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FREE-ROAMING CAT ABUNDANCE ACROSS A HABITAT GRADIENT 

by 

RACHEL BIRD 

(Under the Direction of Ray Chandler) 

ABSTRACT 

There are an estimated 172 million owned and feral cats in the United States, and wildlife 

enthusiasts and cat owners are often at odds over how best to manage free-roaming cats. 

Management is needed because of the documented impacts of free-ranging cats on wildlife. 

Targeting these management efforts, however, is hampered by an imperfect understanding of cat 

distribution in the landscape. My study used game cameras and capture-recapture sampling to 

estimate abundance of free-roaming cats across a habitat gradient in Bulloch County, Georgia, 

USA. In all, I detected cats at 51% (25/49) sites with a mean of 2.1  cats per site. Cat abundance 

was significantly related to percentage of forest, distance to buildings, and density of buildings. 

Ultimately, density of buildings was the single best predictor of free-ranging cat abundance. 

Free-roaming cats had a significant, positive relationship with density of human buildings, and 

the free-roaming cat population of Bulloch County was found mostly in urbanized zones. As 

urbanization increases, current management strategies must be revised based on this data to 

target areas with high structural density to mitigate free-roaming cat impacts and hasten the 

removal of the species from the environment. 

INDEX WORDS: Free-roaming, Cat, Game camera, Feline, Habitat, Capture-recapture, Camera 

trapping, Felis catus 
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CHAPTER 1 

INTRODUCTION 

Invasive species are organisms that cause ecological or economic harm in a new 

environment where they are not native, and they typically originate from intentional or accidental 

introductions by humans (Mooney et al., 2001). Increased globalization through transportation 

vectors such as cargo ships and airplanes has increased the frequency, prevalence, and intensity 

of invasive species movement and unintentional disease outbreak (Crowl et al., 2008). Nearly 

any species that becomes established outside of its native range can be invasive, but invasive 

predators seem to pose a heightened risk. To date, 30 species of invasive predators have caused 

the extinction or endangerment of 738 vertebrate species and contributed to 58% of all bird, 

mammal, and reptile extinctions worldwide (Doherty et al., 2016). Among invasive predators, 

invasive mammalian predators are considered the most harmful in their new environments 

(Hamer et al., 2021). Some of these species have wild origins, while other invasive species 

originate from domestication (Slater and Shain, 2005). Domestic cats (Duffy and Capece, 2012), 

dogs (Home et al., 2017), and pigs (Pedrosa et al., 2015) have all been implicated in ecosystem 

damage when they become feral. Free-roaming cats damage native ecosystems as a novel 

predator (Lepczyk et al., 2004), via competition in food webs, increasing disease transmission 

(Taetzsch et al., 2018), and indirect landscape alterations (Medina et al., 2014).  

It is estimated that domestic cats kill at least 1.3 billion birds and 6.3 billion mammals 

annually in the United States, and cats are considered to be the single greatest source of 

anthropogenic mortality for U.S. birds and mammals (Loss and Marra, 2017). In New Zealand, 

birds were the most abundant victims of free-roaming cats, but in the United Kingdom, 

Australia, United States, and Switzerland, free-roaming cats mainly kill mammals (Loyd et al., 
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2013; Piontek et al., 2020). Cat predation on native wildlife can often lead not only to native 

species decline, but extinction (Burbidge and Manly, 2002; Nogales et al., 2004; Bonnaud et al., 

2009; Loyd et al., 2013; Hardman et al., 2016; Davies et al., 2016; Algar et al., 2019). Because 

cats prey on a variety of small to medium prey species (Loyd et al., 2013; Read et al., 2015) and 

possess few potential predators themselves, they can decimate small animal populations in many 

habitats (Turner et al., 2000). Worldwide, cats are responsible for 14% of global bird, mammal, 

and reptile extinctions and are the greatest threat to 8% of critically endangered birds (Medina et 

al., 2011, 2014).  

Free-roaming cats elicit behavioral changes in prey species in the new habitat, and this 

can lead to decreased reproductive success (Trouwborst et al., 2020). Even briefly displaying a 

taxidermy cat near Blackbird (Turdus merula) nests decreased provisioning of nestlings by 33% 

(Bonnington et al., 2013). This drop in provisioning and parental nest attendance made the 

Blackbird nests more likely to be attacked by corvids, further decreasing fledgling success. The 

fear induced by outdoor cats can also alter foraging, defense behaviors, stress responses, body 

condition, vulnerability to predators, and reproductive investment of prey species (Loss and 

Marra, 2017). 

Secondary effects of free-roaming cats can change entire landscapes as well. Free-

roaming cats and invasive red foxes (Vulpes vulpes) together have led to the decline or extinction 

of 66% of Australia’s digging mammal species over the past 200 years (Doherty et al., 2016). 

The reduced topsoil disturbance due to the lack of digging mammals creates landscapes where 

little organic matter accumulates and rates of seed germination are low, causing dramatic 

changes in shrub cover. Free-roaming cat predation can reduce populations of seed-dispersing 

rodents (Corlett, 2011). This reduction indirectly impacted the herbaceous plants and trees of the 
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area that rely on this method of seed dispersal and altered habitat complexity due to the 

cascading effects of cat predation. 

Free-roaming cats can introduce endo- and ectoparasites, zoonotic diseases, and 

mammalian viruses to humans, pets, and wildlife (Foley and Stojanovic, 2011). Roundworms, 

hookworms, and tapeworms are endoparasites that affect up to 75% of cats, both domestic and 

feral. These worms can be passed to humans, and contact with contaminated soil such as 

playground sand that has been used as a free-roaming cat litterbox or exposure to infected cat 

fleas (Ctenocephalides felis) are possible routes of transmission (Abdullah et al., 2019). Free-

roaming cats can also transmit toxoplasmosis, which can be especially dangerous for the 

immunocompromised or pregnant. As with other mammals, cats can host the rabies virus, 

although this is uncommon (Mutinelli, 2010). Cat fleas are known to carry typhus (Rickettsia 

typhi), Bartonella (cat-scratch fever), and the plague (Yersinia  pestis) (McElroy et al., 2010). 

These illnesses and parasites can be spread through direct or indirect contact with free-roaming 

cats by allowing them into households or backyards, petting, receiving bites or scratches, 

touching feces-contaminated soil, allowing indoor cats access to outdoors without supervision, or 

direct handling. (Luria et al., 2004). 

The negative effects of free-roaming cats can be exacerbated by the fact that they can be 

found in remarkably high densities. Free-roaming cats can average densities of approximately 1 

– 15 cats/km2 (Page et al., 1992; Hansen et al., 2017). Native predators such as coyote (Canis 

latrans) average only 3 individuals/km2 in similar habitats (Bateman and Fleming, 2012). Free-

roaming cat density can be even higher near feeding stations where cats form into colonies 

(Hatley, 2003). A study in Italy demonstrated that cat colonies can range from 3 - 80 individuals, 

and the number of colonies has been steadily increasing (Natoli et al., 2006). Supplemental food 
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stations for free-roaming cat colonies allow cat densities to become unnaturally high, lead to a 

decrease in prey density (Hawkins et al., 1999), and can increase density-dependent disease 

transmission rates (Hwang et al., 2018). Supplemental feeding stations for free-roaming cat 

colonies do not decrease predation rates because cats are opportunistic predators known to hunt 

even in the absence of hunger (Loyd et al.,  2013).  

Outdoor cats also can have large home ranges. Male cats have much larger home ranges 

(6.2 km2) than females (1.7 km2) (Jones and Coman, 1982). Free-roaming cats are active during 

all hours but tend to do most (and farthest) wandering activities nocturnally. Home range sizes 

typically are determined by the density and spatial distribution of cats using separate food 

resources, personality and social dominance of individual cats, location of favored hunting and 

resting sites, and barriers such as busy roads (Barratt, 2006).  

Mitigating the many problems created by free-roaming cats is challenging because of 

conflicting public opinion about cat management techniques. Possible solutions include laws 

prohibiting free-roaming pet cats, habitat management, culling, keeping pet cats strictly indoors, 

and Trap-Neuter-Return (TNR) to reduce population size. Finding common ground between 

stakeholders regarding these management options is difficult. Although free-roaming cats can be 

managed through state and federal legislation as in Italy and Czech Republic (Voslárˇvá and 

Passantino, 2012), owned-cat management tends to fall onto cat owners. In 2021, 63% of owned 

American cats were kept strictly indoors, while other owners promote either an indoor-outdoor 

or outdoor-only lifestyle for their pets. These alternatives remain a heavily debated subject 

worldwide with implications for cat welfare and enrichment, human health and wellness, the cat-

owner bond, and the survival of native wildlife.  
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For example, feral cats are typically trapped in locations where they have been physically 

seen, typically in colonies, in order to begin management techniques. Given the large home 

ranges of outdoor cats, they might range (and cause wildlife problems) well beyond areas where 

they are visible. Alternatively, there may be habitats or landscape features that cats avoid. Given 

that time and money are always limiting factors in management efforts, predicting where cats 

will occur improve the efficiency of free-roaming cat control efforts. There is a need for data on 

how cat abundance varies with landscape features in a human-dominated landscape.  

 Therefore, the objective of my study is to quantify the abundance of free-roaming cats as 

a function of habitat in Bulloch County, Georgia, USA. Similar studies regarding cat population 

abundance not as a function of habitat have been conducted in other parts of the world and can 

be related to the data gathered here (Bengsen et al., 2011, 2012; Marra et al., 2021), but this 

study is the first of its kind in southeastern Georgia. Other studies in Bulloch County have used 

free-roaming cats as a target species as well. One tracked movement and genetic relationships in 

free-roaming cats on the Georgia Southern University campus and surrounding areas using GPS 

harnesses and DNA analysis and provided information regarding the large possible home ranges 

of free-roaming cats (Plummer, 2018). Another touched on the subject of free-roaming cats 

scavenging bird window-strike carcasses on the same campus (McLain, 2019). The purpose of 

my study is to answer two questions. First, does the abundance of free-roaming cats vary across 

an urban-rural gradient? Second, if cat abundance does vary across the gradient, is it associated 

with specific features of the habitat? I quantified several characteristics of the habitat to 

determine if free-roaming cat population estimates could be predicted based on one or more 

habitat characteristics (distance to buildings, density of buildings, percentage of forest, 

mesopredator frequency, and predator frequency). Distance to buildings, density of buildings, 
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and percentage of forest were selected due to other studies indicating that free-roaming cats were 

less influenced by land cover types but were directly tied to anthropogenic features and was 

more localized to urban areas (Morin et al., 2018; Bennett et al., 2021). Similarly, mesopredator 

and predator species were analyzed because native wildlife may limit free-roaming cat 

distribution due to competition and/or predation (Pollack, 1951; Grubbs and Krausman, 2010). 

I predicted that free-roaming cat population estimates will vary across the urbanization 

gradient, and that the highest populations of cats will be in close proximity to buildings due to 

high cover and a limited number of  predator species (coyotes, bobcats, and dogs) and 

mesopredators (opossum, raccoon, gray fox, and red fox) in urbanized areas. Game cameras 

allow these data to be collected in a non-intrusive way and are a common method used to 

determine abundances of elusive or nocturnal mammals. Game cameras were the chosen tool for 

this study in order to mitigate problems posed by live trapping such as zoonotic diseases, low 

capture rates, and low recapture probabilities (Bengsen et. al, 2011; Kilshaw et al., 2014; Comer 

et al., 2018; Palmer et al., 2020). By using these cameras to improve understanding of the 

preferred habitat characteristics and use by free-roaming cats, management techniques can be 

targeted to specific locations that hold the most cats to increase trap rates, hasten the removal of 

this species from the ecosystem to mitigate issues presented, and encourage wildlife 

conservation. Whatever management methods are directed at outdoor, free-roaming cats, the 

efficacy of management is hampered by an imperfect understanding of cat distribution in human-

dominated landscapes (Bengsen et al., 2011, 2012; Marra et al., 2021). 
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CHAPTER 2 

METHODS 

The study site was Bulloch County on the coastal plain of southeastern Georgia. The 

county is primarily rural and includes 798 km2 of agriculture, 41 km2 of water, and 66 km2 of 

urbanized areas (United States Department of Agriculture, 2017). The towns of Portal, Stilson, 

Nevils, and Brooklet surround Statesboro, the most populous city. Statesboro is home to the 

Georgia Southern University campus and a population of 74,722 people (United States Census 

Bureau, 2018). 

The landscape characteristics described above create an urban-to-rural habitat gradient 

(Figure 1). This gradient is defined by variation in density of buildings, distance to nearest 

building, and area of forest. I estimated free-roaming cat populations across this gradient using 

game cameras. Nine game cameras (four Campark Mini 16 MP 1080P HD Game Cameras and 

five Browning Strike Force Pro XD Trail Cameras) were deployed at 49 locations that had 

varying distances to buildings (0.23 – 1244.50 meters), density of buildings (0 – 2.46 

structure/ha), and percentage of forest (0.86 – 87.07) (Figure 2). Habitat at all sites was 

quantified using Google Earth 2019 and its Measure tool and compared to Apple Maps 2021 to 

ensure no discrepancy in number of buildings. After possible study sites were located on Google 

Earth, landowners were contacted to request permission if the sites fell on private lands. After 

being granted permission, I deployed the cameras to the first nine sites, starting on February 6, 

2021. 

Before setting cameras every month, sites were inspected for game trails, clues for any 

wildlife, proximity to urbanization, and thickness of underbrush to determine site viability.  
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   Figure 1. Example of endpoints of the habitat gradient sampled in this study. 
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Figure 2. Study area and location of the 49 camera sites in Bulloch County, Georgia, 

USA. 
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The immediate area around each camera was cleared of any dangling branches, vines, or growing 

vegetation to reduce pictures of moving vegetation that would prematurely fill up space on the 

SD card of the camera. Each site needed weekly access through a roadway or on foot. 

Considering that free-roaming cats have tendencies to wander and large home ranges (Bengsen 

et al., 2016), cameras were placed at least 1.28 kilometers apart to decrease the chances of 

double-counting individuals. 

Eight cameras remained in a location for one month and then were moved to the next 

location. The ninth camera (Site #8), selected due to landowner permission for long-term use of 

the site and predicted presence of cats (due to its close proximity to buildings), stayed at one 

location throughout the entire study. It functioned as a reference to determine if the one month 

timespan for other camera sites was an adequate timespan to capture photographs of the majority 

of cats at each site.  

I placed three lures in front of each camera at each site to encourage wildlife to venture 

into view of the camera lens. The lures used at each site included roughly 0.5 cup of various 

brands of dry cat kibble (Kitten Kaboodle© or Meow Mix©), used litterbox clumps, and tufts of 

brushed fur collected from a long-haired pet cat. All three lures were placed simultaneously and 

roughly 1-1.5 m in front of the cameras. The kibble was mixed in with the leaf litter to encourage 

animals to stay longer at the site to facilitate photography, fur tufts were secured using nearby 

sticks and rocks, and used litter clumps were placed on the ground or smeared on nearby trees 

(within view of the camera lens) roughly 1-1.5 m above the ground to discourage disturbance by 

wildlife.  

I checked cameras weekly to download pictures, replace batteries, and refresh lures. Each 

camera was securely fastened to objects available at sites such as trees, roughly 0.5 m above the 
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ground (Figure 3). Each camera was labeled with a waterproof ownership tag with contact 

information, university affiliation, and “Biological Research” to discourage theft. Later, habitat 

features (distance to buildings, density of buildings, percentage of forest, frequency of 

mesopredators, and frequency of predators) and wildlife relative abundance indices (number of 

camera images per species divided by total trap nights) were quantified within a 500-m radius of 

each site (a circle of 78 ha). 
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        Figure 3. Example of a deployment of a game camera in this study. 
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Camera Settings and Photo Analysis 

 In order to maximize the number of images of cats and preserve battery life in the 

cameras, each camera was programmed with settings optimized for the methods and goals of the 

study. The four Campark Mini 16 MP 1080P HD Game Cameras had settings of: photo mode on, 

16 MP resolution, three photos taken in a row, no video or audio used,  5-sec shot lag, middle 

sensitivity, and target recording and time lapse off. The Browning Strike Force Pro XD Trail 

Cameras had settings of: trail mode, 5-sec capture delay, medium picture size, two-shot 

multishot, smart IR on, long range night exposure, 10-sec TL frequency, and 3-hour TL period. I 

downloaded and analyzed photos weekly to ensure no malfunctions with the cameras had 

occurred.  

Mesopredators and predators captured in photos were quantified by frequency per site 

(number of days photographed divided by number of camera days per site), detection rate (total 

number of photos of a species divided by the total number of nights),  and relative abundance 

indices (total number of photo captures divided by total trap nights). Abundance of cats was 

estimated using a capture-recapture approach where previously photographed cats (“marked”) 

were “recaptured” when photographed again. Similar to studies conducted on tigers and jaguars 

(Wang and McDonald, 2009; Maffei et al., 2014), each image of a cat was carefully inspected for 

uniquely identifying marks such as color pattern, characteristics of striping, injuries, status of 

neutering, shape of the ears/jowls/nose, body proportions, presence of collar, age, or body 

condition. Individual identification provides the option of estimating cat relative abundance 

using capture-recapture methods. (Karanth, 1995; Soisalo and Cavalcanti, 2006; Tobler and 

Powell, 2012) (Figure 4). For this, it is assumed each population estimate is a relative estimation 

used to determine patterns – not an absolute number of exact population of cats at each site.  
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          Figure 4. Example of free-roaming cats photographed during this study. 
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Landscape Criteria 

 Using a 500-m radius buffer, I quantified three habitat variables and two variables related 

to other wildlife. Distance to nearest building was the linear distance to the closet building to the 

camera at each site. Sites ranged across a gradient of 0.2 - 1244.5 m to the nearest building. 

Density of buildings (number of buildings divided by area of the 500-m radius) and percentage 

of forest (percentage of forested area out of total area of the surrounding 500-m radius) were 

recorded and compared to cat population estimates. Some locations were surrounded by high 

urbanization density, some were in wooded areas with heavy urbanization (such as housing 

complexes) nearby, and others were completely devoid of all urbanization in heavily isolated 

areas in large plots of fields and woodlands. For this study, animals that were classified as 

mesopredators were raccoons (Procyon lotor), gray foxes (Urocyon cinereoargenteus), red foxes 

(Vulpes vulpes), and opossums (Didelphis virginiana). Animals that were classified as potential 

predators of cats were dogs (Canis familiaris), coyotes (Canis latrans), and bobcats (Lynx rufus).  

Data Analysis 

 Because an outdoor pet cat can be just as harmful to the local ecosystem as a feral cat 

(Baker et al, 2008), I made no distinction between feral (unowned) and free-range (owned) cats 

in terms of data analysis. To estimate population size at each site, Lincoln-Peterson capture-

recapture sampling was used. This method is dependable in estimating populations and is a 

common, noninvasive method for sampling wildlife over large areas (Rich et al., 2014). Capture-

recapture sampling is a powerful analytical tool to estimate populations and derive information 

on space use and behavior of elusive animals. This uses a proportion of the real number of 

animals in a given area, assuming that each animal has an equal probability of being captured. To 

use this method, I divided the one-month sampling period at each site into two survey periods: 
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the first half of the month and the second half of the month. Cats photographed in the first survey 

period were defined as “marked”. Cats photographed again in the second period were defined as 

“recaptured”. The capture-recapture formula is:  

𝑁 =  𝑀(𝑛)/𝑚 

 N = cat population estimate per site 

 M = number of cats photographed in the first survey period (“marked”) 

 n = total number of cats photographed in the second survey period 

 m = proportion of cats photographed in the second period that were “recaptures”  

(photographed during the first period) 

 

  Cats photographed during the first period remained in the population, which is then 

resampled in the second survey period, and the proportion of previously photographed animals is 

used to estimate the population size per site. In this study, Site #8 was used to evaluate the 

reliability of the one-month capture-recapture sampling for this study. Because each camera 

remained at its specified site for only one month, I used the longer-term camera at Site #8 to see 

if cat frequency and the presence of unmarked cats changed after the one month period. This 

allowed me to determine if the one-month timespans of each deployment were long enough to 

allow adequate documentation of cats at each site. All wildlife documented in the collected game 

camera images were counted to provide a frequency of species found at each site (Appendix 1). 

Data were analyzed through Microsoft Excel and JMP Pro 16 using linear and multiple 

regressions.  
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CHAPTER 3 

RESULTS 

 I obtained 64,222 images of wildlife over the duration of the study. Across all sites, I 

captured 16,158 photos of cats, 25,249 photos of opossums, 10,872 photos of raccoons, 8,266 

photos of gray foxes, 2,275 photos of dogs, 756 photos of red foxes, 569 photos of coyotes, and 

77 photos of bobcats. (Appendix 1). Most individual animals were photographed multiple times 

at each encounter.  

Based on the site with continuous camera operation, the number of unmarked cats (ones 

not previously photographed) decreased to zero after the second month (Figure 5). Thus, two 

months appears to be a suitable timespan for capture-recapture estimates at other sites. Cat 

frequency decreased throughout the duration of the study showing that even marked (previously 

photographed) cats were seen in images increasingly less often than in the initial month.  

Relation to Habitat 

  I photographed cats at 51% of sites (25/49) and population estimates ranged from 0 – 

13.4 cats per site (Appendix 2). The largest cat populations occurred at sites within 440 m of a 

building, below 50% forest cover, and with more than 0.02 buildings/ha. Cats constituted 25% of 

all images of animals captured and had a relative abundance index of 22.96 – the second most 

abundant species recorded behind opossums (Figure 6). I recorded no instances of the same cat at 

more than one site, indicating no double-counting of cats. 

Estimated cat populations showed a significant, positive relationship with density of 

buildings (F1,47 = 37.3, P = <0.0001) (Figure 9). As structure density increased, the estimated cat 

populations increased significantly as well. There are significant, negative relationships between 
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the estimated cat populations per site and distance to buildings (F1,47 = 15.9, P = 0.0002) (Figure 

7) and percentage of forest (F1,47 = 10.6, P = 0.002) (Figure 8). Sites farther from buildings with 

more forest had fewer cats.  

In a multiple regression holding other variables constant, estimated cat populations had 

no relationship to distance to buildings or percentage of forest (Table 1). Estimated cat 

populations did have a significant, positive relationship with density of buildings (Table 1). As 

density of buildings increased, cat population estimates increased significantly.  
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Figure 5. The camera at Site #8 remained in place throughout the study to serve as a comparison 

to the one-month sample period at other sites. The number of “unmarked” (unphotographed) cats 

declines rapidly, and the frequency of cat photos declined over time. 
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Figure 6. Relative abundance of predators and mesopredators photographed in this study. 
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  Figure 7. Cat abundance decreased at sites farther from buildings. 
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    Figure 8. Cat abundance decreased with increasing forest cover. 
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      Figure 9. Cat abundance increased with increasing density of buildings. 
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Table 1. Results of multiple regression on the ability of habitat variables to predict cat abundance 

(R2 = 0.47, F3,45 = 13.1, P = <0.0001). 

 Std Beta t ratio Prob > t 

Distance -0.20 -1.15 0.26 

Density 0.56 4.19 0.0001 

% Forest 0.02 0.14 0.89 
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Relation to Predators 

One or more potential predator species were photographed at 30% of all sites with dogs 

being the most abundant at a 2.92 relative abundance index. Dogs made up 3% of all wildlife 

images captured. The least abundant predator was bobcat with a relative abundance index of 

0.29, found at 6% of all sites, and representing less than 1% of all wildlife photos. Coyotes were 

found at 8% of sites, had a relative abundance index of 0.80, and represented less than 1% of all 

wildlife photos.  

Cats had no relation to the frequency of coyotes ( F1,47 = 1.7, P = 0.15), dogs (F1,47 = 0.04, 

P = 0.56), or bobcats (F1,47 = 0.004, P = 0.61). In multiple regressions, there was still no 

relationship between cats and combined predator frequencies (Table 2). Additionally, the 

frequency of dogs (F1,47 = 1.6, P = 0.22), bobcats (F1,47 = 1.7, P = 0.22), and coyotes (F1,47 = 

0.11, P = 0.74) had no relationship to forest percentage. The frequency of dogs (F1,47 = 0.31, P = 

0.58), bobcats (F1,47 = 0.86, P = 0.36), and coyotes (F1,47 = 2, P = 0.16) had no relationship to the 

density of buildings. The frequency of dogs (F1,47 = 0.98, P = 0.33), bobcats (F1,47 = 0.62, P = 

0.43), and coyotes (F1,47 = 0.91, P = 0.35) had no relationship to the distance to buildings. 

Relation to Mesopredators 

 Mesopredators were found at 79% of sites with opossums being the most common with a 

relative abundance index of 24.13 – the highest out of all wildlife (Figure 6). Opossums were 

found at 69% of sites and constituted 39% of all wildlife photos. Raccoons were found at 36% of 

sites, had a relative abundance index of 10.20, and constituted 17% of all wildlife photos. Gray 

foxes were found at 26% of all sites, had a relative abundance index of 7.80, and constituted 13% 
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of all wildlife photos. Lastly, red foxes were the least common mesopredator found with a 

relative abundance index of 1.90, found at 8% of sites, and constituted 1% of all wildlife photos.  

Cats had no relationship to the frequency of opossums (F1,47 = 0.02, P = 0.99), raccoons 

(F1,47 = 0.002, P = 0.67), gray fox (F1,47 = 0.07, P = 0.97), or red foxes (F1,47 = 0.02, P = 0.43). 

Similarly, in a multiple regression, cats still had no relationship to mesopredator frequency 

(Table 2). Additionally, the frequency of opossums (F1,47 = 0.07, P = 0.8), gray foxes (F1,47 = 0.2, 

P = 0.67), raccoons (F1,47 = 0.6, P = 0.44), or red foxes (F1,47 = 1.2, P = 0.28) had no relationship 

to the percentage of forest. The frequency of  opossums (F1,47 = 0.22, P = 0.64), gray foxes (F1,47 

= 0.24, P = 0.62), raccoons (F1,47 = 0.8, P = 0.39), or red foxes (F1,47 = 0.75, P = 0.39) had no 

relationship to the density of buildings. The frequency of opossums (F1,47 = 0.01, P = 0.92), gray 

foxes (F1,47 = 2, P = 0.17), raccoons (F1,47 = 1.7, P = 0.20), or red foxes (F1,47 = 1.1, P = 0.29) had 

no relationship to the distance to buildings.  
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Table 2. Results of multiple regression on the ability of wildlife to predict cat abundance. 
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CHAPTER 4 

DISCUSSION 

My study employed camera traps and capture-recapture methodology to estimate cat 

abundance across a habitat gradient in rural southern Georgia. My results show that free-roaming 

cats are abundant across the habitat gradient used in this study, their distribution is somewhat 

predictable, and management options could be informed by this distribution in order to maximize 

the efficiency of any management efforts.  

The first key result of my study is that free-roaming cats are abundant across the south 

Georgia landscape. I detected cats at 51% of locations and identified a mean of 2.1 cats per site 

(Appendix 2). Some sites had an estimated populations as high as 13.4 cats. A mean of 4.3 cats 

was detected at occupied sites. These numbers of free-roaming cats are broadly similar to those 

reported in other studies. For example, Hand and Regis (2019) found a similar distribution of 

cats with 62% of locations to have cats present, similar to this study (Hand and Regis, 2019).  

A second key result is that, although cats are abundant, they are not found everywhere. I 

rarely detected cats at sites farther than 440 m from a building, higher than 50% forest cover, and 

at building densities less than 0.02 buildings/ha. Cats showed a relationship to density of 

structures. Habitat explained variation in cat numbers with building density being the key 

explanatory variable when other variables were held constant. Relatively few other studies have 

assessed cat abundance across a landscape gradient. Morin et al., 2018 indicated similar findings 

in that free-roaming cats were less influenced by land cover types but were directly tied to 

anthropogenic features and more localized to urban areas (Morin et al., 2018). Bennett et al. 

(2021) found that the highest abundance of free-roaming cats was in areas closest to human 
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buildings with mean population estimates ranging from 2.9 – 6.7 cats per site, as shown in this 

study as well (Bennett et al., 2021). 

My final key result is that the relationship between cats and habitat (building density) might 

help target cat management efficiently. Efforts such as trapping or TNR could be directed to 

areas that the landscape features predict to be associated with large cat populations. However, 

this possibility comes with the built-in problem that areas near buildings probably have a mixture 

of feral and owned cats. In fact, I photographed several cats with collars during the course of my 

study. There are likely to be strong and conflicting opinion among stakeholders about possible 

cat management in these areas. Legge et al. (2020) showed that owned cats had a predation rate 

that was up to 2 times higher than feral cats in urban areas (Legge et al., 2020), indicating that 

some options for management must fall upon cat owners. 

My results show it is feasible to predict areas of cat abundance from habitat data, and these 

sites might be candidates for cat management. However, the key question that is beyond the 

scope of my study is what cat management option is best suited for situations like that in my 

study? These issues raised can be mitigated by cat owners becoming educated on free-roaming 

cat environmental impacts and keeping owned cats indoors. For unowned cats, management 

options include Trap-Neuter-Return and culling. With this, Trap-Neuter-Return does not 

significantly reduce population numbers as well as returning cats to the environment allows 

predation (and other negative impacts) to continue (Natoli et al., 2006). Alternatively, culling 

directly removes individuals from the environment and effectively decreases cat population sizes 

but faces criticism from the public regarding cat welfare.  

The findings discovered in this study closely match other research in the field and encourage 

future research on free-roaming cats by offering new information for others to branch into 
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different aspects of free-roaming cat distribution and mitigation such as options to improve 

public opinion on effective management techniques. Overall, free-roaming cats and their impacts 

must be mitigated rapidly in densely urbanized zones in order to encourage biodiversity and 

wildlife conservation as urbanization steadily spreads into new habitats worldwide.  
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APPENDIX 1 

LOCATION, CAMERA TRAP EFFORT, AND PHOTO RESULTS FOR EACH STUDY SITE 

 

 

Site 

 

 

Latitude  

 

 

Longitude 

 

Dates 

Sampled 

(2021) 

 

 

# of 

Nights 

Deployed 

Frequency 

 

 

Cats 

Detection 

Rate 

 

Cats 

Frequency 

 

 

Opossum 

Detection 

Rate 

 

Opossum 

1 32.429317 -81.783973 February 6 

– March 6 

29 9 18.62 14 10.6 

2 32.412764 -81.788416 February 6 

– March 6 

29 0 0 15 23.50 

3 32.518095 -81.855424 February 6 

– March 6 

29 3 2.40 13 73.97 

4 32.279372 -81.845275 February 6 

– March 6 

29 0 0 0 0 

5 32.440000 -81.700000 February 6 

– March 6 

29 0 0 7 4.90 

6 32.328919 -81.809222 February 6 

– March 6 

29 4 3.50 12 18.62 

7 32.391742 -81.81596 February 6 

– March 6 

29 14 12.24 0 0 

8 32.39813 -81.763519 February 6 

– March 6 

29 14 27.48 10 23.59 

9 32.460224 -81.784025 February 7 

– March 6 

28 17 23.61 8 10.43 

10 32.453473 -81.736132 March 6 – 

April 6 

29 5 11.14 10 20.90 

11 32.385904 -81.661197 March 6 – 

April 6 

29 6 5.48 0 0 

12 32.192042 -81.769423 March 6 – 

April 6 

29 3 1.97 0 0 
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    APPENDIX   1 CONTINUED    

         

 

 

Site 

 

 

Latitude 

 

 

Longitude 

 

Dates 

Sampled 

(2021) 

 

 

 

# of Nights 

Deployed 

Frequency 

 

 

Cats 

Detection 

Rate 

 

Cats 

Frequency 

 

 

Opossum 

Detection 

Rate 

 

Opossum 

  13 32.265543 -81.760373 March 6 – 

April 6 

29 20 16.27 7 9.60 

  14 32.440981 -81.76156 March 6 – 

April 6 

29 17 24.21 0 0 

15 32.449058 -81.782253 March 6 – 

April 6 

29 8 5.60 0 0 

16 32.43531 -81.785762 March 6 – 

April 6 

29 17 15.28 1 1.14 

17 32.433393 -81.780344 March 6 – 

April 6 

29 19 36.03 0 0 

18 32.4853176 -81.571557 April 7 – 

May 6 

28 0 0 4 14.04 

19 32.4700553 -81.569220 April 7 – 

May 6 

28 0 0 4 4.00 

20 32.347572 -81.61106 April 7 – 

May 6 

28 0 0 5 6.70 

21 32.4007339 -81.652717 April 7 – 

May 6 

28 14 15.40 2 3.54 

22 32.5069877 -81.832437 April 7 – 

May 6 

28 3 1.81 0 0 

23 32.4069436 -81.783759 April 7 – 

May 6 

28 4 3.82 0 0 

24 32.4042900 -81.797105 April 7 – 

May 6 

28 4 6.86 16 27.07 
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    APPENDIX 1 CONTINUED    

         

 

 

Site 

 

 

Latitude 

 

 

Longitude 

 

Dates 

Sampled 

(2021) 

 

 

# of Nights 

Deployed 

 

Frequency 

 

 

Cats 

Detection 

Rate 

 

Cats 

Frequency 

 

 

Opossum 

Detection 

Rate 

 

Opossum 

25 32.475095 -81.736018 April 7-

May 6 

28 11 17.46 19 110.39 

26 32.283443 -81.834902 May 6 – 

June 5 

28 11  12.64 10 17.21 

27 32.2899641 -81.839684 May 6 – 

June 5 

28 0 0 14 37.14 

28 32.2996431 -81.827299 May 6 – 

June 5 

28 0 0 0 0 

29 32.322393 -81.541472 May 6 – 

June 5 

28 0 0 4 6.75 

30 32.3814461 -81.606841 May 6 – 

June 5 

28 0 0 5 5.64 

31 32.408499 -81.557464 May 6 – 

June 5 

28 10 14.92 16 42.57 

32 32.4279864 -81.759861 May 6 – 

June 5 

28 6 14.82 0 0 

33 32.411111 -81.775617 May 7 – 

June 5 

27 22 61.66 11 34.66 

34 32.4624512 -81.577292 June 7 – 

July 7 

29 0 0 7 14.28 

35 32.4988896 -81.793691 June 7 – 

July 7 

29 0 0 0 0 

36 32.2975461 -81.755857 June 7 – 

July 7 

29 0 0 14 56.24 

37 32.4158684 -81.585282 June 7 – 

July 7 

29 5 10.03 12 34.21 
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    APPENDIX 1 CONTINUED    

         

 

 

Site 

 

 

Latitude 

 

 

Longitude 

 

Dates 

Sampled 

(2021) 

 

 

# of Nights 

Deployed 

Frequency 

 

 

Cats 

Detection 

Rate 

 

Cats 

Frequency 

 

 

Opossum 

Detection 

Rate 

 

Opossum 

         

38 32.3793077 -81.541067 June 7 – 

July 7 

29 0 0 5 16.03 

39 32.3610798 -81.562649 June 7 – 

July 6 

28 0 0 0 0 

40 32.3452573 -81.575957 June 7 – 

July 6 

28 0 0 0 0 

41 32.3216933 -81.737083 June 7 – 

July 6 

28 3 3.18 17 53.21 

42 32.4381655 -81.770602 July 7 – 

August 6 

28 3 6.11 2 8.04 

43 32.4173503 -81.772281 July 7 – 

August 6 

28 21 51.5 13 45.5 

44 32.4168488 -81.794745 July 7 – 

August 6 

28 10 22.07 0 0 

45 32.4103308 -81.733213 July 7 – 

August 6 

28 6 20.40 13 42.75 

46 32.38963778 -81.827599 July 7 – 

August 6 

28 4 11.75 17 50.36 

47 32.3940765 -81.750083 July 7 – 

August 6 

28 3 4.36 3 4.67 

48 32.4175739 -81.742371 July 7 – 

August 6 

28 19 89.71 4 13.21 

49 32.3903328 -81.727724 July 7 – 

August 6 

28 0 0 17 46.61 
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APPENDIX 1 CONTINUED 

 

 

 

Site 

Frequency 

 

 

Gray Fox  

Detection 

Rate 

 

Gray Fox 

Frequency 

 

 

Raccoon 

Detection 

Rate 

 

Raccoon 

Frequency 

 

 

Dog 

Detection 

Rate 

 

Dog 

Frequency 

 

 

Red Fox 

Detection 

Rate 

 

Red Fox 

 

 

1 11 23.50 8 3.03 0 0 0 0  

2 11 34.14 17 82.07 0 0 0 0  

3 10 41.07 11 74.48 1 0.59 0 0  

4 12 21.21 0 0 0 0 2 1.80  

5 0 0 0 0 0 0 0 0  

6 0 0 0 0 0 0 0 0  

7 0 0 0 0 0 0 1 0.59  

8 13 45 9 23.62 0 0 0 0  

9 0 0 0 0 0 0 0 0  

10 12 17.62 0 0 0 0 0 0  

11 0 0 0 0 0 0 0 0  

12 1 0.76 2 2.60 0 0 0 0  

13 0 0 2 2.62 1 0.41 0 0  

14 0 0 0 0 0 0 0 0  

15 0 0 0 0 0 0 0 0  

16 0 0 2 1.80 0 0 0 0  

17 0 0 0 0 0 0 0 0  

18 2 6.07 0 0 1 3.7 0 0  

19 0 0 0 0 0 0 0 0  

20 0 0 0 0 0 0 0 0  

21 8 10.75 0 0 9 16 0 0  

22 0 0 0 0 4 5.46 0 0  

23 14 42.93 0 0 9 14.79 0 0  

24 0 0 8 11.57 0 0 0 0  

25 0 0 0 0 0 0 0 0  

26 0 0 0 0 0 0 12 9.43  
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   APPENDIX  1  CONTINUED     

          

 

 

 

Site 

Frequency 

 

 

Gray Fox 

Detection 

Rate 

 

Gray Fox 

Frequency 

 

 

Raccoon 

Detection 

Rate 

 

Raccoon 

Frequency 

 

 

Dog 

Detection 

Rate 

 

Dog 

Frequency 

 

 

Red Fox 

Detection 

Rate 

 

Red Fox 

 

 

27 0 0 7 20.46 0 0 0 0  

28 0 0 0 0 0 0 0 0  

29 3 4.32 0 0 0 0 0 0  

30 0 0 0 0 0 0 0 0  

31 0 0 9 17.93 8 22.82 11 15.14  

32 0 0 14 41.61 0 0 0 0  

33 0 0 9 28.37 0 0 0 0  

34 0 0 0 0 2 3.89 0 0  

35 0 0 0 0 3 9.14 0 0  

36 0 0 0 0 0 0 0 0  

37 0 0 2 6.40 0 0 0 0  

38 0 0 0 0 0 0 0 0  

39 0 0 0 0 0 0 0 0  

40 0 0 0 0 0 0 0 0  

41 0 0 3 9.29 0 0 0 0  

42 0 0 0 0 0 0 0 0  

43 0 0 0 0 2 3.93 0 0  

44 0 0 0 0 0 0 0 0  

45 4 23.29 0 0 0 0 0 0  

46 0 0 14 36.82 0 0 0 0  

47 0 0 5 10.96 0 0 0 0  

48 6 17.96 10 24.54 0 0 0 0  

49 0 0 8 16.18 0 0 0 0  
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APPENDIX 1 CONTINUED 

 

 

 

Site 

Frequency 

 

 

Coyote 

Detection 

Rate 

 

Coyote 

Frequency 

 

 

Bobcat 

Detection 

Rate 

 

Bobcat 

 

 

 

Species 

Richness 

1 0 0 0 0 4 

2 0 0 0 0 3 

3 0 0 2 1.45 6 

4 2 1.10 0 0 3 

5 0 0 1 0.45 2 

6 0 0 0 0 2 

7 0 0 0 0 2 

8 0 0 0 0 4 

9 0 0 0 0 2 

10 0 0 0 0 3 

11 0 0 0 0 1 

12 0 0 0 0 3 

13 0 0 0 0 4 

14 0 0 0 0 1 

15 0 0 0 0 1 

16 0 0 0 0 3 

17 0 0 0 0 1 

18 0 0 0 0 3 

19 0 0 0 0 1 

20 4 6.82 0 0 2 

21 0 0 0 0 4 

22 0 0 0 0 2 

23 0 0 0 0 3 

24 0 0 0 0 3 

25 0 0 1 0.79 3 

26 0 0 0 0 3 



52 
 

  

 

  APPENDIX 1 CONTINUED 

 

 

Site Frequency 

 

 

Coyote 

Detection 

Rate 

 

Coyote 

Frequency 

 

 

Bobcat 

Detection 

Rate 

 

Bobcat 

 

 

Species 

Richness 

 

27 0 0 0 0 2 

28 0 0 0 0 0 

29 0 0 0 0 2 

30 0 0 0 0 1 

31 0 0 0 0 5 

32 0 0 0 0 2 

33 0 0 0 0 3 

34 0 0 0 0 2 

35 1 2.38 0 0 2 

36 0 0 0 0 1 

37 0 0 0 0 3 

38 0 0 0 0 1 

39 0 0 0 0 0 

40 0 0 0 0 0 

41 4 9.89 0 0 4 

42 0 0 0 0 2 

43 0 0 0 0 3 

44 0 0 0 0 1 

45 0 0 0 0 3 

46 0 0 0 0 3 

47 0 0 0 0 3 

48 0 0 0 0 4 

49 0 0 0 0 2 
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APPENDIX 2 

SUMMARY DATA FOR EACH SITE, INCLUDING ESTIMATED CAT POPULATION AND 

HABITAT VARIABLES 

Site Estimated 

Cat 

Population 

Distance to Buildings (m) Density of Buildings 

(buildings/hectare) 

% Forest 

1 6 176.74 1.42 32.16% 

2 0 160.23 1.13 21.37% 

3 2 163.82 0.27 43.66% 

4 0 240.53 0.11 34.12% 

5 0 92.23 0.13 48.30% 

6 2 44.00 0.24 10.36% 

7 4 80.09 0.53 4.23% 

8 3 47.59 0.92 37.98% 

9 7 3.00 2.33 5.76% 

10 0 159.00 0.51 10.41% 

11 0 82.43 0.79 3.42% 

12 1 311.49 0.02 9.30% 

13 8 1.02 0.67 3.88% 

14 6 44.45 0.99 8.46% 

15 6 0.23 2.46 0.86% 

16 8 2.67 1.35 23.60% 

17 7 5.32 1.19 7.21% 

18 0 494.54 0.09 51.23% 

19 0 1244.50 0 83.75% 

20 0 726.43 0 56.34% 

21 4 69.46 0.42 14.13% 

22 0 40.67 0.23 26.69% 

23 1 251.75 0.55 17.59% 

24 0 347.65 0.10 33.57% 

25 4 200.46 0.08 50.19% 

26 3 52.64 0.15 14.58% 

27 0 570.34 0 33.69% 

28 0 992.08 0 52.55% 

29 0 191.32 0.29 21.34% 

30 0 1102.34 0 87.07% 

31 2 103.56 0.24 3.85% 

32 1 32.75 0.66 34.82% 

33 5 20.86 2.43 5.88% 

34 0 909.44 0 18.41% 

35 

 

0 

 

401.12 

 

0.22 

 

27.09% 
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  APPENDIX 2 CONTINUED  

     

Site 

 

Estimated 

Cat 

Population 

Distance to Buildings (m) Density of Buildings 

(buildings/hectare) 

% Forest 

36 0 1202.33 0 82.40% 

37 0 947.85 0 64.07% 

38 0 608.89 0 24.60% 

39 0 789.61 0 83.07% 

40 0 852.99 0 79.48% 

41 0 439.34 0.04 8.76% 

42 0 60.45 1.55 2.09% 

43 13.4 11.61 1.67 1.16% 

44 2 120.56 1.07 6.95% 

45 0 152.61 0.56 6.91% 

46 2 222.78 0.22 12.50% 

47 1 143.56 0.27 38.94% 

48 5 422.57 0.79 8.01% 

49 0 473.86 0.51 10.11% 

Mean: 2.11 322.77 0.56 27.90% 

Range: 0 – 13.4 0.23 – 1244.50 0 – 2.46 0.86 – 87.07% 

SD: 3.01 355.82 0.67 25 

95% CI: [1.2, 2.9] [220, 424] [0.4, 0.8] [20.7, 35.1] 
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