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Abstract In recent years, we have studied information properties of various types
of mixtures of probability distributions and introduced a new type, which includes
previously known mixtures as special cases. These studies are disseminated in different
fields: reliability engineering, econometrics, operations research, probability, the info-
rmation theory, and data mining. This paper presents a holistic view of these studies
and provides further insights and examples. We note that the insightful probabilistic
formulation of the mixing parameters stipulated by Behboodian (1972) is required for
a representation of the well-known information measure of the arithmetic mixture.
Applications of this information measure presented in this paper include lifetime
modeling, system reliability, measuring uncertainty and disagreement of forecasters,
probability modeling with partial information, and information loss of kernel estimation.
Probabilistic formulations of the mixing weights for various types of mixtures provide
the Bayes-Fisher information and the Bayes risk of the mean residual function.
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1 Introduction

A probability distribution has various representations. The cumulative distribution
function (CDF) of random variable X gives F(x) = P(X ≤ x). In probability, statistics,
and related fields, a mixture usually refers to the weighted arithmetic average of two or
more CDFs. We will call this type of mixture the arithmetic mixture of CDFs and denote
its CDF by Fa. To simplify the exposition, we begin with two components,

Fa(x) = pF1(x) + (1 − p)F2(x), 0 < p < 1. (1.1)

Finite, countable, and continuous mixtures will be presented in the sequel. The
weights are given by a nonnegative function π(p) that sums (integrates) to one for the
finite and countable (continuous) mixtures. Behboodian (1972) provided the following
probabilistic interpretation of the weight function in a mixture:

Fa(x) = P(D1)F(x|D1) + P(D2)F(x|D2), (1.2)

where Di, i = 1, 2 denote the event that X is drawn from Fi. Here, pi = P(Di), i =
1, 2 are assigned by the weight function π(p), Fi(x) = F(x|Di), i = 1, 2 are conditional
distributions of X|Di, and Fa is the marginal distribution of X. A mixture with a PDF
for the weight function will be called probabilistic mixture. This formulation is necessary
for a representation of the information measure of mixture and for the Bayes-Fisher
information discussed in Section 4.

The survival function (SF) representation of F is F̄(x) = P(X > x) and for a continuous
X, the probability density function (PDF) representation of F is f (x) = dF(x)/dx, when
a density exists. The SF and PDF representations of Fa are:

F̄a(x) = pF̄1(x) + (1 − p)F̄2(x), (1.3)
fa(x) = p f1(x) + (1 − p) f2(x). (1.4)

Two other well-known representations of F are the hazard (or failure) rate (HR)
and the mean residual (MR) functions, which are of interest when X is a continuous
nonnegative random variable with a PDF f . The HR function is defined by r(x) =
f (x)
F̄(x) , F̄(x) > 0. The MR function (or mean excess) of a random variable with a finite
mean µ is the mean of its residual or excess amount beyond a threshold,

m(τ) = EX>τ(X − τ|X > τ), τ ≥ 0, (1.5)
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where EX>τ denotes the expectation with respect to the residual PDF,

f (x|τ) =
f (x)
F̄(τ)

, x > τ, F̄(τ) > 0. (1.6)

A distribution also can be represented by the cumulative HR function Λ = − log F̄ and
the odds ratio (OR) function, ψ(x) =

F(x)
F̄(x) . The HR, MR, cumulative HR, and OR of Fa

are not the arithmetic mixtures of ri,mi, Λi, and ψi corresponding to Fi of Fa.

In some application areas the arithmetic mixture of HR functions are useful. For
example, for modeling the reliability of heterogeneous items, Block and Savits (1997)
use Fa for the analysis of time to failure in the “burn in" problem. But Lynn and
Singpurwalla (1997) argue in favor of using the Bayesian predictive HR function which
is the arithmetic mixture of HRs, where the weight function gives the probability that
an item’s lifetime hazard rate is ri. For two items, we have

rg(x) = pr1(x) + (1 − p)r2(x), 0 < p < 1, (1.7)

where the subscript g signifies that the corresponding SF is the following geometric
mixture of the SFs corresponding to ri:

F̄g(x) = F̄p
1(x)F̄1−p

2 (x), 0 < p < 1. (1.8)

This model is called in Asadi et al. (2018) as mixture hazards model and the generalized
escort of SFs. (In physics, a PDF constructed by the normalized power of another PDF
is called escort distribution). The corresponding CDF, 1 − F̄g(x) and PDF are not the
geometric mixtures of Fi and fi.

We have studied the information properties of the arithmetic and geometric mixtures
in various contexts, and introduced a more general mixture model based on the
weighted power mean of SFs. We have developed applications of these information
measures for comparison of coherent systems (Asadi et al., 2016), measuring the
uncertainty and disagreement of economic forecasters (Shoja and Soofi, 2017), the
information loss due to the kernel estimation (Beheshti et al., 2019), derivation optimal
reliability models (Asadi et al., 2018), quantifying information about the mixing parame-
ter p (Asadi et al., 2019a), and visualization plots for distinguishing components
of mixture distributions (Ardakani et al., 2020). The general mixture that we have
introduced is called α-mixture of SFs, where α ∈ <. This is a broad family of
mixtures, which includes (1.3), (1.8), and harmonic mixtures of SFs. These studies
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are disseminated separately in different fields (reliability engineering, econometrics,
operations research, probability, the information theory, and data mining).

The objective of this paper is to provide a holistic view of the finding of the
aforementioned studies and further insights about various types of mixtures. In
particular, we underscore that the insightful probabilistic representation (1.2) of Behboo-
dian (1972) is required for a representation of the information measure of the arithmetic
mixture. In addition, we present a new example which uses the estimates of the mean
and variance of the arithmetic mixture of normal distributions studied by Behboodian
(1970). Our previous studies considered mixtures of univariate continuous distributions.
We will point out that several results are applicable to multivariate and discrete
distributions.

This paper is organized as follows. Section 2 presents the information measure
of fa and its recent applications in three fields: system reliability, uncertainty and
disagreement of forecasters, and kernel estimation. Section 3 gives an overview
of the information properties of the geometric and α mixtures of PDFs with more
interpretations and examples, and outlines the stochastic and HR properties of the α
mixtures of SFs with a new result on the equivalence between the harmonic mixture of
SFs and the arithmetic mixture of ORs. Section 4 gives an overview of the information
properties of the arithmetic and geometric mixtures and a more general mixture of two
PDFs. An example relates an information measure to Behboodian (1970). Section 5
points out the applicability of information measures to the multivariate, discrete, and
categorical distributions. Section 6 concludes the paper and offers a few topics for
future research.

2 Arithmetic Mixture of PDFs

In this section, we present the information measure of the finite mixture,

fa(x) =

n∑
i=1

pi fi(x), pi > 0,
n∑

i=1

pi = 1. (2.1)

The Jensen-Shannon (JS) divergence of the mixture PDF fa has the following information
representations:
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JS( fa) = JS( fa; P) = H( fa) −
n∑

i=1

piH( fi), (2.2)

=

n∑
i=1

piK( fi : fa), (2.3)

where P represents p1, . . . , pn and the information measures in (2.2) and (2.3) are as
follows:

H( f ) = −

∫
f (x) log f (x)dx,

is the Shannon entropy, provided that the integral converges, and

K( fi : fa) =

∫
fi(x) log

fi(x)
fa(x)

dx,

is the Kullback-Leibler (KL) divergence (note that fi is absolutely continuous with
respect to fa). Lin (1992) introduced the KL representation with n = 2 and p = 1/2 and
defined (2.2) as its generalization.

Two calibrations are available for the JS divergence. The information distinguishab-
ility (ID) index is defined by the normalization of the KL divergence ID(K) = 1 − e−2K

is proposed by Soofi et al. (1995). This index is bounded as 0 ≤ ID(K) < 1. McCulloch
(1989) proposed a biased coin calibration of the KL divergence defined by Pb(K) =
.5(1 + ID(K)1/2). This index maps the difficulty of discriminating between a fair coin
and a biased coin with probability Pb > .5.

2.1 Bounds on JS Divergence

It is known that the JS is bounded as follows:

JS( fa) ≤ min
{
JB( fa),H(P)

}
, (2.4)

where H(P) = −
∑n

i=1 pi log pi is the discrete entropy,

JB( fa) =

n∑
i< j

pip jJ( fi, f j), (2.5)

and J( fi, f j) = K( fi : f j) + K( f j : fi) is the Jeffreys divergence; the inequality in terms of
H(P) is implied by another representation of the mutual information (4.1), which was



32 O. M. Ardakani et al.

first observed by Wang and Madiman (2014); and in terms of JB( fa) is given in Kullback
(1959, p. 23) as an exercise and is shown in Asadi et al. (2016).

The entropy bound in (2.4) is distribution-free and simple. The pairwise divergence
bound in (2.5) requires that all the mixture components are absolutely continuous with
respect to each other. Next, we propose a bound for the mixture of maximum entropy
(ME) distributions which does not require this assumption.

Let θr = E[Tr(X)] be the rth type of “moment" of fa. It is easy to show that

θr =

n∑
i=1

piEi[Tr(X)] =

n∑
i=1

piθri, r = 1, . . . , b, (2.6)

where θri = Ei[Tr(X)], r = 1, . . . , b denote the rth types of moments of fi.

The ME model with these moments, if exists, is unique with PDF,

f ∗θ(x) = C(λ) exp

− b∑
r=1

λrTr(x)

 , (2.7)

where λ = (λ1, . . . λb). The entropy of this ME model is given by

H( f ∗θ) = − log C(λ) +

b∑
r=1

λrθr. (2.8)

Denote the ME model subject to the moment constraints θri = Ei[Tr(X)], r = 1, . . . , b by
f ∗i . This ME model and its entropy are in the same forms as (2.7) and (2.8) with r,λ
replaced by ri,λi, respectively. Consequently, f ∗θ is different from the mixture

fa(x) =

n∑
i=1

pi f ∗i (x). (2.9)

The following proposition provides a bound for JS( fa) in terms of K( f ∗i : f ∗θ).

Proposition 2.1. Let f ∗i and f ∗θ be the ME models subject to the constraintsθri = Ei[Tr(X)], r =
1, . . . , b and θr = E[Tr(X)], respectively, and fa be the mixture (2.9). Then

n∑
i=1

piK( f ∗i : f ∗θ) −
n∑

i=1

piK( f ∗i : fa) = H( f ∗θ) −H( fa) > 0, (2.10)
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implying the following bounds for the JS and entropy of the mixture of ME models:
n∑

i=1

piK( f ∗i : fa) <
n∑

i=1

piK( f ∗i : f ∗θ) = MEB( fa), (2.11)

H( fa) < H( f ∗θ). (2.12)

The equality in (2.10) is obtained from (2.3), (2.2), and
n∑

i=1

piK( f ∗i : f ∗θ) = H( f ∗θ) −
n∑

i=1

piH( f ∗i ). (2.13)

This is shown in Shoja and Soofi (2017) for Tr(X) = Xr and holds for general Tr(X). The
inequality in (2.10) is due to f ∗θ being the ME model with the same moments as fa.

The following example illustrates that the bound (2.11) can improve on the entropy
bound H(P) and JB( fa) given in (2.5).

Example 2.1. Let µi = Ei(X) and µ =
∑n

i=1 piµi. The ME model subject to E(X) = µi is

f ∗i (x) =
1
µi

exp
(
−

x
µi

)
, (2.14)

and H( f ∗i ) = logµi + 1. The ME model subject to E(X) = µ is given by (2.14) with µ in
the place µi and H( f ∗) = logµ + 1.

Let n = 2 and µ = pµ1 + (1 − p)µ2. Then, the ME bound (2.12) for H( fa) is

H( fa) < MEB( fa) = 1 + log[pµ1 + (1 − p)µ2], 0 < p < 1.

The left panel of Figure 1 shows plots of this bound for select values of ρ21 =
µ2
µ1

. The
three bounds for JS( fa) are as follows:

H(P) = −p log p − (1 − p) log(1 − p),

JB( fa) = JB(ρ21) = p(1 − p)(ρ12 + ρ21 − 2),

MEB( fa) = MEB(ρ21) = p log[p + (1 − p)ρ21] + (1 − p) log[pρ12 + (1 − p)].

The right panel of Figure 1 shows plots of these bounds for selected values of ρ21.
These plots indicate the following relations: JB(ρ21) < H(P) for ρ21 ≤ 4, the inequality
is reversed for ρ21 ≥ 6, and the dominance for 4 < ρ21 < 6 depends on p. MEB(ρ21) <
JB(ρ21) for all ρ21, MEB(ρ21) < H(P) for ρ21 ≤ 8, and the latter inequality is reversed for
very large ρ21.
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Figure 1: Three bounds for the Jensen-Shannon mixture and the maximum entropy
bound for the entropy of mixtures of two exponential distributions with parameters
µ1 = 1 and µ2.

2.2 Applications of the JS Divergence

2.2.1 Comparison of Systems

Asadi et al. (2016) showed that the JS divergence provides useful information criteria
for comparing coherent systems with homogeneous components. In these systems
the component lifetimes X1, · · · ,Xn are independent and identically distributed (iid)
as FX with a continuous PDF f . The lifetime of the system T is a function of the
lifetimes of its components called system’s structure function, T = φ(X1, · · · ,Xn), which
is nondecreasing and every component affects the system’s failure (Samaniego, 2007).

The SF of the system, F̄T(t) = P(T > t), can be written as a mixture of the SFs of the
order statistics X1:n ≤ · · · ≤ Xn:n of X1, · · · ,Xn as

F̄T(t) =

n∑
i=1

piF̄i:n(t), pi = P(T = Xi:n) =
ni

n!
≥ 0,

n∑
i=1

ni = n!, t > 0, (2.15)

where ni is the number of ways that distinct X1,X2, . . . ,Xn can be ordered such that the
system lifetime T = T(X1,X2, . . . ,Xn) = Xi:n (Samaniego, 1985; Kochar and Samaniego,
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1999). The signature of a coherent system is defined by the vector p = (p1, p2, · · · , pn).
This mixture representation is also valid when Xi’s are exchangeable (Navarro and
Rychlik, 2008) implying that the JS divergence of the iid model is applicable to coherent
systems with homogeneous components.

Letting Ui = F(Xi) provides Ui, i = 1, · · · ,n as samples from the uniform distribution
on [0, 1] and order statistics Wi:n = F(Xi:n), i = 1, · · · ,n with Beta(i,n − i + 1) PDFs

gi:n(w) =
1

B(i,n − i + 1)
wi−1(1 − w)n−i, 0 ≤ w ≤ 1,

where B(i,n−i+1) =
Γ(i)Γ(n − i + 1)

Γ(n + 1)
is the beta function. The lifetime of the transformed

system, denoted as V, is the mixture of beta distributions and its PDF is given by

gV(v) =

n∑
i=1

pigi:n(v) =

n∑
i=1

pi

B(i,n − i + 1)
vi−1(1 − v)n−i, 0 ≤ v ≤ 1.

The invariance of the JS divergence implies that JS( fT) = JS(V) = JS(p).

That is, JS(p) is a distribution-free information criteria for comparison of coherent
systems with homogeneous components (iid or exchangeable lifetimes) solely based on
the systems’ structures, enabling to compare systems with components with different
lifetime distributions. In addition, JS(p) ≥ 0, where the equality holds if and only if
fk:n(t) = fT(t) almost everywhere which occurs when the kth failure is fatal to the system
with probability pk = 1 and p j = 0, j , k, i.e., the case of an (n − k + 1)-out-of-n system.

Given the signature of a system, the second term in (2.2) can easily be computed
using the entropy expression for the beta distribution. But computations of the
first term in (2.2) and representation (2.3) require numerical integration. Asadi et
al. (2016) illustrated applications of JS(p) using two sets of systems with three and
four components discussed by Shaked and Suarez-Llorens (2003). The following
example gives an abridged version of their comparisons of systems with three and four
components.

Example 2.2. Table 1 presents the signatures for three of the systems with three or four
components presented in Asadi et al. (2016). They provide details for computations of
the first term in (2.2). The systems are arranged according to the information provided
by the lifetimes of the components about the lifetime of the system as measured by
the JS divergence. We note that the JS divergence captures the situations where the
disparity between the lifetimes of components of a larger system (four components)
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and the lifetime of the system can be more or less than the disparity between the
lifetimes of components of a smaller system (three components) and the lifetime of
the system. The table also gives their ID and biased coin calibrations Pb of the JS
divergence. The information discrepancies between the order statistics and the lifetime
of these systems are like the discrepancies between loaded coins with odds of 4.9, 3.00,
and 2.5 to one in favor of a "head" and a fair coin. The last two columns show the
JB( fa) and MEB( fa) bounds given in (2.5) and (2.11) which are better than H(p); the
MEB( fa) is computed with the beta distribution which is ME subject to Eθ[log W] = θ1
and Eθ[log(1 −W)] = θ1. For the first two systems, JB( fa) < MEB( fa) and JB( fa) − J( fa)
is relatively substantial. For the last system, JB( fa) > MEB( fa) and MEB( fa)− J( fa) is not
so substantial.

Table 1: Three coherent systems with three or four components.

System structure System lifetime T p
JS(p)

{ID(K), Pb(K)}
JS(p) Bound

JB MEB

1

2

3

4

min{X1,max(X2,X3,X4)} (0, 1
4 ,

1
2 ,

1
4 ) .277

{.425, .83}
.583 .604

1

2

3

min{X1,max{X2,X3}} ( 1
3 ,

2
3 , 0) .140

{.244, .75}
.333 .404

1 2

3 4

max{min(X1,X2),min(X3,X4)} (0, 2
3 ,

1
3 , 0) .099

{.180, .71}
.222 .135

2.2.2 Uncertainty and Disagreement of Forecasters

The problem of measuring the uncertainty and disagreement of a set of forecasters
is addressed by numerous econometric researchers. Major part of this rich research
utilizes databases such as the Survey of Economic Forecasters (SPF) of the Federal
Reserve Bank of Philadelphia. The middle of each quarter, the SPF solicits subjective
forecast probabilities for economic variables in the current year and the following
year. The SPF offers a set of m preassigned intervals (bins) for the experts to assign
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probabilities. The individual forecast distributions fi, i = 1, . . . ,n are constructed based
on subjective probabilities and the arithmetic mixture of the individual probabilities
with pi = 1/n is used as the consensus distribution fa. Table 2 gives the forecast
probabilities assigned (in percentage) to the intervals of the 2020 US GDP growth by
three SPF respondents in the middle of the second quarter of 2020. Traditionally,
uncertainty and disagreement of economic forecasters are measured using variances of
fi and fa. The following decomposition of variance of fa has been prominent:

σ2
a =

1
n

n∑
i=1

σ2
i +

1
n

n∑
i=1

(µi − µa)2,

where µa, σ2
a and µi, σ2

i are the mean and variance of fa and fi, respectively, and the last
summation is used as a measure of disagreement; we refer readers to Shoja and Soofi
(2017) and Wang and Lahiri (2021) and references therein for the literature on this topic.

Shoja and Soofi (2017) proposed a general information framework for measuring
uncertainty, information, and disagreement of economic forecasters. In this framework
a forecaster can be a forecast distribution which can be the subjective distribution of
an individual i solicited through a survey or the predictive distribution of a statistical
model. They illustrated their proposed framework using the SPF data via the discrete
entropy of the subjective probabilities assigned by forecasters as well as by the ME
models with the first two moments of the bins midpoints. Wang and Lahiri (2021)
avoided the discrete entropy and applied the information framework of Shoja and Soofi
(2017) using entropies of beta and triangular distributions fitted to the histograms of
the subjective probabilities.

Table 2: Subjective probabilities of three respondents of the Survey of Economic
Forecaster about the 2020 US GDP growth.

≤ 0% 0-1% 1-2% 2-3% 3-4% 4-5% 5-6% 6-7% 7-8% > 8%
504 0 10 50 35 5 0 0 0 0 0
576 55 40 5 0 0 0 0 0 0 0
588 18 55 18 5 3 1 0 0 0 0

Average 24.33 35.00 24.33 13.33 2.67 0.33 0 0 0 0

Bajgiran et al. (2021) developed piecewise uniform ME models that only use the
quantiles given by the forecasters’ subjective probabilities. Quantile constraints can be
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represented in terms of the following expectations:

E f [1(qk−1 < X ≤ qk)] = αk − αk−1 = pk, k = 1, . . . ,m, (2.16)

where 1(A) is the indicator function of the event A and α0 = 0. The ME model with
only QI constraints is in the following mixture of uniform PDFs:

f ∗α(x) =

m+1∑
k=1

pk

Bk
1(qk−1 ≤ x ≤ qk), a ≤ x ≤ b, (2.17)

where Bk = qk−qk−1, q0 = a, qm+1 = b, α0 = 0, and αm+1 = 1. This piecewise uniform PDF
is a density histogram with unequal bins Bk. Bajgiran et al. (2021) observed that, unlike
the ME with moment constraints, the ME model subject to the mixtures of the average
p̄k =

∑n
i=1 pipik of the bin probabilities pik = Pi[qk−1 ≤ X ≤ qk] assigned by an individual

is actually the mixture of individual forecasters ME models. Stated more formally, let
{ f ∗αi

, i = 1, . . . ,n} be the set of individual ME models (2.17). Then,

fa(x) =

n∑
i=1

pi f ∗αi
(x) = f ∗a,α(x), (2.18)

where f ∗a,α is the ME model consistent with the average bin probabilities P[qk−1 ≤ X ≤
qk] = p̄k =

∑n
i=1 pipik. They illustrated (2.16) and (2.18) through implementing the

information framework of Shoja and Soofi (2017) using the SPF data for the first and
second quarters of 2020 (before and after the Covid19 outbreak).

We illustrate (2.16) and (2.18) and the ME models with the first two moment
constraints using the data in Table 2 to implement the information framework for
measuring the uncertainty and disagreement of the economic forecasters. These three
forecasters are chosen for the purpose of illustrating Proposition 2.1 which involves
distinguishing between the mixtures of the ME models with moment constraints and
the ME models with the mixtures of the moments.

The upper row of Figure 2 shows the plots of ME models f ∗αi
(solid-red) and f ∗a,α

(dashed-blue) for our three SPF respondents. It is common to give uniform weights to
forecasters, so pi = 1/3, i = 1, 2, 3. By (2.18), in this row the mixture of the ME models,
f ∗αi

, and the ME model with the mixture of probabilities are identical.

θ1 = E(X) =

m+1∑
k=1

pk
qk + qk−1

2
, θ2 = E(X2) =

m+1∑
k=1

pk
qk + qkqk−1 + qk−1

3
.
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Figure 2: The ME forecast models based on the quantiles (upper row) and with the first
two moments (lower row) for the data in Table 2.

Table 3: Uncertainty and disagreement of three respondents of the Survey of Economic
Forecaster about the 2020 US GDP growth.

ME with quantiles ME with moments (θ1, θ2)
H( f ∗αi

) K( f ∗αi
: f ∗a,α) θ1 θ2 σ2 H( f ∗i,θ) K( f ∗i,θ : f ∗θ)

504 1.094 .604 1.850 4.033 .611 1.172 .703
576 1.608 .423 -.825 3.183 2.503 1.878 .300
588 1.497 .106 .460 2.453 2.242 1.823 .019

Average (pi = 1
3 ) 1.399 .377 .495 3.223 1.624 .341

{ID(K),Pb(K)} {.530, .86}
f ∗a,α 1.776 JS=.377 .495 3.223 2.591

f ∗θ = N(θ1, σ2) .495 3.223 2.591 1.965
fa,θ .495 3.223 2.591 H < 1.965 JS < .341
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These moments are used as constraints for the moment-based ME models. The lower
row of the figure shows the plots of ME models with the first two moment constraints.
In this row, f ∗θi

and f ∗θ are normal, but the mixture of the ME models, fa,θ, is bimodal.
Table 3 shows implementation of the information framework for the quantile-

base ME models and moment-based ME forecast models depicted in Figure 2. The
information measures of the ME models with quantile constraints are given in Bajgiran
et al. (2021). Expressions for the entropy and KL divergence of normal distribution
are well-known. The entropy of each distribution maps the extent of the uncertainty
of the ME forecast model. The KL divergence between each individual forecast model
and the pooled model maps the extent to which each forecaster disagrees with the
pooled ME model. The measures for both types of ME models rank the individual
forecasters similarly. The uncertainty mapped by the normal models are higher than
those mapped by the quantile-based model, which can be due to their supports. The
JS-divergence of the moment-based ME model can only be assessed by the bounds:
JS( fa,θ) < MEB( fa,θ) = .341 (ID(K) = .494,Pb(K) = .85), which is much smaller than
H(P) = log 3 and JB( fa,θ) = 1.318 (ID(K) = .928,Pb(K) = .98).

2.2.3 Information Loss due to Kernel Estimation

Let x1, . . . , xn be data generated from an unknown CDF F. The kernel estimator of F(x)
is

F̂(x) =
1
n

n∑
i=1

K

(x − xi

h

)
, (2.19)

where h > 0 is the bandwidth, K (u) =
∫ u
−∞

k(z)dz is a proper CDF and k(z) ≥ 0 is a
symmetric kernel function such that:∫

∞

−∞

k(z) dz = 1,
∫
∞

−∞

zk(z) dz = 0,
∫
∞

−∞

z2k(z) dz = κ2(K).

The kernel function k(z) considered here is therefore a proper PDF.

As an estimator, (2.19) is consistent RMSE estimator with rate n−1/2, provided
that h → 0 as n → ∞. Raising h increases how smooth F̂ is, while as h → 0, F̂
approaches the non-smooth empirical CDF, F̃(x) = 1

n
∑n

i=1 1(xi ≤ x), which is a uniformly
consistent estimator of F(x). The corresponding kernel estimate of the PDF is given by
the derivative of the smooth CDF estimator (2.19):

f̂ (x) =
1
n

n∑
i=1

d
dx

K
(x − xi

h

)
=

1
n

n∑
i=1

1
h

k
(x − xi

h

)
. (2.20)
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This is also RMSE consistent estimator of f (x) with rate n−2/5, provided that h → 0 as
n→∞, that nh→∞ as n→∞, and that f (x) is twice continuously differentiable.

Beheshti et al. (2019) viewed F̂(x) as a smooth version of F̃(x) since limh→0 F̂(x) = F̃(x)
and characterized the kernel estimation of the CDF as an information transmitter
with the channel consisting of the ensemble of kernel functions

{
K

(
x−xi

h

)
, i = 1, · · · ,n

}
.

The inputs to the channel are h and a “rough" distribution F̃ on the support S̃ =
{x1, · · · , xn} and the output is the smooth kernel estimate F̂ on a continuous support.
The information measure of this system is the JS divergence where (2.2)-(4.1) are:

JS(F̂) = H(F̂) − {H(K ) + log h} ≥ 0, (2.21)

=
1
n

n∑
i=1

K
(
K

(x − xi

h

)
: F̂(x)

)
≥ 0, (2.22)

where the entropies and KL divergence are defined in terms of the PDFs. The use of
CDFs in (2.21) and (2.22) is merely to emphasize that these measures are well-defined
for F̂ which converges to F̃ on S̃, but not for the kernel estimation of the PDF because
f̂ does not converge to 1

n on S̃. By the entropy representation, the output uncertainty
is more than input uncertainty, which signifies JS(F̂) as measure of information loss
due to kernel estimation. This is the information cost of smoothing the F̃, where more
smoothing (larger h) is more costly. Beheshti et al. (2019) used JS(F̂) for evaluating
various kernel functions.

Furthermore, (2.21) and (2.22) extend to the multivariate kernel estimation. The
multivariate CDF kernel estimator is uniformly consistent as is the empirical CDF,
so they coincide asymptotically. The bandwidth vanishes with rate h ∝ n−1/3 for all
dimensions (Li and Racine, 2007). Thus as in the univariate case, the multivariate
kernel estimate of CDF, F̂(x), is a smooth version of the multivariate empirical F̃(x), and
(2.21) and (2.22) give the information cost of smoothing the F̃, where more smoothing
(larger h) is more costly.

3 Escorts and α-Mixtures

The escort distribution of order p of a probability distribution with a PDF f1 relative to
a measure ν is defined by

f (x) =
f p
1 (x)∫

f p
1 (x)dν(x)

, p > 0. (3.1)
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These distributions are prevalent in nonextensive statistical mechanics (Tsallis, 1998),
source coding (Bercher, 2011), and nanothermodynamics (Vakili, 2004). Bercher (2012)
provided a ME characterization of (3.1).

Asadi et al. (2018) extended this notion to the escort of a SF F̄ph(x) = F̄p
1(x), which is

the proportional hazards model and to the escort of CDF Fprh(x) = Fp
1(x), which is the

proportional reversed hazards model, also known as the Lehman alternative.

3.1 Escorts of Two PDFs

The generalized escort (g-escort) distribution of order p is defined by the normalized
product of two PDFs:

fg(x) =
f p
1 (x) f 1−p

2 (x)

Zp
, Zp =

∫
f p
1 (x) f 1−p

2 (x)dν(x), 0 ≤ p ≤ 1, (3.2)

provided that f1 is absolutely continuous relative to f2 and the normalizing factor
Zg < ∞. Bercher (2012) coined the name and interpreted (3.2) as the geometric mean
of two densities which as a function of p > 0 defines a curve, called the escort path.

Densities in the form of (3.2) have appeared in statistics literature in various contexts.
The earliest version of (3.2) with 0 ≤ p ≤ 1 appeared in minimization of the Bayesian
probability of error of testing equally probable hypotheses (Chernoff, 1952). Kullback
(1959) derived this PDF as the first example of his minimum discrimination information
theorem. The power prior of Ibrahim and Chen (2000) is in this form, which was
justified later by Ibrahim et al. (2003) with KL divergence-based derivation. Bercher
(2012) derived (3.2) through a minimization of the KL divergence for the distribution
of particles in a disequilibrium state. The three different information formulations of
these authors that rendered solution in the form of (3.2) are, respectively, as follows:

min
f

K( f : f2) subject to E f

[
log

f1(X)
f2(X)

]
= θ,

∫
f (x)dx = 1, (3.3)

min
f
{wK( f : f1) + (1 − w)K( f : f2)},

∫
f (x)dx = 1, 0 ≤ w ≤ 1, (3.4)

min
f

K( f : f1) subject to K( f : f2) = η,

∫
f (x)dx = 1, (3.5)

where w in (3.4) is given, provided that the expectation in (3.3) is finite and f (x) =
f1(x) = 0 whenever f2(x) = 0. Ibrahim et al. (2003) and Bercher (2012) cited Kullback
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(1959), but without mentioning Kullback’s derivation of (3.2). Consequently, until
recently the relationships between the escort parameter p and the weight w in (3.4) and
the constraint parameter η in (3.5) had remained unknown. This void was filled by
Asadi et al. (2019a) via the Lagrangian dual functions which revealed the relationship
between the escort parameter p and the parameter of each formulation in terms of their
Lagrange multipliers as follows: p = λK, p = w, and p = 1/(1 − λB), respectively.

The interpretation of Kullback’s formulation (3.3) is clear in terms of expected log-
likelihood ratio. The other two formulations are also insightful and have implications
for various problems. We briefly describe these in our notations as follows. In (3.4),
f1 = f1(β|D1) is the posterior distribution of a parameter β based on the past data D1.
Since then a new non-data opinion about β has emerged, represented by f2(β). The
options are: (a) ignore the change of opinion and pool the data; (b) ignore the past;
and (c) use a combination of f1(β) and f1 = f1(β|D1). Ibrahim et al. (2003) provided
(3.4) for the formal justification of the power prior according to option (c). In (3.5),
f2 is the distribution of particles in the initial equilibrium state which subject to a
generalized force has moved to the attractor where the particles will be distributed as
f1. The distribution at the present intermediate disequilibrium state, f , is unknown
and chosen as the one that minimizes its divergence to the attractor f1 while being hold
on at the given divergence from f2. Suppose that f2 is the PDF of a variable in the
previous stable condition. These scenarios can be applied to other problems as well.
A shock has forced the distribution f2 of a variable (a system’s lifetime, an economic
variable, and so on). The effect of the shock is still progressing toward a future stable
condition where the distribution will be f1. Currently, the distribution of the variable f
is unknown. Formulation (3.4) applies with weights given to divergences of the current
state from the two states. Formulation (3.5) applies with divergence of the current state
from the distribution in future stable condition is given (η).

3.2 Escorts of Two SFs

The g-escort of two SFs is their geometric mixture F̄g defined in (1.8). We recall that
dF̄g(x)/dx , fg(x) and the geometric mixture of Fi corresponds to the arithmetic mixture

of the reversed HR defined by r̃i(x) =
fi(x)
Fi(x) ,Fi(x) > 0.

Asadi et al. (2018) showed that these models are optimal solutions to various
information theoretic formulations. Next, we summarize information properties of
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the g-escort model (1.8).

The following is a known KL-type divergence between two SFs:

KF̄(F̄1 : F̄2) =

∫
F̄1(x) log

F̄1(x)
F̄2(x)

dν(x) + µ2 − µ1 ≥ 0,

where µi is the mean of F̄i. The g-escort model (1.8) is the solution to information
problems analogous to (3.4) and (3.5) as follows:

min
F̄

{
wKF̄(F̄ : F̄1) + (1 − w)KF̄(F̄ : F̄2)

}
, 0 ≤ w ≤ 1. (3.6)

min
F̄

KF̄(F̄ : F̄1) subject to KF̄(F̄2 : F̄1) = η, (3.7)

provided that all divergences exist. Interpretations of (3.4) and (3.5) apply to (3.6) and
(3.7) where the distributions are represented by the SFs and KF̄ in the place of the KL
divergence.

For characterizing the g-escort model (1.8) in terms of constraints analogous to (3.3)-
(3.5), Asadi et al. (2018) used the expected L1-norm between two cumulative hazard rate
functions Λi = − log F̄i, i = 1, 2 defined by V f (Λ1,Λ2) =

∫
|Λ1(x) − Λ2(x)| f (x)dν(x) ≥ 0,

provided that the integral is finite. The g-escort model (1.8) is the solution to the
following problems:

min
Λ

V f (Λ,Λ2) subject to E f

∣∣∣∣∣log
F̄1(X)
F̄2(X)

∣∣∣∣∣ = θ. (3.8)

min
Λ

{
wV f (Λ,Λ1) + (1 − w)V f (Λ,Λ2)

}
, 0 ≤ w ≤ 1. (3.9)

min
Λ

V f (Λ,Λ1) subject to V f (Λ,Λ2) = ϕ, 0 < p < 1, (3.10)

provided that the expectation and all divergences exist. Interpretations of (3.3)-(3.5)
apply to (3.8)-(3.10) where the distributions are represented by the cumulative hazard
rate functions and V f in the place of the KL divergence.

3.3 α-Mixture of PDFs

A more general mixture distribution appeared in information theory literature (van
Erven and Harremoës, 2001), called here as α-mixture, is defined by the following PDF:

fα(x) =
[p f α1 (x) + (1 − p) f α2 (x)]

1
α

Zα
, 0 ≤ p ≤ 1, α > 0, (3.11)



Variant of Mixtures and Information Measures 45

where

Zα =

∫
[p f α1 (x) + (1 − p) f α2 (x)]

1
α dx ∈

{
[2−(1−α)/α, 1], 0 < α ≤ 1,
[1, 2(α−1)/α], α ≥ 1;

The normalizing factor always exists for α > 0. The α-mixture family (3.11) contains
(1.4) as a especial case with α = 1 and (3.2) as a limiting case for α → 0. Asadi et
al. (2019a) derived (3.11) as extensions of (3.5) and (3.4) in terms of Tsallis divergence,
defined by

Kq( f1 : f2) =
1

1 − q

∫
f q
1 (x)[ f 1−q

1 (x) − f 1−q
2 (x)]dx, q ∈ (0, 1) d (1,∞). (3.12)

This measure replaces the KL divergence in the interpretations of (3.4) and (3.5).

3.4 α-Mixture of SFs

Like the F̄a, F̄g extends to the geometric mixture of n SFs. Asadi et al. (2019a) introduced
the finite α-mixture of SFs F̄i, i = 1, . . . ,n defined by their weighted αth power mean as
follows:

F̄α(x) =


[∑n

i=1 piF̄αi (x)
]1/α

, 0 , α ∈ <,
F̄g(x), α = 0,

(3.13)

where p = (p1, . . . , pn), pi > 0,
∑n

i=1 pi = 1 and F̄g(x) = limα→0 F̄α(x). We note that
dF̄α(x)/dx , fα(x). This model is a broad family of mixture distributions. For example,
for α = 1, F̄α = F̄a, for α = 0, F̄α = F̄g and for α = −1, we have the harmonic mixture
(mean) of F̄i’s defined by

F̄h(x) =

 n∑
i=1

pi

F̄i(x)


−1

, x > 0.

The PDF and HR function of the α-mixture for all α ∈ < are:

fα(x) =

n∑
i=1

wi(x, α) fi(x), wi(x, α) =

 n∑
i=1

piF̄αi (x)


1/α−1

piF̄α−1
i (x),

rα(x) =

n∑
i=1

pi(x, α)ri(x), pi(x, α) = pi

[
F̄i(x)
F̄α(x)

]α
,

where wi(x, α) > 0, i = 1, . . . ,n, but do not necessarily sum to one.
Some properties of the α-mixture found in Asadi et al. (2019a) are as follows:
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(a) Stochastic order: F̄α1(x) ≤ F̄α2(x), −∞ < α1 ≤ α2 < ∞. In particular, F̄h(x) ≤
F̄g(x) ≤ F̄a(x).

(b) Stochastic distance: Let µa and µg denote the means of F̄a and F̄g. Then,

SD(F̄1/2, F̄a) = SD(F̄g, F̄1/2) =

∫
|F̄1/2(x) − F̄a(x)|dx =

1
2

(µa − µg).

(c) Extensions of the well-known results of Barlow et al. (1963) on the closure of the
mixture of decreasing failure rate (DFR) and DFR average (DFRA) distributions:

• If each F̄i is DFR (IFR) then for α > 0 (α < 0) F̄α is DFR (IFR).

• If each F̄i is DFRA (IFRA) then for α > 0 (α < 0) F̄α is DFRA (IFRA).

(d) Hazard rate order:

• Let r1, . . . , rn denote the HR of the components of F̄α, rmin(x) = min{r1(x),
. . . , rn(x)} for all x and rmax(x) = max{r1(x), . . . , rn(x)} for all x, respectively.
Then rmin(x) ≤ rα(x) ≤ rmax(x).

• If the HRs ri(x), i = 1, . . . ,n are ordered increasingly or decreasingly, then
rα(x) is decreasing in α for all α ∈ <. In particular, if HRs are ordered
increasingly or decreasingly, then rmin(x) ≤ rh(x) ≤ rg(x) ≤ ra(x) ≤ rmax(x).

Countable and continuous α-mixtures are defined similarly and have analogous
properties to (3.13). The following example gives an application of the closure property
a countable α-mixture.

Example 3.1 (Asadi et al. (2019a)). Assume that X1, . . .XN are independent and identica-
lly distributed random variables with SF F̄(x) and N is random variable independent
of Xi’s. Let N have truncated Poisson distribution with parameter λ > 0. Then given
N = n, min(X1, . . . ,Xn) has SF F̄n. The harmonic mixture of the distributions of minima
when the mixing distribution is the truncated Poisson given above is

[
F̄h(x)

]−1
=

∞∑
n=1

g(n)
F̄n(x)

=
eλ − 1

eλ/F̄(x) − 1
, x > 0.

Thus, if F̄ is IFR (IFRA) then so is F̄h.

The following proposition established the relationship between the harmonic mixture
of two SFs and the mixture of their ORs:
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Proposition 3.1. Let F̄h(x) denote the survival function corresponding to harmonic mean of
F̄1 and F̄2. Then

Fh(x)
F̄h(x)

= p
F1(x)
F̄1(x)

+ (1 − p)
F2(x)
F̄2(x)

,

if and only if F̄h(x) is the harmonic mean of F̄1 and F̄2.

Proof. We have

Fh(x)
F̄h(x)

=
1 − F̄h(x)

F̄h(x)
=

1 − F̄1(x)
F̄1(x)

+ (1 − p)
1 − F̄2(x)

F̄2(x)
.

This is equivalent to

1
F̄h(x)

− 1 =
p

F̄1(x)
− p +

1 − p
F̄2(x)

− (1 − p).

This is easily seen that to be equivalent to

F̄h(x) =
F̄1(x)F̄2(x)

pF̄1(x) + (1 − p)F̄2(x)
.

4 Probabilistic Formulations of Mixtures

The JS-divergence, in addition to (2.2) and (2.3), admits the following representation,
which requires the probabilistic mixture formulation (Behboodian, 1972) given in (1.2):

JS( fa) = M(X,D) = H(X) −H(X|D), (4.1)

where M(X,D) is the mutual information between the two random variables, H(X) =
H( fa), and H(X|D) is the conditional entropy of X given D defined by

H(X|D) =

n∑
i=1

piH( fX|Di) =

n∑
i=1

piH( fi); (4.2)

here pi = P(D = Di), as defined in (1.2).

Lindley (1956) defined the Bayesian measure of information of an observable
random variable X with a PDF f (x|θ) about the unobservable parameter Θ endowed
with a prior PDF π(θ) in term of the following mutual information:

M(X,Θ) = I(Θ|X) − I(Θ) = H(Θ) −H(Θ|X) (4.3)

=

∫ [∫
π(θ|x) log

π(θ|x)
π(θ)

dθ
]

f (x)dx, (4.4)
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where I( f ) = −H( f ) is the information function of f , H(Θ) = H(π(θ)) quantifies the
prior uncertainty, the conditional entropy, H(Θ|X) =

∫
f (x)H(Θ|x)dx, quantifies the

expected posterior uncertainty, and f (x) =
∫

f (x|θ)π(θ)dθ is the marginal distribution
of X. The upper case symbol for the parameter signifies its association with probability
distributions. That is, M(X,Θ) quantifies the information in terms of the expected
uncertainty reduction. Noting thatπ(θ) =

∫
π(θ|x) f (x)dx, renders the prior distribution

as a mixture, here M(X,Θ) is the continuous version of the mutual information represent-
ation of the JS-divergence (4.1).

4.1 Bayes-Fisher Information about a Parameter

This section presents an overview of Asadi et al. (2019a) with some elaborations and
new examples.

Fisher information of an observable random variable X or its PDF f (x|θ) about θ
that lies in an open interval Ω ⊆ < is defined by

I(θ) =

∫ [
∂ log f (x|θ)

∂θ

]2

f (x|θ)dx = Varx|θ
{
S[ f (X|θ)]

}
, (4.5)

where S[ f (X|θ)] = ∂ log f (x|θ)/∂θ is the score function, provided that f (x|θ) > 0 for all
θ ∈ Ω and f (x|θ) is differentiable with respect toθ. Representation (4.5) is the minimum
risk of estimating the score function under the quadratic loss.

In general, I(θ) is a function of θ. Under a prior π(θ), the expected Fisher
information is defined by

Ĩ(Θ) = Eπ[I(Θ)].

Based on the variance representation in (4.5), Asadi et al. (2017) called Ĩ(Θ) the Bayes
risk of Fisher information and in Asadi et al. (2019a) it is called Bayes-Fisher information,
for short.

The Fisher information of a PDF f about its associated random prospect X is defined
similarly to (4.5),

F (X) = F ( f ) =

∫ [
∂ log f (x)

∂x

]2

f (x)dx;

see, for example, Cover and Thomas (2006, p. 671). Walker (2016) used this measure
for the prior and posterior PDFs of Θ for developing the Lindley’s information type
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representation of Ĩ(Θ):

Ĩ(θ) = F (Θ|X) − F (Θ) (4.6)

=

∫ ∫ (
∂ logπ(θ|x)

∂θ
−
∂ logπ(θ)

∂θ

)2

π(θ|x) f (x)dθdx. (4.7)

The analogy between (4.3) and (4.6) is clear. The analogy between (4.4) and (4.7) is seen
by noting that the inner integral in (4.4) is K[π(θ|x) : π(θ)] and the inner integral in (4.7)
is the expected relative Fisher information distance between π(θ|x) and π(θ). Fisher
distance finds applications in information geometry and Bayesian estimation (Bissiri
et al., 2016; Holmes and Walker, 2017).

4.1.1 Bayes-Fisher Information of fa, fg, and fα about p with Uniform Prior

The Fisher information and Bayes-Fisher information of fa and fg about the mixing
parameter p are as follows.

(a) The Fisher information of fa about p has the following representations:

Ia(p) =

∫ [
f1(x) − f2(x)

]2

fa(x)
dx

=
1

(1 − p)2χ
2( f1 : fa) =

1
p2χ

2( f2 : fa)

= −
∂2JS( fa)
∂p2 = −

∂2H( fa)
∂p2 ,

where

χ2( fi : fa) =

∫ [
fi(x) − fa(x)

]2

fa(x)
dx, i = 1, 2;

is the Chi-square divergence between fi and fa.

(b) The Fisher information of fg about p has the following representations:

Ig(p) =

∫
∂ fg(x)
∂p

log T(x)dx = Var fg[T(X)], T(X) = log
f1(X)
f2(X)

.

(c) The Bayes-Fisher information of fa and fg about p with the uniform prior on [0, 1]
are:

Ĩa(P) = Ĩg(P) = J( f1, f2); (4.8)
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proofs for fa are given in Asadi et al. (2019a) and proofs for fg are given by Bercher
(2012). This result informs that under the uniform prior for p, the Bayes-Fisher
information provided by fa and fg about the mixing parameter are equal and increasing
in discrepancy between f1 and f2.

The following example gives a new interpretation of the well-known two sample F
and T statistics as the amount of information provided by the combined sample about
the mixing parameter,

Example 4.1. A product’s characteristic is measured by one of two instruments with
measurement variations distributed as fi with failure rate ri, i = 1, 2. The proportions
of products measured by each instrument are unknown. The reliability of the product
can be measured either by the probability of failure F̄a or by the failure rate rg given by
(1.3) and (1.7). The instruments are tested using a sample of measurements from each
instrument, xi1, . . . , xin, i = 1, 2, assumed to be generated from fi = N(µi, σ2), i = 1, 2.
The maximum likelihood estimates of µi and σ2 are (Behboodian, 1970):

x̄i =
1
n

n∑
j=1

xi j, s2 =
s2

1 + s2
2

2
, i = 1, 2.

The empirical estimates of the distribution of a product’s characteristic measured by
each instrument is N(x̄i, s2), i = 1, 2. By (4.8), the Bayes-Fisher information of arithmetic
and geometric mixtures of this distribution about the mixing parameter the Jeffreys
statistic, given by

Îg(p) = Îa(p) = J( f̂1, f̂2) =
(x̄1 − x̄2)2

s2 ,

That is, Jeffreys statistic is proportional to the usual T2 and F statistics used for testing the
hypothesis of µ1 = µ2. Jeffreys statistics J( f̂1, f̂2) for discriminating between samples
from two normal distributions is known. This example gives a new Bayes-Fisher
interpretation for J( f̂1, f̂2) as the expected Fisher information, in terms of (4.7), provided
by the combined data from the two samples about the mixture parameter p.

The Fisher information of the α-mixture (3.11) has the following representation:

Iα(p) =
1
α2 Var fα[Sp(X)],

where

Sp(x) =
f α1 (x) − f α2 (x)

p f α1 (x) + (1 − p) f α2 (x)
=

Tα(x) − 1
p[Tα(x) − 1] + 1

, T(X) = log
f1(X)
f2(X)

.
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For any given α, the Bayes-Fisher information of the α-mixture (3.11) under the
uniform prior π(p) = 1, 0 ≤ p ≤ 1 is given by

Ĩα(P) =
1
α

Jα( f1, f2) +
1

α(1 − α)
Vα(h1, h2),

where
Jq( f1, f2) = Kq( f1 : f2) + Kq( f2 : f1), q ∈ (0, 1) d (1,∞), (4.9)

is the generalized Jeffreys divergence (symmetrized Tsallis divergence), Vα(h1, h2) =∫ 1
0 [h1(p) − h2(p)]2dp , is the following total variation function between hi(p) = 1

Zαα
Hα( fi :

fα), i = 1, 2, andHq( fi : fα) =
∫

f q
i (x) f 1−q

α (x)dx, q ∈ Ω is the Hellinger integral.

4.1.2 Bayes-Fisher Information of fa and fg about p with Triangular Prior

Let fi, i = 1, 2 represent the distributions of a random prospect under two conditions
or two hypotheses. The uniform prior for p is reflective of being agnostic about the
weights of the hypotheses. We use three triangular priors that give the highest weight
to a particular combination of the two hypotheses. The triangular prior with PDF,

πw(p) =


2p
w , 0 < p ≤ w,

2(1−p)
1−w , w ≤ p < 1.

(4.10)

The general triangular prior πw is reflective of the belief that a mixture of f1 and f2 with
a mixing weight w is the most likely case. The beta priors give higher weight for f1 or
f2 and provide an extension of the null hypothesis belief that favors one of the models.
Mcvinish et al. (2009) used the triangular prior for Bayesian robustness.

(a) Under the prior (4.10), the Bayes-Fisher information of (1.4) and (3.2) are:

Ĩa(P) =
2

w(1 − w)
[wK( f1 : faw) + (1 − w)K( f2 : faw)] =

2
w(1 − w)

JS( fa), (4.11)

Ĩg(P) =
2

w(1 − w)
[wK( fgw : f1) + (1 − w)K( fgw : f2)] =

2
w

Rw( f1, f2), (4.12)

where faw and fgw denote PDFs (1.4) and (3.2), respectively, with p = w and

Rq( f1 : f2) =
1

q − 1
log

∫
f q
1 (x) f 1−q

2 (x)dx, q ∈ Ω;

is Rényi divergence of order q.
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(b) Under two triangular beta priors on π j(p), 0 < p < 1, j = 0, 1, shown below, the
Bayes-Fisher information of (1.4) and (3.2) are as follows:

π0(p) = 2(1 − p), π1(p) = 2,
Ĩa(P) = 2K( f1 : f2), Ĩa(P) = 2K( f2 : f1),
Ĩg(P) = 2K( f2 : f1), Ĩg(P) = 2K( f1 : f2).

(4.13)

These results inform that also under the triangular prior the Bayes-Fisher information
provided by (1.4) and (3.2) about p are increasing in the discrepancy between the
components of the mixtures.

4.2 Global Mean of MR Function

At each threshold τ, the MR function is the mean of the excess distribution (1.6). This
endows MR function with an intuitive and easily understood pointwise interpretation
in the data analysis. At each threshold point, m(τ) is the optimal predictor of the excess
under the quadratic loss function, and its risk is the variance of the excess distribution.
Aggregation of the uncountably many local means, m(τ), with a continuous weight
function π(τ), τ ≥ 0 defines the following continuous mixture of the MRs:

Mπ(m(τ)) =

∫
π(τ)m(τ)dτ.

In the probabilistic version of this continuous mixture, π(τ) is a prior PDF for τ and the
probabilistic mixture of m(τ) is the global mean, given by

Mπ(m(τ)) = Eτ[m(τ)] = EτEx|τ(X − τ|X > τ) = E(x,τ)(X − τ|X > τ).

This measure is used in Asadi et al. (2017), Ardakani et al. (2018), and Ardakani et al.
(2020), where it is referred to as the Bayes risk of m(τ), which is a misnomer. The Bayes
risk of m(τ) is given by the Eτ[Var(X − τ|X > τ)].

A particular prior for τ is the PDF π(τ) = f (τ), where f is the PDF representation of
m(τ). This prior renders the following important global mean of the MR function:

M f (m(τ)) = −

∫
F̄(τ) log F̄(τ)dτ ≥ 0.

Asadi and Zohrevand (2007) showed the first equality. Rao et al. (2004) introduced the
integral, referred to it as the cumulative residual entropy, and showed the inequality
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and it becomes equality if and only if the distribution is degenerate. That is,M f (m(τ)) is
a measure of concentration of f . This measure is also known by other names, including
Survival Entropy.

We have developed a consistent estimate forM f (m(τ)) and applied it for comparing
forecast models (Ardakani et al., 2018). We also have shown thatM f (m(τ)) ≤ σ f , where
σ f is the standard deviation and the equality holds if and only F̄ is exponential. With
a consistent estimator of σ f , this bound holds for the empirical version of M f (m(τ)).
Application to the New York City Taxi database, which includes millions of monthly
observations, illustrated the following points: (a) plot of the empirical MR function,
called MR Plot, distinguishes the distributions of taxi trip times by month and pickup
time more clearly than plots of PDF, SF, and HR function; and (b) the empiricalM f (m(τ))
classifies the hourly distributions sensibly (Ardakani et al., 2020).

5 Discrete, Multivariate, and Categorical Models

Our previous studies considered information measures for various types of mixtures of
univariate continuous distributions. In Section 2.2.3, we pointed out the applicability
of Jensen-Shannon divergence, (2.21) and (2.22), for measuring information loss in the
multivariate kernel estimation. Information measures for variants of mixture models
are applicable to probability mass functions (PMFs) and multivariate distributions. We
briefly present extensions of some of the measures in the preceding sections in the
context of exponential families.

We consider the applicability of information measures of the arithmetic and geometr-
ic mixtures of PDFs to the exponential family with the following density with respect
to a measure:

f (x) = g(x)eηT(x)−A(η), (5.1)

where η = η(θ), called the canonical or natural parameter, is a one-to-one function of
θ that appears in the “usual" form of f , A(η) is free from x, and g(x) > 0,T(x) are free
from θ; η and T may be vectors. Well-known examples include discrete distributions
(binomial with a common n, geometric, Poisson), multivariate distributions (normal,
Pareto, Dirichlet), and categorical models such as the multinomial logit which is
widely used in many fields for relating the probability of outcome j to covariates.
(See Wikipedia for a table of distributions with corresponding η, θ, g,T, and A).

The geometric mixture of two members fi, i = 1, 2 of (5.1) with ηi = η(θi) remains in
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the family (Kullback, 1959, p. 40), given by the following g-escort model:

fg,η1,η2(x) =
g(x)

Zp,η1,η2

exp
{
[pη1 + (1 − p)η2]T(X) − [pA(η1) + (1 − p)A(η2))]

}
, (5.2)

where Zp,η1,η2 is the normalizing factor of fg.

The Jensen-Shannon divergence of members of (5.1) on a finite support (binomial,
multinomial logit) can be easily computed. More generally, the KL and Rényi divergenc-
es between two members of an exponential family are:

K( f1 : f2) = (η1 − η2)θ1 − A(η1) + A(η2), (5.3)

Rq( f1 : f2) =
1

q − 1
log Zq,η1,η2 , (5.4)

where θ1 = E1[T(X)] and Zq,η1,η2 is defined as in (5.2).

For all members of the family in (5.1), (5.3) provides bounds (2.4) and (2.5). It also
provides bounds given in Proposition 2.1 for discrete and multivariate distributions
that are ME models (geometric, normal, Pareto, Dirichlet). Divergences (5.3) and (5.4)
enable computing the Bayes-Fisher information measures about the mixing parameter
for fa and fg under the uniform prior given in (4.8) and under the triangular priors
given in (4.11)-(4.13).

6 Concluding Remarks

This paper presented a holistic view of contents of ten papers which mainly or tangentia-
lly involve mixture models co-authored by at least one of us. We have discussed four
types of mixtures (Arithmetic, geometric, harmonic, and α) with six representations
of a probability distribution (CDF, PDF, SF, HR, MR, OR). The study of information
properties of various types of mixtures involves assortments of information and diverg-
ence measures: Shannon entropy, KL, JS, Jeffreys, Chi-square, Rényi, Tsallis, and
Jeffreys type symmetrized Tsallis divergences, Fisher information measure and Fisher
information distance, KL type divergence between SFs, and expected L1-norm between
cumulative hazards. Areas of applications covered include reliability (comparison of
systems), econometrics (uncertainty and disagreements of forecasters), statistics (kernel
estimation, exponential family, comparison of two normal means), and nonextensive
statistical mechanics (escort distributions).
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The variants of mixtures of various representations of probability distributions,
assortments of information measures, and applications presented in this paper provide
ample research problems. We point out to a few specific topics for future research.

• The JS divergence of the arithmetic mixture of PDFs includes the Shannon entropy
of the mixture and the KL divergence between each component and the mixture.
This measure is very useful for many applications, which require numerical
integration or assessed by a few bounds. Developing a user friendly general
algorithm that produces accurate results for mixtures of parametric families can
prove to be useful.

• The study of information properties includes only one measure for the arithmetic
mixtures with multiple components. We have developed few measures for the
arithmetic, geometric, and α-mixtures of two PDFs. These measures are derived
under the uniform prior for the mixing parameter for all three types of mixtures
and for the arithmetic and geometric mixtures under two triangular priors. Use
of other types of priors (such as beta) and extensions to mixtures with multiple
components provide ample research opportunities.

• Following findings in statistics and physics literature, we developed optimality
of the geometric mixtures of two SFs (arithmetic mixture of two HR) and CDFs
(arithmetic mixture of two reversed HR) according to formulations in terms of
a KL type divergence for SFs and CDFS and according to the expected L1-norm
between two cumulative HR functions. Extensions of the univariate results for
the mixtures of SFs to the multivariate and to mixtures with multiple components
can lead to interesting results.

• We have not explored information properties of the α-mixture family yet. This
problem offers an interesting and challenging topic for future research.

• Developing inferences about the α parameters of the α-mixtures of PDFs and SFs
will be very useful. For example, if a posterior distribution of α of the α-mixture
of SFs concentrates near zero (or one), then it can be concluded that the data is
generated from an arithmetic mixture of the HRs (or SFs).
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