
Viewing functions as token sequences to highlight

similarities in source code

Michel Chilowicz, Étienne Duris, Gilles Roussel

To cite this version:

Michel Chilowicz, Étienne Duris, Gilles Roussel. Viewing functions as token sequences to
highlight similarities in source code. Science of Computer Programming, Elsevier, 2013, 78
(10), pp.1871-1891. <10.1016/j.scico.2012.11.008>. <hal-00780290>

HAL Id: hal-00780290

https://hal.archives-ouvertes.fr/hal-00780290

Submitted on 23 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Ecole des Ponts ParisTech

https://core.ac.uk/display/48335248?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00780290

Viewing functions as token sequences to highlight
similarities in source code

Michel Chilowicza, Étienne Durisa, Gilles Roussela

aUniversité Paris-Est
Laboratoire d’Informatique Gaspard-Monge - UMR CNRS 8049

5 Bd Descartes
77454 Marne-la-Vallée Cedex 2

France

Abstract

The detection of similarities in source code has applications not only in soft-
ware re-engineering (to eliminate redundancies) but also in software plagiarism
detection. This latter can be a challenging problem since more or less extensive
edits may have been performed on the original copy: insertion or removal of use-
less chunks of code, rewriting of expressions, transposition of code, inlining and
outlining of functions, etc. In this paper, we propose a new similarity detection
technique not only based on token sequence matching but also on the factoriza-
tion of the function call graphs. The factorization process merges shared chunks
(factors) of codes to cope, in particular, with inlining and outlining. The result-
ing call graph offers a view of the similarities with their nesting relations. It is
useful to infer metrics quantifying similarity at a function level.

Keywords: source code, duplication, clones, similarity, factorization, inlining,
outlining, call graph, suffix indexation

1. Introduction

Identifying similarities and differences between data structures in order to
organize information is one of the main concerns of computer science. This
enables texts, audiovisual contents, genomes and other kinds of data to be
classified and rapidly retrieved or to be efficiently stored. In this article, we
focus on finding similarities in source code from several projects. Our aim
is to highlight plagiarized code among them, i.e. functions that are copied
with different degrees of transformation for the purpose of obfuscation. Finding
similarities in source code can be linked to other areas of interest in computer
science engineering, like refactoring projects by eliminating redundant chunks
of code, or smartly tracking evolutions between versions of single or cousin
projects. However, addressing plagiarism can be a markedly more challenging

Email addresses: michel.chilowicz@univ-paris-est.fr (Michel Chilowicz),

etienne.duris@univ-paris-est.fr (Étienne Duris), gilles.roussel@univ-paris-est.fr
(Gilles Roussel)

URL: http://igm.univ-mlv.fr/~chilowi/ (Michel Chilowicz),

http://igm.univ-mlv.fr/~duris/ (Étienne Duris), http://igm.univ-mlv.fr/~roussel/
(Gilles Roussel)

Preprint submitted to Science of Computer Programming January 23, 2013

problem: it may involve naive exact copies but it deals more often with more
significant transformations, introduced willfully between the original and the
copies.

The source code can be exploited as raw text in order to find repeated
sequences using classical pattern matching techniques on strings. However, this
approach is not well-suited for refactoring issues or in the context of plagiarism
detection; other representations or abstractions, less sensitive to edit operations,
must be adopted.

A first degree of abstraction consists of tokenizing the source code using a
lexer. This – cheap – lexical analysis erases the formatting information of the
source code (which can characterize a programming style but that can be triv-
ially altered by simple edit operations). A further degree of abstraction consists
of ignoring some tokens or merging them (like identifiers or types represented
by a single token) to defeat obfuscations based on renaming techniques. Finally,
syntax trees appear as a more precise representation but require a – more ex-
pensive – syntactic analysis. They reflect the hierarchical organization between
the syntactic structures. They allow more advanced abstraction and normal-
ization techniques and permit finer control over the boundaries of the reported
matches1. Moreover, they permit to report similarities not only at the token or
the global project levels but also at any level of the syntactic structure.

In this paper we have chosen a hybrid representation: a call graph of to-
kenized functions. The body of each function is represented by a flat token
sequence in which each function call is a link to the called function body. At
almost the cost of lexical analysis, this representation allows a shared chunk of
code to be expressed as a function invoked by all its sharing sites. Although this
limits the scope of our method to languages organizing code into functions (such
as procedural, object and functional languages), these are the most commonly
used.

The basis of our method is to merge call graphs of several projects into a
unique call graph, creating new functions that represent shared sub-parts of the
original functions. This method relies on suffix indexation techniques to find
shared token sub-strings among the analyzed functions. The merged call graph
is then used to compute similarity metrics between functions by quantifying
their amount of shared code. This code may be shared directly in the function
body or indirectly via function calls.

Like other tools [1, 2], the method presented here is based on the detection
of exact sub-string matches (according to the chosen abstraction on the token
sequences). However, it differs in several aspects. Indeed, contrary to other
methods that privilege the processing of whole compilation units, our method
considers function call links and reports to the user similarities at a function
level. More precisely, it allows the use of similarity metrics that are insensi-
tive to function inlining and outlining operations. Furthermore, the merged
graph being obtained through an iterative factorization method models nested
matches, i.e. small similar chunks included within greater similar chunks.

To reach this goal, our method builds a special data structure which is the
heart of the factorization process, the Maximal Repeated Factor (MaRF) graph
of the functions. It represents in a compact way the maximal shared sub-strings

1This limits the report of matches crossing several unrelated syntactic structures.

2

between the functions and their nesting and overlapping relations.
Even though our method specifically addresses inlining and outlining edit

operations, it also deals with other obfuscation patterns. Addition (or more
rarely deletion) of useless code does not hamper the report of other similar
chunks but may lower some similarity metric values. Transposition operations
are managed through the use of set similarity metrics (i.e. order agnostic) on
the merged call graph. Concerning very local edit operations, although some
tricks relying on abstraction and normalization processes may be adopted, they
remain difficult to identify, like for any other method [3, 2, 4] using exact sub-
string matching (e.g. suffix indexation, greedy string tiling).

The rest of this paper is organized as follows. First, section 2 presents
the general steps of our approach: this overview intuitively shows how token
sequences of different projects could be merged into a common call graph high-
lighting shared functions, and how its leaves could be used to compute similarity
metrics. Section 3 describes suffix-indexation-based structures and algorithms
allowing us to factorize functions into such a common call graph. Section 4
describes how the factorization call graph could be analyzed to infer similarity
metrics. Section 5 presents experimental results. Finally, section 6 qualitatively
compares our method to other approaches for clones and plagiarism detection in
source code. Once the main advantages and weaknesses of our technique have
been outlined in section 7, we close this article by raising some questions paving
the way for future work. Two appendices are appended to discuss some ideas
to improve locally edited code matching and to empirically test the proposed
similarity metrics with results provided by other plagiarism detection tools.

2. General overview

In this section, we intuitively present each step of our method and try to
omit the more technical issues related to suffix indexation techniques that will
be examined later.

2.1. From the source code to the call graph

The first step of our method consists of transforming the source code into a
call graph. This abstraction provides a good resistance against simple obfusca-
tions based on formating, identifier renaming or code displacement.

From the original source code of a program, a lexical analysis provides us
with a string of tokens for each function. In this string, the concrete lexical
tokens are represented by abstract parameterized tokens. Next, an abstraction
step can be performed to transform the token strings. This step renders the
string insensitive to simple obfuscation patterns based on single token substitu-
tions (identifier abstraction, type abstraction, etc.). For backtracking purposes,
each token occurrence is associated with its original position in the source code.

Each source code function is represented as a string of tokens. Two kinds of
parameterized abstract tokens coexist: a primitive token is a reserved keyword
of the language, a constant or a variable identifier; a call token, noted @f ,
represents a call to a function f2. We note Σp and Σc the sets of primitive

2If f is overloaded and has different profiles, it exists a different @f for each profile.

3

and call tokens, respectively. We unstack and externalize all the arguments of
a function call3; for instance, the call site f(x, g(y)); to the function f with a
nested call site to g as argument will be first inlined into tmp1 = x; tmp2 =
g(y); @f , then into tmp1 = x; tmp3 = y; tmp2 = @g; @f ;.

Each call token must be linked to a callee function. In some cases, determin-
ing univocally via statical analysis the callee is impossible; this situation is for
instance encountered when we deal with function pointers in C or redefined and
overridden virtual methods in Java, C++ or C#. In these cases execution trace
examination could be helpful to clear the ambiguity4. Even if the callee is not
ambiguous, it may be undefined in the current project scope (i.e. defined in an
external library). In this case we choose to consider the call site as a primitive
token.

The call graph is then transformed to simplify future processing. First,
functions containing both primitive and call tokens are replaced by functions
including only call tokens: this is carried out by creating new functions of
primitive tokens. We finally obtain a call graph with only two kinds of nodes:
internal nodes that are strings of call tokens and leaf nodes that are strings
of primitive tokens. The second simplification step consists of removing call
loops. To this end we transform the graph into an Acyclic Call Graph (ACG)
whose nodes will be the original graph’s strongly connected components. This
operation can be carried out in linear time in the number of call sites using for
example the Tarjan algorithm [5].

2.2. Factorization issues

The next step of our method is then to identify common factors (sub-strings
of tokens) among the functions of primitive tokens (leaves of the ACG). It
permits to detect exact matching between chunks of code and to factorize them
through new outlined synthetic functions. A factorized ACG common to all
functions is obtained, that will be used to compute similarity metrics between
them.

More precisely, we wish to decompose (or factorize) each leaf (string of con-
secutive primitive tokens) using sub-strings of other leaves, favoring larger and
complete leaves, but of length at least reaching a given threshold. For this pur-
pose, our heuristic consists of factorizing each leaf fi using sub-parts of functions
in L≤i = {f1, f2, · · · , fi−1, fi}, whose length5 is smaller or equal to that of fi.
A factorization of fi can be represented by fi = [ε1](x1)[ε2](x2) · · · [εn](xn)[εn+1]
where the (xj)1≤j≤n are non-empty sub-strings occurring in L≤i and the (εj)1≤j≤n+1

are (possibly empty) factors not matching with L≤i. Worthwhile properties for
this factorization and implementation techniques using suffix arrays will be fur-
ther discussed in section 3. One of these properties is to favor factorization
using complete functions to limit the creation of new outlined functions.

3Note that function parameters will in fact be ignored unless they represent a string of
consecutive primitive tokens reaching the match report threshold length.

4Currently we do not explore this track and lead preliminary tests on C projects ignoring
function pointers

5We consider factor length to quantify its importance. This quantification could be gener-
alized in a notion of factor weight taking into account token statistical occurrences and their
surrounding context.

4

radiator

rad tor

torus

factor nodeoriginal node
factorization’s iteration

iainterstitial leaf

radar

ada

ad

g4

r

h1

r

i1

a

rleaf with length below the threshold

1111 1

f5

g2 f1

f3

@f1 @g5

g5g1

@h1 @h2

@g1 @g2 @f1

2

f4

f2

@g3 @f2 @g4

@h2 @i1

h2

3

11 1

usia

g3

r

32

Figure 1: Factorized call graph for the functions
{tor, ada, torus, radar, radiator}

In order to present our heuristic, let us consider as a simple example the
set of five functions of primitive tokens (following an order respecting their
ascending length) {f1 = tor, f2 = ada, f3 = torus, f4 = radar, f5 = radiator}.
We want to factorize them with a threshold of factor’s length set to 2 tokens.
First, f5 is factorized into (rad)[ia](tor) with the factor (rad) linked to the
occurrence f4[1..3] and the factor (tor) linked to the occurrence f1 (a complete
function) rather than the partial factor of f3 = torus. We repeat the process
to factorize f4 using complete function or partial factors from {f1, f2, f3}. We
obtain f4 = [r](ada)[r] using the complete function f2. f3 is factorized into
(tor)[us] using the function f1. f2 and of course f1 remain non factorisable.
The retrieved partial factor rad is represented by a new leaf: a new synthesized
function g1. New leaves are also created for non matching interstitial parts
(g2 = ia, g3 = g4 = r and g5 = us). Each factorized function is replaced by
the call tokens to the leaves that compose it; for instance, f5 is replaced by
@g1@g2@f1, as illustrated in Figure 1. We note that at the moment rad is
called only by f5 and not by f4 even though it is also a factor of f4.

A second iteration of the process is needed to identify nested matching sub-
strings. This second iteration considers the new set of (length-sorted) leaves
{ia, us, ada, rad, tor}. Note that we do not take into account the functions
g3 = g4 = r because their length is below the threshold of 2 tokens set to
report matching sub-strings. Finally, rad is factorized into [r](ad) using the
prefix of ada and two new leaves h1 = r and h2 = ad are created. A third
iteration is operated with the set of leaves {ad, ia, us, ada, tor}: it allows ada to
be factorized into (ad)[a] using the leaf h2 created during the previous iteration.
The final set of leaves is {ad, ia, us, tor}, that no more contains shared factors
of at least 2 tokens. We specify in Figure 1 the final call graph for our example.

In practice the required number of iterations depends on the nesting level of
the duplicated sub-strings: the iterative process of factorization stops when the
call graph’s set of leaves does not contain functions of length above the fixed
threshold t for factor reporting. Thus, shared factors based on too trivial code
are not reported. This raises a constraint on the initial call graphs whose leaves
must be long enough to allow factorization. It is generally the case for typical

5

programs using procedural languages, but a functional programming style or
high density of macros may induce small leaves. As a preprocessing operation,
it could then be useful to expand sites calling functions with small body.

An algorithm summarizing the factorization process in presented in algo-
rithm 1. As a post-processing step, the call graph is tuned by trying to merge
leaves using fast-computed similarity metrics or using the edit distance (see Ap-
pendix A).

Data: Length threshold for factor reporting: t
Data: Set of leaf functions (sorted by ascending length) at iteration k:

Lk = {f1, f2, · · · , fζ}
Data: Set of internal functions at iteration k: Ik

Result: Factorized graph defined by its internal nodes I and its leaves L
1 begin
2 FactorizationIteration(t, Lk, Ik) body ;

3 Lk+1 = ∅ ;

4 Ik+1 = Ik ;
5 ` = 0 Length of the longest found factor ;

6 for fi ∈ Lk do
7 Factorize fi with complete functions or factors from Lk≤i ;

8 f ′i = [ε1](x1)[ε2](x2) · · · [εn](xn)[εn+1] ;
9 Add f ′i as a function of call tokens ;

10 Ik+1 ←− Ik+1 + {f ′i} ;
11 for e ∈ {ε1, · · · , εn+1, x1, · · · , xn} such as |e| ≥ t do
12 Lk+1 ←− Lk+1 + {e} ;

13 if ` ≥ t then
14 A new iteration is required to find nested matches ;

15 return FactorizationIteration(t, Lk+1, Ik+1) ;

16 else
17 Last iteration since no repeated factors of length at least t were

found ;

18 return (Ik+1, Lk+1) ;

Algorithm 1: Factorization process

2.3. From the factorized graph to function similarities

From the previously described iterative factorization process, we obtain a
factorized call graph that contains three kinds of nodes:

• nodes representing original (strongly connected components of) functions
from the input call graphs;

• shared nodes that are reachable by more than one original function;

• unshared nodes that are reachable by only one original function.

The last step of our method consists of computing similarities at the function
level from this factorized graph. Intuitively, a shared node represents informa-
tion that is common to several functions and reveals a similarity whereas an

6

1 int find min(int[] tab, int from) {
2 int min index = −1; int min value = −1;
3 for (int i=from; i < tab.length(); i++)
4 if (min index < 0 ||
5 tab[i] < min value) {
6 min index = i;
7 min value = tab[i];
8 }
9 return min index;

10 }
11 void exchange(int[] tab, int i, int j) {
12 int tmp;
13 tmp = tab[i];
14 tab[i] = tab[j];
15 tab[j] = tmp;
16 }
17 void sortrec(int[] tab, int start) {
18 if (start <= tab.length − 1) {
19 int i = find min(tab, start);
20 if (i != start)
21 exchange(tab, start, i);
22 sortrec(tab, start+1);
23 }
24 }
25 void sort(int[] tab) {
26 sortrec(tab, 0);
27 }

1 void sort2rec(int[] tab, int start) {
2 if (start <= tab.length − 1) {
3 int min index = −1; int min value = −1;
4 for (int i=start−0; i < tab.length(); i++)
5 if (min index <= −1 ||
6 tab[i] < min value) {
7 min index = i∗1;
8 min value = tab[i];
9 }

10 if (min index != start) {
11 tmp = tab[start];
12 tab[start] = tab[min index];
13 tab[min index] = tmp;
14 }
15 sort2rec(tab, start+1);
16 }
17 for (int i=0; i < start; i++)
18 System.err.println(”Useless code...”);
19 }
20 void sort2(int[] tab) {
21 sort2rec(tab, 0);
22 }

Figure 2: Original (sort) and obfuscated (sort2) implementations

exchange (24)find min ≡ m′ (46)i (10)

sortrec

sort

j (6)

m

sort2rec

sort2

n (23)

Figure 3: Factorized acyclic call graph of two insertion sort implementations

unshared node stands for information that is proper to the sole function that
reach it.

To illustrate it, let us consider the example of Figure 2: an insertion sort
implementation (original version sort on the left) and a plagiarized version
(sort2 on the right), obfuscated through inlining (lines 3 to 9), expression
rewriting (line 7) and insertion of useless chunk of code (lines 17 and 18). From
the two steps described previously, and with a factor reporting threshold of 10
tokens, we obtain the factorized call graph presented in figure 3. The length of
leaves is given between parentheses.

This graph is used to infer similarity metrics between initial functions: they
heuristically quantify the amount of code shared between two functions by the
sum of lengths of their common reachable leaves. The table figure 4 gives this
amount of shared code for each pair of functions. Further details about similarity
metrics and possible normalizations will be discussed in section 4. For example,
functions sort2 and sort share 80 tokens; this amount could be compared to
106 tokens summed for the union of their reached leaves.

7

find min (46) exchange (24) sort, sortrec (86)

exchange (24) 0
sort, sortrec (86) 46 24

sort2, sort2rec (103) 46 24 80

Figure 4: Matrix quantifying the amount of shared information (sum of length
of shared leaves) for each pair of functions

Compared with other similarity detection methods, we detect explicitly that
sortrec and sort2rec are comparable. Indeed, other methods could have
detected that sortrec, find min and exchange are similar to inlined chunks
of sort2rec but they would not have report the complete similarity between
sortrec and sort2rec. Moreover, if the threshold were small enough, function
call agnostic methods relying only on a comparison of abstracted tokens would
report a small match on sort and sort2: our method consider instead the
similarity of the code covered (leaves) by the calls to the functions (i.e. the
leaves reached by {find min, exchange, sortrec} and {sort2rec}).

3. Decomposition of functions through suffix indexation

As we have seen, the merged call graph is obtained through an iterative
factorization process that relies on the factorization of token sequences (of func-
tions). Several factorization may be proposed for each function but we want
to promote factorization with complete functions and also maximize function
coverage by factors. Thus, we need to identify maximal substrings shared by
functions and their overlapping relations. To this end, we build the suffix array
of the set of leaves of all call graphs and then compute the Maximal Repeated
Factor (MaRF) graph. This section will detail the construction of this structure
and its use.

3.1. Introducing suffix array indexing structures

Suffix indexing structures (trees [6] and arrays [7]) are helpful to query a set
of strings for the presence of a given factor (sub-string), or to localize shared
factors appearing inside a single or in several sequences [8, 9]. In this section we
assume that the studied strings are finite sequences of characters on a completely
ordered alphabet called Σ (the characters can be numbered from 1 to |Σ|) thus
allowing lexicographical sorting of strings. Strings are members of the set Σ∗;
Σ+ being the set of non-empty strings.

The Suffix Array (SA) of a set of strings is a table that contains all suffixes of
strings, lexicographically sorted. Each rank in this table stores a pointer to the
corresponding suffix in the sequence (although this suffix is not actually stored
in the table). In this structure, a repeated factor is a common prefix shared
by several suffixes. More precisely, a repeated factor of length l corresponds to
an interval of ranks I = [a..b] where b > a and where suffixes share a common
prefix of length l. Such an interval cannot be widened before a or after b without
reducing the length l of the shared factor. We denote by |I| = b − a + 1 the
number of occurrences of the repeated factor in the interval, i.e. the number of
suffixes having this factor as prefix. By definition, this number is always greater

8

SA LCPT DIT rSA
Rank Suffix LCP length Interval Suffix Rank

1 f1[1..] = abcd [1..2] f1[1..] = abcd 1
2 f3[2..] = abcdeh 4 [1..2] f1[2..] = bcd 3
3 f1[2..] = bcd 0 [3..4] f1[3..] = cd 5
4 f3[3..] = bcdeh 3 [3..4] f1[4..] = d 8
5 f1[3..] = cd 0 [5..7] f2[1..] = cdefe 6
6 f2[1..] = cdefe 2 [6..7] f2[2..] = defe 9
7 f3[4..] = cdeh 3 [6..7] f2[3..] = efe 12
8 f1[4..] = d 0 [8..10] f2[4..] = fe 14
9 f2[2..] = defe 1 [9..10] f2[5..] = e 11

10 f3[5..] = deh 2 [9..10] f3[1..] = gabcdeh 15
11 f2[5..] = e 0 [11..13] f3[2..] = abcdeh 2
12 f2[3..] = efe 1 [11..13] f3[3..] = bcdeh 4
13 f3[6..] = eh 1 [11..13] f3[4..] = cdeh 7
14 f2[4..] = fe 0 [1..16] f3[5..] = deh 10
15 f3[1..] = gabcdeh 0 [1..16] f3[6..] = eh 13
16 f3[7..] = h 0 [1..16] f3[7..] = h 16

Figure 5: Suffix Array (SA), Longest Common Prefix Table (LCPT), Deepest
Interval Table (DIT) and reverse Suffix Array (rSA) for the set of sequences
L = {f1 = abcd, f2 = cdefe, f3 = gabcdeh}

than 1. In the rest of this article, we will use the term of interval to denote
such a repeated factor.

For instance, let us imagine that the leaves of our call graphs are the se-
quences L = {f1 = abcd, f2 = cdefe, f3 = gabcdeh}. The suffix array SA(L)
corresponding to these three sequences is presented in figure 5. In this example,
the repeated factor cd of length 2 corresponds to the interval [5..7] that contains
3 occurrences, respectively f1[3..4], f2[1..2] and f3[4..5]. This interval embraces
a smaller interval ([6..7]) representing he greater repeated factor cde of length
3.

Conversely, the reverse Suffix Array (rSA) associates with each suffix, de-
fined by a sequence number and a start position in this sequence, its rank in the
suffix array. For instance in our example, the suffix f2[3..] (efe) is associated to
the rank 12 of the suffix array.

Figure 5 also shows the Longest Common Prefix Table (LCPT). The value of
rank i in the LCPT is the length of the longest common prefix shared between
the suffix at rank i in the suffix array and the suffix at rank i − 1. Given
an interval I = [a..b], the length of the repeated factor represented by I is
l = min(LCPT[a+ 1], · · · ,LCPT[b]).

Thus, we first build the suffix array of the sequences together with the reverse
suffix array. Then, we compute the LCPT of the suffix array, that can be
obtained in linear time by iterating over the suffixes of each string from the
greatest to the smallest [10].

3.2. Constructing the Maximal Repeated Factors (MaRF) graph

Even if the suffix array is a very compact representation containing all in-
formation required to perform the factorization, it is not suitable for efficiently
extracting worthwhile repeated factors. Indeed, as explained before, each in-
terval represents a repeated factor via its occurrences. But we are not looking

9

for all repeated factors. We are only seeking for repeated factors that are max-
imal. A repeated factor is maximal if and only if its occurrences cannot be
extended neither to the left, nor to the right. A repeated factor x ∈ Σ+ can
be extended to the left (resp. to the right) iff it exists a character u such as
all the occurrences of x are preceded (resp. followed) by u, thus producing the
repeated factor ux (resp. xu). In our previous example, bcd (interval [3..4]) is
not a maximal repeated factor because it can be extended to the left to abcd
(interval [1..2]). However, cd (interval [5..7]) is a maximal repeated factor, since
it is neither possible to extend this repeated factor to the left (to [3..4]) without
loosing the occurrence cdefe; nor to the right since it would imply to add the
character e and loose the occurrence f1[3..] = cd.

Thus, our purpose is to compute a structure, the MaRF graph, containing
all the maximal repeated factors and connecting them with edges modeling the
overlapping relations.

3.2.1. Suffix tree

A suffix tree of a set of strings is defined as the lexicographical tree of the
suffixes. Usually, suffix trees are compacted by grouping the nodes of arity 1
with their successors, therefore bounding the number of nodes by 2N for N
suffixes. Figure 6 presents the compact suffix tree for our running example.
A depth first walk of the suffix tree starting at a node x provides us with all
suffixes (leaves) sharing a prefix (factor) x, lexicographically sorted. So, the
complete suffix array can be easily obtained with a simple depth first walk over
the suffix tree from its root. Building a suffix tree can be done in various ways:
popular algorithms include the McCreight’s method [11] and the Ukkonen’s
online technique [12] running in time Θ(N) for a set totalizing N tokens. Even
if better space saver implementation can use less than 10 bytes per token [13],
building a suffix tree remains memory costly, especially because all the suffixes
are explicitly represented, including those not involved in repeated factors.

3.2.2. Interval tree

For the purpose of our algorithm, instead of constructing the complete suffix
tree, we construct a smaller data structure. Indeed, we are only interested by
repeated factors (appearing multiple times in the set of strings) that will be used
to get the MaRF graph ; mono-occurring factors can be ignored. Since there is
a bijection between these repeated factors and the intervals of the suffix array,
we construct an interval tree instead of a suffix tree: it is similar to a suffix tree,
but nodes that do not correspond to intervals in the suffix array are removed.
In Figure 6, nodes of the suffix tree retained in the interval tree are boldfaced.
Note that internal nodes of the suffix tree are always retained, whereas all the
leaves representing a unique suffix are discarded. Leaves representing several
suffixes are retained. The interval tree is constructed in linear time browsing
iteratively the LCP table with the help of a stack [14]. In the rest of this section,
we identify nodes (of the interval tree) with intervals (of the suffix tree).

3.2.3. From the suffix links to the MaRF graph

Each node of the interval tree stands for a repeated factor that is the prefix of
the factors represented by its child nodes. If the node (interval) I representing x
is a leaf, then it cannot be extended to the right. If it is an internal node, then
it has a combination of at least two elements among not repeated individual

10

[1..2]

[3..4]

[5..7] [6..7]

[8..10]

[1..16]

[11..13]

abcd

bcd

cdecd

d

e

abcdeh

efe

gabcdeh
[15..15]

[16..16]
h

[14..14]
fe

[13..13]
eh

[12..12]

[10..10]
deh

[9..9]
defe

[7..7]
cdeh

[6..6]
cdefe

[4..4]
bcdeh

ε

[2..2]

node of the interval tree[9..10]
de

[a..b]
factor

reverse suffix link

Figure 6: Compact suffix tree and its corresponding interval tree (in bold lines)
augmented with reverse suffix links for the set of strings L = {f1 = abcd, f2 =
cdefe, f3 = gabcdeh}

suffixes and child intervals, representing strings that extend x to the right with
at least two different tokens a and b (xa, xb...). Thus, a repeated factor x present
in the interval tree cannot be extended to the right without reducing the number
of occurrences embraced by the interval.

However, no warranty is provided concerning the non-extensibility to the left
of a repeated factor represented by an interval. This point must be examined
to select only the maximal repeated factors. For this goal we use suffix links in
the interval tree.

A suffix link exists from the interval [a..b] representing the repeated factor
x to the interval [a′..b′] representing y, if and only if y is a suffix of x such as
x = uy with u of length 1: we say that y is the direct suffix of x. It allows
us to deduce a condition to the extensibility of a repeated factor x to the left.
The repeated factor y is extensible to the left if and only if it exists one and
only one repeated factor x suffix-linked to y (it exists u such as x = uy with
|u| = 1) with x and y having the same number of occurrences. In this case all
the occurrences of y are extensible to x by adding a single token u to the left.
By difference we can then deduce the set of repeated factors non-extensible to
the left. Since, by construction of the interval tree, they are also not extensible
to the right, then they form the exhaustive set of maximal repeated factors.

For instance, in figure 6, there is a suffix link from the interval [6..7] rep-

11

resenting cde to the interval [9..10] representing de. Thus, the interval tree
contains a reverse suffix link (dashed arrow) from de ≡ [9..10] to cde ≡ [6..7].
These both intervals have a length of 2, thus the repeated factor de is left-
extensible to cde. The same remark applies to d being left-extensible to cd and
bcd to abcd. In contrary, abcd, cde are not reverse-linked to any other interval,
thus being maximal. e is also maximal because among their 3 occurrences, 2 are
left-extensible by d (de ≡ [9..10]) and 1 by f (ef is an individual factor not being
an interval by itself). Concerning the repeated factor cd (3 occurrences) it is
reverse-linked to a single interval containing 2 occurrences: it is also maximal.

From these observations, we propose the algorithm 2 computing the MaRF
graph of a set of token sequences. The links between parent and children in the
suffix tree represent the right extensibility edges whereas the reverse suffix links
model the left extensibility edges. The chains of (reverse suffix linked) repeated
factors extensible to the left are replaced by their factor maximally extended to
the left. For our example, we obtain the MaRF graph presented in figure 7. We
label each edge of this graph with the number of characters extended to the left

and to the right (
←−
l −→r). We note that the MaRF graph is acyclic (otherwise

it would imply the presence of infinite strings). We still have to explain the
computation of the suffix links.

Data: L = {f1, · · · , fn}
Result: MaRF graph of L

1 begin
2 Computation of the direct and reverse suffix arrays of L ;
3 (SA, rSA)←− SAComputation(L) ;
4 Computation of the LCP table ;
5 LCPT←− LCPTableComputation(SA, rSA) ;
6 Computation of the Interval Tree and the Deepest Interval Table ;
7 (IT,DIT)←− IntervalTreeComputation(LCPT) ;
8 Addition of the suffix links to the Interval Tree ;
9 IT + sl←− SuffixLinksComputation(IT,DIT, rSA) ;

10 MaRFG←− IT + sl with reverse suffix links tagged
←−
1
−→
0 and child

interval edges
←−
0 −→r ;

11 for each unvisited factor y from IT from the shortest to the longest
do

12 while y has a single reverse suffix link to a factor x = uy with x
and y having the same number of occurrences do

13 for each edge z −→ y do

14 Replace the edge z −→ y labeled
←−
l −→r with z −→ x labeled

←−−
l + 1−→r ;

15 y ←− x ;

16 return MaRFG ;

Algorithm 2: Computation of the MaRF graph of the set of strings L

12

←−
0
−→
4

←−
0
−→
2

←−
2
−→
0

←−
0
−→
1←−

0
−→
1

←−
2
−→
0

abcd

ε

cde

e

cd

Figure 7: MaRF graph of L = {f1 = abcd, f2 = cdefe, f3 = gabcdeh}

3.2.4. Computation of the suffix links

To compute the suffix link of an interval [a..b] representing x (assuming
|x| > 1), we use the reverse suffix array and an additional structure, the Deepest
Interval Table (DIT). The DIT is computed together with the interval tree in
linear time. For each suffix of rank k, this table provides the deepest interval
in the interval tree (the smallest interval in SA) containing this suffix (also
the interval of greatest LCP). The DIT of our running example is presented in
Figure 5. For instance, the deepest interval for rank 6 is interval [6..7] even if
this suffix also appears in interval [5..7].

For each interval [a..b], we retrieve the suffixes SA(a) = fI [i..] and SA(b) =
fJ [j..]. Since |x| > 1, their direct suffixes are fI [i + 1..] and fJ [j + 1..]. We
obtain their ranks α and β using the reverse suffix array. Using the deepest
interval table, we retrieve the deepest intervals that contain suffixes of rank α
and β and we determine, using the interval tree, their deepest common ancestor
[a′..b′]. The interval [a′..b′] represents a shared factor of length |x| − 1 we are
looking for. Indeed, since the longest common prefix lcp(a, b) = |x| (a and b
being the boundaries of the interval), lcp(y, z) = lcp(a′, b′) = |x| − 1. Finally,
we construct a reverse suffix link from [a′..b′] to [a..b].

The common ancestor containing both fI [i + 1..] and fJ [j + 1..] can be
retrieved naively in O(h) (h being the height of the interval tree) or in O(1)
with a specific pre-computation on the interval tree allowing rapid least common
ancestor access [15].

3.3. Decomposition of the strings

Recall that, given L the set of strings (leaf functions only composed of prim-
itive tokens) sorted by increasing length for each sequence fi ∈ L, we want to
decompose it into sub-strings extracted from leaves of smaller length in L≤i. fi
could also be decomposed using sub-string occurrences from fi itself, but in this
case we must ensure that the occurrences do not overlap.

The decomposition should respect the following properties :

1. Each matching sub-string must reach the threshold length of t tokens.
This strict property should not be ignored to avoid the outlining of too
trivial sub-strings of tokens.

2. Each matching sub-string must be non-extensible. If there is a longest
repeated factor whose occurrence is present both in fi and in one leaf of
L<i, then it should be preferred. This property lead us to consider only
the maximal repeated factors for the decomposition.

13

3. Matching factors mapping to complete functions of L≤i are preferred
rather than to partial ones. This property is set to avoid useless creation
of new leaves.

4. Coverage by matching sub-strings must be maximal. In other words we
should minimize the parts of the leaf that does not match with sub-parts
of smaller leaves. This lead us to consider all the repeated factors present
both in fi and L≤i to maximize the coverage.

We proposed a heuristic to satisfy these properties. Given the computed
MaRF graph of the considered leaves, our method consists in mapping all the
occurrences of a maximal repeated factor to its minimal occurrence, i.e. the
occurrence present in the smallest leaf. In this way, we follow the third property.
This method allows us to find all the maximal repeated factors of a leaf fi that is
also present in an other smallest leaf (preferentially the smallest one). However,
the occurrences of these reported maximal repeated factors may overlap on their
left or right part. Since we are looking for a decomposition with non-overlapping
factors, a method must be designed to suppress the overlapping chunks: such a
method could potentially violates the fourth property.

For a first step, we will present an algorithm to find the maximal repeated
factors of a leaf shared by smaller leaves. Then, we will study heuristics to
resolve overlapping cases.

3.3.1. Computing the maps of associated occurrences

Before describing the algorithm that computes the maps associating occur-
rences from factors of function fi to factors of smallest functions L≤i, we need
to define two new notions for occurrences appearing in an interval (node) I
representing a maximal repeated factor x.

First, two kinds of occurrences are distinguished. The first is called a non-
proper occurrence. It designates occurrences of I that also appear (as a shorter
completely nested factor) in a child node J (obtained by adding tokens to the
left or right) of I in the MaRF graph. The other type of occurrences, defined
by complement, are called proper occurrences. Using the example of figure 5,
f2[1..] = cdefe and f3[4..] = cdeh are proper occurrences of the MaRF cde
whereas they are non-proper occurrences of the MaRF cd. f1[3..] = cd is the
only proper occurrence of the MaRF cd.

Determining the proper occurrences of all the MaRFs from the graph is
done from the leaf MaRFs to the root MaRFs, a MaRF being treated after all
its successors. A MaRF has either 0, 1 or 2 parent MaRFs directed at it. For
an edge x← y, we mark all the occurrences of y contained in x as non-proper.

Secondly, we define formally for each MaRF x in the MaRF graph a minimal
occurrence, noted min(x). It is the occurrence of the MaRF with the smallest
index (i.e. the smallest function) and with the smallest position in the function
(if a factor appears several times inside a same function) among all the occur-
rences of the MaRF x. For instance, the minimal occurrence of the MaRF e is
min(e) = f2[3] (the other occurrences being f2[5] and f3[6]).

The algorithm that computes the maps of associated occurrences is based on
two main ideas. First, if an occurrence is not a proper occurrence of the MaRF
y, a longer association must be found in a descendant MaRF x where it is proper,
since by construction x represents a MaRF longer than y. Thus, children nodes
in the MaRF graph should be scanned for associations before their parents.

14

Second, if an occurrence is a proper occurrence of x different from min(x), it
is associated with min(x). Indeed, this association is the best one possible (the
occurrence being proper, it does not appear in a longer MaRF and a MaRF is
not extensible, by construction, without reducing the number of occurrences).
The minimal occurrence min(x) cannot be associated to another occurrence in
x since it is minimal. It is rather associated to the smaller occurrences of the
parent MaRFs (or indirectly to the smaller occurrence of an ancestor of it).
These construction rules are summarized in algorithm 3.

Special attention must be paid to the association between a proper occur-
rence fi[α..β] of x and a minimal occurrence min(x) = fi[α

′..β′] of the same
function. The two occurrences overlap if and only if α′ < α ≤ β′ < β (by
definition of min, we have α′ < α): the association cannot be made. In case of
overlap over x, there are u ∈ Σ+ and v ∈ Σ∗ such as x = uvu, the overlapping
part being u (fi[α

′..β] = uvuvu).

Data: MaRF graph
Result: Maps of associated occurrences for each sequence of tokens

{M(f1),M(f2), · · · ,M(fn)}
1 begin
2 Initialization of the maps ;
3 {M(f1),M(f2), · · · ,M(fn)} = {∅, ∅, · · · , ∅} ;
4 for each x in MaRF(L) traversed bottom-up do
5 y1, y2, · · · , yk are the (already examined) children of x (x is a

factor of the (yi)1≤i≤k) ;
6 for each occurrence fi[a..b] of x do
7 if fi[a..b] = min(x) then
8 Future association: the association will be made in an

ancestor (factor) of x ;

9 else if fi[a..b] is a proper occurrence of x
10 ∨fi[a..b] surround ones of the occurrences min(yi) then
11 Present association

M(fi)←−M(fi) ∪ {(fi[a..b],min(x))}} ;

12 else
13 Past association: the association has already been done

previously in a deeper node ;

14 return {M(f1),M(f2), · · · ,M(fn)} ;

Algorithm 3: Computation of the maps of associated occurrences

By way of illustration we compute the map of associated occurrences for
the previously defined set of functions. For MaRF cde, f3[4..6] is linked to
min(cde) = f2[1..3]; for MaRF abcd, f3[2..4] is linked to min(abcd) = f1[1..]; for
MaRF cd, the non proper occurrence f2[1..2] is linked to f1[3..4]. For MaRF
e, we link f3[6] to the occurrence α = f2[3] and we also link f2[5] to α, self-
factorizing f2 with its own factors. Finally the maps obtained are :

• M(f1) = ∅

• M(f2) = {cd : f2[1..2]→ f1[3..4], e : f2[5]→ f2[3]}

15

• M(f3) = {abcd : f3[2..5]→ f1, cde : f3[4..6]→ f2[1..3]}

3.3.2. Solving occurrences overlapping

Some mapping may contain overlaps, like those for abcd and cde in M(f3)
in the previous example. To eliminate these overlaps of the occurrences as-
sociated to a function fi, we give a higher priority to occurrences linked to
longest factors. We adopt a greedy approach by managing a priority queue
of all associated occurrences: at each iteration we select the longest one that
fills a complete function, or if only occurrences representing partial factors of
function are present, the longest one among them. All remaining occurrences
in the queue are checked for overlapping with the selected one. The selected
occurrence may overlap either with the left or the right of another occurrence
in the queue. The overlapping occurrences are then removed and replaced by
their non-overlapping left or right part.

When an occurrence fi[a..b] is selected from the queue, only occurrences with
at most the length of b−a+1 tokens can intersect with it. At each position of the
function, only 0 or 1 occurrence of MaRF may begin: if they were several MaRF
beginning, the shortest occurrence would not be a proper occurrence from its
MaRF. Thus at most b− a− 1 occurrences overlaps on the left and b− a− 1 on
the right. The search for overlapping occurrences is managed using a segment
tree [16] (a structure managing integer intervals) in time Θ((b− a) log(b− a)).
The summed weights of non-overlapping occurrences is bound by |fi| leading to
a global time complexity of O(|fi| log |fi|). Since the suffix array building and
the MaRF graph construction are done in O(N) for leaves of summed lengths
N , the complete factorization process of an iteration can be performed in time
O(N log maxi∈[1..n] |fi|).

If no minimal weight threshold is set for occurrences, this method for solving
overlapping ensures an optimal coverage by factors of L≤i. In practice however,
a weight threshold is always adopted to avoid factorization by useless short
chunks of code. In this case, favoring the heaviest occurrences may lead to
suboptimal coverage.

For our running example, f2 is decomposed into (cd)[ef](e), (cd) being the
occurrence linked to f1[3..4], (e) a self factorized occurrence and [ef] a non-
matching (bracketed) factor between them. For f3, the occurrences of three
factors, abcd, and cde, shared with f1 and f2 coexist. The exposed overlap-
solving heuristic selects abcd since it is the longest shared factor. Then, it
transforms cde into e due to the overlapping with abcd. Finally, the heuristic
selects e. Thus, f3 = [g](abcd)(e)[h]. If a minimal length threshold for occur-
rences were set to 2, the decomposition would have been f3 = [g](abcd)[eh] with
the chosen strategy. A better decomposition with the same threshold would
be f3 = [g](abc)(de)[h] covering 5 tokens instead of 4; however, it seems more
probable that a function is resulting from the copy of a single big chunk rather
than several more modest chunks.

4. Analysis of the factorized call graph

Applying our algorithm to a set of projects and iterating the factorization
process provides us with a common Acyclic Call Graph (ACG) for all the con-
sidered projects. It is composed of the strongly connected components of the

16

initial functions of the projects and of the synthesized functions resulting from
the factorization. Two kinds of leaf functions, only composed of primitive to-
kens, co-exist. Either a leaf function results from a shared factor, or it stands
for a (not shared) interstice factor between other (shared) leaf functions. In
this section, we define several metrics that could be used to represent how a set
of mutually-recursive functions is similar to another one, based on the ACG
provided by our factorization algorithm.

4.1. Quantifying the similarities

4.1.1. Similarity based on the amount of shared information

Intuitively, two functions may be considered as similar if they cover shared
factors of code, directly or indirectly through call paths. From this idea, derived
metrics are quantifying the degree of similarity between two components of the
ACG. More formally, for a given component A of the ACG, we define the set
R(A) of all the shared leaves reachable from A, and its super-setR′(A) increased
with all the reachable interstice leaves whose weight is above the factorization
threshold t. Intuitively, R(A) stands for the information reachable from A and
shared with other components, whereas R′(A) stands for the information as a
whole reachable from A. We note that non-shared leaves weighing less than the
threshold t are discarded.

Given a pair of components A and B of the ACG, the sets R and R′ are
obtained through a traversal of their ACG. The set of shared leaves reachable
from both A and B (R(A)∩R(B)) is then inferred. Note that R(A)∩R(B) =
R′(A) ∩R′(B).

Let W (X) be the sum of the lengths of leaves covered (reachable) from X,
then W (R(A) ∩ R(B)) is a practical estimation of the amount of information
shared by A and B. Moreover, W (R′(A)∪R′(B)) = W (R′(A)) +W (R′(B))−
W (R(A)∩R(B)) is an approximation of the Kolmogorov complexity (or amount
of information) in terms of code covered by A and B.

4.1.2. Normalization

In order to quantify similarities in an uniform way, we propose three sym-
metrical normalization metrics (with values in [0..1]) that differently express the
amount of shared information. For all these normalization metrics, a value of 0
means that the compared components do not share any leaf.

1. The union normalization metric, sunion(A,B), uses the entire amount
of information covered by both components A and B: sunion(A,B) =
W (R(A)∩R(B))
W (R′(A)∪R′(B)) . A maximal value of 1 means that A and B cover exactly

the same set of shared leaves and that they do not cover any other leaf.
Since sunion(A,B) is computed using a set, it does not take into account
the (call) order of the leaves. This implies that even if sunion(A,B) = 1, A
and B could be totally distinct from an algorithmic point of view, espe-
cially if the weight threshold is too low. However, if the weight threshold
is reasonable it allows detection of similar code with transposition opera-
tions.

2. The max normalization metric, smax(A,B), uses the entire amount of in-
formation covered by the greatest component among A and B (in the

sense of their cumulated length): smax(A,B) = W (R(A)∩R(B))
max(W (R′(A)),W (R′(B))) .

17

f1 f2

g ab cd efe eh

f3

Figure 8: The ACG obtained for the set of sequences F = {f1 = abcd, f2 =
cdefe, f3 = gabcdeh}, for a factorization threshold of 2

Like sunion(A,B), smax(A,B) = 1 if and only if A and B cover exactly the
same set of shared leaves.
Note that smax(A,B) = sunion(A,B) if and only if one of the components
is included into the other, otherwise smax(A,B) > sunion(A,B).

3. The min normalization metric, smin(A,B), uses all of the amount of infor-
mation covered by the smaller component between A and B (in terms of

their cumulated length): smin(A,B) = W (R(A)∩R(B))
min(W (R′(A)),W (R′(B))) . Its value

differs significantly from smax(A,B) if the amounts of code covered by
A and B are different enough. For instance, if all of the leaves cov-
ered by A are included into those covered by B and B covers a much
larger amount of code (corresponding to reachable leaves) than A, then

smin(A,B) = W (R(A))
W (R′(A)) = 1 whereas smax(A,B) = W (R(A))

W (R′(B)) = ε. Thus, A

was probably created extracting chunks of code from B.
Note that smin(A,B) = smax(A,B) if and only if W (R′(A)) = W (R′(B)),
otherwise smin(A,B) > cover(A,B).

Unlike metrics based on the quantity of shared raw code, our metrics based
on the ACG take into account the duplications of code inside a same project.
Indeed, if we consider a project p containing only a unique chunk of code c and
a project q containing only the shared factor c repeated k times, our technique
gives sunion(p, q) = smin(p, q) = smax(p, q) = 1 whereas a technique based on
shared raw code reports c only once and should lead to lower metrics of similarity
except for smin (sunion(p, q) = smax(p, q) ∼ 1

k).
The figure 8 shows the call graph obtained from our running example with

a factorization threshold of 2. Assuming the comparison of f1 with f3, we have
R(f1) = R′(f1) = {ab, cd}, R(f3) = R(f1) = {ab, cd} and R′(f3) = {ab, cd, eh}
(since g is below the threshold of 2). Then, the amount of shared information
is estimated by R(f1) ∩ R(f3) = {abcd}, and the normalization metrics are
sunion(f1, f3) = smax(f1, f3) = 4

6 (f1 is included into f3) and smin(f1, f3) = 4
4 = 1.

For f1 and f2, we have sunion(f1, f2) = 2
7 , smax(f1, f2) = 2

5 and smin(f1, f2) = 1
2 .

4.2. Highlighting similar chunks of code

Reporting to the user the most similar pairs of initial functions is a first
step for a code similarity detection tool. Beyond previous metrics, it could be
useful to adopt a human-friendly representation of the similarities. Since the call
graph and the obtained ACG can quickly reach thousands of nodes, graphical
representation of the global graph is impractical. A better solution consists
in filtering the graph with a function pair to visualize only the internal nodes
and the leaves that are reachable from this function pair, each internal or leaf
function tracing back to the source code it represents. We present in figure 9

18

the call graph involving main functions from two similar version of a student
assignment (a RPN calculator using a stack structure) analyzed in section 5.
Other graphical representations allow relations among a set of projects to be
highlighted, such as similarity matrices like those further presented in figure 16.

4.3. Some interesting properties of nodes

Beyond the similarities between initial (nodes) functions, some interesting
information can also be extracted for each node of the call graph:

• The weight of a node: the sum of the lengths of the leaves (shared or not)
it reaches. It gives some insight into the importance of the function in the
project by quantifying the amount of original code it covers.

• A level is also assigned to each node. It is defined by 0 for the initial
functions. The factorization of a leaf function of level i leads to the possible
creation of new functions of level i+1: the leaf function of level i becomes
an internal node whereas the created functions of level i+1 are new leaves.
The level value of a node reveals its degree of nesting in the call graph.

• We can also analyze the coverage of created nodes by some families of ini-
tial functions. Depending on the granularity, a family may group together,
for instance, initial functions coming from the same project or initial func-
tions belonging to the same package. Then, the multiplicity is defined. It
specifies the number of distinct families that reach this node. Usually,
nodes with low multiplicity (of at least two) are the most interesting for
retrieving useful duplicates of code. In a single project, leaves having a
high multiplicity may mean bad programming practice by extensive re-use
of common chunks of code, but may also be unavoidable due to the lan-
guage characteristics. For instance, if identifiers and types are abstracted,
we will find in the Java standard library several chunks of code with high
multiplicity that are related to chunks of code duplicated for each primi-
tive type (e.g. sort for int arrays, sort for char arrays, etc.). In the context
of plagiarism detection in student projects, nodes with high multiplicity
may be symptomatic of a classical code design pattern solving a given
problem, or of a chunk of code supplied with the assignment subject. In
such cases, it is useful to filter the ACG to remove these useless nodes.

5. Experimental results

In this section, we discuss some results provided by our implementation of
the previously described algorithms. A first part of these results is related to the
runtime performance of our approach. Next, we discuss meaning and relevance
of results provided for a real set of programs. Additional results are provided
in Appendix B for a quantitative study of similarity metrics comparing our
method with other popular plagiarism detection tools.

For a real set of programs, we used a test bed made of near to 200 small
projects of students in ANSI C (globally ≈100K LOC), coming from bachelor
computer science assignments over four years: around 60 projects per year for a
graphical snake game (15/year), as many for a RPN calculator, slightly less for
a move-to-front text compressor and about thirty other miscellaneous projects.

19

1::Evaluation

1::Pop

1::Is empty stack

1::main

2::eval

2::inistack

2::main

2::isempty

2::isop

2::push

2::pop

1::Push

1::Initialize stack

1::Is operator

Figure 9: Factorized call graph related to two student projects implementing a
simple RPN calculator in ANSI C

20

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000
 0

 2

 4

 6

 8

 10

 12

 14

 16

R
u
n
ti
m

e
 (

a
rb

.
u
n
it
)

Cumulated length of starting functions

Cumulated runtimes of factorization iterations

Cumulated runtimes

Figure 10: Experimental processing time on projects of increasing size

Thus, we try to qualify and quantify the plagiarism practices inside a single class
of students or across classes with similar assignments. Furthermore, to promote
modular development, students are sometimes encouraged to share structures
and algorithms (stacks, lists, queues, etc.) among different assignments; this
leads to a kind of self-plagiarism (by a same author on different assignments).

All these projects have been processed by a lexical analysis (tokenization)
and a light syntactic step intended to mark the boundaries of functions; the
normalization step consists in abstracting all identifier names.

5.1. Experimental complexity and observations

We first study the behavior of our algorithm implementation with respect to
the number of tokens processed. We feed our implementation with several sets of
student projects whose size increases from hundred to tens of thousands tokens.
For each set of projects, we measure the cumulative times spent for each of the
iterations: results are showed in figure 10. For large sets, execution times appear
linear with the number of analyzed tokens: this behavior is compatible with the
expected theoretical runtime in O(N log maxi∈[1,n] |fi|) for N tokens distributed
into n functions. Runtime not only depends on the size of the projects but also
on the size and the nature of shared factors. Indeed, a high degree of nested
duplications or a low threshold for shared factors raise the number of iterations
and thus, the experimental runtime.

In order to analyze the behavior of our algorithm with respect to successive
iterations, figure 11 presents several values at each of the 7 iterations that are
required to process the set of all of our projects with a threshold of t = 10
tokens. We show the number of leaves longer than t (either shared or intersti-
tial) identified in the graph at the beginning of the iteration, their cumulated

21

Iteration 1 2 3 4 5 6 7 8a

Number of leaves with length ≥ t 8,877 17,673 8,573 4,989 4,235 4,052 4,021 4,018

Cumulated length of these leaves 493,324 341,369 124,812 61,225 49,191 46,548 46,148 46,114

Maximal LCP 535 136 93 37 21 13 11 9

Number of matches 19,341 15,613 4,801 1,020 223 35 3 0

Average match length 21.8 16.7 14.4 13.0 12.0 10.7 10.3 ∅
Execution time (in arb. unitb) 15.650 8.925 1.845 0.689 0.472 0.432 0.404 0.411

Figure 11: Data evolutions through iterations for a given set of projects

aThe 8th iteration is aborted due to a maximum LCP found below the match report
threshold of t = 10 tokens.

bOne arbitrary unit is equivalent to 1 second of JRE Sun 1.6 64 bits mono-threaded exe-
cution on an Intel P8600 2,4 Ghz CPU (cache : 3 MiB, RAM : 4 GiB, ∼4787 bogomips).

length, the maximal Longest Common Prefix for these leaves, the number of
matches and their average length, and finally the execution time required for
this iteration.

We note that matches are more numerous during the first and second itera-
tions with a maximal number of leaves at the end of the first iteration: indeed,
the first iteration outlines factors that produce several chunks (leaves) that will
be progressively factorized in subsequent iterations. The cumulated length of
the considered leaves (of length ≥ t) lowers with the gradual identification of
nested matches. As expected, lengths of nested sub-strings (longest and aver-
age) decrease together with iterations.

5.2. Studying the factorized graph nodes and its inferred metrics

For the relatively large set of studied projects (199) and using a match
report threshold of 10 tokens, we obtained a factorized call graph composed of
the original strongly connected components of functions (as its roots) and of
synthesized functions. These functions (or nodes) may be matched nodes or
unmatched nodes that do not share token substrings whose length reach the
match report threshold t. Concerning the matched nodes they can be leaves if
no further nested duplications are found in them or internal nodes. For a better
understanding of the graph topology, a schematic representation of a factorized
call graph is presented in figure 12 accompanied with the number of each kind
of nodes in the factorized call graph for the running example. Note that the
nodes from level i are due to shared substrings from internal nodes of level i−1.
It is possible that a matched node (i.e., created from a match) is not a shared
node (i.e., reachable from several nodes): for example, the rad matched node
in figure 1 is not shared. Note also that nodes at level i may be created during
the i-th iteration, or later.

Even if internal nodes are interesting for match visualization for a user,
we select only the leaves, except the first-level interstitial leaves whose length is
below the threshold (that are discarded for the following iterations), to compute
similarity metrics as discussed in section 4. Edit operations breaking a longer
match into smaller ones implies the creation of these discarded interstitial small
leaves for the unmatched zones.

We present in figure 13 the distribution of shared functions according to the
number of distinct projects that reach them (several occurrences of a function in
a same project being counted as one in this classification). Then, we intention-
ally chose to ignore among them the leaves whose multiplicity is greater than 50

22

(a) Schematic view of the factorized call graph

Kind of Matched Matched Unmatched
created node internal nodes leaves leaves
Level 1 14512 1258 11740 inc. 1464 of length ≥ t

(ml: 20.90) (ml: 10.96) (ml: 5.215)
Level 2 4219 597 13480
Level 3 874 123 3903
Level 4 200 20 832
Level 5 31 3 193
Level 6 3 0 37
Level 7 0 0 2

(b) Kind of nodes by nesting levels (with mean length of nodes for the first level)

Figure 12: Factorized call graph topology

Multiplicity (# projects) −→ 1 2 3..4 5..9 10..19 20..49 50..99 100..150
Length of shared nodes ↓
[t..2t[1,309 2,067 1,727 1,260 524 246 60 5
[2t..5t[769 1,022 629 288 83 10
[5t..10t[154 144 18 3
≥ 10t 52 47 3 12

Figure 13: Distribution of shared nodes according to their length and the num-
ber of projects in which they appear

23

Studied set of Distribution by metric values

project pairs [0]]0.. 1
10]] 1

10 ..
2
10]] 2

10 ..
5
10]] 5

10 ..
8
10]] 8

10 ..1]

1,953 snake game pairs 209 1022 534 180 5 3
63 pairs (snake game vs.
same unrelated project)

0 53 10 0 0 0

Figure 14: Distribution of pairs of projects according to the min-normalized
similarity metric

projects, assuming they are standing for trivial code rather than for real inter-
esting plagiarism (indeed, these leaves are shared by at least a quarter of all the
projects, for different assignments). This assumption could be strengthen by
studying the length of the shared leaves, or other normalized metrics presented
in section 4. These 65 most-occurring leaves sums to approximately 20K tokens
(< 5% of the code).

Considering only the remaining leaves, we search the shared leaves in or-
der to quantify the amount of shared information between pairs of projects.
First, we considered the global set of projects as a whole to highlight the most
straightforward cases of code copy. Among the 19,701 pairs of projects, 14,909
share at least one leaf.

We examined the 26 pairs sharing more than 300 tokens for their shared
leaves. Four of them share all their leaves and are exact copies (with sometimes
formatting changes). For the other top pairs, a classification can be made ac-
cording to the relative weights of implied projects. The pairs can be separated
in two equal parts: pairs where the larger project is more than 38% more vo-
luminous than the smaller and the other part where projects are homogeneous
concerning their sizes. The data of the relative size of projects is important to
assess the pattern of duplication. Among the top pairs, 3 were related to self-
plagiarism cases that reuse common structures: the size of the projects were not
homogeneous. Other non homogeneous pairs are due to the copy of a subset of
functions from a project: in this case a high value is obtained for the min nor-
malization metrics comparing the shared leaves versus the leaves of the smallest
project. In all cases these top pairs reveal no false positives and similarity scores
may be sometimes underestimated because of small edit operations. The copy
can be due to extra- or intra-class plagiarism: in the latter situation it is not
straightforward to automatically assess the direction of the copy or if the work
was made in common.

Let us examine now pairs of projects from a given assignment (a snake game
involving a FIFO queue). Three already examined pairs exceed the value of 8

10 ,
and 5 others are over 5

10 (as reported in figure 14). We present in figure 15
two functions from copied projects placing the head of the snake on the game
board (min normalized similarity value of their project pair: 0.62), they are
highly similar by their shared leaves and the leaves they indirectly share by
calling two other similar functions. Beyond the 1

2 similarity threshold, projects
that seem partially copied are found. They could be graphically displayed by a
matrix, as shown in figure 16, where the darkness of each rectangle models the
normalized metric value between two projects. Human analysis of the set of pairs
of higher values confirmed the copy of code even if, in some cases, the similarity
value could have been raised if identification of common sub-sequences with
gaps have been made (thus handling obfuscation by tiny expression rewriting).

24

1 void InitializeWorm(int board[N][N],Worm ∗v){
2
3 int x,y;
4
5 do{
6 x=mlvrandom(N);
7 y=mlvrandom(N);
8 }while(board[x][y]==1||board[x][y]==2);
9 /∗ to not put the snake head on a prey or a trap ∗/

10
11 InsertInHeadCell(v,x,y);
12 }

(a) Function from project 1

1 void InitNibbler(List ∗worm, int b[N][N]){
2
3 int x,y;
4
5 do{
6 x=random(N);
7 y=random(N);
8 }while(b[x][y]==1);
9 /∗ Forbid the initialization of the head on a prey ∗/

10
11 PutInHead(worm,x,y);
12 }

(b) Function from project 2

Figure 15: Two highly similar functions from distinct snake game projects

Figure 16: Matrix of min-normalized metric values for the snake game projects

For medium similarity scores, the examination of the similarity scores of the
pairs of functions of the two involved projects may be lead. Common shared
chunks of code can be represented using a slice of the factorized call graph. We
reviewed some pairs scoring between 2

10 and 5
10 : the similarity is due to the

use of the same structures and idiomatic initialization, liberation and structure
management code (here a matrix of positions and a FIFO structure).

Finally, we compare each project of the previous assignment to another
unrelated project (a word game using a prefix tree and whose leaves summed to
1,272 tokens) that had no a priori reason to share something in common. The
min normalization produces some values above 1

10 for shared leaves compared
to the leaves of snake game projects (being the smallest, up to 1,173 leaves).
The most similar pair involves 131 tokens as shared leaves (51 tokens if leaves of
multiplicity of at most 10 projects were ignored). Indeed, some trivial chunks
of code of relatively low multiplicity could be shared like the example specified
on figure 17.

25

1 for (i = 0; i < COL; i++) {
2 for (j = 0; j < ROW; j++) {
3 printf (” %c ”, plateau[i][j]);

(a) Chunk extracted from a
snake game project

1 for (i=0; i < SIZE; i++) {
2 for (j=0; j < SIZE; j++)
3 printf(”%c%c”,d[j ∗ SIZE + i], (j<SIZE−1)?’ ’:’\n’);

(b) Chunk extracted from the unrelated project

Figure 17: An example of a common chunk of code (project multiplicity: 3,
length: 10) reported as shared

6. Related work

6.1. An insight into algorithmic approaches for similarity detection

Various approaches have already been used to search similarities in source
code. Some of them chose to focus on a single project analysis while others con-
centrate on plagiarism detection. Often the proposed tools can be used in these
two contexts. However, it intuitively appears that project clone researchers must
benefit from a good precision, especially if automatic refactoring is expected.
Concerning plagiarism detectors a loss of precision may be accepted but false
negative matches should be avoided. However it seems unavoidable that, since
we limit our scope of research to static analysis, malignant copies relying on
dynamic abilities of the language (introspection, dynamic code loading...) will
remain undetectable. Algorithmic equivalence detection is also out of range,
being undecidable.

Another requirement concerning a source code copy detection method is its
scalability. When code sites of suspected plagiarism are detected, extensive
comparison with costly algorithmic methods can be envisaged. Otherwise when
a large set of projects is considered the scalability of the method is essential.
Unfortunately our method can only address a fixed set of projects. Conversely
other techniques relies on evolving databases of fingerprints representing ex-
tracts of the code.

A first criterion to distinguish duplication detectors is their internal repre-
sentation of the source code. Historically, the first tools [17] used metrics based
on formatting details or token enumerations. Nowadays, these techniques ap-
pear outdated due to their high sensitivity to even the most minor edits which
is detrimental if obfuscated copy is done, especially if the metrics are known
to the plagiarist. The most popular representations adopted by current tools
are token sequences, syntax trees, program dependency graphs and sometimes
hybrid representations.

Then, considering a representation, specific abstraction and normalization
steps can be applied to it. This process is easier on syntax trees where supplied
syntactic information allows for example to abstract little expressions or to nor-
malize the order of operands. A trade-off must be adopted to balance precision
and recall according to the level of abstraction.

An extra step can be performed on the representation to gather elements
and/or to filter them. For example tokens may be assembled to n-grams (n-
tuples of consecutive tokens) themselves filtered [4] to keep only the most specific
ones.

After having obtained a transformed representation, algorithmic methods
should be designed to find duplications on the represented source code. For our

26

Method Sequentiality Comparison set Memory costa Time cost References
Element fingerprinting
on k-grams

None Indexed base Prop. to hash
size, fingerprint
number

Θ(N logN) [1, 4]

Tiling method on k-
grams

Yes Pair-wise Θ(n) Average:
O(n1+ε)

[22, 23]

Suffix tree indexation Yes Indexed base Θ(N) Θ(N) [20, 19]
Suffix array indexation Yes Fixed set Θ(N) Θ(N) [24, 23]

Figure 18: Classical methods to search exact matches on source code

aMemory and time cost complexities are expressed relative to the cumulative number of
tokens N for all the projects (for set comparison) or the size n of an individual project (for
pair comparison).

method we try to focus on its memory efficiency. It explains the choice of a
suffix array as an indexing structure rather than a suffix tree. As introduced
by [18], some tools, like CCFinderX [19] or Phoenix [20], have successfully used
suffix indexation structures to find duplication in source code using a tokenized
form or sibling abstracted syntax sub-trees [21].

When evolution of the project database is expected, suffix tree indexation
is the natural choice. Even if space-efficient suffix trees are proposed these
structures remains memory-hungry. We preferred to build a new structure, the
Maximal Repeated Factor (MaRF) graph, that stores only the useful repeated
factors of the studied token sequences, discarding suffixes present with a single
occurrence. This loss of information forbids any future use by adding new
token strings. It is adapted to treat single snapshots of projects or a fixed
set of projects like student assignment projects to identify internal plagiarism:
any change in the studied set would imply a complete recomputation of the
structures.

It clearly appears that our method can map only exactly matching sub-
strings of tokens through the described suffix indexation method even if extra
steps have been introduced to deal with minor edits. At our knowledge, previous
tools targeted to retrieve also exact matches based on sub-strings did not address
the problem of the nesting of matches. Furthermore they did not consider any
function call information. In contrast taking into account the call graphs of
projects to get a merged new one allows a better understanding when inlining
and outlining obfuscation operations are in stake.

We propose in figure 18 a summarized classification of approaches according
to their main used representation and their algorithmic method to find exact
matches.

We evoke only briefly approximate match finders using dynamic alignment
due to their high temporal cost: Θ(n2) for determining edit operations on strings
of n tokens to O(n4) to edit syntactic sub-trees [25]. We limit the use of such
techniques to the leaves obtained after factorization (see Appendix A). Other
less sensitive representations to edit obfuscation patterns like program depen-
dency graphs (PDG) [26] could be employed: however, the algorithmic cost to
determine similarity via subgraph isomorphism (a NP complete problem [27])
may be irrelevant for large set of treated data.

According to a proper abstraction and normalization of the handled repre-
sentation, tools searching exact matches on token sequences may handle type
1 (differently formatted) to type 2 clones (type or identifier renaming) follow-

27

ing the Bellon et al. [28] and Roy et al. [29] taxonomies. If abstract syntax
trees [30, 23] are considered, some type 3 to type 4 clones can even be managed
(tiny expression rewriting or transposition of independent code). Except for suf-
fix indexation techniques other approaches rely on the meta-tokenization of a
string of tokens or a brotherhood of sub-trees. k-gram fingerprinting methods al-
low to index selected k-grams represented by hash values without consideration
of sequentiality contrary to suffix indexation ones. Another popular method [22]
for plagiarism detection (used by the JPlag webservice [2]) relies on progressive
meta-tokenization to k-grams of variable length to cover a pair of token strings
with non-overlapping clones.

6.2. Specificities of the factorization method

Our method can be compared to exact matches approaches using suffix in-
dexation on token sequences. Relying on the same algorithmic grounds they
allow the retrieval of an equivalent set of matches. The main differences are due
to the various normalized representations used and to the structural view of
the results (matches structure, similarity visualization...). Numerous interest-
ing tricks could be employed to enhance the normalization of the representation:
in this article we chose not to study them. We emphasize rather our work on
structuring the results.

Most similarity detection tools report pairs of matching source code zones or
groups (i.e. with cardinality possibly greater than 2). However nested similari-
ties may appear in the matches themselves and generally remain unaddressed.
Building the MaRF graph of token sequences allows to represent the overlapping
and nesting relations between groups of exact matches. This structure is the cor-
nerstone of the iterative factorization process by helping to the decomposition
of each leaf function to shared sub-functions.

Finally our method leads to a factorized graph of functions including the
original call graphs from the projects, enhanced with new synthesized functions
due to similarity matching. The integration of these data permits similarity
understanding at the level of the function. Pairs of functions can be compared
according to their shared leaves. Most similarity detection tools limit their rep-
resentation of results to entity levels such as projects, packages or compilation
units. Studying similarity at a function level (potentially across several com-
pilation units) is more rare. Godfrey and Zhou address [31] this problem in
the context of origin analysis, a field connected to clone analysis and consisting
in mapping entities across several versions of a same project. Their approach
uses a semi-automatic iterative process based on metrics on function names,
parameters and number of lines of codes. Analysis of the set of function callers
and callees was used to identify refactoring patterns like splitting or merging
of functions due to service consolidation/separation or elimination of clones.
The factorized call graph of two versions of a project obtained by our method
could also be exploited to address these concerns in origin analysis, possibly
with a better accuracy and recall than techniques solely based on metrics. In
a plagiarism detection context, comparing the source code at a function level
can reveal similarity patterns that would be less straightforwardly highlighted
otherwise. For example consider the case of a plagiarist copying a function,
splitting it into several sub-functions and hiding them among unrelated code
into numerous compilation units. A detection tool at a compilation unit will

28

reveal numerous small matches inside several functions without linking them to
their caller ancestor.

7. Conclusion

In this article, we described an algorithm based on the factorization of call
graphs for the detection of similarities in source code. This technique presents
several advantages. It brings interesting results related to the detection of sim-
ilarities in the presence of common edit operations like transposition and func-
tional inlining and outlining. It expresses the similarities at a function level.
A shared chunk of code being considered as a function (identified through the
factorization process), it allows numerous duplicated chunks to be digested into
a single item called by several projects. Moreover, the pre-processing cost of this
approach is reasonable since, after a classical lexical analysis providing tokens,
it only requires a light syntactic analysis in order to identify initial functions
and their call sites. For the whole factorization process (without local alignment
step), we experiment a practical time complexity that is almost linear in the
number of handled tokens.

Nevertheless, this method presents two main limitations. First, this ap-
proach is not incremental. Indeed, due to the immutable nature of data struc-
tures such as suffix arrays and to the necessary choices between decompositions
among overlapping shared factors, the process does not support any update of
the set of analyzed projects. The second drawback is related to the fact that
functions calls and related metrics are handled through sets without considera-
tion of order. Even if we did not encounter them during experimental analysis,
this can yield false positives, for instance in the case of two distinct projects in-
volving the same set of functions. Particularly, this can occur if the factorization
threshold is low: in this case, the number of leaves is low and their multiplicity
high, leading to meaningless decompositions. On the contrary, a threshold that
is (too) high will drastically lower the recall by raising no shared factor. Indeed,
the factorization threshold must be carefully chosen to offer a good compromise
between precision and recall. The choice of the threshold could benefit from
statistical approach to assess the idiomaticity of code related to factors of to-
kens: defining new weight functions for factors considering idiomaticity metrics
instead of the raw length is to be explored.

New order metrics can be designed to take into account the order of function
calls; this could ease the refinement of the similarities previously identified with
order-free metrics.

Providing incremental addition of projects seems difficult. To cope with this
problem, the source code of analyzed projects must be indexed to be stored in
a database. This is possible through fingerprinting approaches, either on tokens
or in richer representations like abstract syntax trees. Abstract syntax tree
representations could allow more sophisticate patterns of pre-processing of the
representation for better abstraction and normalization of the code, a topic that
has been neglected in this article. We are investigating some new techniques
in this way [21, 32, 23] that could also consider the function call graphs of the
projects.

29

References

[1] Moss, http://theory.stanford.edu/~aiken/moss.

[2] L. P. Prechelt, U. Karlsruhe, G. Malpohl, Finding plagiarisms among a set
of programs with JPlag, Journal of Universal Computer Science 8 (2000)
1016–1038.
URL http://page.mi.fu-berlin.de/prechelt/Biblio/jplagTR.pdf

[3] M. J. Wise, Neweyes: A system for comparing biological sequences using
the running karp-rabin greedy string-tiling algorithm, in: Proceedings of
the 3rd International Conference on Intelligent Systems for Molecular Bi-
ology, AAAI Press, 1995, pp. 393–401.
URL http://www.it.usyd.edu.au/research/tr/tr463.pdf

[4] S. Schleimer, D. S. Wilkerson, A. Aiken, Winnowing: Local algorithms
for document fingerprinting, in: Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data 2003, ACM Press, 2003,
pp. 76–85.
URL http://theory.stanford.edu/~aiken/publications/papers/

sigmod03.pdf

[5] R. Tarjan, Depth-first search and linear graph algorithms, in: Proceedings
of the 12th Annual Symposium on Switching and Automata Theory, IEEE
Computer Society, Washington, USA, 1971, pp. 114–121. doi:10.1109/

SWAT.1971.10.

[6] P. Weiner, Linear pattern matching algorithm, in: 14th Annual IEEE Sym-
posium on Switching and Automata Theory, Washington, DC, 1973, pp.
1–11.

[7] U. Manber, G. Myers, Suffix arrays: a new method for on-line string
searches, Society for Industrial and Applied Mathematics Philadelphia, PA,
USA, 1990.

[8] M. Crochemore, W. Rytter, Jewels of Stringology, World Scientific Press,
2002.

[9] D. Gusfield, Algorithms on Strings, Trees, and Sequences: Computer Sci-
ence and Computational Biology, Cambridge University Press, 1997.

[10] T. Kasai, G. Lee, H. Arimura, S. Arikawa, K. Park, Linear-time longest
common-prefix computation in suffix arrays and its applications, in: 12th
Annual Symposium on Combinatorial Pattern Matching, Springer-Verlag,
2001, pp. 181–192.

[11] E. M. McCreight, A space-economical suffix tree construction algorithm
23 (2) (1976) 262–272.

[12] E. Ukkonen, Constructing suffix trees on-line in linear time, in: J. van
Leeuwen (Ed.), 12th, Madrid, Spain, 1992, pp. 484–492.
URL http://cs.helsinki.fi/u/ukkonen/SuffixT1.ps

[13] S. Kurtz, Reducing the space requirement of suffix trees, Software - Practice
and Experience 29 (1998) 1149–1171.

30

http://theory.stanford.edu/~aiken/moss
http://page.mi.fu-berlin.de/prechelt/Biblio/jplagTR.pdf
http://page.mi.fu-berlin.de/prechelt/Biblio/jplagTR.pdf
http://page.mi.fu-berlin.de/prechelt/Biblio/jplagTR.pdf
http://www.it.usyd.edu.au/research/tr/tr463.pdf
http://www.it.usyd.edu.au/research/tr/tr463.pdf
http://www.it.usyd.edu.au/research/tr/tr463.pdf
http://theory.stanford.edu/~aiken/publications/papers/sigmod03.pdf
http://theory.stanford.edu/~aiken/publications/papers/sigmod03.pdf
http://theory.stanford.edu/~aiken/publications/papers/sigmod03.pdf
http://theory.stanford.edu/~aiken/publications/papers/sigmod03.pdf
http://dx.doi.org/10.1109/SWAT.1971.10
http://dx.doi.org/10.1109/SWAT.1971.10
http://cs.helsinki.fi/u/ukkonen/SuffixT1.ps
http://cs.helsinki.fi/u/ukkonen/SuffixT1.ps

[14] M. I. Abouelhoda, S. Kurtz, E. Ohlebusch, Replacing suffix trees with
enhanced suffix arrays, Journal of Discrete Algorithms.
URL http://www.fli-leibniz.de/www_bioc/journal_club/

AboKurOhl2004.pdf

[15] O. Berkman, U. Vishkin, Recursive star-tree parallel data structure, SIAM
Journal on Computing 22 (2) (1993) 221–242. doi:10.1137/0222017.

[16] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to
Algorithms, second edition, MIT Press and McGraw-Hill, 2001.

[17] K. J. Ottenstein, An algorithmic approach to the detection and prevention
of plagiarism, SIGCSE Bulletin 8 (4) (1976) 30–41. doi:10.1145/382222.
382462.

[18] B. S. Baker, A theory of parameterized pattern matching: algorithms
and applications, in: Proceedings of the 25th annual ACM symposium
on Theory of computing, ACM, New York, USA, 1993, pp. 71–80. doi:

10.1145/167088.167115.

[19] T. Kamiya, S. Kusumoto, K. Inoue, Ccfinder: A multilinguistic token-based
code clone detection system for large scale source code, IEEE Transactions
on Software Engineering 28 (7) (2002) 654–670. doi:10.1109/TSE.2002.

1019480.

[20] R. Tairas, J. Gray, Phoenix-based clone detection using suffix trees, in:
Proceedings of the 44th annual Southeast regional conference, ACM, New
York, USA, 2006, pp. 679–684.
URL http://www.cis.uab.edu/gray/Pubs/acmse-2006-robert.pdf

[21] M. Chilowicz, É. Duris, G. Roussel, Syntax tree fingerprinting for source
code similarity detection, in: 17th IEEE International Conference on Pro-
gram Comprehension, IEEE Computer Society, Vancouver, BC, Canada,
2009, pp. 243–247. doi:10.1109/ICPC.2009.5090050.

[22] M. Wise, String similarity via Greedy String Tiling and Running Karp--
Rabin matching, Tech. rep., Dept. of CS, University of Sydney (1993).
URL http://www.pam1.bcs.uwa.edu.au/~michaelw/ftp/doc/RKR_GST.

ps

[23] M. Chilowicz, Recherche de similarité dans du code source, Ph.D. thesis
(2010).
URL http://igm.univ-mlv.fr/~chilowi/research/phd/

[24] M. Chilowicz, E. Duris, G. Roussel, Finding similarities in source code
through factorization, in: A. Johnstone, J. Vinju (Eds.), 8th Workshop
on Language Descriptions, Tools and Applications, Vol. 238 of Electronic
Notes in Theoretical Computer Science, Elsevier, Budapest, Hungary, 2008,
pp. 47–62, (15 pp.). doi:10.1016/j.entcs.2009.09.040.

[25] K. Zhang, D. Shasha, Simple fast algorithms for the editing distance be-
tween trees and related problems, SIAM Journal of Computing 18 (6)
(1989) 1245–1262. doi:10.1137/0218082.

31

http://www.fli-leibniz.de/www_bioc/journal_club/AboKurOhl2004.pdf
http://www.fli-leibniz.de/www_bioc/journal_club/AboKurOhl2004.pdf
http://www.fli-leibniz.de/www_bioc/journal_club/AboKurOhl2004.pdf
http://www.fli-leibniz.de/www_bioc/journal_club/AboKurOhl2004.pdf
http://dx.doi.org/10.1137/0222017
http://dx.doi.org/10.1145/382222.382462
http://dx.doi.org/10.1145/382222.382462
http://dx.doi.org/10.1145/167088.167115
http://dx.doi.org/10.1145/167088.167115
http://dx.doi.org/10.1109/TSE.2002.1019480
http://dx.doi.org/10.1109/TSE.2002.1019480
http://www.cis.uab.edu/gray/Pubs/acmse-2006-robert.pdf
http://www.cis.uab.edu/gray/Pubs/acmse-2006-robert.pdf
http://dx.doi.org/10.1109/ICPC.2009.5090050
http://www.pam1.bcs.uwa.edu.au/~michaelw/ftp/doc/RKR_GST.ps
http://www.pam1.bcs.uwa.edu.au/~michaelw/ftp/doc/RKR_GST.ps
http://www.pam1.bcs.uwa.edu.au/~michaelw/ftp/doc/RKR_GST.ps
http://www.pam1.bcs.uwa.edu.au/~michaelw/ftp/doc/RKR_GST.ps
http://igm.univ-mlv.fr/~chilowi/research/phd/
http://igm.univ-mlv.fr/~chilowi/research/phd/
http://dx.doi.org/10.1016/j.entcs.2009.09.040
http://dx.doi.org/10.1137/0218082

[26] J. Krinke, Identifying similar code with program dependence graphs, in:
Proceedings of the 8th Working Conference on Reverse Engineering, 2001.
URL http://www.bauhaus-stuttgart.de/clones/ast01.pdf

[27] S. A. Cook, The complexity of theorem-proving procedures, in: Proceedings
of the third annual ACM symposium on Theory of computing, ACM, New
York, USA, 1971, pp. 151–158. doi:10.1145/800157.805047.

[28] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, E. Merlo, Comparison and
evaluation of clone detection tools, IEEE Transactions on Software Engi-
neering 33 (9) (2007) 577–591.

[29] C. K. Roy, J. R. Cordy, Scenario-based comparison of clone detection tech-
niques, in: Proceedings of the 16th International Conference on Program
Comprehension, IEEE, 2008, pp. 153–162.

[30] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, L. Bier, Clone detection
using abstract syntax trees, in: Proceedings of the International Confer-
ence on Software Maintenance, IEEE Computer Society, Washington, USA,
1998, p. 368. doi:10.1109/ICSM.1998.738528.

[31] M. Godfrey, L. Zou, Using origin analysis to detect merging and splitting
of source code entities, IEEE Transactions on Software Engineering (2005)
166–181.

[32] M. Chilowicz, É. Duris, G. Roussel, Syntax tree fingerprinting: a foun-
dation for source code similarity detection, Tech. rep., LIGM, Université
Paris-Est (2009).
URL http://igm.univ-mlv.fr/LIGM/internal_report/pdf/2009_03.

pdf

32

http://www.bauhaus-stuttgart.de/clones/ast01.pdf
http://www.bauhaus-stuttgart.de/clones/ast01.pdf
http://dx.doi.org/10.1145/800157.805047
http://dx.doi.org/10.1109/ICSM.1998.738528
http://igm.univ-mlv.fr/LIGM/internal_report/pdf/2009_03.pdf
http://igm.univ-mlv.fr/LIGM/internal_report/pdf/2009_03.pdf
http://igm.univ-mlv.fr/LIGM/internal_report/pdf/2009_03.pdf
http://igm.univ-mlv.fr/LIGM/internal_report/pdf/2009_03.pdf

Appendix A. Dealing with local edits

In section 2.3, we noticed with the help of an example a general problem
linked to all exact factor matching approaches. This problem is related to
the presence of tiny local transforms (additions, deletions and substitutions)
involving mostly expression rewriting. Thus the flow of exact matching tokens
is broken: a duplicated factor of length above the threshold can be broken
into undetectable small factors that individually do not reach the detection
threshold. An obfuscator could exploit this weakness introducing neutral tokens
(e.g. multiplying an integer by one...) that are not always removable through a
statical normalization process. In this appendix, we briefly explore a way to cope
with this problem. The main idea consists in looking for nearly similar leaves
obtained after factorization using a dynamic programming alignment approach.
Indeed, only dynamic programming alignment approach addresses the problem
by looking for sub-sequence duplication (allowing gaps) rather than sub-string
(factor) duplication. However, their complexity is prohibitive for the analysis of
large projects or sets of projects. This is why we use heuristics in order to only
select interesting leaves for further examination.

To allow factorization by common sub-sequences and not only by shared sub-
strings, we introduce after the last factorization iteration some new sub-sequence
factorization. Instead of using a suffix array to identify shared factors among
the leaves, we compare each pair of (interstitial or not) leaves above the length
threshold using a Smith–Waterman like local alignment method in average time
complexity of O(β2k2) to compare β leaves of mean length k. This approach
appears computationally more efficient than comparing token sequences from
complete projects since we work at a function level, avoiding the overhead of
aligning several times the shared factors and of comparing the synthesized inter-
stitial leaves under detection threshold t. However, for projects with few leaves
of small duplicity (especially interstitial leaves) the time complexity is hardly
improved. When interesting sub-sequences (above the weight threshold t with
limited token gaps) are reported they are factorized synthesizing in a single new
function leaf. Therefore functions that were considered non similar before the
sub-sequence factorization because they were sharing few leaves, may appear
similar after this step if they reach leaves that are nearly identical.

Due to the detrimental time complexity relative to the alignment of all of the
pairs of leaves, it is important to highlight the pairs that are more prone to host
interesting sub-sequences. For this task we can assume that sequences sharing
multiple tiny factors (determined via suffix indexation with a suffix array [23])
should be candidate to a local alignment process.

33

Appendix B. Metrics comparison tests

In this appendix, we try to compare the (min normalized) metrics obtained
via our factorization method to metrics proposed by other popular plagiarism
detection tools, according to distinct obfuscation techniques. Unfortunately,
probably to deter plagiarists, most of existing tools are available as web services
and are not distributed, neither under a closed nor under an open source form.
Among them, we selected JPlag and Moss. JPlag [2] advertises itself as using a
meta-tokenization process on pairs of projects (the Running Karp–Rabin Greedy
String Tiling algorithm): its goal is to maximize the length of matches of exact
shared factors between two projects and to avoid overlapping between them.
Moss [1] rather uses a token k-gram hashing approach with a selection of the
generated fingerprints using the winnowing method [4]. We note that these two
tools seem to compare a set of projects through individual comparison of their
pairs rather than relying on a global process (for the whole set of projects)
like our factorization method. Furthermore their internal representation of the
similarities differs: independent matches of similar chunks are reported without
consideration of nested similarities and function call links. Finding an edge of
comparison is not straightforward: we choose a restricted and unperfect criterion
based on min-normalized similarity scores between projects. The aim is to
assess the practical usefulness of our similarity metrics infered from the shared
factorized leaves rather than doing a raw efficiency comparison of different tools.

We selected a modest sized student assignment (mean of 600 lines of ANSI
C code) with 36 submissions and applied on them a raw tokenization and light
syntactic analysis to extract functions and call tokens without further normal-
ization process. Among the projects one project was chosen to be humanly
obfuscated using various methods:

1. Raw duplication. No modification was made on the code.

2. Identifier substitutions. The local variable names were replaced by random
names.

3. Transposition of functions. The functions were permuted inside a same
source compilation unit.

4. Regular insertions and deletions of instructions. Small instructions were
regularly added in the source code whereas instructions appearing as use-
less were removed.

5. Inlining of functions. All the function calls were replaced by their body
up to a single level.

6. Outlining of parts functions. Some function chunks were moved outside
their parent function and replaced by a function call.

7. Useless code flooding. Large blocks of useless code were added in the
original project to dilute the clones.

8. Non plagiarized. An other project containing no code duplication of the
original project according to a human judge was added to assess false
positivity report of the tested tools. Contrary to tests in 5.2 we did not
discard high multiplicity leaves to compute the similarity scores.

As for the factorization method, JPlag match report threshold was set to 10
tokens whereas pattern matching parameters for Moss were not known. All of
the tools used an min-normalized normalization technique measuring the shared
amount of code versus the smallest project. Results are expressed in figure B.19

34

Kind of obfuscation 1 2 3 4 5 6 7 8

Factorization 1.0 1.0 1.0 0.72 0.87 0.81 0.84 0.04
Moss 0.94 0.94 0.90 0.25 0.74 0.56 0.73 0.01
JPlag 0.99 0.99 0.97 0.37 0.87 0.86 0.81 0.00

Figure B.19: Min-normalized similarity scores between an original project and
hand-crafted obfuscated versions

for the computed similarity metrics between the original project and the ob-
fuscated versions. Ideally they should reach 1.0 for all obfuscation techniques
(except the 8th non plagiarized version). It is the case for exact cloning, iden-
tifier substitutions and function transposition for the factorization method that
are call graph-conservative. It is surprisingly not the case for Moss maybe due
to a normalization based on the complete source code without comment dis-
carding. For our tested factorization method results are homogeneous for other
obfuscation schemes. We especially note the interesting recall for the code in-
sertion and deletion pattern even if long similarities are unavoidably broken into
smaller ones that may be winnowed due to the token threshold.

35

	Introduction
	General overview
	From the source code to the call graph
	Factorization issues
	From the factorized graph to function similarities

	Decomposition of functions through suffix indexation
	Introducing suffix array indexing structures
	Constructing the Maximal Repeated Factors (MaRF) graph
	Suffix tree
	Interval tree
	From the suffix links to the MaRF graph
	Computation of the suffix links

	Decomposition of the strings
	Computing the maps of associated occurrences
	Solving occurrences overlapping

	Analysis of the factorized call graph
	Quantifying the similarities
	Similarity based on the amount of shared information
	Normalization

	Highlighting similar chunks of code
	Some interesting properties of nodes

	Experimental results
	Experimental complexity and observations
	Studying the factorized graph nodes and its inferred metrics

	Related work
	An insight into algorithmic approaches for similarity detection
	Specificities of the factorization method

	Conclusion
	Dealing with local edits
	Metrics comparison tests

