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ABSTRACT

As our world becomes increasingly digital, data security becomes key. Data must be en-

crypted such that it can be easily encrypted only by the intended recipient. Arnold Trans-

formations are a useful tool in this because of its unpredictable periodicity. Our goal is

to outline a method for choosing an Arnold Transformation that is both secure and easy to

implement. We find the necessary and sufficient condition that a key matrix has periodicity.

The chosen key matrix has a random structure, and it has a periodicity that is sufficiently

high. We apply this method to several image and data string examples to evaluate its effec-

tiveness.
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CHAPTER 1

INTRODUCTION

In this thesis we discuss the use of Arnold Transformations in data encryption. In

a society that is relying more and more on digital message transmission, data security is

becoming an increasingly important issue. The problem then arises in how to encrypt data

in a way that is both secure and efficient. If the method used is too simple, we risk our data

being intercepted and decoded, but if the method is too complex, it may be too impractical

to use in application. Previous results show that Arnold Transformations can be effectively

used in data encryption [1−8]. Other work shows how to calculate the period of such a trans-

formation [9−10]. Methods to get the anti-Arnold transformation have also been discussed

[3−4]. Our goal is to explore the periodicity of Arnold transformations through theoretical

analysis and numerical experiments so that a preferred encryption cycle is attained through

a systematic construction of the key matrix.

We first identify the constraint for an Arnold Transformation that can guarantee pe-

riodicity. It is worth noting that our proof follows the results of the major proof in [1],

but that we make several adjustments. We introduce a different notation system to avoid

confusion between different variables. Also, at the point where [1] divides the necessary

condition into two sections, we found that a supposition in the second section did not hold.

Upon further investigation, this supposition was not necessary to complete the proof and,

in fact, the necessary condition did not need to be split into two pieces at all. Thus in our

proof, we keep our necessary condition as only one part. We then run several simulations

to explore when periodicity is in an acceptable range and detail how to choose the transfor-

mation such that periodicity is ideal. In [1,3], several special Key Matrices are defined that

we use in our simulations in additions to those we generate. Finally, we apply our findings

to several examples including including both images and data vectors.
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1.1 INTRODUCTION TO ARNOLD TRANSFORMATIONS

Definition 1.1.1 An Arnold Transformation is a reiterative matrix function of the following

form:

x
·
i+1=


a11 a12 ... a1n

a21 a22 ... a2n

... ...

an1 an2 ... ann

x
·
i(modN), aji, N ∈ Z, x

·
i ∈ Mm×n(Z) for m ∈ Z (1.1)

Since this is a modulo function, it is possible in some scenario that after a certain

number of iterations, the output matrix is the same as the starting one. The number of

iterations taken to achieve this is called the periodicity. The higher the periodicity, the

harder it is to get the original matrix back and the better the encryption is. There are some

transformations, however, where it is possible that the original matrix is never returned.

This renders the transformation unusable for encryption. We must find, then, the conditions

that a given Arnold Transformation will have periodicity for any starting matrix x
·
.
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CHAPTER 2

PERIODICITY OF ARNOLD TRANSFORMATIONS

It turns out that the necessary and sufficient condition for a periodic Arnold Trans-

formation is that the determinant of the key matrix and the circumference number are co-

prime, which was first reported in [1]. We found ways to improve the proving argument in

contrast to the proof in [1]. We expound the theoretical result in 2.1.

2.1 THEORETICAL WORK

Consider the following transformation


x′
1

x′
2

...

x′
n

=


a11 a12 ... a1n

a21 a22 ... a2n

... ...

an1 an2 ... ann



x1

x2

...

xn

 (modN ), aji ∈ Z, x1...xn ∈ {0, 1, ..., N − 1} (2.1)

This transformation has periodicity if Aα(mod N )̸=Aβ(mod N ) for any two different

n-dimensional vectors α and β.

Theorem 2.1. For a given positive integer N, transformation (2.1) has periodicity if and

only if det(A) and N are co-prime.

Proof. Sufficiency. We will prove that 2.1 has periodicity when |A| and N are coprime;

that is, A(α-β)(modN)̸=0 for any two different n-dimensional vectors α and β. For any

n-dimensional vector x
·
=(x1, x2,...,xn)T , if Ax

·
(modN)=0, we will prove that x

·
(modN)=0.

Set Ax
·
(modN)=0.
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a11x1 + ...+ a1nxn = k1N,

.........

an1x1 + ...+ annxn = knN

ki ∈ Z

Then since A−1=adj(A)T

|A| we have


|A|x1 = (A11k1 + ...+ An1kn)N ,

.........

|A|xn = (A1nk1 + ...+ Annkn)N

ki ∈ Z (2.2)

where Aij is the algebraic complement of the element aij of the matrix A.

Because |A| and N are co-prime, N does not divide |A|, thus N must divide each xi. Thus

x
·
(modN)=0.

Necessity. For a given positive integer N , if transformation (2.1) has periodicity; then we

show that |A| and N must be co-prime. Assume that |A| and N are not co-prime, then we

show that there is an x
·
̸=0 such that Ax

·
(modN)=0, which implies that (2.1) does not have

periodicity, giving us a contradiction. Set Ax
·
(modN)=0. Then by (2.2) we have



x1 =
(A11k1+...+An1kn)N

|A|

............

xl =

xn = (A1nk1+...+Annkn)N
|A|

(2.3)
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Let |A|=st and N=N1t where t=gcd(|A|,N )̸=1 is the greatest common divisor of |A| and

N . Then (2.3) becomes

x1 =
(A11k1+...+An1kn)N1

s

............

xn = (A1nk1+...+Annkn)N1

s

Then our goal is to find k1,...,kn such that x1, x2,...,xn are all integers, but at least one of

them cannot be divided by t and thus N . Then for that xj , xj(modN) cannot be equal to

zero, and thus x
·
(modN) ̸=0 and (2.1) does not have periodicity.

By number theory, we suppose the following

|A|=±pa11 pa22 ...pakk

s=±pb11 p
b2
2 ...p

bk
k

t=pc11 p
c2
2 ...p

ck
k

(A11,...,An1)=±pd111 pd212 ...pdk1k = k11A11 + ...+ kn1An1

..................

(A1n, ...,Ann) =±pd1n1 pd2n2 ...pdknk = k1nA1n + ...+ knnAnn (2.4)

where p1,...,pk are primes ai ∈ Z+, bi, ci, dij ∈ Z \ Z−, kij ∈ Z are integers, and

(k1j ,...,knj)=1, i=1,...,n

|A|=st, so we can clearly see that bi+ci=ai for all i=1,...,n

Since t> 1, we know there exists some i such that ci>0. We define the following

dil = min{di1, ..., din} for some 1≤ l ≤ n

d∗j = min{dj1, ..., djn} for all 1≤ j ≤ k, i ̸= j
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Then let q = pr11 pr22 ...prkk , where

ri = bi − dil

rj=


0 if bj ≤ d∗j

bj − d∗j otherwise
j ̸= i

Recall from (2.4) that (A1l,...,Anl)=k1lA1l+...+knlAnl. Set k1=qkil,...,kn=qknl. Then you

can verify that x1, x2,...,xn are all integers, but that xl is not divisible by t (See the lemmas

in the appendix for details)

Thus for our purposes, we need |A| and N to be co-prime. The easiest way to guarantee

this is to construct A such that |A| is either 1 or -1, so we demonstrate how to construct

such an A.

2.1.1 AN EXAMPLE

We use a simple example to demonstrate the factoring scenarios in the proof. Let

A =

(
1 3

2 15

)
and N=6. Then we have |A|=32⇒ s=3 and t=3. Thus a1=2, b1=1, c1=1

Next we calculate the co-factor matrix and then determine the greatest common divisor

of each column: Aij=

(
15 2

3 1

)

Thus (A11, A21)=(15, 3)=3 ⇒ d11=1 and (A12, A22)=(2, 1)=1 ⇒ d12=0. Since c1=1>0,

i=1. Then since i=1, dil=d1l=min{d11, d12}=d12=0. Thus l=2

Let q=pr11 . Since r1=ri, r1=b1-d1l=1 and q=31=3. Then (A12,A22)=k12A12+k22A22 ⇒

1=2k12+k22. Let k12=1, k22=-1 ⇒ k1=qk12=3, k2=qk22=-3

Then finally x1 = (A11k1+A21k2)N1

s
=24, x2 = (A12k1+A22k2)N1

s
=2 are both integers, but

t=3 ∤ 2.
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CHAPTER 3

CONSTRUCTING THE ARNOLD MATRIX

We outline two different ways to construct the matrix A. Both can be used to guarantee

that |A|=±1, but while the first may be simpler, the second method involves randomization

and thus results in an A that is much more difficult to guess.

3.1 THE PRE-DEFINED MATRICES

Our first method is to simply use a predefined A that can be adjusted for any dimen-

sion. The following matrices all have determinant 1 for any size.

Lemma 3.1.1. The following n x n matrix has determinant 1

Bn =



1 1 1 1 ... 1

1 2 2 2 ... 2

1 2 3 3 ... 3

1 2 3 4 ... 4

... ... ... ... ...

1 2 3 4 ... n


Proof. We do a proof by induction to show that the determinant of this n× n matrix is the

same as the (n− 1)× (n− 1) matrix

i) Base Case, Let n=1

B1=
[
1
]

and |B| is clearly 1

ii) Induction

Let Bn be the n×n matrix of the above form and and Bn−1 be the (n−1)× (n−1) matrix.

From induction, |Bn−1|=1. Show that |Bn|=|Bn−1|
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Bn=



1 1 1 1 ... 1

1 2 2 2 ... 2

1 2 3 3 ... 3

... ... ... ... ... ...

1 2 3 4 ... n


By the properties of determinant, subtracting row 1 from another row does not change the

determinant, thus we can subtract row 1 from every row without changing the determinant

|Bn|=

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 ... 1

0 1 1 1 ... 1

0 1 2 2 ... 2

... ... ... ... ... ...

0 1 2 3 ... n− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
Then we expand along the first column to get

|Bn|=

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 ... 1

1 2 2 2 ... 2

1 2 3 3 ... 3

... ... ... ... ... ...

1 2 3 4 ... n− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
=|Bn−1|

Thus for any n, the determinant of this matrix is 1

The following two matrices as defined in [1] and [2], respectively, also have determi-

nant ± 1.

i) The Fibonacci matrix which is defined as follows

Q1=[1], Q2=

[
1 1

1 0

]
, Q3=


1 1 0

0 0 1

1 0 0

,Q4=


1 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

, ...

ii) The Recursive matrix which is defined as follows

R(1, j) = 1, R(i, 1) = 1 i, j = 1, 2, ..., n

R(i, j) = R(i− 1, j − 1) +R(i− 1, j), i, j = 2, 3, ..., n
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R1=[1],R2=

[
1 1

1 2

]
, R3=


1 1 1

1 2 2

1 3 4

,R4=


1 1 1 1

1 2 2 2

1 3 4 4

1 4 7 8

, ...

3.2 DIOPHANTINE EQUATION AND EUCLIDEAN ALGORITHM

While the above matrices are easy to use, they can be considered predictable. To fix

this, we use what we are calling the Diophantine Equation Method. Let A be any random

matrix and replace any two entries with x and y. Then we can set the determinant of A

equal to either plus or minus one and solve the corresponding linear Diophantine equation

to find the necessary integers x and y. The problem of determining when our resulting

Diophantine equation is solvable then arises.

Theorem 3.1. The linear Diophantine equation ax+by=c has a solution if d=gcd(a,b)

divides c. Also, if (x0,y0) is a solution to ax+by=c, then x=x0+k b
d
, y=y0-ka

d
is also a solution

for any integer k.

Proof. We break our proof into two parts.

i) Show that ax+ by = c has a solution if d = gcd(a, b) divides c

First we prove that ax+by=d has a solution. Let S={ax + by | ax + by > 0}. Then S

is clearly not empty since either a or −a is in S thus let d = minS = as + bt for some

integers s, t. We show that d = gcd(a, b)

a) Show that d divides both a and b

a=dq+r for some integers q >0, d > r ≥0 which directly implies r = a− dq = a− (as+

bt)q = a− asq− btq = (1− sq)a− tqb. Thus r is of the form ax+ by and r is in S ∪ {0}.

Then since r <d and d is the minimum of S, r=0. Thus d divides a.

It can be similarly shown that d divides b.

b) Show that there does not exist a divisor of a and b greater than d, that is if w divides a



17

and b then w ≤d.

Let w divide a and b, then a = wu and b = wv for some integers u, v. Then d = as+ bt =

(wu)s+ (wv)t = w(as+ bt). Thus d | w and w ≤d.

Thus d = minS = gcd(a, b), and ax+ by = d has a solution, namely x = s and y = t.

Now we prove that ax + by = c has a solution. Since d | c, let c = pd for an integer p.

Then if x, y is a solution to ax + by = d, it can be easily seen that px, py is a solution to

ax+ by = c:

a(px) + b(py) = p(ax+ by) = pd = c

ii) if x0,y0 is a solution to ax + by = c, then x = x0+k b
d
, y = y0-k a

d
is a solution for any

integer k

Let x0,y0 be a solution to ax+by = c and x = x0+k b
d
, y = y0-k a

d
. Then a(x0+k b

d
)+b(y0−

k a
d
)=ax0+abk

d
+by0-abk

d
=ax0+by0=c

Thus ax+ by = c

We write a MATLAB program that runs through all possible placements of x and y in

a given matrix and returns a placement that is solvable by the above theory. We then solve

the equation by Euler’s algorithm and find the “best” solution. For this paper, we have

chosen the “best” solution to be the one that minimizes |x|+|y|. Another way to define the

“best” solution is to have x and y be close to the mean value of the row or column that they

share. This method is particularly useful because of its randomness. Since the initial matrix

is MATLAB generated, not user generated, it is less susceptible to brute force attack.

3.2.1 AN EXAMPLE

Let A=


x y 3

3 2 1

1 1 4

. Setting |A|=1 gives us the Diophantine equation 7x − lly = −2.

Since 7 and 11 are co-prime, this is clearly solvable by the above theorem. We now apply
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the Euclidean Algorithm. First we solve 7x− lly = 1 → 7x+ ll(−y) = 1 → 7x+ ll ŷ =1.

Then our final solution will be (-2x,2ŷ)

The Euclidean algorithm uses a backwards substitution recursive formula. Assume

a<b and gcd(a, b)=1. Let r−2 = b, r−1 = a, r0 = q2r1 + r2, ..., ri = qi+2ri+1 + r1+2,...,

rn−1 = qn−1rn + rn+1 and rn+1 = d. In our MATLAB, program, we run a loop to replace

each r0, ..., rn+1. We do this by establishing a vector that maps our equation in terms of

b, a, r0...rn+1 and their respective multiples. Then we run a search function and replace the

first rn, and we find and re-simplify our equation. Once the find function finds no more rn,

we are finished.

For our example, r−2 = 11 r−1 = 7 r0 = 4 r1 = 3 r2 = 1 and q0 = q1 = q2 = 1.Then

1=rn+1 = r2 = r0 − q2r1 = (r−2 − q0r−1)− q2(r−1 − q1r0)

= r−2 − (q0 + q2)r−1 + q1q2r0 = r−2 − (q0 + q2)r−1 + q1q2(r−2 − q0r−1)

= (1 + q1q2)r2 − (q0 + q2 + q0q1q2)r−1 = (1 + q1q2)b− (q0 + q2 + q0q1q2)a

= (1 + 1)(11)− (1 + 1 + 1)7 = (2)(11) + (−3)(7)

Thus our solution to 7x + 11y = 1 is (-3,2) and our solution to 7x − 11y = −2 is

(6,4). Substituting this back into the original matrix gives A =


6 4 3

3 2 1

1 1 4

 and |A|=1.
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CHAPTER 4

NUMERICAL TESTING

In order to better understand how to optimize the periodicity, we test how it varies as

the variables N , n and A change, respectively. We maintain that the determinant of A is

one.

4.1 VARYING CIRCUMFERENCE N

Using several 3x3 and 4x4 matrices, we can see how increasing N changes the period.

For this table, N is between 2 and 257.

Matrix Highest

Periodicity

Corresponding

N

Lowest

Periodicity

Corresponding

N

B3 123,721 255 6 13

Q3 114,576 230 7 2

R3 103,152 238 7 2

D3 113,799 254 4 3

B4 108,549 246 7 2

Q4 22,279,040 223 15 2

R4 14,452,480 254 7 2

D4 6,475,140 218 5 2

Table 4.1: Numerical Testing on Period Over N

We see that the highest periodicity values typically come from high N values and

the lowest values typically come from lower N values. We can conclude that N and the

periodicity have a loosely positive correlation. Since we set A so that |A|=1, we can always

adjust N to be sufficiently large.
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4.2 VARYING KEY MATRIX SIZE N

We use the testing matrices found in [1,3] and a randomly generated Diophantine

matrix to test how increasing a matrix’s size changes the periodicity. Here we let N range

from 2 to 30 and note the maximum period found in that range.

Bn

n Highest

Periodicity

Corresponding

N

3 2,821 30

4 1953 30

5 959,171 26

6 2,613,660 19

Qn

n Highest

Periodicity

Corresponding

N

3 1,736 30

4 14,480 19

5 5,226 29

6 7,797,131 26

Rn

n Highest

Periodicity

Corresponding

N

3 1,281 26

4 25,260 29

5 488,255 22

6 472,626 30

Dn

n Highest

Periodicity

Corresponding

N

3 280 29

4 12,166 23

5 959,171 26

6 21,243,690 29

Table 4.2: Numerical Testing on Varying Key Matrix Size

Table 4.2 shows evidence that increasing n possibly extends the period.

4.3 VARYING KEY MATRIX

Now we look at several key matrices of the same size, with a fixed N=257 to see if

there is a clear winner for encrypting the input vector. In the table below, the periodicity

listed applies to any dense input vector.
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3X3 Matrices

Matrix Periodicity

B3 66,307

Q3 66,307

R3 65,692

D3 66,048

4x4 Matrices

Matrix Periodicity

B4 66,307

Q4 16,974,592

R4 66,048

D4 3,408,180

Table 4.3: Numerical Testing on Varying Key Matrix

The best performing matrix varies across different matrix sizes, thus we cannot con-

clude that any given matrix is always superior over the other. Thus, we need several valid

encryption matrices so that we can test which is the most useful for any given encryption.

This makes our Diophantine method particularly useful, since it can be used to generate

numerous matrices quickly.
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CHAPTER 5

APPLICATIONS

We now show how our encryption method performs in applications. We divide this

method into two majors parts: image encryption and data string encryption.

5.1 IMAGE ENCRYPTION

We test the method’s efficiency on several images including both those built into MAT-

LAB and those imported from the web. We saw earlier that the larger A is, the higher the

periodicity. In order to keep periodicity low enough that MATLAB can run quickly, we

dissect our image into smaller parts and then apply the algorithm to each piece separately.

For example, if our image is 50 x 50 pixels, we may instead divide into one hundred 5 x 5

images and encrypt those individually or in parallel. Then once each section is encrypted,

we simply recombine the pieces. In applications, we found that when the image size ex-

ceeds 5x5, the process requires an impracticably high computation time, so for our uses we

limit our size there.
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a) b)

c) d)

Figure 5.1: Cameraman Image at Various Iterations of the Transformation

a) original image b) after one iteration

c) halfway through iterations d) final returned image

In the above, we see the MATLAB “Cameraman” image at several stages of the pro-

cess. After only one iteration, we can still pick out a vague outline of the cameraman,

however after several hundred iterations, the image is completely unrecognizable until the

final iteration when it is returned. We can also apply this process to a color image. In this

case, it suffices to only scramble the indexed value and leave the color map as is.
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a)

b) c))

Figure 5.2: Corn Image at Various Iterations of the Transformation

a) original image

b) halfway through iterations c) final returned image

It is also possible to only scramble part of an image. In this case, since we have al-

ready sectioned out the image, we simply only apply the algorithm to those pieces we want

to scramble. This method is particularly useful for very large images, where scrambling the

entire image can be very tedious. In this following fingerprint image, for example, even re-

moving a small border section from the process can reduce computation time significantly.
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a) b)

Figure 5.3: Partial Fingerprint Scramble at Iteration 500

a) original image b)after 500 iterations

There is still one more scenario we would like to test. In the case of image encryption,

our N is fixed at 257, a prime. According to our earlier proof then, it is no longer strictly

necessary that |A|=1. Let An=



2 2 2 ... 2

2 4 4 ... 4

2 4 6 ... 6

... ... ... ... ...

2 4 6 ... 2n


.

Then it can be easily shown that |A|n=2n and for any An, An and 257 are co-prime.

Below we see An successfully applied to the same fingerprint image from before.
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a) b)

c) d)

Figure 5.4: Fingerprint Image Scrambling when |A|≠1

a) original image b) after one iteration

c) halfway through iterations d) final returned image

5.2 DATA STRING ENCRYPTION

It is often necessary in areas such as online banking to encrypt someone’s personal

information when they are stored on the server. In this case, we only need to convert that
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information into a neat matrix and then apply the encryption. We do this by making each

piece of information a column in the new matrix. We use the MATLAB function str2double

to map our string inputs to numeric values. We can guarantee that each column is the same

length by simply filling in any empty space with zeros. We test the algorithm as applied to

the following data using key matrix B3.

Name: ’Name’

SSN: ’123456789’

Bank Number: ’12341234’ 

N 1 1

A 2 2

M 3 3

E 4 4

0 5 1

0 6 2

0 7 3

0 8 4

0 9 0



=



78 49 49

97 50 50

109 51 51

101 52 52

0 53 49

0 54 50

0 55 51

0 56 52

0 57 0


a)

142 106 106

76 241 241

89 138 138

128 215 185

226 199 124

146 62 153

0 67 94

0 157 199

0 243 157





78 49 49

97 50 50

109 51 51

101 52 52

0 53 49

0 54 50

0 55 51

0 56 52

0 57 0


b) c)

Figure 5.5: Encryption of a Data String

a)original data b) halfway through iterations c) final returned data
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CHAPTER 6

CONCLUSIONS

The objective of this paper is to study the principle of the Arnold transformations

and to develop a method of constructing alternative Arnold key matrices to encrypt data.

We established the conditions under which the periodicity of such a transformation exists

and detailed how to construct a transformation such that those conditions were met. We

then explored the relationship between the transformation’s periodicity and the key matrix,

matrix size, and the circumference number, which is then used to control the periodicity of

a key matrix.

We apply Arnold transformations to both images and data string encryption. In cases

where the periodicity of our initial transformation was too high or too low, the adaptability

of our method allowed for easy adjustment. We thus consider our method to be successful

in the practical situation of data encryption and maintain that our results contribute to the

enrichment of the Arnold transformation in data encryption.
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30APPENDIX 

LEMMAS

Lemma .0.1. (A11k1+...+An1kn)
s

,..., (A1nk1+...+Annkn)
s

as defined in the Theorem 2.1 are all
integers

Proof. Let Eγ= (A1γk1+...+Anγkn)

s
. Show that Eγ is an integer.

Eγ= (A1γk1+...+Anγkn)

s
= q(A1γk1+...+Anγkn)(a1γk1γ+...+anγknγ)

s
for some a1γ, ..., anγ∈ Z

= q(A1γk1+...+Anγkn)

s
Zγ where Zγ=a1γk1γ+...+anγknγ ∈ Z

We examine q(A1γk1+...+Anγkn)

s
= (p

r1
1 ...p

rk
k )(p

d1γ
1 ...p

dkγ

k )

p
b1
1 ...p

bk
k

= (p
r1+d1γ
1 ...p

rk+dkγ

k )

p
b1
1 ...p

bk
k

For any pm we have prm+dmγ
m

pbmm
=prm+dmγ−bm

m

Case 1:rm=0
Then dmγ≥ bm by our definition of rj . Then rm+dmγ-bm ≥0 and prm+dmγ−bm

m ∈ Z
Case 2: rm=bm-d∗m
Then prm+dmγ−bm

m =pdmγ−d∗m
m ∈ Z

Thus in either case, prm+dmγ−bm
m ∈ Z which implies that (p

r1+d1γ
1 ...p

rk+dkγ

k )

p
b1
1 ...p

bk
k

=
q(A1γk1+...+Anγkn)

s
∈ Z and finally, Eγ = q(A1γk1+...+Anγkn)

s
Zγ ∈ Z

Lemma .0.2. El=
(A1lk1+...+Anlkn)

s
as defined in the Theorem 2.1 is not divisible by t

Proof. Recall that t = pc11 ...p
ci
i ...p

ck
k . Since ci >0, if t does divide El, then El must have at

least one power of pi.

El=
(A1lk1+...+Anlkn)

s
= q(A1lk1l+...+Anlknl)

s
= (p

r1
1 ...p

rk
k )(p

d1l
1 ...p

dkl

k )

p
b1
1 ...p

bk
k

=pr1+d1l−b1
1 ...prk+dkl−bk

k

At pi we have pri+dil−bi
i =pbi−dil+dil−bi

i =p0i
Thus there are no powers of pi in El, thus t cannot divide El
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