

Copyright © 2019

This article is published under the terms of the Attribution-ShareAlike 4.0 International (CC BY-SA)

https://revistas.udistrital.edu.co/ojs/index.php/Tecnura/issue/view/1088

DOI: https://doi.org/ 10.14483/22487638.18617

Clasificación del artículo: Investigación

Optimal Design of a Helical Spring by Using a Genetic
Continuous Algorithm

Diseño óptimo de un resorte helicoidal usando un
algoritmo genético continuo

Fecha de recepción: 2 de agosto de 2021

Fecha de aceptación: 12 de agosto de 2021

Cómo citar: Rodríguez-Cabal., M.A. Betancur-Gómez., J.D. y Grisales-Noreña., L.F. (2021).

Optimal Design of a Helical Spring by Using a Genetic Continuous Algorithm. Tecnura, 25(70).

https://doi.org/ 10.14483/22487638.18617

https://creativecommons.org/licenses/by-sa/4.0/
https://revistas.udistrital.edu.co/ojs/index.php/Tecnura/issue/view/993
https://creativecommons.org/licenses/by-sa/4.0/

Miguel Angel Rodríguez-Cabal

Electromechanical engineer, Master’s candidate in Industrial Energetic Management,

Department of Electromechanics and Mechatronics, Instituto Tecnológico Metropolitano de

Medellín, Colombia.

Email: miguelrodriguez220490@correo.itm.edu.co

Juan Diego Betancur-Gómez

Mechatronic engineer, Master’s degree in Industrial Energetic Management, Department of

Electromechanics and Mechatronics, Instituto Tecnológico Metropolitano de Medellín,

Colombia.

Email: juanbetancur134613@correo.itm.edu.co

https://orcid.org/0000-0002-3546-8311

Luis Fernando Grisales-Noreña

Electrical engineer, Master’s degree in Electrical Engineering, PhD in Automatic

Engineering. Professor at Instituto Tecnológico Metropolitano de Medellín, Colombia.

Email: luisgrisales@itm.edu.co

https://orcid.org/0000-0002-1409-9756

mailto:juanbetancur134613@correo.itm.edu.co
mailto:luisgrisales@itm.edu.co

Abstract

Objective: In this paper, a continuous genetic algorithm (CGA) for the optimal design of a
closed-coil helical spring is proposed.
Methodology: The solution methodology uses the minimization of the total spring volume
as objective function, considering the wire diameter, mean diameter and number of active
coils as main variables. As set of constraints, the technical and physical requirements for the
correct and safe design of the aforementioned element are implemented. A CGA is employed
as a solution method, and, as comparison methods, different optimization algorithms were
used, which were employed in the specialized literature for solving the problem addressed in
this study.
Results: The results obtained show that the CGA achieved the minimum value of volume,
1.5% less than the best reported technique, with a processing time lower than 1 s, which
proves that the proposed methodology obtains the best results in terms of solution quality
and processing time.
Conclusions: The simulation results show that the CGA obtains the best solution in
comparison with the other techniques, at a low computational cost and providing a solution
that meets the physical and technical constraints of the design.

Keywords: mechanical design, metaheuristic optimization, helical springs, genetic
algorithm

Resumen
Objetivo: En este artículo de investigación se propone un algoritmo genético continuo
(CGA) para realizar el diseño óptimo de un resorte helicoidal de bobina cerrada.
Metodología: La metodología de solución emplea como función objetivo la minimización
del volumen total de un resorte helicoidal, considerando como variables principales el
diámetro del alambre, el diámetro promedio y el número de bobinas activas. Como conjunto
de restricciones se implementan los requerimientos físicos y técnicos para el diseño seguro y
adecuado del elemento mencionado. Como método de solución se emplea un CGA, y como
métodos de comparación son usados diferentes algoritmos de optimización que han sido
implementados en la literatura especializada para dar solución al problema abordado.
Resultados: Los resultados obtenidos muestran que el CGA obtiene el mínimo valor de
volumen, siendo menor en un 1,5% en comparación con la mejor técnica reportada, con un
tiempo de procesamiento menor a 1 s, lo cual demuestra que la metodología propuesta
obtiene los mejores resultados en términos de calidad de la solución y tiempo de
procesamiento.
Conclusiones: Los resultados de simulación muestran que el CGA obtiene la mejor solución
en comparación con las demás técnicas, a un bajo costo computacional y entregando una
solución que cumple con los requerimientos físicos y técnicos del diseño.

Palabras clave: diseño mecánico, optimización metaheurística, resortes helicoidales,
algoritmo genético

Introduction
Helical springs are elements that can be subjected to traction or compression. These

are usually manufactured with metal alloys bent in a cylindrical way. The spring has a
constant pitch, and its cross-section depends on the application of the spring, be it cylindrical
or square (Bidabadi et al., 2013). The end of the coil spring can be an open or closed coil.
The main difference lies in the angle formed between the coil and the vertical (Shevale &
Khaire, 2016). Some of the most common applications for coil springs are absorbing shocks,
applying forces to brakes and clutches, controlling movement by acting as a stabilizer, and
for energy storage in toys and watches (Bidabadi et al., 2013). When designing a helical
spring, the geometry, the loads it supports, and the deflection must be specified based on
spatial limitations (Mott et al., 2004). The main variables for the design of a helical spring
are the diameter of the wire, the internal diameter, and the number of turns. From these, the
other factors associated with it are calculated, such as length and maximum performance, as
well as the points where the design will withstand the stress to which it will be subjected.

The optimization of the design of a helical spring was performed in an article
published by Thamaraikannan and Thirunavukkarasu (2014). The objective function was to
minimize the volume of the spring. The main variables were the physical dimensions of the
spring, and the set of constraints were constructive criteria associated with each variable, the
maximum forces, and the deflections allowed. Optimization techniques play an important
role, as they are widely used in the specialized literature to solve engineering problems such
as minimizing weights, volume, size, costs, among others (Azad & Amidpour, 2011; Giri et
al., 2008; Shi et al., 2016). Obtaining viable solutions at low computational costs is desirable,
but it depends on each problem’s physical restrictions. One of the most important
characteristics of these optimization methodologies is the fact that they can be implemented
in free software such as Python, octave, or Scilab, which implies zero investment costs in
terms of software and constitutes an important advantage over commercial optimization tools
such as General Algebraic Models (GAMS).

 In the field of mechanical design and the industry in general, focus has been given in
recent years to improving efficiency in the construction processes of mechanical devices,
optimizing production costs through weight and volume reduction and thus complying with
the limits of mechanical forces. The reduction of the weight and size of the elements of the
different mechanical devices leads to an improvement in the efficiency of industrial processes
by achieving a reduction in the consumption of materials, and therefore in their processing
and manufacturing times (Szabó & Actis, 2012). At the same time, this allows reducing
energy consumption within its particular applications, given that less effort is required for

movement (Jang & Jang, 2014; Ke et al., 2020). All this helps to reduce the carbon footprint
from the perspective of the manufacturing industry (Denkena et al., 2020).

 In terms of optimization techniques, in the specialized literature, there are works
where metaheuristic optimization algorithms, such as genetic algorithms, have been used to
reduce the weight of transmission shafts, improve the heat transfer coefficient of spiral plate
heat exchangers, reduce the volume of a pressure vessel, among others, obtaining good
results by resolving nonlinear, non-convex mathematical models with reduced computing
times (Espitia-Cüchango & Sofrony-Esmeral, 2014; Gaikwad & Kachare, 2014; Kar et al.,
2020; Sealy et al., 2016). In addition, coil springs have high applicability in the industry, thus
making it necessary to establish methodologies that allow obtaining more efficient designs
from a constructive point of view, complying with the conditions of maintainability, safety,
and reliability, since these mechanical elements fulfill vital functions in machines and
equipment, as the axis is in charge of transmitting power to the different elements and springs.
This has applications in shock absorbers, clutches, and machines in which energy storage in
the form of compression is necessary. This article proposes to reduce the weight and size of
a coil spring by meeting its technical and operational constraints at all times through optimal
design. To optimize the design of this type of geometry, it is necessary to carry out
calculations and iterative processes in order to ensure that the dimensions are given so that
each element meets the requirements of each particular case (economic and technical).

 As mentioned above, genetic algorithms have certain advantages over the others,
which is why they are used for this study, where a comparison is made with a similar work.
The objective function is to minimize the volume of the spring and use restrictions such as
length, maximum deflection, efforts, and other physical parameters. The first part of this
article presents the mathematical approach with its restrictions and parameters. Then, the
technique used to solve the problem is fully explained, and, finally, the results of the study
are presented.

Mathematical formulation
Helical springs are made from a wire, whose cross-section can be circular, square, or

triangular, and they are rolled onto a helical form. This type of spring is designed to support
compression and traction loads, aiming to find the dimension that supports the loads with a
minimum volume. For this reason, the design of helical springs employs the main geometrical
variables to establish the volume, the wire diameter (d), the mean diameter (D), and the
number of coils (Nc), as shown in Equation (1).

𝑉𝑉 = �
𝜋𝜋
2
�
2

(𝑁𝑁𝑐𝑐 + 2)𝐷𝐷𝑑𝑑2 (1)

As mentioned above, geometrical parameters must support the applied load without

exceeding the allowed stresses and the geometrical values associated with the available space

according to the technical design conditions. These constraints are mentioned below.

Set of constraints
 The first constraint represents the allowable stresses, where a relation between stress,
the maximum load applied, and the geometrical parameters is established. Here, the stress
exerted by the maximum force (Fmax) cannot exceed the allowable stress (S). This is
represented by Equation (2).

𝑔𝑔1 = 𝜋𝜋𝑑𝑑3𝑆𝑆 − 8𝐶𝐶𝑓𝑓𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝐷𝐷 ≥ 0 (2)

 where Cf is the geometrical parameter defined in Equation (3).

𝐶𝐶𝑓𝑓 =
4𝐶𝐶2 + 1,46𝐶𝐶 − 2,46

4𝐶𝐶(𝐶𝐶 − 1)
,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐶𝐶 =

𝐷𝐷
𝑑𝑑

(3)

 As for spring configuration, it is important to mention that the free length must be
less that a specified value. To define it, it is necessary to know the spring constant k, which
is defined in Equation (4), where G is the shear modulus.

𝐾𝐾 =
𝐺𝐺𝑑𝑑4

8𝑁𝑁𝑐𝑐𝐷𝐷3
(4)

 The deflection under maximum working load can be expressed by Equation (5).

𝛿𝛿𝑙𝑙 =
𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚

𝐾𝐾
 (5)

To define the free length (lf), it is assumed that lf is α times the solid length, as shown
in Equation (6).

𝑙𝑙𝑓𝑓 = 𝛿𝛿𝑙𝑙 + 𝛼𝛼(𝑁𝑁𝑐𝑐 + 2)𝑑𝑑 (6)

This implies that the free length of the spring must not be less that the maximum value

lmax, which is a design parameter (Equation (7)).

𝑔𝑔2 = 𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑙𝑙𝑓𝑓 ≥ 0 (7)

The wire diameter must not exceed the minimum specified value, which is expressed
in Equation (8).

𝑔𝑔3 = 𝑑𝑑 − 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 0 (8)

Additionally, the outside diameter of the coil cannot exceed the maximum specified

value, which is defined in Equation (9).

𝑔𝑔4 = 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐷𝐷 − 𝑑𝑑 ≥ 0 (9)

 Based on the physical spring characteristics, the mean diameter must be at least β
times the wire diameter to ensure the correct installation of the spring. This constraint is
expressed in Equation (10).

𝑔𝑔5 = 𝐶𝐶 − 𝛽𝛽 ≥ 0 (10)

 Under load operation, spring deflection must be less than a specified value (Equation
(11)).

𝛿𝛿𝑝𝑝 =
𝐹𝐹𝑝𝑝
𝐾𝐾

 (11)

 This implies that:

𝑔𝑔6 = 𝛿𝛿𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝛿𝛿𝑝𝑝 ≥ 0 (12)

 Note that the combined deflection must be consistent with the free length, which can
be formulated as Equation (13).

𝑔𝑔7 = 𝑙𝑙𝑓𝑓 − 𝑑𝑑𝑝𝑝 ≥ 0 (13)

The deflection under preload conditions must be consistent with the design value.
This is defined in Equation (14), where δ is a constant value.

𝑔𝑔8 = 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐹𝐹𝑝𝑝 − 𝑘𝑘𝛿𝛿𝑤𝑤 ≥ 0 (14)

 Finally, to solve the mathematical model, the variables are constrained in order to
define a concrete solution space. The constraints are defined in Equations (15) to (17).

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑑𝑑 ≤ 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 (15)
𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝐷𝐷 ≤ 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 (16)
𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≤ 𝑁𝑁𝑐𝑐 ≤ 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (17)

 After knowing and interpreting each constraint, the set of penalties are presented.
These are expressed in Equations (18) to (25), which are related to each previously mentioned

constraint and defined by the maximum function, where px takes the maximum value, being
0 if the constraint is satisfied, and g if the constraint is violated.

 The parameters considered for the design of the helical spring solved in this paper are
reported in Table 1, and they are taken from Thamaraikannan and Thirunavukkarasu (2014).

Table 1. Design parameters of the closed-coil helical spring

Parameter Value Unit Parameter Value Unit
Fmax 453,6 kgf S 808543,6 kgf/cm2
G 808543,6 kgf/cm2 α 1,05 -
Lmax 35,56 cm β 3 -
δw 3,175 cm dmax 1,016 cm
dmin 0,508 cm Dmax 7,620 cm
Dmin 1,270 cm Nmax 25 -
Ncmin 15 - - - -

Source: Authors

Solution technique

The presented mathematical model is a non-convex, nonlinear problem with a single
objective function and continuous variables. For this reason, it is necessary to determine
solution techniques that allow dealing with the constraints by penalty factors which are added
to the objective function. In order to solve this optimization problem, a continuous genetic
algorithm (CGA) is proposed. CGAs are a classic optimization technique, which has been
used in the specialized literature to solve continuous optimization problems, as well as for
the optimization of nonlinear continuous functions with acceptable solutions (Giri et al.,
2008; Montoya et al., 2018; Moradi & Abedini, 2012; Rodríguez-Cabal et al., 2019). Genetic
algorithms work with five main characteristics, which are described below (Solarte-Martínez
et al., 2015).

𝑝𝑝1 = max {0,𝑔𝑔1} (18)
𝑝𝑝2 = max {0,𝑔𝑔2} (19)
𝑝𝑝3 = max {0,𝑔𝑔3} (20)
𝑝𝑝4 = max {0,𝑔𝑔4} (21)
𝑝𝑝5 = max {0,𝑔𝑔5} (22)
𝑝𝑝6 = max {0,𝑔𝑔6} (23)
𝑝𝑝7 = max {0,𝑔𝑔7} (24)
𝑝𝑝8 = max {0,𝑔𝑔8} (25)

Initial population
 As the CGA is an optimization technique based on population, the latter must be
generated. It is proposed as a matrix with a rows and s columns, where a corresponds to the
number of potential solutions and s to the number of variables of the problem. The matrix is
represented in Table 2, where d, D, and Nc are the three variables of the problem under study.

Table 2. Population used for the problem under study

D11 d12 d13

d21 d22 d23

. . .

. . .

. . .

da1 da2 da3 axs

Source: Authors

Fitness function
 Before the population is generated, each individual has to be evaluated with the fitness
function (FF). It is worth noting that the CGA turns a constrained problem into a conditional
one; for this optimization problem, the FF is Equation (1), added with the sum of each
evaluated constraint and multiplied by a penalty factor (θ). The FF is expressed in Equation
(26) and the penalty factor in Equation (27).

𝐹𝐹𝐹𝐹 = 𝑉𝑉 + 𝑃𝑃𝑃𝑃𝑃𝑃 (26)
𝑃𝑃𝑃𝑃𝑃𝑃 = (𝑝𝑝1 + 𝑝𝑝2 + 𝑝𝑝3 + 𝑝𝑝4 + 𝑝𝑝5 + 𝑝𝑝6 + 𝑝𝑝7 + 𝑝𝑝8)𝜃𝜃 (27)

Descendant population
 As CGAs imply an iterative process, the generation of new potential solutions is
necessary at each iteration. This, with the purpose of replacing the bad solutions contained
in the population. To achieve this, the mutation and recombination operators are adapted; a
classic selection allows good solutions within the population and enables them to improve its
position. The selection methods are explained below:

• Selection: The descending population starts selecting, in a random way, a subgroup of
individuals in the actual population. In this selection, a random number between r and
1 is chosen. Then, a new matrix is generated with a potential solution by employing the
same strategy as the initial population. Finally, the total group of the selected individuals
is formed through both strategies mentioned above.

• Recombination: This process alters the descendant population as follows; if the
probability of recombination rp is less than 50%, then two random individuals are
averaged in order to create a new potential candidate. Note that this operation always
generates feasible individuals, since the initial population, like the new candidates, is
generated inside the solution space.

• Mutation: At this point, the probability of mutation mp
is explored, i.e., if mp is greater than 50%, a new random position of the potential
solution is modified for a random value that ensures compliance. If mp is under 50%,
the potential solution is not modified. This process is applied to each individual in the
descendant population.

 Once the descendant population is generated, the FF is evaluated once more.

New population
 Once the new population has been evaluated, the group with the best solutions found by
the CGA is saved. Then, a new population is generated by combining the group of descendant
individuals, which produce a population with 2a following potential solutions. If two potential
solutions are identical, one of them is removed from the list. This procedure is repeated until
it is guaranteed that all potential solutions are different. Now, the list of resulting potential
solutions is organized in an ascending form, the best solutions are selected as the new
population, and they move on to the new iteration.

Stopping criterion
 The proposed CGA ends the optimization process when one of the following conditions is
satisfied:

• The total iteration number has been reached.

• The best potential solution does not improve its value after m continuous iterations.

 Finally, Algorithm 1 shows the pseudo-code that describes the iterative process of the
genetic algorithm.

Algorithm 1. Pseudocode used for the CGA
Source: Authors

Results

The solution technique was programmed in MATLAB with a desktop computer (HPZ600,
with 8GB RAM and 4 processor cores). In order to compare the numerical results, different
optimization techniques were used, such as the conventional method, particle swarm
optimization (PSO), and artificial bee colony (ABS), as published by Thamaraikannan and
Thirunavukkarasu (2014).

Figure 1. Fitness function values found by the optimization techniques
Source: Authors

 In Figure 1, it can be observed that the CGA obtained the lowest value compared with
the other techniques; the best objective value went from 46,51 cm3, as obtained by the best
reported technique, to 45,80 cm3, which represents an improvement of 1,5%. Compared to
the reported techniques, CGA shows an improvement in the fitness function, with a feasible
solution taking an average computing time of 1 s, which finds the following values of the
decision variables: d = 0,6739 cm, D = 2,4048 cm, and Nc = 15. When the set of constraints
were evaluated, it was found that the values obtained by the purposed method were satisfied,
which shows the feasibility of the design, not only with respect to the available space,
determined by the free length, but also regarding the constraints related to the stresses and
deflection under maximum load, which guarantees the quality of the solution.

 Therefore, the CGA proves to be an efficient and fast technique for solving problems
such as the one addressed in this study. The difference between the values of the techniques
may be due to the tuning and programming of the algorithms, which not only affects the
quality of the response, but also the processing times, which are not reported by
Thamaraikannan and Thirunavukkarasu (2014).

Conclusions

In this paper, the optimization of a closed coil helical spring was carried out through
a continuous genetic algorithm, where the objective function was the minimization of the
volume of the spring by means of an adequate selection of the wire diameter, the mean
diameter, and the number of coils; and, as a set of constraints, the technical and physical
conditions that should be considered in this type of devices to ensure a reliable and safe
design. For the sake of comparison, particle swarm optimization, artificial bee colonies, and
the conventional method were employed, which have been proposed in the literature to solve
the problem addressed in this research. Computational simulations showed that the CGA
obtained the best results in terms of quality of the solution, with a volume 1,5% less that the
best value reported by the comparison methods, while taking only 1 s to obtain the solution
and meeting all the set of constraints. This proves that the proposed method can be used to
solve not only the mathematical model employed, but also a problem with non-convex,
nonlinear functions, at a low computational cost. This can be achieved by the way in which
the algorithm explored and exploited the solution space.

Acknowledgments

 This work was supported by Instituto Tecnológico Metropolitano de Medellín
(Colombia), under the research groups of Advanced Computing and Digital Design
(SeCADD) and mathematical modeling, programming, and optimization applied to
engineering, which belongs to the research group of advanced materials and energy
(MATyER).

References

Azad, A. V., & Amidpour, M. (2011). Economic optimization of shell and tube heat
exchanger based on constructal theory. Energy, 36(2), 1087–1096.
https://doi.org/10.1016/j.energy.2010.11.041

Bidabadi, M., Sadaghiani, A. K., & Azad, A. V. (2013). Spiral heat exchanger optimization
using genetic algorithm. Scientia Iranica, 20(5), 1445–1454.
http://scientiairanica.sharif.edu/article_3402.html

Denkena, B., Abele, E., Brecher, C., Dittrich, M. A., Kara, S., & Mori, M. (2020). Energy
efficient machine tools. CIRP Annals, 69, 646–667.
https://doi.org/10.1016/j.cirp.2020.05.008

Espitia Cüchango, H. E., & Sofrony Esmeral, J. I. (2014). Algoritmo de optimización
basado en enjambres de partículas con comportamiento de vorticidad y búsqueda
individual y grupal. Revista Tecnura, 18(42), 24.
https://doi.org/10.14483/udistrital.jour.tecnura.2014.4.a02

Gaikwad, S. S., & Kachare, P. S. (2014). Static Analysis of Helical Compression Spring.
International Journal of Research in Engineering and Technology, 03(15), 835–838.
https://doi.org/10.15623/ijret.2014.0315158

Giri, C., Tipparthi, D. K. R., & Chattopadhyay, S. (2008). A genetic algorithm based
approach for system-on-chip test scheduling using dual speed TAM with power
constraint. WSEAS Transactions on Circuits and Systems, 7(5), 416–427.
http://www.wseas.us/e-library/transactions/circuits/2008/30-728.pdf

Jang, D., & Jang, S. (2014). Development of a lightweight CFRP coil spring. SAE
Technical Papers, 1. https://doi.org/10.4271/2014-01-1057

Kar, D., Ghosh, M., Guha, R., Sarkar, R., Garcia-Hernandez, L., & Abraham, A. (2020).
Fuzzy mutation embedded hybrids of gravitational search and Particle Swarm
Optimization methods for engineering design problems. Engineering Applications of
Artificial Intelligence, 95(June), 103847.

https://doi.org/10.1016/j.engappai.2020.103847

Ke, J., Wu, Z. yu, Liu, Y. sheng, Xiang, Z., & Hu, X. dong. (2020). Design method,
performance investigation and manufacturing process of composite helical springs: A
review. Composite Structures, 252(928), 112747.
https://doi.org/10.1016/j.compstruct.2020.112747

Montoya, O. D., Gil-González, W., & Grisales-Noreña, L. F. (2018). Optimal power
dispatch of DGS in DC power grids: A hybrid gauss-seidel-genetic-algorithm
methodology for solving the OPF problem. WSEAS Transactions on Power Systems,
13, 335–346. https://www.wseas.org/multimedia/journals/power/2018/a665116-
598.pdf

Moradi, M. H., & Abedini, M. (2012). A combination of genetic algorithm and particle
swarm optimization for optimal distributed generation location and sizing in
distribution systems with fuzzy optimal theory. International Journal of Green
Energy, 9(7), 641–660. https://doi.org/10.1080/15435075.2011.625590

Mott, R. L. (2004). Machine elements in mechanical design.

Rodriguez Cabal, M. A., Grisales Noreña, L. F., Ardila Marín, J. G., & Montoya Giraldo,
O. D. (2019). Optimal Design of Transmission Shafts: a Continuous Genetic
Algorithm Approach. Statistics, Optimization & Information Computing, 7(4).
https://doi.org/10.19139/soic-2310-5070-641

Sealy, M. P., Liu, Z. Y., Zhang, D., Guo, Y. B., & Liu, Z. Q. (2016). Energy consumption
and modeling in precision hard milling. Journal of Cleaner Production, 135, 1591–
1601. https://doi.org/10.1016/j.jclepro.2015.10.094

Shevale, D. V, & Khaire, N. D. (2016). Analysis of Helical Compression Spring for
Estimation of Fatigue Life. Imperial Journal of Interdisciplinary Research, 210),
2088-2093. http://www.onlinejournal.in/IJIRV2I10/272.pdf

Shi, W., Atlar, M., Norman, R., Aktas, B., & Turkmen, S. (2016). Numerical optimization
and experimental validation for a tidal turbine blade with leading-edge tubercles.
Renewable Energy, 96, 42–55. https://doi.org/10.1016/j.renene.2016.04.064

Solarte Martínez, G. R., Castillo Sanz, A. G., & Rodríguez Gahona, G. (2015).
Optimización de un ruteo vehicular usando algoritmo genético simple chu-beasley.
Revista Tecnura, 19(44), 93.
https://doi.org/10.14483/udistrital.jour.tecnura.2015.2.a07

Szabó, B., & Actis, R. (2012). Simulation governance: Technical requirements for
mechanical design. Computer Methods in Applied Mechanics and Engineering, 249–
252, 158–168. https://doi.org/10.1016/j.cma.2012.02.008

Thamaraikannan, B., & Thirunavukkarasu, V. (2014). Design optimization of mechanical
components using an enhanced teaching-learning based optimization algorithm with
differential operator. Mathematical Problems in Engineering, 2014.
https://doi.org/10.1155/2014/309327

	Introduction
	Mathematical formulation
	Set of constraints
	Initial population
	Fitness function
	Descendant population
	New population
	Stopping criterion

