

for N large enough (≈ is used to remind the
reader that the equality is only guarantied for
N = ∞). To ensure the quality of the approxi-
mation, we are interested in a particular notion
of convergence called convergence in distribution
(weak convergence) of discrete Markov chains to
continuous stochastic processes. It is interesting
to note that tree methods can be also regarded
as a particular case of explicit finite difference
algorithms.
Tree methods provide natural algorithms to

price both European and American options
when the risky asset is modeled by a geometric
Brownian motion (see [26] for an introduction
on how to use tree methods in financial prob-
lems). When considering more complex mod-
els — such as models with jumps or stochastic
volatility models — the use of tree methods is
much more difficult; analytic approaches like fi-
nite difference (see eqf12-003) or finite element
(see eqf12-007) methods are usually preferred,
Monte Carlo methods are also widely used for

complex models. Binomial (see eqf05-006) and
trinomial trees may also be constructed to ap-
proximate the stochastic differential equation
governing the short rate [21, 28] or the inten-
sity of default [33] permitting hereby to obtain
the price of respectively interest rate derivatives
or credit derivatives. Implied binomial trees are
generalizations of the standard tree methods,
which enable us to construct trees consistent
with the market price of plain vanilla options
used to price more exotic options (see Derman
and Kani [11] and Dupire [14]).

For the sake of simplicity, consider a market
model where the evolution of the risky asset is
driven by the Black-Scholes stochastic differen-
tial equation

dSt = St(rdt+ σdWt), S0 = s0, (1)

in which (Wt)0≤t≤T is a standard Brownian mo-
tion (under the so called risk neutral probabil-
ity measure) and the positive constant σ is the
volatility of the risky asset.

The seminal work of Cox-Ross-Rubinstein
[10] (denoted CRR hereafter) paves the road to
the use of tree methods in financial applications
and many variants of the CRR model have been
introduced to improve the quality of the approx-
imation when pricing plain vanilla or exotic op-
tions.

Plain Vanilla options

The multiplicative binomial CRR model [10]
is interesting on its own as a basic discrete-
time model for the underlying asset of a finan-
cial derivative, since it converges to a log-normal
diffusion process under appropriate conditions.
One of its most attractive features is the ease of
implementation to price plain vanilla options by
backward induction.

Let N denote the number of steps of the
tree and ∆T = T

N the corresponding time step.
The log-normal diffusion process (Sn∆T )0≤n≤N

is approximated by the CRR binomial process
(S̄N

n = s0
∏n

j=1 Yj)0≤n≤N where the random
variables Y1, . . . , YN are independent and iden-
tically distributed with values in {d, u} (u is
called the up factor and d the down factor) with
pu = P(Yn = u) and pd = P(Yn = d). The
dynamics of the binomial tree (see Figure 1) is
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given by the following Markov chain

S̄N
n+1 =

{

S̄N
n u with probability pu,

S̄N
n d with probability pd.

Kushner [23] proved that the local consistency
conditions given by Equation (2) — that is the
matching at the first order in ∆T of the first
and second moments of the logarithmic incre-
ments of the approximating chain with those of
the continuous-time limit — grant the conver-
gence in distribution.







E log
S̄N

n+1

S̄N
n

= E log
S(n+1)∆T

Sn∆T

+ o (∆T ) ,

E log2
S̄N

n+1

S̄N
n

= E log2
S(n+1)∆T

Sn∆T

+ o (∆T ) .
(2)

This first order matching condition rewrites

{

pu log u+ (1− pu) log d = (r − σ2

2 )∆T,

pu log
2 u+ (1− pu) log

2 d = σ2∆T.
(3)

The usual CRR tree corresponds to the choice

u = 1
d = eσ

√
∆T , which leads to pu =

er∆T−e−σ
√

∆T

eσ
√

∆T−e−σ
√

∆T
= 1

2 + r−σ2/2
2σ

√
∆T +O(∆T 3/2).

When ∆T is small enough (i.e. for N large),
the above value of pu belongs to ]0, 1[. For this
choice of u, d and pu, the difference between
both sides of each equality in (3) is of order
(∆T )2. This is sufficient to ensure the conver-
gence to the Black-Scholes model when N tends
to infinity.
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Figure 1: CRR tree.

As (S̄n)n defined by the CRR model is Marko-
vian, the price at time n ∈ {0, . . . , N} of an
American Put option (see eqf05-007) in the CRR
model with maturity T and strikeK can be writ-
ten as v(n, S̄n) where the function v(n, x) can be
computed by the following backward dynamic

programming equations



























vN (N,x) = (K − x)+

vN (n, x) = max
(

ψ(x),

e−r∆T
[

puvN (n+ 1, xu)

vN (n+ 1, xd)
])

,

where ψ(x) = (K − x)+. Note that the algo-
rithm requires the comparison between the in-
trinsic value and the continuation value. When
considering European options, ψ ≡ 0.
The initial price of a Put option in the

Black-Scholes model can be approximated by
vN (0, s0). The initial delta, which is the quan-
tity of risky asset in the replicating portfo-
lio on the first time step in the CRR model,

is approximated by vN (1,s0u)−vN (1,s0d)
s0(u−d) . Note

that in order to obtain the approximated
price and delta, one only needs to compute
(

vN (n, s0u
kdn−k), 0 ≤ k ≤ n

)

by backward in-
duction on n from N to 0. Figure 2 gives an
example of backward computation of the price
of an American Put option using N = 4 time
steps. The complexity of the algorithm is of or-
der N2, more precisely the function vN has to

be evaluated at (N+1)(N+2)
2 nodes.
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Figure 2: Backward induction for a CRR tree
with N = 4 for an American Put option with
parameters s0 = K = 100, r = 0.1, σ = 0.2,
T = 1.

For the computation of the delta, Pelsser and
Vorst [29] suggested to enlarge the original tree
by adding two new initial nodes generated by an
extended two period back tree (dashed lines in
Figure 2). To achieve the convergence in distri-
bution, many other choices for u, d, pu and pd
may be done, leading to as many other Markov
Chains. We may choose other 2-point schemes
such as a random walk approximation of the
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Brownian motion, or 3-point schemes (trinomial
trees) or more general p-point schemes. The ran-
dom walk approximation of the Brownian mo-
tion (Zn+1 = Zn+Un+1 with (Ui)i independent
and identically distributed with P(Ui = 1) =
P(Ui = −1) = 1

2 ) can be used as long as ST is
given by

ST = s0e

(

r−σ
2

2

)

T+σWT

.

This leads to pu = 1
2 and

u = e

(

r−σ
2

2

)

∆T+σ
√
∆T
,

d = e

(

r−σ
2

2

)

∆T−σ
√
∆T
.

The most popular trinomial tree has been in-
troduced by Kamrad and Ritchken [22] who
have chosen to approximate (Sn∆T )0≤n≤N by a

symmetric 3-point Markov chain (S̄n)0≤n≤N

S̄n+1 =







S̄nu with probability pu
S̄n with probability pm
S̄nd with probability pd.

The convergence is ensured as soon as the first

two moment matching condition on log
(

S∆T

s0

)

is satisfied. With u = eλσ
√
∆T and d = 1

u , this
condition leads to

pu =
1

2λ2
+

(

r − σ2

2

)√
∆T

2λσ
, pm = 1− 1

λ2
,

pd =
1

2λ2
−

(

r − σ2

2

)√
∆T

2λσ
.

The parameter λ — the stretch parameter —
appears as a free parameter of the geometry of
the tree, which can be tuned to improve the con-
vergence. The value λ ≈ 1.22474 corresponding
to pm = 1

3 is reported to be a good choice for
at-the-money plain vanilla options. Note that
choosing u = 1

d is essential to avoid a complex-
ity explosion. In this case, the complexity is still
of order N2, but this time (N + 1)2 evaluations
of the function vN are required. The value λ = 1
corresponds to the CRR tree.
Note that complexity is intimately related to

the quality of the approximation. Therefore, one
should always try to balance the additional com-
putational cost with the improvement of the con-
vergence it brings out.

Discussion on the conver-

gence

Over the last years, significant advances have
been made in understanding the convergence be-
havior of tree methods for option pricing and
hedging (see [24, 25, 27, 13]). As noticed in
[15, 12], there are two sources of error in tree
methods for Call (see eqf07-001) or Put (see
eqf07-002) options: the first one (the distribu-
tion error) ensues from the approximation of a
continuous distribution by a discrete one, while
the second one (the non linearity error) stems
from the interplay between the strike and the
grid nodes at the final time step. Because of the
non linearity error, the convergence is slow ex-
cept for at-the-money options. Let PCRR

N and
PBS denote the initial price of the European
Put option with maturity T and strike K re-
spectively in the CRR tree (with N steps) and
in the Black-Scholes model. Using the Call-Put
parity relationship in both models and the re-
sults given for the Call option in [13], one finds

PCRR
N = PBS − Ke−rT

N
e−

d
2
2
2

√

2

π
[

κN (κN − 1)σ
√
T +D1

]

+O
(

1

N3/2

)

,

where d2 =
log(

s0
K

)+(r−σ
2

2 )T

σ
√
T

, κN denotes the

fractional part of
log( K

s0
)

2σ

√

N
T − N

2 and D1 is a

constant. For at-the-money options (i.e. K =
s0), κN = 0 for N even and κ = 1

2 for N
odd, hence the difference (PCRR

N − PBS)N is
an alternating sequence. Figure1 3 shows that
for N even PCRR

N gives an upper estimate of
PBS, whereas for N odd PCRR

N gives a lower
estimate. The monotonicity of (P2N+1)N and
(P2N )N for at-the-money options enables us to
use a Richardson extrapolation (i.e. consider
2PCRR

4N − PCRR
2N or 2PCRR

4N+1 − PCRR
2N+1) to make

the terms of order 1
N disappear. For not at-

the-money options, Figure 4 shows that the se-
quences (PCRR

2N+1)N and (PCRR
2N )N are not mono-

tonic and present an oscillating behavior. In this
context, a naive Richardson extrapolation per-
forms badly.

1The graphics have been generated using PREMIA
software [30].

3



100 110 120 130 140 150 160 170 180 190 200

3.73

3.74

3.75

3.76

3.77

3.78

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

× × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × × ×

odd number of steps
+

even number of s teps
×

Black Scholes price

Figure 3: Convergence for an at-the-money Put
option with parameters s0 = K = 100, r = 0.1,
σ = 0.2, T = 1
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Figure 4: Convergence for a not at-the-money
Put option with parameters s0 = 100, K = 90,
r = 0.1, σ = 0.2, T = 1

Several tree methods [6, 15, 19] try to deal
with the non linearity error at maturity repro-
ducing in some sense an at-the-money situation.
The BBS (Binomial Black-Scholes) method in-
troduced by Broadie and Detemple [6] replaces
at each node of the last but one time step be-
fore maturity, the continuation value with the
Black-Scholes European one [3]. A two point
Richardson extrapolation aiming at improving
the convergence leads to the BBSR method.
Adaptive Mesh Model (AMM) is a trinomial
based method introduced by Figlewski and Gao
[15]. By taking into account that the non lin-
earity error at maturity only affects the node
nearest to the strike, AMM resorts to thicken-
ing the trinomial grid only around the strike and
only at maturity time.
The BI(R) method, that is Binomial Interpo-

lated (with Richardson extrapolation), intro-
duced by Gaudenzi and Pressacco [19] tries to
recover the regularity of the sequences giving the
CRR price of the European at-the-money op-
tions. The logic of the BI approach is to create
a set of computational options, each one with
a computational strike lying exactly on a final
node of the tree. The value of the option with
the contractual strike is then obtained by in-
terpolating the values of the computational op-
tions.
Let us finally remark that similar techniques
have been developed in numerical analysis for
PDEs associated to option pricing problems (see
[17]). In the case of non-smooth initial condi-
tions, to get good convergence of finite element
and finite difference methods, there should al-
ways be a node at the strike and the payoff may
have to be smoothed (see [31] for a classical ref-
erence).
In the American option case, a new source of er-
ror arises compared to the European case: the
loss of opportunity to early exercise in any in-
terval between two discrete times of the tree.

Exotic options

The classical CRR approach may be trouble-
some when applied to barrier options (see eqf07-
003) because the convergence is very slow in
comparison with plain vanilla options. The rea-
son is quite obvious: let L be the barrier and nL
denote the index such that

s0d
nL ≥ L > s0d

nL+1.

Then, the binomial algorithm yields the same
result for any value of the barrier between s0d

nL

and s0d
nL+1, while the limiting value changes

for every barrier L.
Several different approaches have been pro-

posed to overcome this problem.
Boyle and Lau [5] choose the number of time

steps in order to have a layer of nodes of the
tree as close as possible to the barrier. Ritchken
[32] noted that the trinomial method is more
suitable than the binomial one. The main idea is
to choose the stretch parameter λ such that the
barrier is exactly hit. Later, Cheuk and Vorst
[9] presented a modification of the trinomial tree
(based on a change of the geometry of the tree)
which enables to set a layer of the nodes exactly
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on the barrier for any choice of the number of
time steps. Numerical interpolation techniques
have also been provided by Derman et al. [12].

In the case of Asian options (see eqf05-008 and
eqf12-013) with arithmetic average, the CRR
method is not efficient since the number of pos-
sible averages increases exponentially with the
number of the steps of the tree. For this reason,
Hull and White [20] and in a similar way Bar-
raquand and Pudet [2] proposed more feasible
approaches. The main idea of their procedure is
to restrict the possible arithmetic averages to a
set of representative values. These values are se-
lected in order to cover all the possible values of
the averages reachable at each node of the tree.
The price is then computed by a backward in-
duction procedure, whereas the prices associated
to the averages outside of representative value
set are obtained by some suitable interpolation
methods.

These techniques drastically reduce the com-
putation time compared to the pure binomial
tree, however they present some drawbacks (con-
vergence and numerical accuracy) as observed
by Forsyth et al. [16]. Chalasani et al. [7, 8]
proposed a completely different approach to ob-
tain precise upper and lower bounds on the pure
binomial price of Asian options. This algorithm
significantly increases the precision of the esti-
mates but induces a different problem: the im-
plementation requires a lot of memory compared
to the previous methods.

In the case of lookback options (see eqf07-
007), the complexity of the pure binomial algo-
rithm is of order O(N3) and the methods pro-
posed in [20, 2] do not improve the efficiency.
Babbs [1] gave a very efficient and accurate solu-
tion to the problem for American floating strike
lookback options by using a procedure of com-
plexity of order O(N2). He proposed a change of
“numeraire” approach, which cannot be applied
in the fixed strike case.

Gaudenzi et al [18] introduced the singular
point method to price American path-dependent
options. The main idea is to give a continuous
representation of the option price function as
a piecewise linear convex function of the path-
dependent variable. These functions are char-
acterized only by a set of points named “sin-
gular points”. Such functions can be evalu-
ated by backward induction in a straightforward
manner. Hence, this method provides an al-

ternative and more efficient approach to evalu-
ate the pure binomial prices associated with the
path-dependent options. Moreover, because the
piecewise linear function representing the price
is convex it is easy to obtain upper and lower
bounds of the price.

For the rainbow options (see eqf07-013), ex-
tensions of the binomial approach for pricing
American options on two or more stocks have
been made by Boyle, Evnine and Gibbs [4], and
Kamrad and Ritchken [22]. In higher dimen-
sional problems (say, dimension greater than 3)
the straightforward application of tree methods
fails because of the so-called “curse of dimen-
sion”: the computational cost and the memory
requirement increase exponentially with the di-
mension of the problem.
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