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Abstract

This booklet relates the major developments of the evolution of
inverse problems. Three sections are contained within. The first
offers definitions and the fundamental characteristics of an inverse
problem, with a brief history of the birth of inverse problem the-
ory in geophysics given at the beginning. Then, the most well
known Internet sites and scientific reviews dedicated to inverse
problems are presented, followed by a description of research un-
dertaken along these lines at IFSTTAR (formerly LCPC) since
the 1990s. The final section concerns the different approaches
available to solve an inverse problem. These approaches are di-
vided into three categories: functional analysis, regularization
techniques for ill-posed problems, and stochastic or Bayesian in-
version.

Keywords: inverse problems, parameters identification, global optimization, modal

identification, wavelets, tomography, mechanical engineering, civil engineering



Introduction - Definitions

The term ‘inverse problem’ appeared in the 1960s, notably to designate
in geophysics the determination, through input-output or cause-effect exper-
iments, of unknowns in the physics equations. Today the notion of ‘inverse
problem’ designates the best possible reconstruction of missing information,
in order to estimate either the loads (identification of sources or of the

cause), or the value of undetermined parameters (identification of model

parameters).

Le Verrier’s discovery of the planet Neptune is a famous example of an inverse
problem that demanded an identification of the cause. At the beginning of
the 19th century, astronomers had not yet discovered the planet Neptune.
The most distant planet then discovered was Uranus, found by Herschel in
1781. When astronomers applied Newton’s theory of universal gravitation to
the movement of Uranus, the calculated orbit and movement, when taking
only into account the disturbances caused by Jupiter and Saturn, did not
match the observed orbit and movement. Encouraged by Arago, Le Verrier
began in 1844 to labor away at this calculation, using inverse perturbations
of features (mass, orbit, current position) of the hypothetical planet assumed
to produce Uranus’ observed irregularities. In his report to the Academy of
Sciences on August 31, 1846, Le Verrier presented the orbital elements of this
new planet. Then, on September 23, the exact day when he received from Le
Verrier a letter detailing its predicted position, the Berlin astronomer Galle
succeeded in observing the object. Arago then declared to the Academy of
Sciences: “Mr. Le Verrier perceived the new star without even throwing a
single glance toward the sky; he saw it at the end of his quill.”

Before moving on to the mathematical specificities of inverse problems, let
us examine some key related terms. The situation in which the parameters
or sources are directly accessible by measurement is called direct measure-

ment. However, in many cases, the information searched for is not directly
measurable. Instead, it is physically connected to other measurable values.
We call this situation indirect measurement. Though these measurable
values are evidently dependent on the physics of the studied phenomenon,
they are also dependent on the measurement instruments employed. The
laws of physics that link observable information to the values searched for
are generally mathematically complex, using, for example, integral equations
or partial derivatives. The solution to a problem that calculates observable
effects from unknown values, or a direct problem, is often simpler and
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more easily mastered than that of an inverse problem, which calculates
unknown values from observable effects.

To start out, we can say that an inverse problem arises from the confrontation
of experimental data with results from numerical simulations. The problem
consists in seeking to minimize the distance between the measurement and
the calculation.
One characteristic of inverse problems is being ill posed or incorrectly

posed, in the sense of Hadamard: the total measured data does not allow
the existence of a solution to the problem, the solution is not unique, or, even
further, due to disturbance in the data the solution is not stable.
If the data from measurements can in theory create a space of either finite or
infinite dimensions, in practice the data are always finite and discrete. When
the number of parameters in a model is smaller than the number of data
points from the measurements, the problem is called overdetermined. In
this case, it may be possible to add a criterion that diminishes or eliminates
the effects of aberrant data. On the other hand, if the problem consists
in determining continuous parameters that are thus sampled from a very
large number of values, and if the number of results from the experiments is
insufficient, the problem is called underdetermined. It is then necessary
to use a priori information to achieve a reduced number of possible solutions,
or, in the best case, only one. Since for an underdetermined problem there
are often several possible solutions, it is necessary to specify the confidence
level that one can give to each solution. For these problems, the data can
also be affected by a likelihood coefficient or probabilistically weighted. If
this is the case, a Bayesian approach can be used for the problem.

Finally, another definition for an inverse problem could be: an ill-posed prob-
lem that has for its objective the inversion of a physical model by means of
a partial image of that model’s effects.

Areas of Use – Historical Development

Inverse problems form an essentially multidisciplinary scientific field, com-
bining mathematics with multiple branches of physics. The pioneering works
in the 1970s on the solving of ill-posed problems (notably those of Russians
like A.N. Tikhonov [TA77], and more recently his students [BM91]), and
next the analysis and execution of inversion strategies for ill-posed problems,
helped create a now widely recognized branch of applied mathematics. One
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finds numerous applications of inverse analysis in the physical and mechan-
ical sciences: a non-exhaustive list includes optics, radar, calorimetry, spec-
troscopy, geophysics, meteorology, oceanography, acoustics, radioastronomy,
non-destructive control, biomedical engineering, instrumentation, imaging,
civil engineering and mechanical engineering. Work undertaken at IFSTTAR
(formerly LCPC), the laboratory of the author, mainly concerns geophysics,
civil engineering, material and structural mechanics, thermics, and the re-
construction and improvement of images. These applications will form the
primary subject matter of this booklet.
The nature of inverse problems can be better understood by examining their
historical evolution. Researchers and engineers working on geophysical data
greatly contributed to the development of inverse problem theory. Geophysi-
cists attempt, in effect, to understand the internal behavior of the Earth
through data taken at the surface. Before 1970, the developed methods
were principally empirical. The work of G. Backus and of F. Gilbert [BG67]-
[BG68] near the beginning of the 1970s constitutes the first systematic explo-
ration of the mathematical structure of inverse problems, and is the origin of
the development of numerous methods of data interpretation in geophysics.
To resolve certain inverse problems concerning the identification of sources
described by a linear integral equation of the first kind, these authors pro-
posed a numerical method which now carries their name, and which has given
rise to numerous articles and books. This method has often been used for
the inversion of seismic data in order to obtain profiles of the density at the
interior of the Earth [BG70]. Furthermore, we should equally mention the
more recent work of W. Menke [Men89] on the analysis of geophysical data
and on discrete inverse theory.
In France, the 1980s witnessed A. Tarantola, one of the precursors of inverse
problem theory. Tarantola resolved inverse problems concerning the pro-
cessing of geophysical data principally by means of probabilistic models (the
Bayesian approach). Tarantola is the author of several books [TM82],[Tar87]
and of numerous articles [MT02] on this subject. Twelve years later, following
the works of H.D. Bui, the use of inverse methods for mechanical and civil en-
gineering became increasingly popular. The research team “Inverse Problems-
Identification-Optimization”, of the Laboratoire de Mécanique des Solides at
l’Ecole Polytechnique, brought together around Bui many active researchers,
such as M. Bonnet, A. Constantinescu and C. Stolz (cf. [BC99], [BC05],
[BCM04], [PS01], [PS03]). The book [Bui93] is an excellent introduction to
inverse problems in material mechanics. The applications of its proposed
identification techniques include non-destructive detection; the characteriza-
tion of internal defects, homogeneities and inhomogeneities; the identification
of singularities in fracture mechanics; and the identification of the physical
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parameters of materials. A recent special issue of Comptes Rendus from the
Académie des Sciences [M0́8], dedicated to H.D. Bui, was devoted to inverse
and non-linear problems, in recognition of their importance in present-day
solid mechanics.
One can also consult these three Internet sites specifically dedicated to in-
verse problems. Here one can find useful information such as people working
on these problems, announcements of seminars and of past and upcoming
conferences, new books, and a selection of relevant scientific articles:

• http://www.me.ua.edu/inverse/, http://www.inverse problems.net/ (In-
verse Problems International Association: IPIA),

• http://www.me.ua.edu/inverse/ (University of Alabama)

• http://www.mth.msu.edu/ipnet/ (Inverse Problems Network: IPNet).

Among the scientific reviews dedicated to inverse problems, one can cite:

• Journal of Inverse Problems in Science and Engineering (Taylor Francis
Group - G.S. Dulikravich, Editor),

• Journal of Inverse Problems (IOP electronics journals - F. A. Grün-
baum. Editor),

• Journal of Inverse and Ill-Posed Problems (Walter de Gruyter - M. M.
Lavrentiev. Editor),

• Inverse problems and Imaging (AIMS American Institute of Mathe-
matical Sciences - Lassi Päivärinta. Editor).

One can equally note a recently published special issue of the European
Journal of Automated Systems on systems identification.
Finally, in a more modest fashion, it will soon be twenty years since IFSTTAR
(previously LCPC)1 began research concerning the applications of inverse
methods in civil and urban engineering. We cite as an example the following
theses:

1IFSTTAR is the French Institute of Science and Technology for Transport, Develop-

ment and Networks. It was founded on January 1st, 2011, from a merger of the INRETS

Institute and the LCPC Laboratory and has now 1,250 employees. This new entity enjoys

the status of a public scientific and technological institution and is overseen by the French

Ministry of Ecology, Sustainable Development, Transport and Housing on the one hand

and the Ministry of Higher Education and Research on the other. Renowned in the in-

ternational arena, IFSTTAR conducts applied research and expert appraisals in the fields

of transport, infrastructure, natural hazards and urban issues, with the aim of improving

the living conditions of French residents and, more broadly, promoting the sustainable

development of societies.
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• Techniques of seismic tomography with two-dimensional and three-
dimensional geometric reconstructions for geophysical reconnaissance:
[Cot88],

• Modal identification of structures under vibration, or the estimation
of modal parameters (frequencies and fundamental modes of vibration,
size of modal damping) of linear mechanical systems with constant
parameters. This estimation is found via the system’s dynamical re-
sponses in the low-frequency range: [Arg90] and [Cré90],

• Identification of the vibratory behavior of buildings from seismic records:
[Afr91],

• Identification of parameters in rain forecast models in hydrology: [And98],

• Dynamical monitoring of structures using continuous wavelet analysis.
This is performed through the application of the continuous wavelet
transform to the transient responses of structures obtained after shock
or ambient excitations: [Le03];

as well as a few relatively more recent books about inverse problems, written
by researchers at IFSTTAR:

• Non-destructive control techniques, for example for the non-destructive
evaluation of the deterioration state of concrete buildings: [BA05],

• The design of experiments: an indispensable tool for experimentation
[Lin05],

• In the thesis for authorization of directing [Arg04], one important sec-
tion concerns the use of the wavelet transform for modal identifi-
cation. Wavelet transform is a fundamental tool for processing mea-
surement signals, rendering much easier the analysis of these signals.
With this tool, the process of dynamics parameter identification, and in
particular the identification of modal parameters, is greatly simplified.

• A collective publication [APD08] written by researchers at LCPC and
their colleagues aims at listing the various techniques used until 2008
by the Ministry of the Environment, Energy, Sustainable Development
and Territorial Planning, and in particular those concerning mechanical
and civil engineering. Many various inverse problems are considered:
identification of mechanical parameters for a compressor, identification
of modal parameters or of discrete hysteretic systems, identification of
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causes, detection and recognition of images, optimization of noise bar-
rier walls, characterization of heterogeneities, and various tomographic
problems applied to geophysics and the close examination of artworks.
The numerical resolution methods proposed in this book range from the
now classic optimization methods for regular or convex cases, to meta-
heuristic methods of global optimization, for which this book provides
a CD with a toolbox in Scilab.

Different Approaches to Solving Inverse Prob-

lems

Inversion or inverse methods theory is an ensemble of mathematical tech-
niques that operate on a reduced number of data in a problem, in the hope
of obtaining useful information pertinent to the real physical system stud-
ied. This information is found using inferences taken from observations. The
mathematical techniques used need to take into account the imprecise, re-
dundant and/or partially incomplete character of the data. For this type of
problem it is not the mathematical solutions of the term that are searched for,
but rather an inventory of the complete ensemble of solutions arising from
the near uncertainties. Among the numerous solutions, one makes a choice
according to additional criteria (physical plausibility, a priori supplementary
information, etc.).
Given a general case, one looks for the stable solution(s), in the sense of
Hadamard. According to the basis searched for, the methods of investigating
inverse problems can be classified into three main categories:

Functional analysis

The inverse problem, ill posed by its nature, is modified into a well-posed
problem by playing with the choice of the spaces that describe the variables,
and the choice of their topology that allows the determination of the standard
deviation or error. These choices are determined principally by physical, not
mathematical, considerations. The corresponding methods generally propose
the introduction of global constraints on the classes of solutions.

Regularization of Ill-Posed Problems

The solution obtained by regularized inversion will depend upon the data
in a continuous manner, and will approach the exact solution (supposing it
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exists). The regularization of an inverse problem consists in rewriting the
problem. It is based on two guiding principles:

• Define a framework for taking into account a priori supplementary in-
formation “exterior to the mathematics.”

• Assure that the new solution is stable and will take into account addi-
tional information from measurement errors.

To regularize an inverse problem, several methods exist. These can be used
singly or in combination. Several examples are:

• Tikhonov’s regularization (the most well-known method, cf. [TA77],
[HEN96] , which works by adding a non-negative stabilizing functional
into the functional to be minimized. The stabilizing functional is able
to take the smallest possible positive values and to take into account
the available a priori information,

• Reduction of the number of parameters, in order to diminish the sen-
sibility of the criteria to data fluctuations,

• Introduction of constraints (equalities or inequalities confirmed by the
unknowns) into the functional to be minimized, in order to obtain only
physically acceptable values for the research,

• Filtering of trial data through techniques of signal processing (fre-
quency filters, modified Fourier transforms, time frequency transforms,
etc. [CHT98]). Time frequency transforms, such as wavelet analy-
sis (cf. [LA04, AE05, EA07, RmA10]), can be particularly suited to
analyze data that change over time,

• The method of quasireversibility, initially proposed by R. Lattès and
J.L. Lions [LL93], well-suited for Cauchy problems, such as in ellip-
tical partial differential equations [Bou07]. This method consists in
modifying the differential or partial differential operator, generally by
changing the order of the derivatives it operates on. This is done in
such a way as to obtain a new problem that is well posed for the initial
data or for the known boundaries.

Stochastic or Bayesian Inversion

In this case, in order to represent every uncertainty, all of the variables are
considered to be random. One is thus interested in the probability density
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function. This function is associated with the unknowns and with the data
of the problem from which one looks for the characteristic values: average
value, value of the largest probability, dispersion, correlations, etc.
As we have mentioned in the preceding paragraph, an inverse problem most
often boils down to a problem of minimizing the difference between calcu-
lation and experimental results, or to a problem of maximizing likelihood.
The inverse problem thus leads to an optimization problem, which is often a
large problem in and of itself.
The numerical techniques used to solve an optimization problem are as var-
ied as the domains to which inverse problems themselves can be applied (lin-
ear or non-linear least squares, maximum plausibility, Monte-Carlo method,
linear programming, simulated annealing, genetic or evolutionary algorithms,
optimal control methods, etc.). The objective of this introduction is not to
give a detailed list of optimization methods. For more information, the reader
can consult the abundant literature on this subject, from which we mention
the following works: the books of Fletcher [Fle80] and Ciarlet [Cia82] are
classics, the work of Culioli [Cul94] is simple and presents the most common
numerical methods, that of Bergounious [Ber01] concerns both optimization
and control, while [Gro93] is more oriented toward inverse problems. For
deterministic methods and convex problems, one might consult [HP95], and
for non-deterministic methods and discrete optimization, [PR02]. Finally, in
2008, an encyclopedia in English on optimization was reedited [FP08].

We should note that if a problem causes parameters to occur that assure
the regularity and stability of the criteria, it is considered to be within the
framework of “classical” optimization. For classical optimization, numerical
methods calculate the first and/or second derivatives of the cost function
in terms of the unknowns. Iterative algorithms for optimization often in
a repetitive fashion call on the numerical solution of an associated direct
problem. The direct problem is frequently defined with the help of partial
differential equations or systems of differential equations in terms of time.
For this, there are an abundant number of solution methods, and to cite but
the most common: the finite difference method, the finite element method,
and the boundary element method.
In the absence of regularity hypotheses, it becomes difficult to find via clas-
sical methods a global optimum or satisfactory local optimums. It is then
necessary to use global minimization methods, for example genetic or evolu-
tionary. Effective but not always allowing the use of convergence theorems,
these methods constitute what are called zero-order optimization methods or
“metaheuristics.” Metaheuristics are generally iterative stochastic algorithms,
which progress toward the global extreme of the objective function through
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sampling. These methods have seen considerable progress these past years
due to the development of calculation methods. The recent works [JDT03],
in French, and [dC06], in English, present a family of metaheuristics, such as
simulated annealing, tabu search, evolutionary and genetic algorithms, and
ant colony algorithms, to name only the most important.

Conclusion

Inverse problems form a prolific field. As we have seen, their applications
are numerous, the problems diverse and the methods employed inevitably
various. Particularly for their formalization and analysis, but also for their
method of solution, there exists no “standard”approach to inverse problems.
Nevertheless, the formalization and solving of different inverse problems can
give rise to ideas, procedures and observations that are useful from one appli-
cation to the next. To prolong this conclusion, we can state that at this era,
when simulation methods achieve startling progress everyday, the steady de-
velopment of inverse problems invites one to reconsider and rethink acquired
classical notions. One immediate example is the concept of measurement,
which rests more and more on the interweaving of three elements: exper-
imentation, techniques of direct simulation, and inversion algorithms. The
confrontation between model and measurement has thus become a promising
pathway toward a better understanding of the studied physical phenomenon,
whether it be the surveillance of the evolutionary state of the system, or the
validation of imperfectly realized measurements that could interfere with the
outcome. To push this idea even further, inverse thinking, by overturning
classical notions and encouraging different methods of reasoning, could incite
students, engineers and researchers to formulate original ideas and set out
on research with daring perspectives.
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