
113 | Jurnal Integrasi | Vol.13 No.2, October 2021, 113-121 | e-ISSN: 2548-9828

Establishing ROS on Humanoid Soccer Robot-BarelangFC

Software System

Susanto1*, Eko Priono1, Riska Analia1

 Batam Polytechnics

Electrical Engineering Study Program

Parkway Street, Batam Centre, Batam 29461, Indonesia

E-mail: susanto@polibatam.ac.id

Abstrak

Robot humanoid dikembangkan dari beberapa sub program atau sistem yang terintegrasi pada setiap program

utama untuk memerintahkan robot bergerak selayaknya seperti pemain sepak bola. Masing-masing program

utama terdiri atas sistem gerak, sistem indra visual (vision system), sistem sub-kontroler, dan strategi permainan.

Saat ini, masing-masing sistem utama didesain menggunakan bahasa pemrograman yang berbeda, misalnya:

sistem visi menggunakan python sedangkan yang lain menggunakan C dan LUA untuk kinematika gerakan.

Penggunaan bahasa pemrograman yang berbeda akan mempengaruhi respon sistem karena masing-masing sistem

utama perlu diintegrasikan menggunakan socket pada proses awal. Respon robot akan lambat dan menghabiskan

banyak penggunaan memori. Oleh karena itu, dalam makalah ini akan disajikan proses migrasi ke dalam sistem

operasi robot (ROS) dan mengalihkan semua sistem utama robot ke dalam bahasa python. Program terintegrasi

akan diperiksa secara real-time aplikasi saat robot bergerak di lapangan. Serta menggunakan python ROS untuk

membuat robot dapat bermain secara mandiri di lapangan.

Kata kunci: Integrasi, marjin

Abstract

Humanoid robot is built on several sub-programs or systems which is integrated to each main programs in order

to command the robot to move as a soccer player. Each main programs namely as a movement system, a visual

sense system (vision), a sub-controller system, and a game strategy. Currently, each of main system constructed

using different programming language, for instance: the vision system used python while the others used C and

LUA for the movement kinematics. Employing different programming language will affect to response system

because each of main system need to be integrated using socket in the beginning process. Robot response will be

slow and cost a lot of memory usage. Therefore, in this paper will present a migrating process into robot operating

system (ROS) and switch all the robot main system into python language. The integrated program will be

examined in real-time application while the robot moved on the field. We used a python ROS in order to make the

robot play autonomously on the field.

Keywords: humanoid robot soccer, system migration, ROS, real-time application

1. Introduction

Developing and implementing the humanoid robot

soccer need a lot of effort and really challenging

work. It starts from design the mechanical, electrical,

programming, and also the strategy of playing

football. Moreover, in programming side mostly it

consists of several framework path which is need to

be connected one another so that it can fully

automatically moved according to the strategy that

has been choosing. As

introduced in decade, the robot operating system

(ROS) was one of the powerful operating system for

the robot which consists a lot of software part that

needed to be integrated. As presented by Kim, et. al

[1], they utilized the manipulation robot which is

communicated to the Gazebo-ROS in order to

examine the automation program like PLC controller

through TCP/IP protocol. And also, Megalingam,

et.al [2], used

ROS navigation stack to analyze the differences of

path planning and path travel drive robot on

Gazebo-ROS simulator.

Another work done by Rivera, et.al [3], aimed to

Jurnal Integrasi

Vol. 13 No. 2, October 2021, 113-121

e-ISSN: 2548-9828

Article History

Received September 2021

Accepted October 2021

mailto:ekopriono629@gmail.com

114 | Jurnal Integrasi | Vol.13 No.2, October 2021, 113-121 | e-ISSN: 2548-9828

analyse the ROS monitoring tool effectiveness by

investigated the effect between extended Berkely

Packet Filters (eBPF) and eXpress Data Path (XDP)

in developing a high-performance inline network

monitoring for ROS framework. Meanwhile, Ma, et.al

[4] They developed the ROS and Qt for the Graphical

User Interface (GUI) of the multi-robot system

(MRS) simulator in order to understand their

coordination behavior and control the real robot with

minor correction. Amontamavut, et.al [5] on the other

hand, they reconstructed the Blue-Sky web-based

environment for ROS publish and subscribe

messaging distribution also monitored and traced all

the data access on the ROS environment. And Wei,

et.al [6] Presented a hybrid real-time ROS

architecture on multi-core processor which can be run

in both real-time and non-real-time subsystem in

order to control a 6-DOF modular manipulator.

While, Gatesichapakorn, et.al[7] utilized a 2D LiDAR

and RGB-D camera which is equipped with ROS 2D

navigation stack to implement an autonomous mobile

robot with low power consumption. And did the

ROS-based mobile robot has been proposed in this

work for achieving a remote 3D reconstruction for a

mobile autonomous robot using an onboard RGB-D

camera in order to sharpen robot pose planning view

in their next research [8]. Again, Nitta, et.al [9], in this

work they integrated the FPGA platform to the ROS

system on the ZytleBot efficiency in order to detect

the traffic signal for autonomous and Mishra, et.al

[10], they utilized the ROS platform for developing a

service robot which is able to do self-mapping,

localization, and do navigation in indoor environment

with static obstacle. The ROS itself has been used for

robot ability to mapping in real-time application using

a low cost RGB-D camera. Also, Chang, et.al [11],

they involved middleware ROS to recognize object in

a Raspberry Pi for mobile robot

The implementation of the ROS is done by Hasegawa,

et.al [12], where they implemented a ROS-based

autonomous vehicle in FPGA board in order to

recognized a lane, traffic signal, and also obstacle

detection. In this work, they concluded that deployed

the essential components of the vehicle on an FGPA

board with the ROS-based system can be successfully

run together. While, Staschulat, et.al [13], they

introduced an advanced Executor for the ROS 2 C

API on a 32-bit microcontroller included

deterministic scheduling and aid domain-specific

requirements. And Rhoades, et.al [14], they

connected a Controller Area Network (CAN), Radio

Frequency (RF), All-Terrain Vehicle (ATV) to the

ROS based platform system to extract all the sensor

information easily. To verify the robustness of the

ROS system, Mirkhanzadeh, et.al [15], in this work

they demonstrated a robustness and trusthworthiness

of an orchestrated two-laye network tes-bed (PROnet)

on a ROS industrial for the end-to-end distributed

flow services. And Cai, et.al [16], the ROS is used in

this work to simulate a depth control of hybrid-driven

underwater vehicle-manipulator system

(HD-UVMS). Stojanović, et.al [17], utilized one of

the ROS features to let the Adaptive AUTOSAR

application is able to run on developing platform.

While developing ROS for the robot system, a

mechanism protection of the ROS should be taken

note in order to avoid the network hacker. Goerke,

et.al [18], in this work they discussed about the ROS

protection mechanism which is proposed in this

paper. Even though the effectiveness and usable of it

did not clearly state, this mechanism protection of

ROS should be emphasized for the developer before

build the ROS system for avoiding a network-based

attacker. Garcia, et.al [19], in this work, they

developed a software ecosystem by developing the

model-driven engineering (MDE) based on ROS to

identify a possible way to understand the accessibility

of ROS merit towards MDE. Hong, et. al [20], they

presented a stable and bidirectional connection of

RoverOS to integrated ROS system and Web client

via WebSocket layer which is allowed the users to

control and navigate the Turtlebot robot.

Regarding to all the beneficial which is given by the

ROS for developing robot software, therefore in this

work we proposed the ROS to rejuvenate our software

system and migrate all the source code in python

code. The same work also has been done in our

previous work [21], however in our previous work

just moved a part of whole system while in this work

we moved whole system in ROS.

2. Mechanical Design

The humanoid robot BarelangFC was designed as a

human being which has two arms, two legs, body, and

the vision which is constructed with several parts such

as 20 servo motors for the robot movement, camera

for vision system, sub-controller cm-730 as the servo

motors controller and a NVIDIA Jetson TX2 as the

central controller for controlling and connecting all

devices which are mounted on the robot body. The

robot mechanical design presented on Figure. 1

which has the same construction with our previous

work [21], on this figure each of servo has its own

number related to the servo ID for utilizing the servo

movement from the sub controller. On the other hand,

the robot also supported by some electrical devices

which integrated each other to help the robot moved

according to the command. The electrical block

diagram system can be seen on Figure. 2. On

Figure.2, the robot equipped with

115 | Jurnal Integrasi | Vol.13 No.2, October 2021, 113-121 | e-ISSN: 2548-9828

Figure. 1. The mechanical design of BarelangFc.

Figure. 2. The full electrical block diagram system.

webcam camera as the vision to detect ball, pole of

goal, landmark, and also the robot rival. The vision

detection will be proceeded on the NVIDIA Jetson

TX2 therefore the robot will distinguish any object

toward them. Moreover, robot also mounted the IMU

sensor as a robot navigation so that the robot is able to

decide which way should go on the field. The IMU

sensor was selected as the input for the

SUB_CONTROLLER of strategy button. This button

is used to make the robot choose the strategi action

whether moved to attack the opponents, remained still

to protect the goal, or even to decide when it should

dribble the ball or kick the ball towards opponent’s

goal. The decision of robot movement is depended on

the vision system and strategy button which is

computed on the NVIDIA Jetson TX2. Then the

movement command will be transferred into CM-370

afterword to make sure each of servo motors moved

according to the CM370 command.

3. The ROS Construction Plan

As seen on Figure. 3, the BarelangFC ROS structured

by several nodes, subscribers, and publishers, the

former node or package consisted of the Vision, the

second one was the Sub_Controller, then the

Main_Strategy, and the latter was the

Bridge_Kinematic. While each of ROS publishers

will transmit the data into the subscribers, for instance

the Vision and Sub_Controller published their data to

the Main_strategy node and then it will be also

distributed the decision information to the

Bridge_kinematic node through the ROS publisher.

Another, the ROS subscriber was responsible on

receiving the information from the publishers and

delivering it to the package or node. At the last of

process, the Bridge_kinematic node filled with the

robot movement command and need to be sent to the

kinematic procedures which was in this work used the

LUA system via socket. The illustration of each

package block diagram can be seen from Figure. 4 to

Figure. 6 respectively. The vision package on Fig.4

attempted to process the vision data when the camera

detected the goal and poles on the field. The output

data from the vision was ball coordinate (x, y) also the

poles as well. This coordinate will be published to the

subscriber which is Main_Strategy node.

Figure. 3 The BarelangFC ROS architecture.

Figure. 4 The vision package block diagram.

116 | Jurnal Integrasi | Vol.13 No.2, October 2021, 113-121 | e-ISSN: 2548-9828

Figure. 5 The Sub_Controller package block diagram.

Figure. 6 The bridge kinematic package block diagram.

Figure. 7. The ROS workspace of BarelangFC.

117 | Jurnal Integrasi | Vol.13 No.2, October 2021, 113-121 | e-ISSN: 2548-9828

Subsequently, the Sub_Controller depicted on Figure.

5 including the IMU sensor for the robot heading and

the start and stop strategy button. All of these data

also transmitted to the subscriber Main_Strategy node.

As for the Main_Strategy node, it became the server

which control was controlled all of the function inside

the robot in such visual system, localization, and

strategy. This node has a special treatment due to it

task to publish the robot movement data as well as

subscribed data from the publisher. The latter package

was Bridge_kinematik to transfer all the movement

command from the Main_strategy node to the

kinematic player. The block diagram system

described on Figure. 6 sketchily. Considering that the

kinematic player has different platform, then all the

command movement data from the package should be

send to kinematic LUA through socket to translate the

movement data to LUA. On the other hand, Figure. 7

represented the completed BarelangFC ROS

workspace which was consisted with several block

that connected to each other. The BarelangFC

workspace on Figure. 7 was consisted the build and

devel space where these two spaces donoted to the

CMaked that requested to build the catkin packages in

the source space and debug the targets that placed

prior to being installed. Also, the scr or source space

has varieties of packages or nodes for instance

Sub_controller, Bridge_controller,

Barelangfc_strategy, and Barelang_Vision_oren. All

of these nodes will be generated the xml file before

transmitting to the ROS subscribers.

4. Experimental Results

This section will discuss about all the experiments

regarding the ROS transmitted and received data from

the publisher to the subscriber. The first experiment

was carried out to publish the data from publisher to

the subscriber by utilizing the ROS topic. As seen on

Figure. 8, the list of ROS topic on the workspace

consists of kinematics or motion, walking, button,

IMU for the robot heading, and also the vision

indicated from “oren” which was denote to the orange

color (ball) and “pos” represented the robot heading.

For instance, as seen on Figure. 9 (a), one of the ROS

topics was running which is IMU topic, then the data

not only will be shown up on the terminal screen but

also transmitted to the subscriber. Meanwhile, Figure.

9 (b) shown the kinematics ROS topic form the robot

motion.

The first experiment was carried out in order to

integrate the Sub_controller package to the ROS topic.

The Sub_controller package consists of strategy

button and the IMU sensor for the robot heading. This

part was communicated to the core system through

serial communication.

Figure. 8. The ROS topic list on the workspace.

(a)

(b)Figure. 9 The ROS topic (a) IMU data acquitition and (b)

kinematics motion data.

Figure. 10. The strategy button position of the robot.

118 | Jurnal Integrasi | Vol.13 No.2, October 2021, 113-121 | e-ISSN: 2548-9828

Figure. 11 The ROS topic for the Sub_controller published

data.

The two strategy buttons are shown on Figure. 10

denote with the orange arrows. When the

Sub_controller node was connected to the ROS

master, then this package will show the data which

was published including the button and IMU data by

using

“tombol1”, ”tombol2”, ”roll”, ”pitch”, ”yaw”,

data format, where the “tombol1”, ”tombol2”

represented the strategy button data

while ”roll”, ”pitch”, ”yaw” acquired from the

IMU sensor . For instance, when the Sub_controller

was ready to send the data to the subscriber, the ROS

topic will send (“4”, ”1”, ”-13”, ”0”, ”-1”) data

format towards it which related to the button strategy

and the IMU data sensor. The sending and receiving

data processes are illustrated on Figure. 11 labelled

with number. The number one on Figure. 11 denote to

the whole package data from the Sub_controller node

which is consists of strategy button and the IMU

sensor data. When the strategy button and the IMU

sensor have been separated from the Sub_controller

node, then the ROS topic list will be added

automatically on the workspace which can be seen on

Figure. 11 number 2. Therefore, in order to send the

ROS topic for the strategy button and the IMU sensor,

it just called the ROS topic name as presented on

Figure. 11 number 3 dan number 4.

Figure. 12 The Bridge_kinematic ROS topic list.

Figure. 13 The robot movement according to the ROS topic

command prompt.

The second experiment was integrating the

Bridge_kinematic node to the ROS topic which list

can be seen on Figure. 12 including the motion and

walk. On Figure. 12, the integrating

Bridge_kinematic package to the ROS topic consists

of four topics were motion 7, motion 8, motion 1, and

motion 2. On Figure. 12 described the command

prompt from ROS topic to move the robot according

to the ROS topic which was send by the publisher.

The result of the command from Figure. 12 can be

seen on Figure. 13 where motion 7 for sit-down

where in Figure. 13 denote to the “duduk”, motion 8

as stand-up command labeled with “berdiri” on

Figure. 13, motion 2 for kicking to the left described

with “tendang kiri” on Figure.13, and motion 1 as

kick to the right which represented on Figure. 13 as

“tendang kanan”. Another, when command the robot

for moving forward and backward (x), left and right

(y), and even rotating clockwise and counter

clockwise (z) for the linear movement and the angular

data for rotating movement of the robot. the ROS

topic from Bridge_kinematic node can publish not

only the linear data (x,y,z) but also the angular data of

(x,y,z) including the walking movement of the robot.

As the result of sending the Bridge_kinematic node

can be seen on Figure. 14 where the command

prompt described on Figure. 15. On Figure.14, the

robot when all the x,y,z send by the ROS topic equals

to zero, then robot will stand still on its start point, and

when the z has given to 0.6 it will turn to the right and

turn to the left when the z filled with -0.9.

119 | Jurnal Integrasi | Vol.13 No.2, October 2021, 113-121 | e-ISSN: 2548-9828

Figure. 14 The robot movement for each robot mobility

according to the ROS topic prompt.

Figure. 15 The ROS topic format sending data from

Bridge_kinematic node to the lua kinematics.

Fig. 16 The head position result from the ROS topic command.

Fig. 17 The tilt generation for head position movement of the

ROS topic.

These command on Figure. 15 used

geometry_msgs/Twist command from ROS topic to

the subscriber. In this node, the robot also can be

commanded to tilt its head to the right and right

position by using the head/pos ROS topic. To make

the pan movement resembles as human being, then

the constraint position needs to be given for each

action for instance we set for right pan to -2.0, left 2.0,

up -20, and down -0.6. The results of given the pan

data to the robot head can be seen on Fig. 16 with the

ROS topic prompt described on Figure. 17. The

prompt on Figure. 17 generated the head movement

result as seen on Figure. 16, made the robot

experience to pan its head to the right on Figure. 16

denote to “pergerakan kepala ke kanan” for about -1.6

and pan to the opposite direction for 1.6.

The next experiment integrated the vision system to

detect the orange ball through barelang_vision node

in order to produce the ball coordinate (x,y), height

and width of the ball, ball distance, pole coordinate

(x,y), the heigh of each right and left pole and the

distance of right and left pole. These whole vision

data will be published to the BarelangFC _strategy

node as a detection system for BarelangFC robot. As

the result of ROS topic vision gave the whole

information of the detection represented on Figure.

18. On Figure. 18, the robot vision is asked to detect

only the orange ball and then gave all the information

of the orange ball. As seen on Figure. 18, the system

only performs the information of the ball considering

that the vision did not detect the goal and pole then the

goal coordinate, distance, and height data shown only

-1 and 0, meanwhile, robot was able to detect the

coordinate of the orange ball which x 339, y 420 and

the distance (D) from robot to the ball was 113cm,

also the height (H) 60 and width (W) 64.

The other work was to integrated the Main_strategy

package to the ROS topic which was published from

the other packages. In order to verify the inter

connection between ROS topic, the vison and

Main_strategy packages were run at the same time

which can be seen on Figure. 19. On Figure.19, each

of nodes succeed to communicate one another.

Moreover, on Figure. 20, described whole

information about the ROS topic which were

connected to the barelangFC_strategy node.

Fig. 18 The detection information from orange ball of the ROS

topic vision.

120 | Jurnal Integrasi | Vol.13 No.2, October 2021, 113-121 | e-ISSN: 2548-9828

Fig. 19 Running the Main_strategy package and the vision

node at the same time.

Fig. 20 The ROS topic package information which was

published and subscribed on BarelangFC_strategy node.

5. Conclusions

This paper presented a new look of software system

on BarelangFC humanoid robot including

implementation and construction of the ROS in it.

From the experimental results, it can be concluded

that all the packages or nodes of the ROS are able to

publish their data to the subscriber. The python

platform has been utilized in this work as a main

programming language for all the packages available

in the system. The transmitted and received data flow

process also can be seen on the RQT in real-time

application from the packages or nodes. Due to the

results of ROS construction in this work succeed,

therefore, we are going to be reconstructed the other

robot software system with the same architecture as

we done in this work as the future work.

References

[1] Y. Kim, S. -y. Lee and S. Lim, "Implementation

of PLC controller connected Gazebo-ROS to

support IEC 61131-3," 2020 25th IEEE

International Conference on Emerging

Technologies and Factory Automation (ETFA),

2020, pp. 1195-1198, doi:

10.1109/ETFA46521.2020.9212096.

[2] R. K. Megalingam, A. Rajendraprasad and S. K.

Manoharan, "Comparison of Planned Path and

Travelled Path Using ROS Navigation Stack,"

2020 International Conference for Emerging

Technology (INCET), 2020, pp. 1-6, doi:

10.1109/INCET49848.2020.9154132.

[3] S. Rivera, A. K. Iannillo, S. Lagraa, C. Joly and R.

State, "ROS-FM: Fast Monitoring for the Robotic

Operating System(ROS)," 2020 25th

International Conference on Engineering of

Complex Computer Systems (ICECCS), 2020, pp.

187-196, doi:

10.1109/ICECCS51672.2020.00029.

[4] Z. Ma, L. Zhu, P. Wang and Y. Zhao,

"ROS-Based Multi-Robot System Simulator,"

2019 Chinese Automation Congress (CAC), 2019,

pp. 4228-4232, doi:

10.1109/CAC48633.2019.8996843.

[5] P. Amontamavut and E. Hayakawa, "ROS

Extension of Blue-Sky web based development

environment for IoT," 2016 Fifth ICT

International Student Project Conference

(ICT-ISPC), 2016, pp. 45-48, doi:

10.1109/ICT-ISPC.2016.7519232.

[6] H. Wei, Z. Huang, Q. Yu, M. Liu, Y. Guan and J.

Tan, "RGMP-ROS: A real-time ROS architecture

of hybrid RTOS and GPOS on multi-core

processor," 2014 IEEE International Conference

on Robotics and Automation (ICRA), 2014, pp.

2482-2487, doi: 10.1109/ICRA.2014.6907205.

[7] S. Gatesichapakorn, J. Takamatsu and M.

Ruchanurucks, "ROS based Autonomous Mobile

Robot Navigation using 2D LiDAR and RGB-D

Camera," 2019 First International Symposium on

Instrumentation, Control, Artificial Intelligence,

and Robotics (ICA-SYMP), 2019, pp. 151-154,

doi: 10.1109/ICA-SYMP.2019.8645984.

[8] S. Gatesichapakorn, M. Ruchanurucks, P.

Bunnun and T. Isshiki, "ROS-Based Mobile

Robot Pose Planning for a Good View of an

Onboard Camera using Costmap," 2019 10th

International Conference of Information and

Communication Technology for Embedded

Systems (IC-ICTES), 2019, pp. 1-6, doi:

10.1109/ICTEmSys.2019.8695969.

[9] Y. Nitta, S. Tamura, H. Yugen and H. Takase,

"ZytleBot: FPGA Integrated Development

Platform for ROS Based Autonomous Mobile

121 | Jurnal Integrasi | Vol.13 No.2, October 2021, 113-121 | e-ISSN: 2548-9828

Robot," 2019 International Conference on

Field-Programmable Technology (ICFPT), 2019,

pp. 445-448, doi:

10.1109/ICFPT47387.2019.00089.

[10] R. Mishra and A. Javed, "ROS based service

robot platform," 2018 4th International

Conference on Control, Automation and Robotics

(ICCAR), 2018, pp. 55-59, doi:

10.1109/ICCAR.2018.8384644.

[11] Y. Chang, P. Chung and H. Lin, "Deep learning

for object identification in ROS-based mobile

robots," 2018 IEEE International Conference on

Applied System Invention (ICASI), 2018, pp.

66-69, doi: 10.1109/ICASI.2018.8394348

[12] K. Hasegawa, K. Takasaki, M. Nishizawa, R.

Ishikawa, K. Kawamura and N. Togawa,

"Implementation of a ROS-Based Autonomous

Vehicle on an FPGA Board," 2019 International

Conference on Field-Programmable Technology

(ICFPT), 2019, pp. 457-460, doi:

10.1109/ICFPT47387.2019.00092.

[13] J. Staschulat, I. Lütkebohle and R. Lange, "The

rclc Executor: Domain-specific deterministic

scheduling mechanisms for ROS applications on

microcontrollers: work-in-progress," 2020

International Conference on Embedded Software

(EMSOFT), 2020, pp. 18-19, doi:

10.1109/EMSOFT51651.2020.9244014.

[14] B. B. Rhoades, D. Srivastava and J. M. Conrad,

"Design and Development of a ROS Enabled

CAN Based All-Terrain Vehicle Platform,"

SoutheastCon 2018, 2018, pp. 1-6, doi:

10.1109/SECON.2018.8479285.

[15] B. Mirkhanzadeh et al., "A two-layer network

Orchestrator offering trustworthy connectivity to

a ROS-industrial application," 2017 19th

International Conference on Transparent Optical

Networks (ICTON), 2017, pp. 1-4, doi:

10.1109/ICTON.2017.8025148.

[16] M. Cai, Y. Wang, S. Wang, R. Wang and M. Tan,

"ROS-Based Depth Control for Hybrid-Driven

Underwater Vehicle-Manipulator System," 2019

Chinese Control Conference (CCC), 2019, pp.

4576-4580, doi: 10.23919/ChiCC.2019.8865762.

[17] D. Stojanović, M. Krunić, N. Četić and N. Lukić,

"Source code generators for ADAS feature

deployment in context of ROS and adaptive

AUTOSAR applications," 2019 27th

Telecommunications Forum (TELFOR), 2019, pp.

1-4, doi: 10.1109/TELFOR48224.2019.8971074.

[18] N. Goerke, D. Timmermann and I. Baumgart,

"Who Controls Your Robot? An Evaluation of

ROS Security Mechanisms," 2021 7th

International Conference on Automation,

Robotics and Applications (ICARA), 2021, pp.

60-66, doi:

10.1109/ICARA51699.2021.9376468.

[19] N. Hammoudeh Garcia, M. Lüdtke, S. Kortik, B.

Kahl and M. Bordignon, "Bootstrapping MDE

Development from ROS Manual Code - Part 1:

Metamodeling," 2019 Third IEEE International

Conference on Robotic Computing (IRC), 2019,

pp. 329-336, doi: 10.1109/IRC.2019.00060.

[20] H. Hong, Z. Wen, S. Bi, Y. Zhang and W. Yang,

"RoverOS: Linking ROS with WebSocket for

moblie robot," 2019 IEEE 9th Annual

International Conference on CYBER Technology

in Automation, Control, and Intelligent Systems

(CYBER), 2019, pp. 626-630, doi:

10.1109/CYBER46603.2019.9066498.

[21] Susanto, Junito Suroto, Riska Analia, “ The ROS:

Kinetic Kame for Humanoid Robot BarelangFC”

, Jurnal Integrasi - April 2021, Vol 13 No 1

(2021), pp. 68-77,

DOI: https://doi.org/10.30871/ji.v13i1.2686.

https://doi.org/10.30871/ji.v13i1.2686

