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Abstract
Solving the Gross–Pitaevskii (GP) equation describing a Bose–Einstein
condensate (BEC) immersed in an optical lattice potential can be a numerically
demanding task. We present a variational technique for providing fast, accurate
solutions of the GP equation for systems where the external potential exhibits
rapid variation along one spatial direction. Examples of such systems include
a BEC subjected to a one-dimensional optical lattice or a Bragg pulse. This
variational method is a hybrid form of the Lagrangian variational method for
the GP equation in which a hybrid trial wavefunction assumes a Gaussian form
in two coordinates while being totally unspecified in the third coordinate. The
resulting equations of motion consist of a quasi-one-dimensional GP equation
coupled to ordinary differential equations for the widths of the transverse
Gaussians. We use this method to investigate how an optical lattice can be used
to move a condensate non-adiabatically.

1. Introduction

Over the past several years, intense experimental and theoretical interest has focused on the
interaction of laser light with gaseous Bose–Einstein condensates (BECs) [1]. Examples
include Bragg pulses applied to condensates and condensates confined in optical lattices [2].
Experimental and theoretical studies in these areas are important because condensates can be
manipulated with Bragg pulses and strong optical lattices can confine a definite number of
condensate atoms in each well. The Mott-insulator phase transition [3] can produce a system
that might become a candidate for prototypical quantum computer.

This paper describes a method for rapidly finding accurate solutions of the Gross–
Pitaevskii equation describing a BEC in the presence of laser light. Such cases provide
some of the most demanding numerical computations in the field of gaseous Bose–Einstein
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condensation. The ‘hybrid’ Lagrangian method (HLM) described here is an instance of the
Lagrangian variational method (LVM) [4], a method for finding approximate solutions of the
Gross–Pitaevskii (GP) equation, when the condensate wavefunction exhibits rapid variation
along a single spatial direction. Examples of this include Bose–Einstein condensates in optical
lattices and Bragg and standing-wave laser pulses to condensates.

The method presented here is similar to several other methods presented in the literature
[5–9]. The present method does have some significant differences. The most important
difference is that the motion of the condensate transverse to the direction of the laser light
is coupled to the condensate motion along the light direction and vice versa. This coupling
presents a challenge to find the correct, self-consistent and variationally appropriate initial
conditions. Such self-consistent initial conditions are not necessary in the other methods
cited.

This paper is organized as follows. The equations describing the basic Lagrangian
variational method are derived by writing the trial wavefunction and describing the meanings
of the parameters. The steps required to arrive at the final HLM equations of motion are
presented. The method is then applied to the case of a BEC in the presence of an accelerated
optical lattice to show that it is possible to use a lattice to move a condensate to a different
location in a non-adiabatic way.

2. The Lagrangian variational method

The standard LVM is a procedure for obtaining approximate solutions of the time-dependent
Gross–Pitaevskii (GP) equation when a trial solution containing unknown parameters is
assumed. This procedure can be summarized as follows. First, a Lagrangian density whose
Euler–Lagrange equation is the GP equation is written down. Next, a trial wavefunction
containing several time-dependent variational parameters is chosen. The Lagrangian
whose generalized coordinates are these parameters is then obtained by inserting the trial
wavefunction into the Lagrangian density and integrating. The time-evolution equations for
these parameters are derived using the usual Euler–Lagrange equations for the new generalized
coordinates.

It is possible to assume no particular form for the trial wavefunction and write down an
Euler–Lagrange-type equation involving the Lagrangian density that yields the exact Gross–
Pitaevskii partial differential equation. If one does assume a particular functional form for the
trial wavefunction having time-dependent variational parameters, then equations of motion
for these parameters are derived by integrating the Lagrangian density over all space yielding
an ordinary Lagrangian depending only on the parameters and then applying standard Euler–
Lagrange equations.

The ‘hybrid’ variational method combines these two ideas in that the trial wavefunction
assumed leaves the part of the wavefunction that depends on a particular coordinate completely
unspecified while assuming a particular functional form (with time-dependent variational
parameters) for the part of the wavefunction depending on the other coordinates. The resulting
equation of motion for the unspecified part of the wavefunction is a partial differential equation
while the equations of motion for the other variational parameters are ordinary differential
equations that are first order in time.

The time-dependent GP equation for a confined condensate that is subjected to laser light
has the following form:

ih̄
∂ψ

∂t
= − h̄2

2m
∇2ψ + Vtrap(r, t)ψ(r, t) + Vlaser(r, t)ψ(r, t) + g|ψ(r, t)|2ψ(r, t). (1)
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The Lagrangian density,

L(ψ∗, ∂xψ
∗, ∂yψ

∗, ∂zψ
∗, ∂tψ

∗; r, t) ≡ 1

2
ih̄

(
∂ψ∗

∂t
ψ − ψ∗ ∂ψ

∂t

)
+

h̄2

2m
|∇ψ |2

+ (Vtrap(r, t) + Vlaser(r, t))|ψ |2 +
1

2
g|ψ |4 (2)

yields the GP equation when the variation

δL
δψ∗ ≡ ∂

∂t

(
∂L

∂(∂tψ∗)

)
+

∂

∂x

(
∂L

∂(∂xψ∗)

)
+

∂

∂y

(
∂L

∂(∂yψ∗)

)
+

∂

∂z

(
∂L

∂(∂zψ∗)

)
− ∂L

∂ψ∗ (3)

vanishes. This is the Euler–Lagrange equation that applies when the wavefunction is
completely unspecified.

To obtain a variationally approximate solution to the GP equation, we assume a trial
wavefunction that contains a set of variational parameters. Each parameter is assumed to be
a function of time. The most common example of a trial wavefunction is a three-dimensional
Gaussian [4]:

ψ(A(t), w(t), b(t); r) = A(t) e−x2/w2
x (t)+iβx(t)x

2
e−y2/w2

y (t)+iβy(t)y
2

e−z2/w2
z (t)+iβz(t)z

2
, (4)

where w ≡ (wx,wy,wz) and b ≡ (βx, βy, βz).
By inserting this trial wavefunction into equation (3) and integrating over all space we

obtain the ordinary Lagrangian

L(A(t), w(t), b(t)) =
∫

L[ψ(A(t), w(t), b(t); r)] d3r. (5)

In this way, we obtain a Lagrangian in which the variational parameters are the generalized
coordinates. Equations for the time dependence of these coordinates are obtained from the
usual Euler–Lagrange equations. For example, for the width parameter wx we would have the
following:

d

dt

(
∂L

∂ẇx

)
− ∂L

∂wx

= 0. (6)

If one carries out this procedure for the Gaussian trial wavefunction given above one finds,
after a little algebra, the following equation of motion for wx :

ẅx + ω2
xwx = h̄2

m2w3
x

+

√
π

2

ah̄2N

m2w2
xwywz

. (7)

Thus one obtains either a partial differential equation if the Euler–Lagrange equation for the
Lagrangian density is used or an ordinary differential equation for a variational parameter if
the integrated Lagrangian is used. The HVM combines these ideas and an example of the
HVM will be derived next.

3. The HVM equations of motion

If a BEC is immersed in a one-dimensional optical lattice or subjected to optical laser pulses,
then it is often the case that the condensate wavefunction exhibits spatial oscillations along
the direction of propagation of the incident laser light that are much more rapid than along the
transverse directions. In this case we can write a trial wavefunction with the following form:

ψ(φ(x, t), wy(t), wz(t), βy(t), βz(t)) = φ(x, t) e−y2/2w2
y (t)+iβy(t)y

2
e−z2/2w2

z (t)+iβz(t)z
2
. (8)

Note here that the variational parameters are φ,wy,wz, βy and βz. We have chosen to
represent the shape of the wavefunction in the transverse direction with a Gaussian profile.
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In many cases the Thomas–Fermi approximation holds and the transverse density is more
accurately represented by an inverted parabola. We shall see in section 3.3.2 that the size of
the variationally determined density agrees well with the Thomas–Fermi approximation when
that limit applies.

We shall assume that this trial wavefunction is normalized like this∫
d3r|ψ |2 = N, (9)

where N is the number of condensate atoms. The normalization condition constrains the values
of the variational parameters∫

d3r|ψ |2 =
∫ +∞

−∞
dx|φ(x, t)|2

∫ +∞

−∞
dy e−y2/w2

y

∫ +∞

−∞
dz e−z2/w2

z

= (π1/2wy)(π
1/2wz)

∫ +∞

−∞
dx|φ(x, t)|2 = N. (10)

Thus the wavefunction for the fast direction, φ(x, t), must satisfy∫ +∞

−∞
dx|φ(x, t)|2 = N

πwywz

. (11)

This can often be used to eliminate some variational parameters from the Lagrangian.

3.1. The hybrid Lagrangian

Since the functional dependence of the trial wavefunction on the y and z coordinates is assumed
to be Gaussian, we shall treat them in the standard LVM way. That is, we shall integrate the
Lagrangian density only over these coordinates to get a ‘hybrid’ Lagrangian

L(φ∗, ∂xφ
∗, ∂tφ

∗, wy,wz, βy, βz) =
∫ +∞

−∞
dy

∫ +∞

−∞
dzL[ψ(r, t)], (12)

where we take the full Lagrangian density to be

L(ψ∗, ∂xψ
∗, ∂yψ

∗, ∂zψ
∗, ∂tψ

∗; r, t)

≡ 1

2
ih̄

(
∂ψ∗

∂t
ψ − ψ∗ ∂ψ

∂t

)
+

h̄2

2m
|∇ψ |2 + Vext(r, t)|ψ |2 +

1

2
g|ψ |4, (13)

and where

Vext(r, t) = Vtrap(r, t) + Vlaser(x, t). (14)

We will assume that the confining potential, Vtrap, has the form of a harmonic oscillator and
that the potential created by the light field, Vlaser, depends only on the x coordinate. The
explicit forms of these are

Vtrap(r, t) = 1

2
mω2

xx
2 +

1

2
mω2

yy
2 +

1

2
mω2

zz
2

Vlaser(x, t) = −h̄
�2

0(t)

2	
(1 + cos(2kLx − δLt)),

(15)

where m is the atomic mass, (ωx, ωy, ωz) are the frequencies of the harmonic confining
potential, kL is the wavevector of the laser and δL is the difference in frequencies of the
two counterpropagating beams that comprise the laser pulse, �0 is the single-photon Rabi
frequency of the condensate atom for the laser pulse, and 	 is the detuning of the incident
laser pulse from atomic resonance.
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Calculating the form of the hybrid Lagrangian for the given trial wavefunction equation (8)
consists of (1) inserting the wavefunction into the full Lagrangian density, and (2) performing
the integration over the y and z coordinates. We shall carry out these steps for each separate
term of the full Lagrangian

L1 = 1

2
ih̄

(
∂ψ∗

∂t
ψ − ψ∗ ∂ψ

∂t

)
= h̄ Im

{
ψ∗ ∂ψ

∂t

}

L2 = h̄2

2m
|∇ψ |2 =

(
h̄2

2m

) (
∂ψ∗

∂x

∂ψ

∂x
+

∂ψ∗

∂y

∂ψ

∂y
+

∂ψ∗

∂z

∂ψ

∂z

)

L3 = Vext(r, t)|ψ |2 =
(

1

2
mω2

xx
2 +

1

2
mω2

yy
2 +

1

2
mω2

zz
2 + Vlaser(x, t)

)
|ψ |2

L4 = 1

2
g|ψ |4.

(16)

Then the resulting form of the hybrid Lagrangian for the given trial wavefunction is found
from

Li(φ
∗, ∂xφ

∗, ∂tφ
∗, w, β) =

∫ +∞

−∞
dy

∫ +∞

−∞
dzLi[ψ(r, t)], i = 1, . . . , 4 (17)

where w = (wx,wx) and β = (βx, βx). The hybrid Lagrangian is found by inserting the trial
wavefunction into the above and performing the required differentiations and integrations.

The result is

Lhybrid(φ
∗, ∂xφ

∗, ∂tφ
∗, w, β) =

{
h̄

2i

(
φ∗ ∂φ

∂t
− φ

∂φ∗

∂t

)
+

(
h̄2

2m

)
∂φ∗

∂x

∂φ

∂x
+

[
1

2
h̄β̇yw

2
y

+
1

2
h̄β̇zw

2
z +

(
h̄2

2m

) (
1

2w2
y

+ 2β2
yw

2
y +

1

2w2
z

+ 2β2
z w

2
z

)

+ Vlaser(x, t) +
1

2
mω2

xx
2 +

1

4
mω2

yw
2
y +

1

4
mω2

zw
2
z

]
|φ|2

+
1

4
g|φ|4

}
(π1/2wy)(π

1/2wz). (18)

We now present the derivation of the equations of motion for the variational parameters.

3.2. The Euler–Lagrange equations of motion

The next step is to derive the equations of motion for φ,wy,wz, βy and βz. We shall consider
each in turn. We shall then discover that some further algebra will be required to make the
resulting equations somewhat more convenient for calculation.

3.2.1. The equation of motion for φ(x, t). The Euler–Lagrange equation of motion for the
variational parameter φ∗ is given by

∂

∂t

(
∂Lhybrid

∂
(

∂φ∗
∂t

)
)

+
∂

∂x

(
∂Lhybrid

∂
(

∂φ∗
∂x

)
)

− ∂Lhybrid

∂φ∗ = 0. (19)

To evaluate this equation for our case we first compute the derivatives of Lhybrid with respect to
φ∗, ∂tφ

∗ and ∂xφ
∗. Inserting these derivatives into equation (19) gives the following equation
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of motion for φ:

ih̄
∂φ

∂t
+

1

2
ih̄

(
ẇy

wy

+
ẇz

wz

)
φ = − h̄2

2m

∂2φ

∂x2
+

(
Vlaser(x, t) +

1

2
mω2

xx
2

)
φ +

1

2
g|φ|2φ

+

[
1

2
h̄β̇yw

2
y +

h̄2

2m

(
1

2w2
y

+ 2β2
yw

2
y

)
+

1

4
mω2

yw
2
y

+
1

2
h̄β̇zw

2
z +

h̄2

2m

(
1

2w2
z

+ 2β2
z w

2
z

)
+

1

4
mω2

zw
2
z

]
φ. (20)

By defining

h̄fi(t) ≡ 1

2
h̄β̇iw

2
i +

h̄2

2m

(
1

2w2
i

+ 2β2
i w

2
i

)
+

1

4
mω2

i w
2
i , i = x, y (21)

and

Uext(x, t) ≡ Vlaser(x, t) + 1
2mω2

xx
2 (22)

we can write the equation of motion for φ as

ih̄
∂φ

∂t
+ ih̄

(
1

2

[
ẇy

wy

+
ẇz

wz

]
+ i[fx + fy]

)
φ = − h̄2

2m

∂2φ

∂x2
+ Uext(x, t)φ +

1

2
g|φ|2φ. (23)

We can simplify this equation considerably using the following transformation:

φ(x, t) = N1/2φ̃(x, t) e−a(t)+ib(t), (24)

where

a(t) ≡ 1

2

∫ t

0

[
ẇy(t

′)
wy(t ′)

+
ẇz(t

′)
wz(t ′)

]
dt ′ and b(t) ≡ −

∫ t

0
(fy(t

′) + fz(t
′)) dt ′. (25)

The result is

ih̄
∂φ̃

∂t
= − h̄2

2m

∂2φ̃

∂x2
+ Uext(x, t)φ̃ +

1

2
gN e−2a(t)|φ̃|2φ̃. (26)

This equation can be simplified even further by noting that

e−2a(t) = wy(0)wz(0)

wy(t)wz(t)
. (27)

The final form for the equation of motion for φ̃ is the following:

ih̄
∂φ̃

∂t
= − h̄2

2m

∂2φ̃

∂x2
+

(
Vlaser(x, t) +

1

2
mω2

xx
2

)
φ̃ +

1

2
gN

(
wy(0)

wy(t)

) (
wz(0)

wz(t)

)
|φ̃|2φ̃. (28)

This is the equation of motion for φ̃. We now turn to the equations of motion for the widths
and phases wi and βi .

3.2.2. The equations of motion for the phases, βi . We turn now to the Euler–Lagrange
equations for the Gaussian phases. These equations will provide a relationship between the
phases and the Gaussian widths. These relationships will be useful in simplifying the equations
for the widths.

The Euler–Lagrange (EL) equations for the Gaussian phases, βy and βz, in terms of the
hybrid Lagrangian are as follows:

∂

∂t

(
∂Lhybrid

∂β̇i

)
− ∂Lhybrid

∂βi

= 0, i = y, z. (29)
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Computing the required derivatives and inserting them into the EL equation gives

∂

∂t

[
1

2
h̄w2

y |φ(x, t)|2(π1/2wy)(π
1/2wz)

]
=

[
h̄2

2m

] (
4βyw

2
y

)|φ(x, t)|2π1/2wyπ
1/2wz (30)

and
∂

∂t

[
1

2
h̄w2

z |φ(x, t)|2(π1/2wy)(π
1/2wz)

]
=

[
h̄2

2m

] (
4βzw

2
z

)|φ(x, t)|2π1/2wyπ
1/2wz. (31)

We can simplify these equations by first considering the left-hand side:
∂

∂t

[
1

2
h̄w2

y |φ(x, t)|2(π1/2wy)(π
1/2wz)

]
= ∂

∂t

(
1

2
h̄w2

y

)
|φ(x, t)|2(π1/2wy)(π

1/2wz)

+
1

2
h̄w2

y

∂

∂t
[|φ(x, t)|2(π1/2wy)(π

1/2wz)]. (32)

Thus we can write the EL equation for βy as[
h̄2

2m

] (
4βyw

2
y

)|φ(x, t)|2π1/2wyπ
1/2wz = ∂

∂t

(
1

2
h̄w2

y

)
|φ(x, t)|2(π1/2wy)(π

1/2wz)

+
1

2
h̄w2

y

∂

∂t
[|φ(x, t)|2(π1/2wy)(π

1/2wz)]. (33)

To simplify this further, multiply both sides of the above equation by dx and integrate:(
h̄2

2m

) (
4βyw

2
y

) ∫ +∞

−∞
dx|φ|2(π1/2wy)(π

1/2wz)

= ∂

∂t

(
1

2
h̄w2

y

)∫ +∞

−∞
dx|φ|2(π1/2wy)(π

1/2wz)

+
1

2
h̄w2

y

∫ +∞

−∞
dx

∂

∂t
[|φ|2(π1/2wy)(π

1/2wz)]. (34)

We assume that the derivative and the integral can be interchanged in the last term on the right.
Given this to be true, we can use the normalization condition (equation (10))

(π1/2wy)(π
1/2wz)

∫ +∞

−∞
dx|φ(x, t)|2 = N (35)

to show that the last term in equation (34) is zero and thus we have

N

(
h̄2

2m

) (
4βyw

2
y

) = N
∂

∂t

(
1

2
h̄w2

y

)
(

h̄

m

) (
4βyw

2
y

) = ∂

∂t

(
w2

y

) = 2wyẇy(
h̄

m

)
2βywy = ẇy.

(36)

The EL equation for βz is similar and so we finally have

βy =
( m

2h̄

) ẇy

wy

βz =
( m

2h̄

) ẇz

wz

. (37)

These equations can be used to eliminate βi and β̇i (i = x, y) in the expressions for the fi .

h̄fi(t) = 1

2
h̄β̇iw

2
i +

h̄2

2m

(
1

2w2
i

+ 2β2
i w

2
i

)
+

1

4
mω2

i w
2
i ,

= 1

4
mwiẅi +

h̄2

2m

1

2w2
i

+
1

4
mω2

i w
2
i , i = x, y.

(38)

This will be useful in simplifying the equations for the Gaussian widths to which we now turn.
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3.2.3. The equations of motion for the widths, wi . We next consider the EL equations for
the widths wi , where i = x, y. The EL equation for the wi is given by

∂

∂t

(
∂Lhybrid

∂ẇi

)
− ∂Lhybrid

∂wi

= 0. (39)

We shall derive the equation for wy ; the derivation of the equation for wz is similar. Inspection
shows that Lhybrid is independent of ẇy and so the above equation becomes

∂Lhybrid

∂wy

= 0. (40)

We can easily compute this derivative:

∂Lhybrid

∂wy

=
{
h̄ Im

{
φ∗ ∂φ

∂t

}
+

(
h̄2

2m

)
∂φ∗

∂x

∂φ

∂x
+ Vlaser(x, t)|φ|2 +

1

2
mω2

xx
2|φ|2

+
g

4
|φ|4 +

1

2
h̄β̇yw

2
y |φ|2 +

(
h̄2

2m

) (
1

2w2
y

+ 2β2
yw

2
y

)
|φ|2 +

1

4
mω2

yw
2
y |φ|2

+
1

2
h̄β̇zw

2
z |φ|2 +

(
h̄2

2m

) (
1

2w2
z

+ 2β2
z w

2
z

)
|φ|2 +

1

4
mω2

zw
2
z |φ|2

}

× (π1/2)(π1/2wz) +

{
h̄β̇ywy +

(
h̄2

2m

) (
− 1

w3
y

+ 4β2
ywy

)
+

1

2
mω2

ywy

}

× (π1/2wy)(π
1/2wz)|φ|2. (41)

Defining

Hx ≡ h̄ Im

{
φ∗ ∂φ

∂t

}
+

(
h̄2

2m

)
∂φ∗

∂x

∂φ

∂x
+ Vlaser(x, t)|φ|2 +

1

2
mω2

xx
2|φ|2 +

1

4
g|φ|4, (42)

we can rewrite equation (40) as

∂Lhybrid

∂wy

=
{

3

2
h̄β̇ywy +

(
h̄2

2m

) (
− 1

2w3
y

+ 6β2
ywy

)
+

3

4
mω2

ywy

+
1

2
h̄β̇z

w2
z

wy

+

(
h̄2

2m

) (
1

2wyw2
z

+ 2β2
z

w2
z

wy

)
+

1

4
mω2

z

w2
z

wy

}

× (π1/2wy)(π
1/2wz)|φ|2 +

Hx

wy

(π1/2wy)(π
1/2wz)

= 0. (43)

By multiplying by dx on both sides and integrating over x we obtain

∂Lhybrid

∂wy

= N

{
3

2
h̄β̇ywy +

(
h̄2

2m

) (
− 1

2w3
y

+ 6β2
ywy

)
+

3

4
mω2

ywy

+
1

2
h̄β̇z

w2
z

wy

+

(
h̄2

2m

)(
1

2wyw2
z

+ 2β2
z

w2
z

wy

)
+

1

4
mω2

z

w2
z

wy

}

+ π〈Hx〉wz

= 0, (44)

where

〈Hx〉 =
∫ +∞

−∞
dx

[̄
h Im

{
φ∗ ∂φ

∂t

}
+

(
h̄2

2m

)
∂φ∗

∂x

∂φ

∂x
+ Vlaser(x, t)|φ|2 +

1

2
mω2

xx
2|φ|2 +

g

4
|φ|4

]
.

(45)
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By using the equations of motion for the phases and their time derivatives we can eliminate
the βi and β̇i from equation (44),

∂Lhybrid

∂wy

= N

{
3

4
mẅy +

1

4
m

wz

wy

ẅz +

(
h̄2

2m

)(
− 1

2w3
y

+
1

2wyw2
z

)

+
3

4
mω2

ywy +
1

4
mω2

z

w2
z

wy

}
+ π〈Hx〉wz = 0. (46)

The equation for wz is obtained by writing the above equation down with y and z interchanged.
To simplify these equations further we must consider the expression for 〈Hx〉.

We can express 〈Hx〉 in terms of φ̃, defined in equation (24), by inserting that equation
into equation (45) to get

〈Hx〉 = N e−2a(t)〈H̃x〉 + N e−2a(t)h̄ḃ(t)

∫ +∞

−∞
dx|φ̃|2, (47)

where

〈H̃x〉 ≡
∫ +∞

−∞
dx

{
h̄ Im

{
φ̃∗ ∂φ̃

∂t

}
+

(
h̄2

2m

)
∂φ̃∗

∂x

∂φ̃

∂x

+

(
Vlaser(x, t) +

1

2
mω2

xx
2

)
|φ̃|2 +

1

4
gN e−2a(t)|φ̃|4

}
. (48)

This can be significantly simplified by using the equation of motion for φ̃,

〈H̃x〉 = −
∫ +∞

−∞
dx

1

4
gN e−2a(t)|φ̃|4. (49)

Thus we can write a compact expression for 〈Hx〉. Using equation (47) we have

〈Hx〉 = N e−2a(t)

(
−

∫ +∞

−∞
dx

1

4
gN e−2a(t)|φ̃|4 − h̄(fy(t) + fz(t))

∫ +∞

−∞
dx|φ̃|2

)
. (50)

Using the above expression we are at last ready to build the final equations of motion for
the width parameters. The results are

ẅy + ω2
ywy =

(
h̄2

m2

)
1

w3
y

+
2λ

w2
ywz

(51)

ẅz + ω2
zwz =

(
h̄2

m2

)
1

w3
z

+
2λ

wyw2
z

, (52)

where

λ(φ̃) ≡ πw2
y(0)w2

z (0)

∫ +∞

−∞
dx

1

4

gN

m
|φ̃|4. (53)

This completes the full set of equations of motion for the Gaussian parameters.

3.2.4. The final equations of motion. Thus we may summarize the full set of equations of
motion for this hybrid Lagrangian method. The trial wavefunction has the form

ψ(φ,wy,wz, βy, βz) = φ(x, t) e−y2/2w2
y (t)+iβy(t)y

2
e−z2/2w2

z (t)+iβz(t)z
2
. (54)

The variational parameters are φ(x, t), the dependence of the wavefunction along the fast (x)
direction, wy and wz, the widths of the Gaussians in the transverse dimensions, and βy and βz

the Gaussian phases. The fast-direction wavefunction is written as

φ(x, t) = N1/2φ̃(x, t) exp

{
−1

2

∫ t

0

[
ẇy(t

′)
wy(t ′)

+
ẇz(t

′)
wz(t ′)

]
d|t ′ + i

∫ t

0
(fy(t

′) + fz(t
′)) dt ′

}
≡ N1/2φ̃(x, t) e−a(t)+ib(t), (55)
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where

h̄fi(t) = 1

2
h̄β̇iw

2
i +

h̄2

2m

(
1

2w2
i

+ 2β2
i w

2
i

)
+

1

4
mω2

i w
2
i ,

= 1

4
mwiẅi +

h̄2

2m

1

2w2
i

+
1

4
mω2

i w
2
i , i = x, y

(56)

and N is the number of condensate atoms. The equation of motion for φ̃ is

ih̄
∂φ̃

∂t
= − h̄2

2m

∂2φ̃

∂x2
+

(
Vlaser(x, t) +

1

2
mω2

xx
2

)
φ̃ +

1

2
gN

(
wy(0)

wy(t)

) (
wz(0)

wz(t)

)
|φ̃|2φ̃. (57)

The equations of motion for the widths are:

ẅy + ω2
ywy =

(
h̄2

m2

)
1

w3
y

+
2λ

w2
ywz

(58)

ẅz + ω2
zwz =

(
h̄2

m2

)
1

w3
z

+
2λ

wyw2
z

, (59)

where

λ(φ̃) ≡ πw2
y(0)w2

z (0)

∫ +∞

−∞
dx

1

4

gN

m
|φ̃|4. (60)

Once the widths are known, the phases can be obtained from the following relations:

βy =
( m

2h̄

) ẇy

wy

βz =
( m

2h̄

) ẇz

wz

. (61)

Note that the equations for φ̃ and the wi form a closed set of equations that must be solved
self-consistently. Now that we have derived the equations of motion, we next consider the
method for numerical solution of these equations.

3.2.5. Scaled equations of motion. To facilitate numerical solution of the HVM equations of
motion it is important to cast them in scaled (dimensionless) units. The useful units of length
(d̄) and time (1/ω̄) here are those of the geometrically averaged harmonic potential:

d̄ ≡
(

h̄

mω̄

)1/2

ω̄ ≡ (ωxωyωz)
1/3 γi ≡ ωi

ω̄
(i = y, z). (62)

Thus the x coordinate, Gaussian widths, the time and the wavefunction φ̃ are scaled as follows:

x̄ ≡ x

d̄
, w̄i ≡ wi

d̄
β̄i ≡ β̄i

d̄2
(i = y, z) τ ≡ ω̄t φ̃ ≡ φ̄

d̄3/2
. (63)

Transforming the HVM equations is straightforward. The results are as follows: the scaled
equations of motion consist of the psuedo-1D GP equation,

i
∂φ̄

∂τ
= −1

2

∂2φ̄

∂x̄2
+

(
V̄laser(x̄, τ ) +

1

2
γ 2

x x̄2

)
φ̄ +

1

2

[
4πN

(a

d̄

)] (
w̄y(0)

w̄y(τ )

) (
w̄z(0)

w̄z(τ )

)
|φ̄|2φ̄,

(64)

the width equations,

w̄′′
y + γ 2

y w̄y = 1

w̄3
y

+
2λ̄(τ )

w̄2
yw̄z

w̄′′
z + γ 2

z w̄z = 1

w̄3
z

+
2λ̄(τ )

w̄yw̄2
z

. (65)
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where the scaled λ parameter is

λ̄(τ ) = 1

4
πw̄2

y(0)w̄2
z (0)

[
4πN

(a

d̄

)] ∫ +∞

−∞
dx̄|φ̄(x̄, τ )|4, (66)

and the scaled phase equations,

β̄y = w̄′
y

2w̄y

and β̄z = w̄′
z

2w̄z

. (67)

These are the scaled HVM equations. The solution of these equations cannot be found unless
we know the initial conditions. We next address the problem of determining these initial
conditions.

3.3. Initial conditions for the HVM equations of motion

The initial conditions for the HVM equations are assumed to represent a Bose–Einstein
condensate statically held in a magnetic trap. The proper initial values for the fast-direction
wavefunction (φ(x, 0)), the transverse widths (wy(0) and wz(0)), and the transverse phases
(βy(0) and βz(0)) must be stationary when propagated forward in time with the HVM
equations. Determining the correct initial values for these quantities is the most difficult
part of solving the HVM equations because the system of equations for φ(x, 0), wy(0) and
wz(0) are nonlinearly coupled to each other and must be solved self-consistently. These
equations will be developed below and an approximate analytic solution for an important
special case will be derived.

3.3.1. The equations defining the HVM initial conditions. For a magnetically trapped
condensate, the time evolution of the full wavefunction has the form

ψ(r̄, τ ) = e−iµ̄τ ψ̃(r̄), (68)

where µ̄ is the scaled chemical potential. After making this transformation, the initial-
condition equations are obtained by setting all of the remaining time derivatives in the HVM
equations to zero:

µ̄φ̄(x̄, 0) =
[
−1

2

∂2

∂x̄2
+

1

2
γ 2

x x̄2 +
1

2

(
4πN

(a

d̄

))
|φ̄(x̄, 0)|2

]
φ̄(x̄, 0) (69)

the parameter µ̄ is to be determined. The equations for the widths at τ = 0 are

γ 2
y w̄y(0) = 1

w̄3
y(0)

+
2λ̄(0)

w̄2
y(0)w̄z(0)

γ 2
z w̄z(0) = 1

w̄3
z (0)

+
2λ̄(0)

w̄y(0)w̄2
z (0)

. (70)

Note that the parameter λ̄(0) contains initial values of the widths and this motivates the
following definition:

λ̄(0) = 1

4
πw̄2

y(0)w̄2
z (0)

[
4πN

(a

d̄

)] ∫ +∞

−∞
dx̄|φ̄(x̄, 0)|4 ≡ α0w̄

2
y(0)w̄2

z (0). (71)

The equations defining the initial widths then become

γ 2
y w̄y(0) = 1

w̄3
y(0)

+ 2α0w̄z(0) γ 2
z w̄z(0) = 1

w̄3
z (0)

+ 2α0w̄y(0). (72)

Equations (69) and (72) together must be solved self-consistently to obtain the initial
conditions for the HVM equations. Note that, while equation (69) seems not to depend on the
widths, this is not the case because the normalization of the full wavefunction must also be
satisfied. In terms of the independent variables found in the HVM equations this becomes∫ +∞

−∞
dx̄|φ̄(x̄, 0)|2 = 1

πw̄y(0)w̄z(0)
. (73)
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3.3.2. An approximate analytic solution. For the case of a magnetic-trap potential that is
axially symmetric along the fast direction and when the Thomas–Fermi limit is valid, it is
possible to find an approximate analytical solution to the equations that define the proper
variational initial conditions. While this solution is only approximate, it is useful because the
case it covers is a common, realistic experimental situation.

When the trap potential is cylindrically symmetric, then γy = γz ≡ γ⊥ and, by symmetry,
it follows that

w̄y(0) = w̄z(0) ≡ w̄⊥. (74)

In this case, the two equations (72) become identical:

γ 2
⊥w̄⊥ = 1

w̄3
⊥

+ 2α0w̄⊥. (75)

As long as 2α0 < γ 2
⊥, this simple equation has the following solution:

w̄y(0) = w̄z(0) = w̄⊥ = (
γ 2

⊥ − 2α0
)−1/4

. (76)

This is only the first step, however, since the factor α0 is not known.
The factor α0, defined as

α0 ≡ 1

4
π

[
4πN

(a

d̄

)] ∫ +∞

−∞
dx̄|φ̄(x̄, 0)|4, (77)

evidently depends on the fast-direction wavefunction, φ̄(x̄, 0), which is, as yet, unknown.
A simple, approximate expression for φ̄(x̄, 0) can be found, in the Thomas–Fermi limit, by
neglecting the kinetic-energy term in equation (69).

By parametrizing the chemical potential in terms of the (also unknown) condensate radius
along the fast direction

µ̄ ≡ 1
2γxx̄

2
0 (78)

and neglecting the kinetic energy in equation (69), an expression for φ̄(x̄, 0) can be written as

φ̄(x̄, 0) =
(

1
2γ 2

x x̄2
0 − 1

2γ 2
x x̄2

1
2

(
4πN

(
a

d̄

))
)1/2

, |x̄| � x̄0 (79)

and zero otherwise. This formula can be used to obtain an expression for α0 in terms of the
condensate radius, x̄0:

α0 =
(

16
15

)(
π
4

)
γ 4

x x̄5
0(

4πN
(

a

d̄

)) . (80)

Now both the initial widths and fast-direction wavefunction have been parametrized in terms
of the condensate radius along the fast direction.

The value of x̄0 is determined by the normalization condition given in equation (73).
Inserting the width and fast-direction wavefunction expressions in terms of x̄0 into the
normalization condition gives an equation that determines this quantity:

x̄6
0 +

6

5

(
Na

d̄

)
x̄5

0 − 9

(
γ 2

⊥
γ 4

x

) (
Na

d̄

)2

= 0. (81)

By solving this equation for x̄0, an approximate initial variational wavefunction can be
obtained that will be stationary when propagated using the variational equations of motion
derived earlier.
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Figure 1. The average position of the condensate along the lattice direction. Here the lattice
acceleration is 10 m s−2 and the turn-on times are T1 = 100 µs and T2 = 800 µs (see the text).

4. Application: moving a BEC with an optical lattice

Finally, as an example of the usefulness of this method, it will be applied to the case of the
behaviour of a BEC in the presence of an accelerated optical lattice. It is possible to use an
optical lattice to move a BEC from one place to another. The question arises as to whether
a lattice can pick up a condensate, move it to a different location, and put it down at zero
velocity. This is possible if the process is carried out completely adiabatically. However can
it be accomplished rapidly? This question is considered in the following example.

The GP equation will be solved for a condensate of N = 106 87Rb atoms confined in a
cylindrically symmetric magnetic trap with frequencies ω⊥ = (2π)×90 Hz and ωz = (2π)×
9 Hz. A stationary optical lattice is then turned on. The lattice lasers operate at a wavelength
of λ = 795 nm and its amplitude is ramped up from zero to a maximum of 5Erecoil during
a timespan T1. A standing–wave lattice can be converted into a running–wave lattice by
detuning one of the counterpropagating lasers from the other one. After the lattice is ramped
up to its maximum value, the lattice is accelerated and allowed to run at a maximum velocity
over a time T2 and then it is decelerated and ramped off symmetrically to the way it was turned
on. The result of this sequence of events is illustrated in figure 1.

The position of the condensate is gauged by computing the average value of x

〈x〉 =
∫

d3r ψ∗(r)xψ(r)∫
d3r ψ∗(r)ψ(r)

=
∫ ∞
−∞ dx φ∗(x)xφ(x)∫ ∞
−∞ dx φ∗(x)φ(x)

. (82)

The second equality holds as a result of the assumed trial wavefunction.
The results of this calculation are shown in figure 1. This figure shows that, while a

stationary lattice is ramped on, the average position of the condensate is also stationary. When
the lattice begins to move, the condensate is dragged along by fits and starts to a new position.
These wiggles along the way are a result of the fact that the condensate is not a rigid body.
When the lattice becomes stationary again its mean position moves with constant velocity but
that this velocity is opposite the direction of the lattice motion. Further investigation shows
that this velocity can be in either direction depending on T1 and T2 and that it is possible to use
the lattice to pick up the condensate, move it to a new place, and put it down again with zero
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velocity, all done non-adiabatically. Although the condensate’s final average velocity is zero,
it will not be in its ground state and may be undergoing vigorous excitations. These results
will be reported elsewhere.

In conclusion this paper has presented a method for rapidly finding accurate approximate
solutions of the GP equation for cases where a BEC is subjected to laser light. The 3+1 GP
partial differential equation is reduced to a 1+1 partial differential equation plus a set of three
second-order ordinary differential equations in time. The latter set of equations can be solved
efficiently even on a grid that can accurately represent the solution along the rapidly varying
laser-light direction. This method can be used in many applications involving condensate
behaviour under the influence of laser light.
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