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ABSTRACT 

System modeling (SM) instructional strategy, an application of system thinking (ST), can 

be used as an instructional approach to help students develop SM skills and deepen their 

understanding of subject matter (Hung, 2009). Mechanical engineering students have difficulty 

applying gained knowledge in real-world contexts and are reportedly underprepared for 

workplace challenges (Kirkpatrick et al., 2011; Warsame, 2017). This study explored the efficacy 

of system modeling (SM) instructional strategy in a mechanical engineering course. Specifically, 

the study sought to understand students’ perceptions and experiences with the use of system 

modeling in enhancing their conceptual knowledge and problem-solving skills.   

This study employed a qualitative inquiry approach to understand engineering students’ 

experience and perceptions of the use of system modeling. A purposeful sampling technique was 

utilized to recruit mechanical engineering students to participate in the study. Semi-structured 

interviews and students’ artifacts including problem solving survey and causal modeling 

diagrams, were used to explore and gain an in-depth understanding of students’ experiences with 

the use of system modeling (SM) instructional approach.     

The findings indicated promising effects of the SM approach on students’ learning 

outcomes. Seven major themes emerged from the in-depth interviews conducted to gain insights 

into students’ experiences. These themes included: problem diagnosis, interconnection and 

interdependency, linearity, external representation of causal relationship, wholeness and decision 

making, organize problem-solving approach, and systematic and forward-thinking process. 

Students’ artifacts and data presented in this study supported their positive experiences using the



 xii 

SM approach. The problem solving inventory PSI survey responses indicated that most of the 

participants believed the SM approach affected their perceived problem-solving skills, especially 

their approach-avoidance style. Furthermore, the model diagram analysis suggested that all 

participants showed moderate system thinking skills after the SM instructional strategy.  

This current study provides insight and understanding about SM instructional strategy 

effectiveness and how it can help enhance student learning outcomes. Exploring the impact of 

SM on student learning experiences is important not only because it could provide alternative 

instruction to the traditional methods, but also to inform instructors of its potential benefit of 

undergraduate education instruction. Furthermore, the current study could serve as a guide for 

instructors on how to implement the SM instructional strategy in a mechanical engineering 

curriculum. 
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CHAPTER I 

INTRODUCTION 

Over the past decades, higher educational institutions have encountered a paradigm shift 

from traditional teacher-centered instruction to a learner-centered approach (Huba & Freed, 

2000). Learner-centered instruction is rooted in the constructivist philosophy in which learners 

actively construct their own knowledge (Driscoll, 2002; Jonassen, 1991; Merrill, 1991; Schunk, 

2012). In the learner-centered paradigm, learning is facilitated by creating an active learning 

environment, thereby fostering skills like problem-solving and critical thinking skills (Huba & 

Freed, 2000; Merriam & Bierema, 2013). Essentially, the focus is on the students and their 

learning needs and outcomes (Brown, 2003). However, creating an enabling environment that 

promotes these skills requires choosing appropriate instructional approaches and the design of 

suitable activities to meet students’ learning needs (Nilson, 2013).  

Despite the shift to the learner-centered approach, research suggests that most 

engineering instruction remains largely unchanged (Mills & Treagust, 2003; Felder, 2012). For 

instance, Brunhaver et al. (2017) reported that most engineering programs still use the traditional 

teacher-centered instruction, which may not effectively promote conceptual knowledge and 

problem-solving skills among engineering graduates (Kollöffel & de Jong, 2013; Robinson-

Bryant, 2018; Vergara, et al., 2009). This could be because traditional instruction provides 

students linear and structured problems (textbook problems) that require only a single right 

solution (Sheppard et al., 2009). This instructional method may not facilitate integration of 

knowledge and lead to learning concepts in isolation with little or no context (Linn & Hsi, 2000; 
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Hopper & Stave, 2008). For instance, Buch and Bucciarelli (2015) argued that most engineering 

concepts and principles are taught without providing adequate context to help prepare students 

for real world problem solving. These ways of teaching do not align with the engineering 

workplace’s needs, resulting in frustration for employers (Felder, 2012). Besides, the traditional 

approach contradicts contemporary constructivist philosophy that encourages active learning and 

knowledge construction (Bradforth et al., 2015). Consequently, there is a need for engineering 

educators to reconsider their teaching practices, align learning needs, and implement teaching 

strategies that will encourage knowledge construction, foster active learning and develop 

students’ higher-level skills.  

Mechanical engineering education require the same instructional improvements as the 

other engineering discipline. For example, Ow and Kanan (2015) reported that mechanical 

engineering curriculums do not align with the workplace needs. This gap was highlighted in an 

American Society of Mechanical Engineers (ASME) study that examined the expectations and 

levels of preparedness of new mechanical engineering graduates from the industrial employers’ 

perspective (Kirkpatrick et al., 2011). Kirkpatrick and colleagues reported that some employers 

believed that the mechanical engineering profession can help address 21st century challenges; 

however, most believed that recent graduates lack higher order skills like problem solving skills, 

application knowledge, and critical thinking skills.  

To address instructional problems, the systems modeling (SM) instructional strategy may 

provide a means to remedy the issue. SM, an application of system thinking, can be used as an 

instructional approach to help learners develop SM skill as well as deepen their understanding of 

subject under study (Hung, 2009). This is because SM enables learners to visualize and represent 

abstract concepts and understand the interrelationships within the concepts and mechanism of a 
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phenomenon, with a holistic perspective (Bahill & Gissing, 1998; Hmelo-Silver et al., 2017). 

This system thinking perspective allows learners to develop and restructure their mental models 

(Greene & Papalambros, 2016; Hung, 2009). Thus, SM has the potential to provide instructional 

scaffolding that enables learners to visualize and represent relationships and interdependencies 

between units and the entire system.   

System Thinking and Modeling 

Theoretical Foundations 

The theoretical basis of system modeling (SM) is the general system theory (GST). 

According to von Bertalanffy (1950), the “general system theory is a general science of 

wholeness… the whole is more than the sum of its parts” (p. 142). This definition suggests that 

the property of a system does not result from the sum of its parts. Rather, Ackoff (2004) claimed 

that the system properties are the product of its interacting parts. Similarly, a system was defined 

as “a set of interacting units or elements that form an integrated whole intended to perform some 

functions” (Skyttner, 2001, p. 53). This definition highlights that the interaction of parts within a 

system results in the behavior of that system. On this basis, system thinking can be said to be a 

way of thinking that conceptualizes a phenomenon from a holistic world view while also 

considering the interconnection between its parts (Capra, 1996; O’Connor & McDermott, 1997). 

It is important to note that as the parts of a system interact, its functions and existence remain 

unchanged (O’Connor & McDermott, 1997). 

Systems modeling is a visual representation approach based on general systems theory. 

According to Jonassen (2000), “a model is a conceptual representation of something, described 

verbally, visually, or quantitatively” (p. 138). It comprises of elements, their interactions, and 

operational rules used to represent the behavior of a system (Jonassen, 2004). A model depicts 
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the properties, conceptualization, constraints, and underlying assumptions of a real-world 

phenomenon (Morge, Narayan, & Tagliarini, 2019). System modeling SM is a cognitive tool that 

can be used to represent the complexity of a system and its interrelated parts (Hung, 2009; 

Jonassen, 2000). SM can encourage causal reasoning in dynamic systems (Jonassen, 2004).  

System Thinking and Modeling – Characteristics  

SM is the practical application of system thinking and has the following characteristics: 

wholeness, external visual representation, interrelationships, and non-linearity (Capra, 1996; 

Hung, 2009; Sweeney & Sterman, 2000; Verhoeff et al., 2018). 

Wholeness Instead of Isolated Parts. System theorists propose that the system 

properties emerge from the wholeness of the system rather than its isolated parts. This is a 

deviation from the traditional mechanistic analysis perspective that emphasizes understanding 

based on individual parts. For instance, in the traditional approach a problem-solver breaks down 

the system and examines its parts in isolation to understand the problem. The understanding of 

the parts can then be used to deduce the understanding of the whole system (Ackoff, 2000). In 

contrast, system thinkers focus on understanding the underlying causal structure of the system as 

a whole instead of breaking it down to its parts. In fact, Capra (1996) argued that essential 

properties of a system are lost when it is broken down to its constituent parts. Hence, a system 

can only be completely understood from a holistic perspective.  

Interrelationship and Interdependency. System thinkers consider systems as having 

interrelationships and interdependencies within its parts. System thinkers view the world as 

having interconnected parts forming a network of things rather than isolated parts (Capra, 1996). 

The network of interrelationships within a system determines the emergent properties of that 

system (Hung, 2009). In other words, the property of a system is the product of its interacting 
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parts and its causal relationships (Ackoff, 2004). Essentially, system thinkers suggest that the 

parts in a system do not have independent effects on the whole but that its effect in a system are 

interdependent (Ackoff, 2000).  

Non-Linearity. In the traditional mechanistic approach, relationships that exist between 

parts of a system are considered linear and hierarchical. On the contrary, in system thinking the 

relationship between parts and whole is non-linear and non-hierarchical forming a network of 

causal-relationships (Capra, 1996). This implies that the effect of one variable can have multiple 

non-linear and various nature of effects on the other parts of the system (Hung, 2009). This is 

because all of the parts of the system are interconnected and interlinked. 

External Representation. Systems can be modeled using external visual representation 

to show the causal relationships and the behavior of the system (Jonassen, 2000). External 

representations can be used to depict and describe the structure, operations, and underlying 

causal relationships that exist within a system. When system thinkers construct external 

representations, they are able to conceptualize the systems behavior as well as internalize and 

externalize their understanding of the system (Hung, 2009). These external representations can 

be paper and pencil diagrams or simulations. 

System Modeling and Thinking – Tools  

To understand a complex system, it is important to consider the wholeness of the system 

and the interrelationship between its parts. System researchers have long argued that a system’s 

behavior is characterized by the interactions between its parts (Ackoff, 2004; Capra, 1996). The 

properties resulted from the interaction are known as ‘emergent’ system properties (Sweeney & 

Sterman, 2000). Complex system properties or dynamics can be modeled to show system 

behavior and the interrelationship between its parts. These properties can be modeled using 
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system modeling/thinking tools like behavior over time graphs, causal loops/feedback diagrams 

(reinforcing loop, balancing loop), and stock/flow maps (Hopper & Stave 2008; Sterman, 2002; 

Sweeney & Sterman, 2000).  

Behavior over time graphs (BOT) show the basic trend of the behavior of systems on a 

time graph. The BOT can help students visualize the changes occurring within the system over a 

period of time (Waters Foundation, 2008a). The BOT modeling/thinking tools allow students to 

find patterns or trends in a system’s behavior over time rather than experiencing isolated events 

(Gillmeister, 2017).  

The causal loops diagram (CLD), also known as a feedback loop diagram, can represent 

cause-effect relationships within a system. Unlike the linear causal diagram, the CLD shows not 

only the direction but also the nature of the effect of each part on other parts as well as the 

system (Plate, 2010). The interactions of the parts of a system can positively or negatively 

influence the system (Sweeney & Sterman, 2000). CLD can either be reinforcing or balancing 

loops within a system (Hung, 2009). Reinforcing loops are loops that depict a positive 

relationship between two variables, while balancing loops show negative relationship between 

two variables. The BOT and CLD capture the relationships that exist within a system. One 

drawback in using a CLD is that it cannot be used to make predictions on a system behavior 

(Jonassen, 2000).   

The stock-flow map is another tool that can be used to visually represent changes and 

relationships in a system. It highlights a system’s underlying physical organization (Sterman, 

2000). The stock-flow map is comprised of stocks, flows, converters, and connectors (Arnold & 

Wade, 2015; Hopper & Stave, 2008; Jonassen, 2000). Stocks are like a reservoir of resources in a 

system (can be physical e.g., water or abstract e.g., feeling) that changes in quantity over time 
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(Arnold & Wade, 2015). Flows affect the inflow and outflow in a system, causing changes in the 

stock (Gillmeister, 2017). Converters influence the flow in a system and convert inflow to 

outflow, while connectors are lines that show the direction of flow in a system (Gillmeister, 

2017; Jonassen, 2000).  

The aforementioned SM tools could help students better conceptualize the subject under 

study. For instance, the stock-flow map may enable students to visualize the cause and effect 

relationships between multiple variables in a system. Students can see how an increase or 

decrease in one variable can affect the other variables. This visual experience can help students 

make accurate inferences about the behavior of the system and validate their internal model. 

Similarly, the BOT is a great tool for students to understand the pattern of behavior of the system 

over time and CLD is a helpful tool to capture the relationships that exist within a system. These 

learning tools could enable students to understand complex systems by considering the 

wholeness of the system and the interrelationship between its parts. 

System Modeling and Factual Knowledge  

Factual knowledge, also known as declarative knowledge, is the basic knowledge of 

content elements in the discipline, including facts, definitions, and terminologies (Anderson & 

Bloom, 2001; Krathwohl, 2002). When students can recall facts, the definition of terms, they are 

said to have gained factual knowledge. Factual knowledge is the term mostly used when 

assessing students’ content mastery. Cognitive researchers suggest that mastery of factual 

information in a particular domain is important before higher-order learning like critical thinking 

and problem solving (Willingham, 2009; Roediger, McDaniel, & Brown, 2014). Essentially, 

factual knowledge can promote conceptual knowledge and ultimately enhance students’ 

problem-solving skills (Huba & Freed, 2000).  
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Factual knowledge is an important dimension of knowledge in engineering education 

(Hoffmann, 2008). For instance, Frise et al. (2003) claimed that engineering students must 

master factual information with practical knowledge to attain professional knowledge needed in 

engineering workplaces. Factual knowledge in engineering involves students mastering 

engineering terminologies, concepts, formulas, equations, and algorithms.  

Research suggests that representation tools, like SM, may reduce abstraction by helping 

students visualize abstract concepts, thereby promoting factual knowledge (Uttal & O’Doherty, 

2008). In SM, students demonstrate factual knowledge by correctly recognizing, recalling, 

defining system parts, and recognizing interrelationships between the parts. Hopper and Stave 

(2008) argued that recognizing parts and their interconnections are the basic level of system 

thinking. Hence, SM could help students gain better factual knowledge than traditional 

instruction, promote retrieval of factual information, help organize the facts, and show the 

interrelationships between the concepts to promote more meaningful learning. 

System Modeling and Enhancing Conceptual Knowledge  

Conceptual knowledge is the ‘knowledge of concepts’ (Rittle-Johnson, Siegler, & 

Alibali, 2001). It is “an understanding of the essential parts and cause-effect relationships that 

exist within a system” (Guenther, 1998, p. 289). Guenther’s definition suggests that conceptual 

knowledge is not just about memorizing concept and formulas, but that it also involves 

understanding concepts and the interrelationships between its parts (Davis, 2013). In other 

words, conceptual knowledge is knowledge-rich in interconnections (Hiebert, 2013). 

Canobi (2009) described conceptual knowledge as understanding “the structure of the 

problem domain” (p. 132). This definition indicates that conceptual knowledge is important 

knowledge in understanding the problem domain, which can be explained by the underlying 
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structure and interrelationships of the system under examination. These interrelationships are 

linked to the system’s behavior and dynamic properties (Hung & Jonassen, 2006).  

Indeed, in problem-solving students need to construct their conceptual knowledge in the 

problem domain (Lucangeli, Tressoldi, & Cendron, 1998). This will help them to define the 

problem and identify important aspects of it, thereby promoting problem space construction 

(Rittle‐ Johnson, 2006; Hung, 2009). A problem that is defined well can facilitate students’ 

problem-solving process. 

System Modeling and Application Knowledge  

Application knowledge is the knowledge required to apply or use a procedure or content 

knowledge in a specific context (Krathwohl, 2002). When students are able to apply or use the 

knowledge learned in class to solve a given problem, they are said to have gained application 

knowledge. Teaching students factual knowledge alone does not guarantee that they will be able 

to apply the knowledge. While faculty members expect students to apply or use their knowledge 

to solve problems, in most cases, students do not know how to apply their knowledge because 

they have not been taught (Bankel et al., 2005).  

Mechanical engineers need to use their specialized knowledge in multiple contexts, 

including dynamic systems and processes. The first phase of gaining application knowledge 

requires students to learn abstract concepts, formulas, principles, or equations, and then apply 

that knowledge to solve a given problem in a different situation (Eggen & Kauchak, 2003). 

Jonassen (1999) recommended that in promoting application knowledge, educators should 

present instructions to encourage students to connect with instructional content in a meaningful 

way. SM instructional strategy has the potential to help students contextualize and depict the 

inter-causal relationships among concepts, thereby promoting meaningful learning. Hence, 
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instructors seeking to improve the ability of mechanical engineering students may benefit from 

implementing learner-centered instructional approach like SM.  

System Modeling and Developing Problem Solving Skills 

A problem consists of the given state, the goal state, and the obstacle between the given 

and the goal state (Mayer, 1989). Problem-solving is a crucial skill for today’s engineering 

graduates. Hung et al. (2008) defined problem-solving as “a process of understanding the 

discrepancy between current and goal states of a problem…” (p. 486). This discrepancy (also 

known as the gap) is the problem space (Newell & Simon, 1972) that is explored during the 

process of problem-solving (Hung, 2009). Hence, solving a problem involves finding the path 

within the problem space, starting from the current state, and ending in the goal state (Jonassen, 

2004).  

Problem-solving skills is an essential skillset for mechanical engineering students 

(Kirkpatrick et al., 2011). According to Hmelo-Silver (2004), “problem-solving skills is being 

able to define what the problem actually is, especially with ill-structure problems” (p. 253). 

Researchers suggest that the first step in problem-solving is to identify the problem and then 

construct the problem space (Jonassen, 2004; Newell & Simon, 1972; Reimann & Chi, 1989). 

The problem space construction includes identifying the key components of the problem like the 

current state and goal state, problem variables, and inter-casual relationships among the elements 

(Newell & Simon, 1972; Reimann & Chi, 1989). System thinking can help problem solvers 

better understand the underlying mechanism of the problem, thereby promoting their 

understanding of the inter-causal relationship (Hung, 2009). Thus, SM instructional strategies 

have the potential to help students develop these problem-solving skills, especially the step of 

defining the problem and problem space, which is essentially what system modeling does.  
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Mechanical Engineering Education  

Mechanical engineering is one of the earliest engineering disciplines. It is “the branch of 

engineering dealing with the design, construction, operation, and maintenance of machine” 

(Dixit, Hazarika, & Davim, 2017, p. 4). Mechanical engineers contribute enormously to our daily 

lives by providing support services such as transportation and power generation system. Indeed, 

mechanical engineers are at the forefront of industry providing essential life-supporting services 

and pioneering innovations in environmental sustainability. 

Mechanical engineering is the discipline of engineering that has the largest undergraduate 

enrollment among all engineering degrees (Roy, 2019; Yoder, 2015). Mechanical engineers 

apply scientific knowledge in designing, constructing, and maintaining processes and systems. 

Despite this large enrollment, research suggests that mechanical engineering graduates lack 

essential workplace skills such as problem-solving, application knowledge, and critical thinking 

to succeed (Kirkpatrick et al., 2011; Warsame, 2017). Hence, it is important to investigate 

instructional strategies that could help promote these essential skills.  

Purpose of the Study 

The purpose of this study is to explore the efficacy of system modeling (SM) 

instructional strategy in a mechanical engineering course. Specifically, the study sought to 

understand students’ perceptions and experiences with the use of system modeling in enhancing 

their learning outcomes. The study focuses on learning outcomes such as factual, application, 

and conceptual knowledge, as well as students’ self-perception of problem-solving and system 

thinking skills.   
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Research Questions  

1. What are students’ perceived efficacy of the use of SM instructional approach?  

2. How do students describe their experience with SM instructional strategy in relation to 

their factual, conceptual, and application knowledge?  

3. What perceptions do students have regarding the use of SM instructional approach in 

relation to problem-solving and system thinking skills? 

Significance of the Study 

 This study contributed to the research on the implementation of system modeling 

instructional strategies in mechanical engineering. Specifically, this study provided insight and 

understanding of SM instructional strategy effectiveness in enhancing students’ competence (i.e., 

factual, conceptual, & application knowledge) and promoting problem-solving skills as well as 

system thinking skills in mechanical engineering courses. Determining the impact of SM on 

students’ learning experiences is important not only because it could provide alternative 

instruction to the traditional methods, but also inform instructors of the potential benefit of 

undergraduate education instruction. Furthermore, the current study could serve as an example 

for instructors on how to implement the SM instructional strategy in a mechanical engineering 

curriculum. 

Definition of Terms 

Active learning: is a type of instruction that promotes active engagement in the learning 

process through collaborative activities, thereby fostering the construction of knowledge and 

meaningful learning (Mintzes & Walter, 2020). 

Application knowledge: is the knowledge required to apply or use a procedure or 

content knowledge in a specific context (Krathwohl, 2002). 
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Behavior over time graphs (BOT): are visual representations of the basic trend of 

systems’ behavior on a time graph. The BOT can help visualize the changes occurring within the 

system over a period of time (Waters Foundation, 2008a). 

Causal loops diagram (CLD): are diagrams that can be used to represent cause-effect 

relationships within a system.  

Conceptual knowledge: is the ‘knowledge of concepts’ (Rittle-Johnson et al., 2001). It 

involves understanding concepts and the interconnections between the concepts (Davis, 2013). 

Constructivism: is a philosophical view of the world that perceives reality as multiple 

and constantly changing based on individual experience. Constructivists postulate that learning 

involves the active construction of meaning from a unique individual perspective (Merriam & 

Bierema, 2013; Schunk, 2012).  

External representation: is an external visual or other form of depiction of an 

individual’s internal mental model of a concept, schema, or system, which describes the 

structure, operations, and underlying mechanism of the system (Hung, 2009; Jonassen, 2000). 

Factual knowledge: is the basic knowledge of foundational elements in the discipline, 

including facts, definitions, and terminologies. It is also known as declarative knowledge. 

Mental models: are “deeply ingrained assumptions, generalizations, or even pictures or 

images that influence how we understand the world and how we take action” (Senger, 2006, p. 

8). Mental models are belief structures that represent a simplified conceptualization of an 

individual’s understanding of a system (Monat & Gannon, 2015). 

Non-Linearity: is a term used to describe non-linear and non-hierarchical relationships 

between parts and the whole. A non-linear relationship means that “a given variable in a system 
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causes effect on one or more variables, and these variables consequently produce effects on their 

related variables” (Hung, 2009, p. 9). 

Stock-flow map: is a tool that can be used to represent changes and relationships among 

variables within a system visually, thereby highlighting the system’s underlying physical 

organization (Sterman, 2000).  

System thinking ST: is a way of thinking that conceptualizes a phenomenon from a 

holistic world view while also considering the interconnection between its parts (Capra, 1996).  

System modeling SM: is “a process of systemically conceptualizing and constructing a 

representation of a given system, phenomenon, or problem under study” (Hung, 2009, p. 1). 

Systems modeling is the application of system thinking. 
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CHAPTER II 

REVIEW OF THE LITERATURE  

 The following chapter describes the literature review on system thinking (ST) and system 

modeling (SM). Specifically, the review examines the historical evolution of ST and SM, its 

definition, and theoretical foundations. The chapter also describes the characteristics of SM as an 

active learning, holistic instructional approach, as well as the tools used in its implementation. 

This chapter also reviewed literature on the impact of SM on students learning outcomes such as 

conceptual and application knowledge, as well as problem-solving and ST skills. Examples of 

SM implementation in engineering education and research in related areas like chemistry, 

mathematics, biology, and physics are discussed. 

Mechanical Engineering Education: Issues and Need for Practical Competencies 

Engineering education is a field of study that emphasizes the technical expertise, 

application of scientific principles, and practical knowledge (Crawley et al., 2007; Tan, 2014).  

Mechanical engineering, specifically, deals with the application of scientific knowledge and 

engineering concepts in designing, constructing, and maintaining processes and systems (Dixit, 

Hazarika, & Davim, 2017). These principles and concepts serve as the foundation for developing 

higher-order learning like problem-solving, critical, and system thinking (Willingham, 2009; 

Roediger, McDaniel, & Brown, 2014). This foundation becomes the building block of 

knowledge and learning in the engineering field. Hence, mechanical engineering education needs 

to promote the development of foundational knowledge and practical competencies in college 

graduates to prepare them for a successful career.
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The literature, though, reported that most engineering graduates are not well prepared for 

workplace challenges (Warsame, 2017). In fact, research suggests there is a knowledge gap 

between mechanical engineering graduate competencies and industry needs. For instance, the 

American Society of Mechanical Engineers (ASME) conducted a study in which surveys were 

administered to more than 1,000 industrial employers. The survey assesses employers’ 

perspectives on the level of preparedness of recent mechanical engineering graduates 

(Kirkpatrick et al., 2011). The researchers reported that most employers believed that new 

graduates lack essential workplace skills including problem solving, application knowledge, and 

critical thinking skills. While this may seem shocking, other researchers have reported similar 

concerns with engineering graduates (Buch & Bucciarelli, 2015; Falconer, 2016; Felder, 2012).   

Several factors might be responsible for the gap between theories learned in the 

classroom and industrial practices. Some of these factors may include the types of instruction 

used in engineering classes (Buch & Bucciarelli, 2015) and the lack of practice experience 

needed to help recent graduate transition to professional engineers (Warsame, 2017). Moreover, 

the passive nature of instruction creates discrepancies between engineering classes and the active 

application-based workplace environments (Palmquist, 2007 cited in Yadav et al., 2011). As a 

result, engineering education has become abstract to learners compared to workplace practices 

(Bankel et al., 2005). This knowledge gap means that college graduates are underprepared and 

lack essential competencies to succeed in their careers (Felder, 2012; Sheppard et al., 2009).  

The literature identified mechanical engineering competencies as: (1) acquiring 

specialized content knowledge, (2) gaining the ability to apply knowledge, (3) solving real world 

problems, and (4) developing system thinking skills (ABET Criteria for Accrediting Engineering 

Programs, 2018; Passow & Passow, 2017). Undergraduate engineering educators need to design 
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instructions to help mechanical engineers develop these essential competencies to prepare them 

for a successful career. Clearly, as mentioned earlier, there is a competence gap between 

mechanical engineering education and industrial needs. So, the question is, what instructional 

strategies could be implemented to bridge this gap? 

Researchers have suggested that an active learning approach might help students develop 

these essential competencies (Falconer, 2016; Hung & Amida, 2020). System modeling (SM) 

instructional strategy is an example of active learning instruction that may help alleviate the 

issues discussed earlier. Implementing SM instructional strategies in the curriculum has the 

potential to promote engineering competencies of gaining factual knowledge, acquiring the 

ability to apply knowledge, and enhancing problem-solving and system thinking skills. The 

following section discusses the origin and foundations of system thinking and system modeling.  

System Thinking and System Modeling – Historical Evolution 

From Reductionism to Holistic 

 Generally, when we desire to understand how something works, our first instinct is to 

take it apart and break it down to its constituent parts and study the parts in isolation. This 

inquiry method, also known as analysis, is fundamental in modern scientific methods that 

emphasize observations and experiments to understand the phenomenon around us (Ackoff, 

2000). This scientific method is grounded in the reductionism paradigm (Chan & Chia, 2003). 

The reductionists believe that breaking down parts of a system into constituent parts 

conceptually and physically can aid understanding of its function and operation (Fardet & Rock, 

2014).  

 However, this mechanistic paradigm views the world as a machine with no consideration 

for its environment (Ackoff, 2000). For instance, the mechanists believe that the world works 
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like a clock – very orderly and linear, and that one can understand how it works by studying each 

individual part. This perspective of reality was the foundation of the industrial revolution. Unlike 

the mechanistic perspective, the holistic view emphasizes the relationship between whole and 

parts, and causal relationship, as well as the interaction with the environment (Ackoff, 2000; 

Frank, 2002). 

Analytic and Systemic Approach of Inquiry  

    The mechanistic inquiry is grounded in the analysis approach, which involves breaking 

down a system to gain an understanding of its function. On the contrary, systemic thinking 

involves not merely putting things together but also considering the effects of the individual parts 

on the whole. Ackoff (2000) highlighted the difference between the analysis and systemic 

approach of inquiry as follows: 

x In traditional analysis, the broken-down parts are examined in isolation, thereby reducing 

the focus of the inquirer, while systemic thinking expands the scope of inquiry. 

x The analysis approach focuses on revealing the structure of a system and how it works, 

whereas systemic approach focuses on revealing the function and why the system 

function the way it does. 

x The analysis approach helps describe a system, while systemic thinking helps explain a 

system.    

The Nature of a System – What is a System?  

According to Skyttner (2001), a system is “a set of interacting units or elements that form 

an integrated whole intended to perform some functions” (p. 53). Von Bertalanffy (1950, p. 143) 

defined a system as a “complex of interacting elements”. Ackoff (2000) stipulates that a system 

must have these three conditions:  
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1) The behavior of each element has an effect on the behavior of the whole, 2) The 

behavior of the elements and their effects on the whole are interdependent, and 3) 

However subgroups of the elements are formed, each has an effect on the behavior of the 

whole and none has an independent effect on it (p. 221).  

 Hence, the basic properties of a system emerge from the interaction of its parts and not 

from the property of its individual parts. This interaction is known as ‘emergent’ system 

properties (Sweeney & Sterman, 2000). Systems are non-linear entities with multiple cause-

effect relationships among its parts. Systems are everywhere around us. For instance, humans are 

biological systems called an organism and containing organs like the heart, brain, lungs, and 

each of which can affect human behavior.  

System Thinking and System Modeling  

System thinking (ST) is defined as “the ability to see the world as a complex system, in 

which we understand that you cannot just do one thing and that everything is connected to 

everything else” (Sterman, 1989, p. 4). ST involves viewing the world as an “integrated whole,” 

and the behavior of the whole cannot be reduced to its constituent parts (Capra, 1996, p. 36). In 

solving a problem, system thinkers conceptualize the phenomenon from a holistic perspective, 

considering not only the interactions between the parts and with the whole, but also with its 

environment (Ackoff, 2000).  

Jonassen (2000) defines a model as “a conceptual representation of something, described 

verbally, visually, or quantitatively” (p. 138). The conceptual representation of a model 

comprises of parts of a system and their interactions as well as the operational rules governing 

the behavior of that system (Jonassen, 2004). According to Morge et al. (2019), a model shows 

the fundamental assumptions of a system, its properties, conceptions, and constraints.   
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System modeling is “a process of systemically conceptualizing and constructing a 

representation of a given system, phenomenon, or problem under study” (Hung, 2009, p. 1). SM 

can be considered as a cognitive tool that depicts the interrelated parts of a system and its 

complexity, thereby enabling causal reasoning in complex systems (Jonassen, 2000). Unlike the 

mechanical analytic methods, SM encourages students to think holistically, thereby promoting a 

deeper understanding of the system under examination (Hung, 2009). SM is the practical 

application of system thinking. 

Theoretical Framework 

General System Theory  

The origin of system thinking could be traced to the early twentieth century (Verhoeff et 

al., 2018). Most commentators credited its origin to organismic biologists, such as Ludwig von 

Bertalanffy, who felt dissatisfied with the reductionist interpretation of reality regarding the 

general phenomenon in organisms (Ison, 2008). Because of his dissatisfaction, von Bertalanffy 

(1950) proposed the general system theory (GST), which emphasizes “a general science of 

wholeness…” (p. 142). The GST is the theoretical basis of system thinking. It proposes a holistic 

perspective of understanding the world. In fact, systems or entities cannot be understood 

completely by only considering the parts of the system, as von Bertalanffy argued “the whole is 

more than the sum of its parts” (p. 142). Ackoff (2004) further explained that the system 

properties are the product of the interactions between its parts.  

von Bertalanffy’s work inspired other researchers and gave rise to research areas such as 

cybernetic systems (Ashby, 1961; Wiener, 1948), dynamic systems (Forrester, 1968; Sterman, 

2000), and operational research (Churchman, Ackoff, & Arnoff, 1957). All these different 

interdisciplinary perspectives of the GST contributed to the development of the contemporary 
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system thinking approach (Ison, 2008). For instance, one of the important contributions of 

cyberneticists was the distinction between the physical structure and the organization of a system 

(Capra, 1996). 

Constructivism 

Constructivism is a philosophical view of the world that perceives reality as multiple and 

constantly changing based on individual experience. Constructivists believe that knowledge is 

internally constructed and unique to individuals (Merriam & Bierema, 2013). Learning, 

according to the constructivist perspective, involves the active construction of meaning based on 

learners’ prior and new knowledge (Schunk, 2012). Some of the assumptions of constructivism 

include: learning is constructed and situated in context; individuals are active learners; meaning 

of reality is personal; individuals learn in different ways; learning is an interactive process 

between the learner and the environment; and learning assessment should be integrated in 

learning task (Driscoll, 2002; Merrill, 1991; Schunk, 2012). Several instructional strategies like 

problem-based learning (Hung & Amida, 2020), collaborative learning (Roschelle & Teasley, 

1995), and active learning are rooted in constructivist philosophy. These instructional approaches 

are problem-driven instructions anchored in real-life context (environment) to foster learners’ 

engagement and active learning (Hung & Amida, 2020).   

Figure 1 shows this study’s theoretical framework identifying the connections between 

general system theory and constructivism. Specifically, system thinking shares some similarities 

with constructivism. For instance, one of the underlying characteristics of ST is the emphasis on 

the interactions between the parts and whole in a system as well as the interaction with the 

environment (Ackoff, 2000). Likewise, in the constructivist approach, there is an emphasis on 

interaction with the environment as the learners try to make sense of it. Sensemaking is an 
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important aspect of system thinking. It is the process of understanding a system (Clark & Clark, 

1977) and creating a mental model (Gentner & Stevens, 2014). In other words, it is important for 

system thinkers to use their understanding and mental model of the system to construct visual 

representations of the problem (Hung, 2009). This practice is at the core of constructivist 

philosophy in which problem solvers construct their own reality (understanding of the problem) 

based on their internal representation (Jonassen, 1991). 

 

Figure 1. Theoretical Framework. This figure shows intersections between general system 
theory and constructivism.  

 

The Elements of System Modeling (SM) 

Models are important for how we see and think about the world. Meadows (2008) 

described model nicely in her book titled Thinking about Systems. She stated that: 

1. Everything we think we know about the world is a model. Every word and every 

language is a model. All maps and statistics, books, and databases, equations and 
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computer programs are models. So are the ways I picture the world in my head–my 

mental models. None of these is or ever will be the real world. 

2. Our models usually have a strong congruence with the world. That is why we are 

such a successful species in the biosphere. Especially complex and sophisticated are 

the mental models we develop from direct, intimate experience of nature, people, and 

organizations immediately around us. 

3. However, and conversely, our models fall far short of representing the world in fully. 

That is why we make mistakes and why we are regularly surprised. In our heads, we 

can keep track of only a few variables at one time. We often draw illogical 

conclusions from accurate assumptions, or logical conclusions from inaccurate 

assumptions. Most of us, for instance, are surprised by the amount of growth an 

exponential process can generate. Few of us can intuit how to damp oscillations in a 

complex system. 

(Meadows, 2008, p. 86-87) 

 One of the most prevailing thoughts in system thinking is that no model is perfect, that is 

no model is a precise representation of the system it claims to show (Sterman, 2002). This is 

partly because during the process of conceptualizing and constructing a model (abstraction), 

some parts of the system are hidden and others considered more relevant are revealed (Ramage 

& Shipp, 2012). Think about a map for example, it represents a picture or model of a place or 

landscape, but it is not the actual area. The incomplete nature of models may also be explained 

by the fact that systems are like ‘black boxes’ and all that can be seen are the inputs and outputs 

(Meadows, 2008). Hence, models are only representations of reality but not reality in itself.   
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So, the question is – why should we be interested in models when they are not a precise 

representation of reality? In system thinking, models are intended to be a picture of reality. They 

are representations that are meant to inform the thinking and decision-making process (Ramage 

& Shipp, 2012). To put it differently, models are thinking tools that can help people construct 

knowledge, make decisions, and solve problems (Pidd, 1997). 

System Modeling – A Cognitive Tool 

System modeling (SM) is the application of system thinking (ST). SM is a cognitive tool 

that can be used to conceptualize and construct an external representation of a system (Hung, 

2009). External representation, also known as visualization, is “the mental outcome of a visual 

display that depicts an object or event” (Rapp & Kurby, 2008). SM uses external representations 

to depict the operation of the system. These external visual representations reveal the underlying 

causal relationships in a system. The construction of external representation not only allow 

system thinkers to conceptualize the properties of the systems but also enable them to externalize 

their understanding of the system (Hung, 2009). The creation of an external representation of the 

system has three benefits (Hung, 2009). First, it enables students to externally visualize the 

system, thereby reducing the level of abstraction (non-concrete nature) in the system. Second, it 

promotes the intra-personal validation of the system. Last, it can help students communicate their 

understanding of the system and gain feedback. 

System Modeling – A Representation of Mental Models 

According to Senger (2006), mental models are “deeply ingrained assumptions, 

generalizations, or even pictures or images that influence how we understand the world and how 

we take action” (p. 8). Mental models are belief structures that represent a simplified 

conceptualization of an individual’s understanding of a system (Monat & Gannon, 2015). Mental 
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models evolve and change as people interact with the system and gain more understanding of the 

structure and properties of the system (Norman, 1983). Indeed, an individual’s mental model is 

an iterative cognitive process (Capra, 1996).  

In system modeling, an accurate mental model of a system and its parts should represent 

the system structure, behavior, and functions (Arnold & Wade, 2017). A novice student’s mental 

model of a system tends to be less accurate and complete than an expert’s mental model, which 

could partly explain the inefficiency and ineffectiveness of novices’ problem-solving process.  

Mental models can be improved to more accurately reflect the system under examination by 

using mapping techniques that will be discussed later in this review of the literature (Doyle, 

1997).  

System Modeling – A Reflection of the System Thinking Characteristics 

Wholeness. This suggests that systems should be understood as a whole instead of as 

individual parts. The mechanistic analysis method of problem-solving involves breaking down 

the system to understand the problem by examining separate parts to understand their behavior in 

isolation, and then combining the understanding of the parts into an understanding of the whole 

(Ackoff, 2000). This approach is the foundation of inquiry in the mechanistic philosophical 

world view. Unlike the mechanistic method, system thinking employs a more holistic approach. 

The system approach focuses on understanding the underlying structure and framework of the 

system as a whole rather than breaking it down to its parts. In fact, Capra (1996) suggested that 

once a system is divided into its constituent parts, the essential properties of the whole will no 

longer exist. Essentially, the elements in a system do not have independent effects on the whole 

(Ackoff, 2000), like, for instance, an automobile, which is a mechanical system that is used to 

move from point A to B. The different parts of the automobile work together to make the car 
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function. However, if the individual parts of the car are taken apart, it can no longer function as 

an automobile. 

Ackoff outlined the three steps of the system thinking approach in regards to wholeness. 

These steps include:  

(1) “Identify a containing whole (system) of which the thing to be explained is a part, (2) 

“explain the behavior or properties of the containing whole”, (3) “then explain the 

behavior or properties of the thing to be explained in terms of its role(s) or function(s) 

within its containing whole” (p. 222).  

Interrelationship and Interdependency. According to Capra (1996) the system thinking 

approach is to “see the world not as a collection of isolated objects, but as a network of 

phenomena that are fundamentally interconnected and interdependent” (p. 7). This perspective 

suggests that nature is a web of relationships that are linked and interdependent. The 

interdependence and interrelationship that exists between the multiple parts of a system are 

fundamental for its operations (Hung, 2009). These characteristics of a system make the different 

parts function together as a whole. In other words, the properties of a system are the product of 

its characteristic parts and the causal relationships with itself and the whole (Hung, 2009). 

Hence, interrelationships among the parts of a system emerge into the systemic structures of the 

system, influencing its behavior (Senge, 2006).  

Non-Linearity. This characteristic of ST suggests that systems are non-linear. Non-

linearity means that the effects in a system are not proportional to its cause (Sterman, 2002, p. 

22). This implies that a cause may not necessarily be directly linked to a single effect in a non-

linear system. This is unlike the mechanistic view of reality that emphasizes a hierarchical and 
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linear cause-effect relationship. In the systemic approach, relationships are considered as web-

like networks that are non-linear (Capra, 1996).  

Practically, non-linear relationships mean that “a given variable in a system causes effect 

on one or more variables, and these variables consequently produce effects on their related 

variables” (Hung, 2009, p. 9). The effect of one variable will have multiple non-linear effects 

since all the parts of the system are interconnected and interlinked. Thus, system thinkers, as von 

Bertalanffy claimed, view systems as non-linear forming chains of causal links. These causal 

links are cyclic in nature and are called causal/feedback loops. Causal loops are cyclic 

representations that depict the underlying relationship pattern in a system (Capra, 1996). Causal 

loops are closed chains of causes and effects that reflect sequences of action and information 

flow in a system (Richardson, & Pugh III, 1997). It shows the organizational pattern of a system 

(Capra, 1996). 

System Modeling Tools 

According to Sterman (2000), “every model is a representation of a system – a group of 

functionally interrelated elements forming a complex whole” (p. 89). The model representation 

of a system must simplify the system, be understandable, and depict its interrelationships. 

Systems can be modeled using mapping tools to depict the causal relationships and the properties 

of the system (Jonassen, 2000). In SM instructional strategy, mapping tools can be used either to 

present information to students or as a cognitive tool in problem-solving. These mapping tools, 

also known as system modeling tools, include behavior over time (BOT) graphs, causal 

loops/feedback diagrams, and stock/flow maps (Hopper & Stave 2008; Sterman, 2002; Sweeney 

& Sterman, 2000).  
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Behavior Over Time Graph (BOT). The BOT is a graphical representation that shows 

the behavior of a system over a period of time. BOT graphs “help people focus on patterns of 

change over time rather than isolated events, leading to rich discussions on how and why 

something is changing” (Waters Foundation, 2008a). This visual tool aids in identifying trends 

and patterns (Gillmeister, 2017). This is because it enables students to visualize the increase or 

decrease occurring in the system over time instead of looking at a snapshot of the event.  

In a BOT, the y-axis is often labeled as the variable being plotted and the x-axis is labeled 

with the time unit. The relationship between multiple variables of interest can be observed by 

plotting the variables on the same graph. Essentially, inferences drawn from the BOT graph can 

enable students to deeply understand the pattern of behavior of the system considering past 

behavioral patterns and possibly enable prediction of future occurrence.  

Causal Loop Diagram (CLD). The CLD, also known as a feedback loop diagram, is a 

visual representation tool that can depict causal relationships within a system. It shows the nature 

and direction of the effects between variables and the system (Plate, 2010). The CLD displays 

the links and connections between variables and how changes in one variable affect the others. It 

also describes a web-like, non-linear, causal loops that exist within a system.  

Causal loops can be either reinforcing or balancing loops (Hung, 2009). Causal loops can 

be graphically represented in a CLD. The connections in a CLD are designated by arrows 

connecting variables and indicating the effects between them. In the reinforcing loop diagrams, 

arrows labeled ‘+’ or ‘s’ indicate a positive relationship between variable A and variable B. This 

relationship is also known as a positive correlation (Hung, 2009). It implies that either variable A 

adds to variable B or A causes a change in B in the same direction. This means an increase in one 

will lead to an increase in the other, while a decrease in one results in a decrease in the other 
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(Kirkwood, 1998). Hence, reinforcing loops are loops that strengthen the initial change causing 

the change to continue in the same direction, thereby striving to keep the momentum in the 

system going (see Figure 2).  

 

Figure 2. Reinforcing loop. This illustration shows the relationship between motivation & academic 
performance. 
 

On the other hand, balancing loops are loops that resist the initial change in the opposite 

direction (negative). Unlike reinforcing loops, balancing loops strive to maintain an equilibrium 

and oppose changes in the system. Balancing loop diagrams have arrows labeled ‘o’ or ‘-’ 

indicating a negative relationship between variables A and variables B. This kind of relationship 

is also known as negative correlations (Hung, 2009). This means that either variables A subtract 

from variables B or A causes a change in B in the opposite direction – increase in one results in 

decrease in the other (Kirkwood, 1998).  

Figure 3 shows an example of a balancing loop diagram. The subscripts in the causal 

diagram indicate the direction of the phenomenon, + means the same and - means the opposite. 

The figure shows that students’ exam performance is influenced positively by students’ study 

time and teaching improvements. However, a student’s low exam performance negatively 

influences instructor dissatisfaction. 
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Figure 3. Balancing loop. This illustration shows the relationship between exam performance, 
satisfaction and teaching improvement (Adapted from Orgil, York, Mackellar, 2019). 
 

Stock-Flow. This map is another system modeling tool that can depict the relationship 

that exists in a system (Arnold & Wade, 2015; Hopper & Stave, 2008). It describes the 

underlying physical organization that exists in a system (Sterman, 2000). The stock-flow map 

comprises of different elements like the stock, flow, connectors, and converters (Jonassen, 2000; 

See Figure 4). Stocks represent ‘accumulation of something’ or ‘a reservoir of resources’ in a 

system (Arnold & Wade, 2015). It is most denoted by nouns and can be physical (e.g., water, 

bathtub) or abstract (e.g., motivation, happiness). A flow influences the level of a stock in a 

system and it changes over time. A flow is represented by a verb and it affects the inflow and 

outflow in a stock (Gillmeister, 2017). 

 

Figure 4. Stock-flow icons. This illustration shows the stock-flow map icons. 

Also present in a stock-flow map are converters and connectors. Converters affect the 

flow in a system by providing information that influences the flow rate, thereby affecting the 

inflow (flow into the stock) and outflow (flow out of the stock). Connectors, on the other hand, 

are presented by lines showing the direction of flow in a system (Gillmeister, 2017; Jonassen, 
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2000). An example of a stock-flow is the bathtub (see Figure 5). The amount of water (stock) in 

the tub is affected by the rate of inflow and outflow of water. The faucet controls the inflow of 

water while the drain regulates the outflow. This example represents a simple stock-flow map 

with no feedback loop. Essentially, the stock-flow map helps students visualize how the stock 

changes over time, considering the rate of inflow and outflow in the system. 

 

Figure 5. Stock-flow map. This illustration shows a stock-flow map of bathtub water (Adapted 
from Sterman, 2000). 
 

System Modeling as an Instructional Strategy 

System modeling (SM) is an instructional strategy that have been utilized in various 

disciplines especially in management and decision making (Ackoff, 2000; Sterman, 2000). For 

instance, Sedlacko et al. (2014) used participatory system modeling involving causal loop 

diagrams to facilitate the understanding of issues in sustainable consumption among policy and 

decision-makers. The researchers reported that causal loops provided a means for managing 

complex systems thinking and facilitated the systematic understanding of the issues. This 

included helping the participants to understand the underlying structural cause of the problem 

and to make inferences on the possible consequences. Sedlacko and colleagues also claimed that 

the modeling activities helped participants to reorganize their mental model and promoted a 

shared knowledge experience. Other studies used system modeling in understanding 

management issues (e.g., Hare, Letcher, & Jakeman, 2003; Pahl‐Wostl & Hare, 2004). 
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The SM approach has also been used as a cognitive tool to facilitate students’ learning 

outcomes such as system thinking skills. For instance, Hmelo-Silver et al. (2017) examined the 

effect of conceptual representation intervention (a modeling tool) on students’ causal reasoning 

(system thinking) in science. Hmelo-Silver and colleagues used the Components-Mechanisms-

Phenomena (CMP) conceptual representations to help learners understand ecological patterns, 

generate plausible mechanisms, explore the parts, and interact in the ecosystem. Students created 

models based on their understanding of the ecosystem. The models drawn were coded based on 

the CMP criteria, considering ecological system component identification, interrelationships 

between the parts, and the whole. The researchers reported that the intervention enabled the 

learners to examine the parts of the ecosystem and how the individual parts interconnect and 

work together to form the ecosystem. Thus, the intervention significantly promoted students’ 

system thinking skills. Likewise, other studies reported significant increase in students’ system 

thinking skills (Hung, 2008; Plate, 2010; Tripto et al., 2017).   

SM instructional strategy use tools such as causal loops and stock-flow maps to improve 

students’ mental models (Doyle, 1997). As identified earlier, the mental model is an important 

factor in the accurate representation of a system (Arnold & Wade, 2017). When students use SM 

tools, they are able to depict their internal representation and understanding of the system in an 

external environment, something Hung (2009) referred to as externalization. Externalization 

enables students to: (a) identify and represent causal relationships (Jonassen, 2000); (b) visualize 

the underlying structure of the system; and (c) internally and externally validate their mental 

model (Hung, 2009). These benefits of SM could enhance mechanical engineering students 

learning outcomes. The following section discusses mechanical engineering education and how 

SM instructional strategies could be implemented. 
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Mechanical Engineering Education: How Engineers Use of Knowledge 

Mechanical engineering is “the branch of engineering dealing with the design, 

construction, operation, and maintenance of machine” (Dixit, Hazarika, & Davim, 2017, p. 4). 

Mechanical engineers apply scientific knowledge (e.g., mathematics, chemistry, and physics) in 

designing, constructing, and maintaining processes and systems. It is an applied science that 

involves applying theories, principles, and concepts to solve problems. Mechanical engineering 

education incorporates principles and concepts from physics and mathematics (Dixit, Hazarika, 

& Davim, 2017). These principles and concepts do not only provide a foundation for higher-level 

learning; they are central to applying knowledge in real-world situations.  

The use of knowledge in mechanical engineering is highly application-based. For 

instance, mechanical engineering experts apply their technical knowledge and concepts to solve 

problems in a real-world context. While this process might appear intuitive to experts, it requires 

a highly complex cognitive process. The cognitive process involves making connections between 

concepts and real practical applications. This is an important step in knowledge integration and 

application. Unlike novice problem solvers, experts have developed a multifaceted conceptual 

understanding of the content domain (Anderson & Schönborn, 2008) and have constructed a 

mental model of the problem-solving process. Hence, for students to acquire similar 

competencies like the experts, they need to gain skills like specialized content knowledge, 

knowledge application, problem-solving skills, and system thinking skills (ABET Criteria for 

Accrediting Engineering Programs, 2018; Passow & Passow, 2017). These learning outcomes are 

discussed below. 

Despite the importance of mechanical engineering, educational researchers have 

expressed similar concerns attributed to engineering education in terms of its ineffectiveness in 
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meeting modern engineers’ needs. For instance, Kirkpatrick et al. (2011) stated that most 

employers reported that recent graduates are not well prepared for workplace challenges. Other 

researchers (Buch & Bucciarelli, 2015; Falconer, 2016; Felder, 2012) shared similar concerns. 

Mechanical Engineering Education: Learning Outcomes and Gaps 

Factual Knowledge  

Factual knowledge, also called declarative knowledge, is the basic information of content 

elements such as facts, concepts, definitions, terminologies, mathematical symbols, and 

vocabularies used in the discipline (Anderson & Bloom, 2001; Krathwohl, 2002). Mechanical 

engineering students need to master terms and concepts like stress, work, energy, power, and 

force, as well as principles like fluid mechanics and thermodynamic principles. This basic 

knowledge forms the foundation essential in developing higher-order learning and complex 

thinking skills like problem-solving and critical thinking (Willingham, 2009; Roediger et al., 

2014). Essentially, factual knowledge can support students’ conceptual understanding and, 

therefore, bolster their application knowledge and problem-solving skills (Huba & Freed, 2000).  

It is important for engineering education to promote factual knowledge (Hoffmann, 

2008). According to Frise et al. (2003), students must acquire factual and application knowledge 

to meet engineering workplace skill requirements. This is not just important for students to 

understand technical terminologies used by mechanical engineering experts, but also to help 

them translate theories into practice (Warsame, 2017). Moreover, understanding mechanical 

engineering phenomena such as heat transfer requires students to have factual knowledge of 

terms and concepts like conduction, heat exchange, and thermal energy. In other words, without 

concrete prior knowledge about these terms, students may find it difficult to understand the topic 

of heat transfer.  
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While engineering students could memorize basic engineering terminologies and 

concepts, Bankel et al. (2005) revealed that most could not apply their knowledge in a real-world 

context. This might be because most of these facts are presented to students with little or no 

situational context, thereby failing to establish the relevance of the content (Buch & Bucciarelli, 

2015). As a result, students’ knowledge exists in isolation and the concepts learned are 

disconnected in the memory (Anderson & Schönborn, 2008), thus making it difficult or even 

impossible to use during application. Indeed, knowledge in the memory remains inactive until 

students know how to meaningfully connect and apply them (Anderson & Schönborn, 2008). 

Furthermore, prior researchers suggest that students have difficulty grasping new abstract 

information that is not effectively related to their prior knowledge or experience (Williams & 

Cavallo, 1995; Felder et al., 2000). Abstract concepts are unseen, invisible concepts that cannot 

be directly observed by students. For example, thermodynamics, a core topic in engineering, 

comprises concepts like temperature, heat, energy, and pressure that are often considered abstract 

and, therefore, difficult for students to understand (Kamble & Tembe, 2013). In fact, a number of 

studies have reported that students have difficulty understanding thermodynamics (Clark, 

Thompson, & Mountcastle, 2014; Turns et al., 2013).  

Conceptual Knowledge  

Conceptual knowledge has been described as the ‘knowledge of concepts’ (Byrnes & 

Wasik, 1991; Rittle-Johnson, Siegler, & Alibali, 2001). It is not just memorizing or 

understanding concepts and facts; it is also the “understanding of the essential parts and cause-

effect relationships that exist within a system” (Guenther, 1998, p. 289). The relationship aspect 

of conceptual understanding was emphasized in Hiebert's writing. Hiebert (2013) stated that 

“conceptual knowledge is characterized most clearly as knowledge-rich in relationships. It can 
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be thought of as a connected web of knowledge, a network in which the linking relationships are 

as prominent as the discrete pieces of information” (p. 3-4). These definitions clearly emphasize 

that conceptual knowledge involves understanding concepts and the interconnections between 

the concepts (Davis, 2013; Rittle-Johnson & Schneider, 2015). 

Canobi (2009) presented a slightly different description of conceptual knowledge. 

According to Canobi, conceptual knowledge “involves knowledge about the underlying unifying 

principles–the structure of the problem domain” (p. 132). Canobi’s description of conceptual 

knowledge highlighted the underlying principles of the domain. This suggests that conceptual 

knowledge is an essential element that is not only about understanding the concepts but also 

about conceptualizing the underlying structure in a specific problem domain. Moreover, Crawley 

et al. (2007) argued that conceptual knowledge is more than just applying principles and 

concepts; rather, it involves a much ‘deeper working knowledge’ in a given domain.   

Generally, students must be able to construct their conceptual knowledge in the problem 

domain to become effective problem solvers (Lucangeli, Tressoldi, & Cendron, 1998). For 

instance, mechanical engineering students need to identify and connect multiple concepts that is 

required to solve engineering questions. Making these connections will enable them to 

understand the concepts associated with the problem and their underlying relationships, thus 

promoting problem space construction (Rittle‐ Johnson, 2006). Problem space construction is a 

crucial component in problem-solving (Hung, 2009). Hence, it is important for mechanical 

engineering graduates to develop the conceptual connections between the classroom theories and 

practical applications (Warsame, 2017).   

Researchers have reported students’ difficulty in developing and applying conceptual 

understanding in mechanical engineering. For instance, Wattanakasiwich et al. (2013) used a 
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conceptual tool to measure students’ thermodynamics understanding. The researchers reported 

that students performed better on questions of heat and temperature, but fell short on 

thermodynamics questions. The researchers concluded that students have difficulty in 

conceptualizing and integrating thermodynamics concepts. Similarly, other researchers also 

reported students’ difficulty in conceptual understanding in thermodynamics (Clark, Thompson, 

& Mountcastle, 2014; Turns et al., 2013).       

This instructional difficulty might be linked to how students approach solving 

engineering questions. Most students tend to use the functional-reduction reasoning approach to 

solve complex engineering problems (Wattanakasiwich et al., 2013). This approach involves 

reducing multiple variables of interest to only two so that students can understand relationships 

using linear-causal reasoning (Rozier & Viennot 1991). The functional-reduction approach is 

similar to the reductionist perspective discussed earlier in which problem-solvers attempt to 

break down systems into parts in order to understand it. Clearly, this approach does not seem to 

be effective in solving conceptual problems.  

Application Knowledge  

Application knowledge is the knowledge required to apply or use a procedure or content 

knowledge in a specific context (Krathwohl, 2002). This kind of knowledge requires students to 

apply factual information learned in class to solve specific problems. Teaching students’ factual 

knowledge alone does not guarantee that they will be able to apply the knowledge to solve 

problems. This is because students’ ability to apply their knowledge to different contexts is not 

intuitive; it has to be learned. In fact, Bankel et al. (2005) indicated that most faculty expect 

students to be able to apply knowledge; however, students often cannot apply what they have 

learned (use their knowledge) because they have not been taught how to apply it.  



 38 

Engineering education needs to promote students’ application knowledge. This is because 

engineering practices emphasize theoretical concepts and practical application (Goodhew, 2010; 

Tan, 2014; Welch, 2007). Specifically, mechanical engineering education must prepare students 

to be able to apply specialized knowledge, principles, and theories in complex and dynamic real-

life contexts (Kirkpatrick et al. 2011; Warsame, 2017). According to Eggen and Kauchak (2003), 

the first step for engineering students to acquire application knowledge is to gain factual 

information such as equations, terminologies, formulas, principles, and algorithms, and then 

learn how to apply the knowledge to solve problems. Other researchers, like Jonassen (1999), 

suggested that to promote application knowledge, instructions should be presented in ways to 

guide students to meaningfully connect the abstract content knowledge with the situations 

(where) and how the knowledge can be applied in real life. Meaningful, logical, and 

contextualized instructions could help students trigger prior knowledge and activate their pre-

existing schema to help them connect, understand, and interpret the content (Schunk, 2012). 

Schemas are internal cognitive processing networks that help organize information into 

meaningful patterns (Rumelhart, 2017; Schunk, 2012).  

Despite the importance of application knowledge, a number of studies reported that 

mechanical engineers are unable to apply their knowledge effectively. For instance, 

Wattanakasiwich et al. (2013) conducted a study on thermodynamics and reported that students 

had difficulty applying thermodynamics concepts to solve problems. Similarly, other researchers 

reported that students have issues with applying their knowledge (e.g., Dunlosky et al., 2013; 

Khoshaim & Aiadi, 2018). Students’ inability to apply gained knowledge could be partly 

attributed to the manner in which instruction is delivered (Biggs, 1999). Khoshaim and Aiadi 

(2018) emphasized that students need to learn and apply concepts and principles in practical, 



 39 

real-world situations to gain application knowledge. Essentially, application knowledge is 

acquired through active engagement with the content and solving real-life problems.  

Problem-solving Skills 

A problem exists when there are an unknown entity and a need to find it (Jonassen, 

2004). According to Mayer (1989), a problem consists of the given state, the goal state, and the 

obstacle between the given and the goal state. Problems vary by the kind of knowledge required 

to solve them, the context of the problem, the complexity, and its structure. For instance, 

problems can be well-structured or ill-structured. Well-structured problems (also known as 

‘textbook problems’) are highly structured, linear, and non-complex, requiring only one right 

solution. In contrast, ill-structured problems, mostly compared with real-world problems, are 

non-linear, complex, and have multiple path solutions (Jonassen, 2004; Jonassen & Hung, 2008). 

Problem-solving is the process of understanding the unknowns and gaps that exist 

between the present and the desired state (Hung et al., 2008). Jonassen (2004) argued that 

problem-solvers need to understand the problem and construct its problem space. The quality of 

the problem space will determine the effectiveness of the problem-solving process (Hung, 2009). 

Problem space construction involves identifying the problem scope and variables, current and 

goal state of the problem, and the inter-causal relationships between its elements (Mayer, 1989; 

Newell & Simon, 1972; Reimann & Chi, 1989). This process also enables problem solvers to 

develop mental models for the problem domain and external visualization (Hung, 2009).  

Problem-solving is an important skill set for today’s mechanical engineering graduates 

(Ismail et al., 2019; Yadav et al., 2010). In fact, the ABET Criterion (2016) stated that students 

learning outcomes include developing “an ability to identify, formulate, and solve engineering 

problems” (p. 3). Furthermore, mechanical engineering experts emphasized the development of 
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problem-solving skills among students to prepare them for real-world problems (Kirkpatrick et 

al. 2011). Despite the importance of this skill, research suggests that students lack problem-

solving skills in solving real-world problems (Khoshaim & Aiadi, 2018; Luo et al., 2015; Slavin, 

2019). This problem may be linked to the students’ inability to transfer concepts learned in class 

to solve real-world problems. Hence, to effectively solve real-world problems, mechanical 

engineering students need to be able to identify and define the problem and construct problem 

spaces during the problem-solving process.   

Bridging the Gap: Why use SM for Mechanical Engineering Education? 

As revealed, there is a gap between classroom theory and actual practice in mechanical 

engineering (Kirkpatrick et al. 2011; Warsame, 2017). Researchers have recommended active 

learning strategies (like SM) to help bridge this gap (Falconer, 2016; Hung & Amida, 2020; 

Manteufel, 2015; Wattanakasiwich et al., 2013). Indeed, SM instructional strategies might be 

particularly useful for facilitating mechanical engineering learning outcomes. This is because SM 

instructional strategy enables students to be engaged with the content and practice how to apply 

their knowledge to solve real-world problems. Notably, SM instructional strategy could help 

mechanical engineering students who are unlikely to use a single concept during problem-

solving and to think systematically considering the relationships between relevant concepts 

during the problem-solving process. Hence, SM might help students develop a systemic 

approach to addressing problems.  

SM and Promoting Factual knowledge 

SM instruction strategy might help promote factual knowledge in mechanical engineering 

students. External visual representation could help students reduce the level of abstraction and 

visualize abstract concepts, thereby enhancing their factual knowledge (Uttal & O'Doherty, 
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2008). Students define the system and its parts during system modeling by identifying feedback 

in the system and recognizing the inter-causal relationships between the parts (Sweeney & 

Sterman, 2000). These active tasks enable students to demonstrate and consolidate their factual 

knowledge. By so doing, students can meaningfully organize their mental models such that they 

are easy for them to relate to and make necessary connections and establish the relevance of the 

content. Hence, SM has the potential to promote students’ factual knowledge by organizing facts, 

recognizing interconnections between parts, and describing concepts.  

In SM instructional strategy, external visual representations can be used in education to 

present information, simulate scientific laws, and describe an engineering concept. For instance, 

the visual representation of ohm’s law showing the relationship between voltage, current, and 

resistance – can be used to clarify the misconceptions on the relationships between the variables. 

When students interact with external visual representations, they are able to utilize clues to show 

the phenomenon; it can serve as a simulation to help them review their understanding and test 

their hypotheses (Rapp & Kurby, 2008).   

SM and Enhancing Conceptual knowledge  

SM instructional strategy could aid the construction of conceptual knowledge (Hung, 

2008). This is because in the SM approach students are encouraged to examine the system’s 

holistic behavior and the interactions between its parts and the whole (Sweeney & Sterman, 

2000). This will enable students to see the entire system and understand the system’s underlying 

structure, which is important in defining the problem domain. SM could also allow students to 

visualize abstract concepts and conceptualize the operations dynamic systems (Hung, 2009; 

Verhoeff et al., 2018), thereby promoting their conceptual knowledge. 
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Several studies have shown that SM instructional strategy can enhance students’ 

conceptual understanding. For instance, Prince, Vigeant, and Nottis (2009) conducted a 

longitudinal study to determine whether inquiry-based models for conceptual change could be 

effective in mechanical engineering undergraduate students. Five activities were used to address 

the target concept’s conceptual issue—three in heat transfer and two in thermodynamics—

spanning from 2005 to 2008. In all, the study used two physical experiments and three computer 

simulations models. Data were collected from all five activities, including heat transfer in boiling 

liquid nitrogen, and heat transfer in chipped and block ice, both using physical inquiry-based 

activities, and heat transfer in hot blocks using simulation model inquiry-based activities. 

Students also learned the concept of thermodynamics in boiling liquid nitrogen and entropy of 

mixing using simulation models. The study was a pre- and post-test design in which students 

answered conceptual questions on target concepts and then a post long term test (assessing long 

term retention). Student learning outcomes were recorded using concept-inventories assessing 

conceptual change as well as open-ended questions. The researchers concluded that the inquiry 

activities simulation model significantly improved students’ understanding of heat transfer and 

thermodynamics. The study also reported that students showed a long-term (after ten weeks) 

knowledge gain in both concepts when students used the model.  

In another study, Grotzer and Basca (2003) investigated the impact of grasping the 

underlying causal structure (causal modeling) on students’ understanding of ecosystems among 

elementary school students. The researcher implemented an intervention to address third graders’ 

(N = 30) difficulty in learning ecosystem. The study involved three conditions: causal activities 

with discussion (CAD group), causal activities only (CAO group), and no causal activities (CON 

- control group). The causal structure activities involved helping students see the underlying 
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cause and effect relation in the ecosystem. During the causal structure activities, the students 

modeled the food webs by illustrating how the sun's energy is cycled through the ecosystem. 

Students in the CAO group then discussed the connection asking questions like, “what would 

happen if all of the green plants were to disappear” (p. 20). The study data were collected using 

pre- and post-clinical interviews, which assessed students’ understanding of links and the 

decomposition process within the ecosystem. A sample interview question was, “how do students 

initially describe the cause and effect relationships in a forest or pond food web?” (p. 19).  The 

result suggested that the students in the CAD group significantly showed a better understanding 

of the relationships within an ecosystem than the CON group. The CAD group also showed a 

significantly higher understanding of the ecosystem’s decomposition process than their 

counterparts. 

In a more recent study, system modeling was used to promote conceptual understanding 

among high school science students (Rates, Mulvey, & Feldon, 2016). Rates and colleagues 

utilized an agent-based simulation model to improve students’ understanding of complex 

systems. In their study, the students were required to detail their understanding of an ecosystem 

before and after the modeling activity. The students’ models were then evaluated. The results 

suggested a significant difference in students’ conceptual understanding. 

SM and Facilitating Application Knowledge 

SM instructional strategy presents students with an opportunity to facilitate their transfer 

of knowledge gained and apply in real-world problems. During the SM activities, students are 

encouraged to recall facts and concepts that relate to the problems under examination. This helps 

students link their prior knowledge to current instructional content. The students can then model 

the non-linear relationships between the concepts as it relates to the problem. In doing so, 
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students organize their knowledge and contextualize instructional content to promote meaningful 

learning, thereby enhancing application knowledge. In SM, students identify and represent the 

inter-causal relationships within a system. As a result, students promote their understanding of 

the system and enhance their application knowledge. Hence, instructors seeking to improve their 

students’ application knowledge may benefit from implementing a learner-centered instructional 

approach like SM. 

A number of studies reported a positive effect of SM instructional strategy on students’ 

application knowledge. For instance, Hubbs, Parent, and Stoltzfus (2017) examined the impact of 

modeling on undergraduate understanding and application of meiosis in biology. Participants 

(N=381) were undergraduate students in an introductory biology class. The students were asked 

to review a scientific blog on human gametogenesis and develop a model using their 

understanding to model the meiosis process. The students then applied their knowledge in 

predicting scientific outcomes and relate it to other biological phenomena like mitosis. The 

researchers reported that students effectively mastered the understanding and application of 

meiosis after the modeling activities.      

In another study, Kamble and Tembe (2013) investigated the effect of concept maps, a 

type of external visual tool, on students’ achievement in a thermodynamics class. Forty-seven 

engineering students participated in the study. At the beginning of the study, the students were 

trained on how to design a concept map. The students were then asked to design their own 

concept maps based on their understanding of thermodynamics. Data were collected using a 

concept map, achievement test, and students’ perception survey. The concept maps assessed 

students’ abilities to related concepts and were graded using a rubric, while the achievement test 

was used to assess students’ application of thermodynamics. While the study did not report a 
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significant effect of the concept map, the researchers claimed that the activity helped improve 

students’ application knowledge based on the achievement scores. Also, the study findings 

indicated that students believed that the activities were helpful in understanding and applying 

thermodynamics concepts.  

SM and Improving Problem Solving Skills 

SM instructional strategy can help students develop problem-solving skills (Edson, 

2008). The SM instructional strategy allows the students to first consider the whole system in 

which the problem exists. This holistic view helps identify the problem boundaries, clarify the 

current and goal state, and recognize the gap. This will aid the students’ understanding of the 

problem, an important step in the problem-solving process. Indeed, system thinkers solve 

complex problems by examining the problem’s underlying mechanism (Frank, 2002; Hung, 

2009). Students can then define the problem and construct their problem space to solve the given 

problem with their understanding of the underlying mechanism. Hence, SM instructional 

strategies have the potential to help students develop their problem-solving skills in mechanical 

engineering education. 

 Previous studies have highlighted the benefits of SM instructional strategy in improving 

students’ problem-solving skills. For instance, Mousoulides, Christou, and Sriraman (2008) 

examined the effect of modeling in problem-solving mathematical problems among high school 

students. The participants in the study (N=403) were divided into an experimental and control 

group. The experimental group participated in six modeling activities for three months. The 

activities included an introductory module on modeling and group tasks for students to create 

their model to solve mathematical problems. The control group, on the other hand, worked in the 

traditional mathematics instructions. A modeling ability test was administered three times to all 
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participants in the study: at the beginning, during, and at the end. The test assessed participants’ 

modeling and problem-solving abilities. The researchers reported a statistical difference between 

the two groups in relation to students modeling abilities over time. Thus, they claimed that 

students’ modeling and problem-solving abilities improved in the modeling group.   

 In another study, DeFranco, Neill, and Clariana (2011) proposed a cognitive 

collaborative model (CCM) to enhance problem-solving in engineering teams and examined 

whether the model promoted a shared mental model among the team members. The CCM is an 

iterative model developed to facilitate problem-solving in a collaborative environment. It has six 

stages, including problem formulation, solution planning, solution design, solution translation, 

solution testing, and solution delivery. DeFranco et al.’s 2011 study only focused on the first two 

stages. The researchers reported three different experiments using the CCM. The first two 

experiments tested the hypothesis on whether CCM can improve the problem-solving process 

during a collaborative team task. In the first experiment, participants (computer science students) 

were randomly assigned into groups of three, and each team was randomly assigned into two 

groups – CCM group and no CCM group (control). Both groups were given the same problem 

task to design a supermarket simulation application. Data were collected using the Problem 

Formulation Document and the Solution Plan Document. Both documents were assessed to 

examine the problem-solving outcomes by expert judges. The second experiment was conducted 

among a different group of students (system design students). The experiment followed a similar 

procedure with the first except that the data, in this case, were collected using project 

completeness reflected in submitted design artifacts – use cases, sequence graphs, and system 

architecture documentation. The results from both experiments indicated that the CCM group 

significantly outperformed their counterpart. In the third experiment, the researchers examined 
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whether CCM's effectiveness in the other experiments was because it promoted a shared mental 

model among team members. A different group of students (software and system engineering 

students) put in groups of three was randomly selected and placed into two groups – CCM group 

and no CCM group (control). All teams followed the same procedures described earlier in 

completing the problem-solving task. Members of each team were required to create individual 

concept maps that depict their mental model throughout the team activities. Students’ concept 

maps were assessed for overlap, similarity, and commonality using Pathfinder analysis of 

concepts and their connections at the end of the task. The result indicated that the CCM group 

member has similar concept maps indicating that CCM helped students create a shared mental 

model.  

The literature on system modeling instructional strategy has highlighted several benefits 

of its use in promoting students learning outcomes. While the literature on SM in mechanical 

engineering is scarce, empirical evidence of its effectiveness exists in other disciplines like 

management, business, mathematics, biology, and science. 

Conceptual Framework 

The current study explored the efficacy of system modeling (SM) instructional strategy in 

a mechanical engineering course. Specifically, the study sought to understand students’ 

perceptions and experiences with the use of system modeling in enhancing their learning 

outcomes. The study focuses on learning outcomes such as factual, application, and conceptual 

knowledge, as well as students’ self-perception of problem-solving and system thinking skills.  

Figure 6 displays the conceptual framework of the study. 
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Figure 6. Conceptual Framework. 
 

Summary 

This literature review described the historical evolution of system modeling and system 

thinking, its definitions, and theoretical foundations. The chapter also discussed the 

characteristics of system modeling as a holistic instructional approach and the tools used in its 

implementations. An overview of the rationale and the effect of system modeling instructional 

strategy on student learning outcomes was also described. A discussion on the structure and 

challenges of mechanical engineering education and potential benefits of systems modeling 

instructional strategy in engineering. The final part of the literature review presented an overview 

of studies that implemented system modeling and thinking instructional strategy in education.   

           Evidence from the literature on the general characteristics and structure of SM suggests 

that there is a consensus among researchers that SM instructional strategy has the potential to 

provide an active and engaging learning experience, thereby promoting student learning 

outcomes (Davidz & Deborah, 2007; Hung 2008; Hmelo-Silver et al., 2017; Kordova & Frank, 

2018; Plate, 2010; Tripto et al., 2017). The challenges confronting engineering education is how 

to present instructions such that students can systemically see the connections between 

engineering concepts learned in class and how these concepts interact in the real world (Felder, 

2012). Previous literature on SM and ST has described some of SM’s effects on student learning 

outcomes, especially in promoting system thinking and causal reasoning skills (Hung, 2008). 
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However, prior studies have not extensively explored the benefit of SM instructional strategy 

among mechanical engineering students considering learning outcomes such as application and 

conceptual knowledge and problem-solving skills. Moreover, while a few studies have examined 

the relationship between SM and problem-solving skills (e.g., Hung, 2009), empirical evidence 

of this relationship is limited in engineering education. Furthermore, this study is also unique 

because it uses a different methodology to assess students learning outcomes. For instance, 

problem-solving skills will be assessed in this study using the Problem-Solving Inventory (PSI). 

           The implementation of SM among mechanical engineering students will provide insight 

and understanding about the effects of SM on students learning outcomes. The current study will 

also allow instructors to compare the potential benefit of SM on engineering students’ learning 

outcomes and determine whether it is a viable instructional approach in mechanical engineering. 

To summarize, the current study purpose, rationale, design, and operational definitions of 

variables were informed by the literature reviewed in this chapter. The next chapter, Chapter III, 

will describe the research methodology used in this study. 
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CHAPTER III 
 

METHODOLOGY 

The purpose of this study is to explore the efficacy of system modeling (SM) 

instructional strategy in a mechanical engineering course. Specifically, the study seeks to 

understand students’ perceptions and experiences using system modeling to enhance their 

learning. The study focuses on learning outcomes such as factual, application, and conceptual 

knowledge, as well as students’ self-perception of problem-solving and system thinking skills.   

Research Questions  

1. What are students’ perceived efficacy of the use of SM instructional approach?  

2. How do students describe their experience with SM instructional strategy in relation to 

their factual, conceptual, and application knowledge?  

3. What perceptions do students have regarding the use of SM instructional approach in 

relation to problem-solving and system thinking skills? 

Research Design 

This study employs a qualitative approach to understand engineering students’ 

perceptions and experiences using system modeling. The researcher adopted a qualitative 

approach because it is well suited to address the study’s research questions. Moreover, Creswell 

and Creswell (2017) argue that qualitative research is an approach that explores the meaning of 

participants’ experience as well as the understanding they attribute to a particular context or 

phenomenon. In addition, according to Merriam (1998), qualitative studies can explore 

participants’ “meaning and understanding through their narratives, how they make sense of the 
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world and their experiences” (p. 6). Ultimately, this approach enables the researcher to 

understand students’ experiences and gain better insight into how students learn using the SM 

instructional strategy.     

Study Setting and Participants  

The study was conducted within the context of an undergraduate mechanical engineering 

course at a Midwestern university in the United States. The students were senior-level students 

enrolled in a Machine Component Design (ME 323) course during the Spring 2021 semester. 

The ME 323 course is advanced mechanical engineering course introduces the fundamentals of 

machine component design elements such as springs, bearings, gears, threaded components, and 

bonded joints. In this course, students learn the power screws and apply them to solve problems. 

The course is originally taught in the traditional instructor-led, lecture-type format with content 

delivered by the instructor and textbook references provided to students. Though the course was 

selected for this study partly because of the researcher’s convenience and accessibility, it was 

also a course that requires students to demonstrate their factual, conceptual, and application 

knowledge competencies along with problem-solving and system thinking skills. The learning 

goals of the ME 323 course aligned with the purpose of this study. Hence, this setting offers an 

opportunity to implement the SM instructional approach and evaluate its impact on students’ 

learning experience. The mechanical engineering topic that reviewed in this study was the power 

screw concept. 

Topic: Power Screw 

 The power screw is an important machine component in mechanical engineering. Power 

screw converts rotational motion to linear motion and is applied in several mechanical systems 

used in lifting load, such as screw jacks, or to apply large force, such as in presses (Juvinail & 
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Marshek, 2012). The power screw concept focuses on the estimating the screw torque required to 

raise or lower the given load. This concept involves understanding the relationships between the 

friction coefficients, tangential forces (q), mean diameter of the thread contact (dm), and the 

specified load.   

Participants 

The participants in this study were enrolled in ME 323 during the 2021 Spring semester. 

The students were mostly seniors, completing undergraduate degrees in mechanical engineering 

at the university. The study was conducted at a Upper Midwest university where students were 

expected to have completed Mechanics of Materials (ENGR 203) prior to enrolling in ME 323.  

The study invitation email was sent to the participants to explain the purpose of the study 

and invite them to participate (Appendix A). After the initial email, a follow-up reminder was 

sent to the students. The recruitment phase lasted for about 14 days. The goal was to recruit at 

least eight students.  

Data Collection Methods 

This exploratory study employs multiple data sources to ensure richness of data and data 

triangulation (see Figure 7). This allowed the researcher to gain a comprehensive understanding 

of students’ perceptions of the SM instructional approach. The interview transcripts were the 

primary source of data collection and the students’ artifacts, such as the perceived problem-

solving skills survey and system thinking diagram, are the secondary sources.  
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Figure 7. Qualitative Design. This figure illustrates the Study Research Design  

Interview Transcripts 

The interview transcripts were the primary data collection source. A purposeful sampling 

technique was employed to recruit mechanical engineering students to participate in the study. 

The sampling was homogeneous to ensure that all of the participants had similar experiences and 

backgrounds (Jacobsen, 2020). Textual data was collected via interviews using semi-structured 

questions and probing. The semi-structured questions were drafted to elicit the participants’ 

perceptions and narratives of their experiences using the SM instructional approach and how it 

impacted their learning outcomes. The semi-structured interview questions include: the 

following:  
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• Explain how the system modeling instructional strategy influenced your learning 

experience (if at all)?  

• What aspects of your learning experience were influenced?  

• Could you describe how the system modeling instructional strategy has affected your 

problem-solving skills?  

• Can you describe how system modeling instructional strategy has affected your ability 

to apply knowledge to address real world problems?  

• Do you think that the system modeling instructional strategy (SM) has impacted your 

conceptual knowledge of mechanical engineering?  

• Could you describe how the system modeling instructional strategy (SM) has affected 

your factual knowledge?    

Interview sessions were audio and video recorded to generate transcripts. All recordings 

were transcribed. The following precautions were taken during the qualitative analysis to 

improve the validity, credibility, transferability, and trustworthiness of the results (Creswell and 

Creswell 2017; Guba and Lincoln 1989). First, only direct verbal quotations from participants 

were used in the analysis. Also, data triangulation of sources by integrating multiple data 

sources, and the final transcript were verified and double-checked with the participants as well as 

integrating students’ artifacts.  

The participants’ privacy and confidentiality was protected by using pseudo names, thus 

hiding the real names of the participants. All interpretations from this study were drawn from the 

data, and precautions were made to prevent personal assumptions or biases from greatly 

influencing the result. The study is intended to gain an in-depth understanding of the students’ 
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perspectives and thought processes about the use of system modeling in a mechanical 

engineering course.  

Students’ Artifacts 

Yin (2017) recommended including artifacts in inquiry qualitative studies alongside other 

data evidence. Moreover, prior qualitative research that explored system thinking and modeling 

among students have employed artifacts to gain insights on participants’ understanding of a 

phenomenon (Gillmeister, 2017). In the current study, students’ artifacts that were collected 

include a system thinking diagram and the PSI survey. These artifacts provided additional data 

on the influence of the SM instructional strategy on students’ perceived problem-solving skills 

and system thinking skills. By analyzing those data, more insight and understanding could be 

drawn on students’ learning experience with the use of SM instructional strategy. 

Students’ Perceived Problem-Solving Skills Survey (PSI). The PSI scale was 

developed by Heppner and Petersen (1982) to assess students’ self-perception of problem-

solving skills, PSS. This study adapted the PSI scale with the permission of the survey creator. 

The PSI scale has three constructs containing 9 items. The constructs include: (1) problem-

solving confidence (PSC), (2) approach-avoidance style (AAS), and (3) personal control (PC).  

In this study, the PSI survey assesses the students’ perception of problem-solving skills 

with reference to the completed activities. These included items such as ‘the SM task helped me 

to thinking about the multiple ways of solving a problem’ and ‘the SM task enable me to make a 

problem-solving plan that will almost certainly work’. On the PSI scale, students indicated their 

perceptions of PSS on a 6-point Likert scale (1 = Strongly Agree to 6 = Strongly Disagree). 

Students’ self-reported PSI scores was examined as part of the students’ artifacts.  
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Students’ System Thinking Diagrams. This study adopted a simple version of the 

Cognitive Mapping Assessment of System Thinking (CMAST) developed by Plate (2010). The 

CMAST is a cognitive tool used to examine students’ causal structure (mental model) of 

complex systems. Students’ abilities to develop an accurate causal structure of a system reflects 

their system thinking skills, which can be modeled/mapped using pencil and paper (Hopper & 

Stave, 2008). Students drew models on paper using causal loops, and stock and flow diagrams to 

model the system’s causal structure based on their understanding. Students’ models were then 

evaluated for quality and accuracy considering system thnking dimensions like identification of 

variables, linearity, interconnectivity, cause-effect relationship, and feedback loop processes.   

Procedure 

Prior to the commencement of the study, an approved Institutional Review Board IRB 

approval form was completed and submitted. The study began after the approval of the IRB. 

Participants were provided with a written informed consent form approved by the IRB via 

DocuSign at the beginning of the study (Appendix B). The consent form describes the aims of 

the study and what the participants did during the study.  

This study employed a qualitative approach to understand engineering students’ 

perceptions and experiences of using system modeling (see Figure 7). One week prior to the 

study, the study activities were explained to the students. The participants then received a 50-

minute lecture from the class professor on the power screw topic.   

After the lecture, the participants participated in problem-solving activities. They 

received a short system modeling training session and learned how to represent a system using 

causal loops diagrams. Participants then participated in a problem-solving activity (Appendix C) 

and modeled their understanding of the problem. The students drew causal loop diagrams using 
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pencil and paper (see Appendix G for model diagram examples). They then completed the PSI 

survey (Appendix D). Participants PSI scores and the pencil and paper diagrams were collected 

and analyzed as students’ artifacts.  

The participants took part in interview sessions via Zoom (see interview protocol 

Appendix E). There was a brief demographic questionnaire and discussion questions presented in 

an informal, conversational format that explored students’ learning experiences using the system 

modeling instructional approach (see interview questions Appendix F). The interview session 

was audiotaped and transcribed in order to analyze the data collected. The participants adopted 

pseudonym (fictional) names; their actual names were not audiotaped. 

Data Analysis 

The interview data was the primary data source in this study. The data was analyzed 

using a thematic approach. Creswell and Poth (2017) itemized a number of steps during the data 

analysis. First, the researcher developed bracketing, which involves setting aside personal 

perspective and biases about the phenomenon under investigation. Second, the data was collected 

from multiple individuals who had experienced the phenomenon or context–SM instructional 

strategy. Next, the researcher rigorously read the interview transcript to identify significant 

statements to be transformed into categories, which in turn was organized into textual and 

structural themes. This analysis approach allowed the researcher to deeply understand the 

common experience of the participants in regards to the phenomenon under study.       

Students’ artifacts were analyzed, i.e. students’ model diagrams were assessed to 

determine their system thinking skills using the Cognitive Mapping Assessment of System 

Thinking (CMAST). Also, the students’ perceived problem-solving skills were examined and 

included in the analysis of the data. The analyses provided more insight regarding the effect of 



 58 

SM instructional strategy on students’ learning.  

Reliability and Validity 

Unlike quantitative research, qualitative studies do not employ statistical tools to address 

the issue of reliability and validity. Instead, qualitative researchers are required to demonstrate 

measures that were utilized in the research to ensure the validity and reliability of the results. 

This study employed several procedures to validate and ensure reliable data collection.  

Reliability 

 To ensure the reliability of the data collected, the researchers developed specific 

participation criteria. Participants in this study were then selected based on the identified 

criterion. These criteria included enrollment in ME 303 during Fall 2021, had completed a 

prerequisite course ENGR 203 (Mechanics of Materials), and were either a junior or senior at the 

designated university completing a mechanical engineering degree. This ensured that the 

interviewees were reliable sources of information related to the system modeling experience as 

the students were all current mechanical engineering students at the time of data collection.  

 Additionally, the interview sessions were audio-recorded and transcribed verbatim to 

minimize the threat to the reliability of data collected. This was to ensure that participants’ 

perspectives were accurately represented, provide a reference for possible questions, and serve as 

evidence in the interpretation of the findings (Maxwell, 1992). 

Validity 

To promote the validity of the data collected, qualitative researchers suggested several 

measures, including data triangulation, peer review of interview questions, and member checking 

(Creswell, 2011; Roulston, 2010). Other measures included a sound process of thematic analysis 

(Braun & Clarke, 2006), a transparent audit trail, and the researcher’s personal reflections of 
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possible bias (Roulston, 2010).  

Data triangulation involved gathering data from multiple sources about a particular 

phenomenon (Roulston, 2010). In this study, the researcher collected data from multiple sources, 

and supplemented interview data with students’ artifacts (PSI survey & students’ causal model 

diagram). This ensured that the researcher could generate rich data to deeply understand 

students’ experiences about the phenomenon under study as well as evaluate students’ claims.   

Additionally, during the interview questions development, the researcher’s potential bias 

was reduced by employing peer review of interview questions. The study interview questions 

were peer-reviewed by qualitative researchers, and feedback received was used to revise the 

questions. This was to guarantee the neutrality of the questions and ensure the validity of the data 

collected.  

  Also, the researcher utilized member checking to minimize the threat to the validity of 

the results (Creswell, 2011; Roulston, 2010). Upon completion of interview transcriptions, the 

interviewees were sent their respective transcripts for their feedback and confirmation of 

accurate representation. The full scripts were sent via email to the interviewees, and they were 

encouraged to edit them, add, or withdraw any incorrect representations. The email exchanges 

provided a means to further understand students’ perspectives and validate the data collected.  

  Furthermore, data validity was promoted by employing a sound process of thematic 

analysis (Braun & Clarke, 2006). This process provided a clear, structured, and organized audit 

trail for the purpose of study result review. Moreover, an organized audit trail provides strong 

support for the identified themes in this study.      
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CHAPTER IV 

FINDINGS 

This qualitative study explores the efficacy of a system modeling (SM) instructional 

strategy in a mechanical engineering course. Specifically, the study seeks to understand students’ 

perceptions and experiences using system modeling to enhance their learning outcomes.  

The study focuses on learning outcomes such as factual, application, and conceptual 

knowledge, as well as students’ self-perception of problem-solving and system thinking skills.  

The main research questions investigated includes:  

1.  What are students’ perceived efficacy of the use of SM instructional approach?  

2.  How do students describe their experiences with SM instructional approach in 

relation to their factual, conceptual, and application knowledge?  

3. What perceptions do students have regarding the use of SM instructional approach in 

relation to problem-solving and system thinking skills? 

In this chapter, I provide summaries of participants’ narratives from eight interview 

sessions. While only one interview was conducted with each participants, several measures were 

employed to ensure validity of results. For instance, the interview data was supplemented with 

both the students artifacts and email interview during the member checking process. These 

additional measures enable the researcher to generate rich indepth data about the phenomenon 

under investigation.  
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The participants’ narratives offer insights and understanding about students’ perceptions 

and experiences using the system modeling instructional strategies. This chapter also includes 

interview data analysis using a thematic approach that involves identifying codes transformed 

into categories, which in turn was organized into themes. The analysis approach allowed me to 

understand more in depth the experiences of the participants relative to the phenomenon studied. 

Direct quotations were used to underline participants’ experiences in relation to the emerging 

themes. Additionally, I present findings from students’ artifacts analysis–students’ model 

diagrams and their perceived problem-solving skills PSI questionnaire. These analyses provide 

more insight about the effects of SM instructional strategy on students’ learning.  

Participants Demographic Information 

 This section includes demographic information about the study participants, including 

their educational and professional experiences. Eight students were interviewed and assigned 

pseudonyms to preserve anonymity; they are referred to as: Alex, Bob, Echo, Jack, Max, Sam, 

Sarah, and Tyler. The students have a variety of different backgrounds and work experiences 

with unique career motivations and varying perceptions. These distinctive, individual 

personalities contributed depth and complexity to the study narrative. Table 1 presents a 

summary of the participants’ educational and professional experiences.  
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Alex has an undergraduate degree in Physics; she is currently a senior majoring in 

mechanical engineering. She has more than 15 years of experience working as an Ocean 

engineer, which is a mix of mechanical, electrical, and chemical engineering. Alex stated that her 

decision to pursue a mechanical engineering career was because she enjoyed designing, 

constructing, and building something that works. She highlighted perseverance, grit, attention to 

detail, ethics and honesty as some of the most important skillsets to become a successful 

mechanical engineer.  

Bob is a junior in the mechanical engineering program. He has eight-months of 

engineering Co-op experience. Bob stated that his decision to pursue a mechanical engineering 

career was because of his interest in designing and building things that work. He recalled that 

prior to his Co-op experience, he believed that memorizing equations and formulas were the 

most important skills to be a successful engineer. However, after the Co-op his perspective 

changed and he now believes that it is one’s ability to ask the right questions.  

Table 1.   Participants’ Demography, Educational and Professional Experience 

Participants Age Range Gender Student 
Current Status 

Years of 
Experience 

1. Alex 31yrs. & above Female Senior +15 years 

2. Bob 20 – 25yrs. Male Junior 8 months 

3. Echo 20 – 25yrs. Female Junior 8 months 

4. Jack 31yrs. & above Male Senior +20 years 

5. Max 31yrs. & above Male Junior 20 years 

6. Sam 20 – 25yrs. Male Junior None 

7. Sarah 31yrs. & above Female Junior +7 years 

8. Tyler Below 20yrs.  Male Junior 1 year 
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Echo is a junior in the mechanical engineering program. She does not have much 

professional experience, but she was a Teaching Assistant in one of the engineering courses. 

Echo likes to “tinker” with things and enjoys math. She believes that mechanical engineering is 

the broadest engineering field and is a good fit for her. Echo argued that a successful engineer 

must have problem-solving skills and a “try hard attitude”.  

Jack is a senior pursuing his mechanical engineering undergraduate degree. Prior to 

enrollment in the engineering program, he obtained an associate degree from a junior college. He 

has more than twenty years of experience working in a local engine mechanic shop. He chose to 

pursue a degree in mechanical engineering because he likes to build and tinker with things. Jack 

believes that to be a successful engineer, one must know how things work and have a solid 

background in math.  

Max has an associate’s degree in mechanical engineering from a two-year college. He is 

now a junior seeking a bachelor’s degree in mechanical engineering. He has twenty years of 

experience in engineering–the first ten years he worked as a drafter and the last ten years he 

worked as a design engineer. Max revealed that he decided to pursue mechanical engineering 

because he is good at math and loves to problem-solve. He considers being organized and having 

good communication skills and the ability to clearly state steps in problem-solving as the key 

skillsets required for successful engineers.  

Sam is a junior completing his degree in mechanical engineering. He does not have a lot 

of professional experience but has completed multiple projects in several classes. Sam decided to 

pursue an engineering career because he enjoys learning how things work, why they work, how 

they can be improved, and problem-solving. He argues that successful engineers must be able to 

understand mathematical and engineering concepts.   
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Sarah has a bachelor’s degree in Nuclear Engineering Technology. She is a junior 

working on completing her undergraduate degree in mechanical engineering. Sarah has seven 

years of professional experience working as a nuclear technician. Her interest to learn about the 

design process and make better quality products spurred her interest to pursue an engineering 

career. Sarah believes that being able to integrate all the knowledge is an essential skillset for 

successful engineers. 

Tyler is a junior pursuing his bachelor’s degree in mechanical engineering. He has about 

a year of internship experience at an engineering company. Tyler has always wanted to design 

and build things since he was in high school and believes the mechanical engineering degree is a 

great fit. Tyler believes that to become a successful engineer one must be strong in math, and 

possess spatial reasoning skills, as well as critical thinking and analytical skills.  

Thematic Analysis of Interviews 

 A total of eight in-depth interviews was conducted to explore and understand students’ 

perceptions and experiences using the system modeling instructional strategy. The transcripts 

generated from the interviews were analyzed using thematic content analysis, which is the 

process of developing descriptive themes that involve identifying significant statements and 

codes, and then generating them  into meaningful categories (Moustakas, 1994; Vaismoradi, 

Turunen, & Bondas, 2013).  

A thematic analysis was used to address research question one: What are students’ 

perceived efficacy of the use of SM instructional approach? Using this analysis, I reviewed the 

transcripts and identified significant statements that were distilled into codes. The codes were 

grouped into meaningful categories and several themes emerged. A total of seven themes 
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emerged from the thematic analysis in relation to how students described their experiences with 

the SM approach. Table 2 shows the themes, categories, and their respective codes. 

Table 2. Thematic Analysis of Qualitative Data 
 
Themes 
 

Categories Codes 

Problem 
diagnosis 

Problem analysis  
 

x Visualize problem 
x Examine different parts of problem 
x Break down equation 
x Divide up problems into components 
 

Problem identification x Identifying the problem  
x Gaining knowledge of problem 
x Brainstorm the problem 
x Identify what is needed 

 
Querying the problem x Asking the right questions  

x Probing the problem  
 
 

Interconnection & 
interdependency 

Effect of variable 
change  

x Visualizing real effects 
x Manipulating variables prior to 

calculations 
x Understanding the effect of change on 

other variables as well as the output  
x Changing variables to get desired 

outcomes  
 

Interconnection x Identify interconnected parts 
x Intertwined (connected in multiple 

points) 
x Interrelated variables 

 
Concept’s linkage x Understand links between concepts 

x Linking equations 
x Connect different factual knowledge 
 

Wholeness and 
decision making 

Examining the 
wholeness 

x Step back to see bigger picture  
x Think about the end product 
x Tying concepts to define application 

 
Decision making x Identifying problem solutions  
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x Helps in decision making 
 

Linearity in 
Relationships 

Linear relationships  x Visualizing relationships  
x Breakdown into relationship  
x Create relationships 

 
Non-linear relationships 
 

x Multiple effects 
x Non-linear approach 

 
Organized 
Problem-Solving 
Approach 
 

Information 
organization  

x Helps arrange information  
x Organized approach  
x Categorize things 

 
Logical steps x Easy to follow 

x Logical flow  
x Step-by-step thinking process 

 
Good starting point for 
problem-solving 

x Identify starting point 
x Identify important variables  
x Eliminate insignificant variables 

 
External 
representation of 
causal 
relationship 

Cause and effect 
visualization 
 

x Seeing cause and effects  
x Identifying and thinking causal effect  
x Cause and effect charts 

 
System structure 
representation 
 

x See underlying system structure  
x System visual representation  
x Laying down system components 

 
Systematic and 
forward-thinking 
process 
 

Pattern thinking  x See patterns 
x Patterning thinking  
x Planning problem-solving 

 
Forward-thinking  
 

x Layout beforehand 
x Foresee and anticipate problems  
x Thinking ahead 

 
System thinking 
 

x Think systematically 
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Theme 1: Problem Diagnosis  

 Problem diagnosis requires examining the nature of the problem and asking questions 

like “what is the problem?” Many of the participants believed the system modeling instructional 

strategy promoted their ability to diagnose engineering problems. Several categories supported 

the development of this theme including problem analysis, problem identification, and problem 

querying (see Table 2).  

 The problem analysis codes include: visualize problem, examine different parts of 

problem, break down equation, and divide up problems into components. The code for problem 

identification includes identifying the problem, gaining knowledge of problem, brainstorming the 

problem, and identifying what is needed. Querying the problem codes includes asking the right 

questions and probing the problem and inquiring about the problem. Participants’ narratives that 

exemplified these categories are discussed below. 

 

Figure 8. Theme 1, Problem Diagnosis Code Map 

Problem analysis. The first category found for this theme was “analyzing the problem.” 

Many of the participants described their experiences using the system modeling (SM) with 

phrases like it helps in looking at the problems and understanding them, as well as helps in 
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breaking down problems, dividing problems into components, and picking problem apart. 

Participants indicated that the SM instructional strategy helped them break down the problems, 

thereby promoting problem understanding. For instance, Sam stated that when using the SM “… 

you’re breaking down a problem… that can help you a lot, allowing you to further understand 

the breakdown of your problem.” Like Sam, Sarah also expressed a positive reaction to the 

approach, maintaining that “the strategy helps you to divide up the problem into the different 

components… so you can fully understand the issue.”  

Other participants described their experiences expressing that the SM approach helped in 

breaking down the problem into common sense steps. For example, Max commented that, “I 

think the flow of it basically is a good experience and it breaks it down to, I would say common 

sense steps, but it also flows. It doesn’t go out and tend to do something different. It flows, nice 

and easy, that’s logical, and you can follow up pretty good.” 

Some of the participants believed that the SM approach assisted in breaking apart the 

problem not only to understand it, but also to help determine how to “attack it” or even delegate 

the problem among team members. Sarah stated that, “… if you kind of break it down into 

different areas and you can attack those different areas. And maybe divide up the different areas 

between … other people.”  

Participants interviewed also believed that the SM approach helped break down equations 

to promote understanding. Echo mentioned that “it kind of helped break down the equations we 

use in class to understand... doing so allowed me to kind of see formulas within the main 

equation.” Similarly, Sam thought that it could help identify the right equation. He stated that 

“… see what equation I need to throw them into… to get what I want out of the problem.”   
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Overall, the participants’ descriptions highlighted above aligned with Ackoff’s (2000) 

definition of the analysis approach of inquiry—the breaking down parts to examine them in 

isolation, focusing on revealing the problem structure, and helping to describe the problem. This 

problem-solving approach is considered fundamental in modern scientific methods.    

Problem identification. The second category under the problem diagnosis theme was 

problem identification. Many of the interview participants acknowledged the importance of 

problem identification during the problem-solving process. For instance, Jack stated: 

… if you don’t know what the problem is and be able to design or make a specific thing 

to solve that problem, you’re not doing anybody any good… you got to be able to see 

what the problem is, and then figure out a way to solve that problem. 

In describing their experiences with the SM approach, participants used phrases like 

seeing what the problem is, figuring out the problem, thinking and brainstorming the problem. 

Specifically, a number of participants highlighted how the approach promoted their knowledge 

of the problem. Sam said, “And it gives you a better idea of what exactly is going on here in this 

specific problem.” Like Sam, Sarah also said, “So you can tell … what is really the problem?”  

Interestingly, Sam also believed that the SM approach helped foster his thinking and 

brainstorming in a specific problem-solving situation. He stated:  

… allows you to further understand [what] you’re given, and it lets you think more and 

brainstorm more about–well what conceptual knowledge do I know? What can I, what 

can be applied here in this specific instance? 

Generally, the participants’ descriptions supported the prior research on problem-solving. 

For instance, researchers Rittle‐ Johnson (2006) and Hung (2009) suggested that defining and 

identifying the problem is an important aspect of the problem-solving process and it promotes 
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the construction of the problem space. Hence, identifying the problem is the first step in 

problem-solving (Jonassen, 2004; Newell & Simon, 1972; Reimann & Chi, 1989). 

Querying the problem. The third category discussed by participants was querying the 

problem. Participants in this study highlighted several examples of “querying the problem” and 

asking the right questions, a process they said was assisted by the SM approach. For instance, 

Bob hinted that: 

Well, you have a problem, I would say this part is failing, but you need to ask the 

 questions on why it's failing. Is it because of source A? Is it because of source B? or Is it 

 because it just the bad part? … but it’s asking the right questions.  

Sam, like Bob, presented an example where he was probing the question. He commented 

that, “because often times you’re, you’re given a task… Say, improve this product, improve this 

bearing… So, you’re given a problem. This bearing... fails easily. So, what can we do to improve 

that, to improve the longevity of this bearing?” For Jack, querying the problem involved asking 

“What’s causing the problem?” 

Some participants suggested that asking questions or probing during problem-solving 

might follow a specific pattern. Bob recalled common patterns in asking questions during the 

problem-solving process in his classes. He stated:  

Um, so, in my courses I’ve had so far, it always seems like there’s some sort of pattern ... 

Let’s say I have a beam, and I have a force on it. Okay, so the first question, what am I 

trying to find? Second question, what steps should I take to find it? Third question, can 

these steps be changed? Can they be simplified? Fourth question, how do I know my 

answer is correct? Fifth question, can I check this against someone else’s work? Can I 

find the example, which would support my idea of…I think I did it correctly this way?  
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Theme 2: Interconnection and Interdependency 

Interconnection and interdependency imply that all parts of the system or problem are 

connected and interrelated, thereby forming a network of things rather than isolated parts. Many 

of the participants believed the SM strategy promoted their ability to visualize interconnections 

and interdependencies within the given problem. Several categories supported the development 

of this theme including effect of variable change, interconnection, and concepts linkage (see 

Table 2).   

The effect of variable change codes included promoting visualizing real effects, 

manipulating variables prior to calculations, understanding the effect of change on other 

variables as well as the output, and changing variables to get desired outcomes. The code for 

interconnection included identifying interconnected parts, intertwined (connected in multiple 

points), and interrelated variables.  

Concept linkage was the final category and included codes like understanding links 

between concepts, tying concepts together, linking equations, and connecting different factual 

knowledge. Participants’ accounts that illustrated these categories are discussed below. 
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Figure 9. Theme 2, Interconnection and Interdependency Code Map 

The effect of variable change. The effect of variable change is the first category that 

informed this theme. Many of the participants interviewed used phrases like change one…what 

happens, adjust beforehand, understand total change, and impact of change on the output to 

describe their experiences applying the SM strategy. Their descriptions indicated that SM helped 

them to: 1) visualize effects of variable changes on other variables and on the output, 2) 

understand the total and practical effects of change, and 3) visualize the effect of variable 

manipulation prior to calculation. 

Participants gave specific examples of how the SM promoted their ability to visualize the 

effects of variable changes on other variables. Bob stated: “this single part could affect it that 

way... if this increases that must decrease, or if this increases this increase.” The other 

participants asserted that the SM approach aided in examining the effect of variable changes on 

the output. Sarah commented; “It made me think more about how different variables affect the 

outcome.” Like Sarah, Echo stated; “… if you were to change a certain part within that 

variable… how would that impact the output variable….” 

Also, interviewees believed that the SM promoted understanding of the total and practical 

effects of changes. Tyler commented; “… it gives you a better opportunity to understand the total 

changes you might see.” Alex highlighted that the approach provided a practical way of 

experiencing the effect of change. She stated: “having a sense for…, if I change just this one 

factor, what does that do to all the other components of the system… you can see what are the 

effects of this thing versus that thing in a very realistic way….” 

Interestingly, some of the participants contended that the SM approach helped in 

visualizing effect of variable manipulation prior to calculation of a given problem. Tyler 



 73 

commented: “…then I’d say okay, this is kind of the problem I would run into if I had messed 

with say the chord length, or this is the problem I would run into if I mess with the height or the 

thickness. So, I would adjust it beforehand. Instead of after running the calculations.” 

Interconnection. Participants described their experiences using the system modeling 

(SM) approach as promoting their ability to picture interconnections within the problem or 

system. For instance, Jack commented: “It got me thinking, first part, third part, how do they 

intertwine….” Also, Alex provided a comprehensive example of interconnections related to the 

problem-solving activity in this study. She stated: 

But yeah, so if you look at… changing the helix angle means that you can generate more 

torque as long as you have enough force to push it, but you can quickly get beyond the 

ability of a person to move that lever right. But it would change the amount of torque 

applied or a smaller range of motion, which could help if you’re in a confined space, but 

then if friction is a factor, well, greater diameter to generate torque, then you’re gonna 

have more friction, which then decreases your amount… So, everything’s kind of 

interconnected… 

Concept linkage. Some of the interviewees provided discussion about how the SM 

approach helped them to understand the links between concepts and formulas. Sarah mentioned 

that it “…helps to better understand how different concepts are linked.” Tyler also stated: “... it 

helps you understand better and then how to tie them in together… this concept can be tied 

together with this concept to define this application.”  

On the other hand, Echo had a different perspective. She believed that the approach was 

particularly helpful in identifying and linking formulas. Echo stated: “it allowed me to kind of 
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see formulas within the main equation. And doing so allowed me to kind of link it back to, like, 

even like calculus.”  

Theme 3: Wholeness and Decision Making  

Participants believed the SM strategy helped in viewing the bigger picture and promoted 

better decision-making during problem-solving. Several categories supported the development of 

this theme including examining the whole problem and decisions during problem-solving (see 

Table 2). The examining the whole codes includes stepping back to see the bigger picture, 

thinking about the end product, and tying concepts to define application. The decision-making 

category includes codes like identifying problem solutions and helps in decision making. 

Participants’ descriptions that exemplified these categories are discussed below. 

 

Figure 10. Theme 3, Wholeness and Decision-Making Code Map 

Examining the whole. Participants described how the SM approach assisted in 

examining the entire problem rather than an isolated linear process. Alex stated: “So rather than a 

really linear march through equations with numbers, it actually was step back, see the whole 

picture.” She emphasized the importance of seeing the bigger picture during problem-solving. 

Alex stressed: “Because if you’re going to actually build something that works, you really have 

to see the whole picture because you could build something that works on a lab bench but could 

never have any practical application or use.” For Jack, it was important to think about the final 



 75 

end product (bigger picture). He commented: “It got me to look at, like my homework problems 

in a bigger view. Okay, this is what I’m looking for, as an end product what will cause me to 

achieve this end product.” 

Decision-making. Many participants narrated the positive effect of the SM approach on 

their ability to make decisions during problem-solving. Sarah maintained that the approach 

helped in solving problems that involved manipulating variables to get desired outputs. She 

stated: “I guess it just helps to make decisions. You can… more easily see which are the 

variables that are easiest to control or to change, to get the desired outcome.” Sam contended that 

the SM strategy could aid decision making during problem-solving in the workplace. He 

suggested: “… it can create, you know those ideas, … it can create your ideas for finding your 

best solution to any given issue that you’re given in the workplace.”  

Theme 4: Linearity in Relationships  

 Participants described how the system modeling (SM) instructional strategy helped them 

visualize both linear and nonlinear relationships within the problem. Two main categories 

supported the development of this theme including linear relationships and non-linear 

relationships (see Table 2). Linear relationships codes include: visualize relationships, 

breakdown and create relationships. The codes for non-linear relationships include: multiple 

effects, and non-linear approach.  
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Figure 11. Theme 4, Linearity in Relationships Code Map 

Linear relationships. The first category within this theme found in the study was linear 

relationships. Participants described their experiences using the system modeling (SM) approach 

with phrases like, help find linear relationships, visualize a linear approach, breakdown into 

relationships, create and tie relationships. For instance, in referring to the SM approach, Sam 

said: “It’s basically asking you to find relationships between different variables… finding 

relationships that will let you further understand your material and make everything easier, 

which is always good.” For Alex, the approach was “… a very linear way of problem solving.” 

Similar to Alex’s description, Tyler stated that, “I mean because it’s basically a more 

comprehensive linear cause and effect chart”.   

Non-linear relationships. Non-linear relationship is the other category found within this 

theme. Non-linear relationship implies that changing one variable can have multiple non-linear 

effects on the other parts of the system. Participants interviewed in this study mentioned that the 

SM approach helped them to see and think about non-linear relationships within the problem. 

Alex gave an example to support how the approach helped in her thinking about non-linear 

relationships and multiple effects. She stated: “… you have to think way beyond the effect of just 

changing one thing.” Like Alex, Tyler also believed that the SM approach is a non-linear 

problem-solving approach. He said: “And it lets you, I guess, spiderweb your way … to figure 

out what has changed and why, or what should change and why.”  

Theme 5: Organize Problem-Solving Approach 

Many of the participants described the use of SM strategy as an organized problem- 

solving approach. A number of categories exemplified the development of this theme including 

information organization, logical steps, and good starting point for problem-solving (see Table 
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2). Information organization codes include: helps arrange information, has an organized 

approach, and categorizes things. Logical steps codes include: easy to follow, logical flow, and 

step-by-step thinking process. Good starting point for problem-solving codes includes: identify 

starting point, identify important variables, and eliminate insignificant variables. Participants’ 

narratives that illustrated these categories are discussed below. 

 

Figure 12. Theme 5, Organize Problem-Solving Approach Code Map 

Information organization. Participants in this study indicated the SM approach helped 

in the organization of information during problem-solving. Sarah stated: “Yeah, I think it 

provides you kind of an organized way to approach to approach a problem.” Bob echoed Sarah’s 

perception when he confirmed: “It has influenced me to try a new approach, and how I 

categorize, different things I learned.” Bob explained the organization helps during problem- 

solving. He stated that the SM approach “… organizes it [the problem] in a way… you can look 

and you can see what parts of this information you need to find.” 

 Logical steps. Interviewees in this study also believed that the SM approach was a 

logical step-by-step problem-solving process. Max explained: “I think the flow of it basically is a 

good experience… It doesn’t go out and tend to do something different. It flows, nice and easy, 
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that’s logical, and you can follow up pretty good.” He also highlighted the SM approach 

prevented the problem solver from skipping steps and jumping to the solution. Max emphasized: 

“You can’t just go one step to get the answer, you got to think about it, organize your thought 

process and go through step by step, solving whatever the problem is asking you to solve.”  

Good starting point for problem-solving. Participants interviewed held that the SM 

approach provided a good starting point for problem-solving. Knowing where to start solving a 

problem may be challenging for some students. This is supported by Echo’s statement: “… they 

don’t know how to start a problem.” Sam contended that the SM approach could present a good 

start in problem-solving. He stated: “Even though you might have to come back to the other 

ones, but this can give you a good, a good basis on what to start off, and it gives you a better, big 

picture.” 

Participants also believed the SM strategy helped identify important variables during 

problem-solving activities. Sarah mentioned: “It helps me be more aware of which variables are 

the ones that I need to pay attention to.” Alex presented a practical example to illustrate how the 

SM could help identify significant variables in problems. She stated:  

… I guess theoretically, the smallest little things, like, oh, what’s the temperature in the 

room that could cause a different thermal coefficient of expansion for different parts of 

that screw? But that’s going to be… a minor degree compared to what’s the helix angle 

that you’re using? Then you know you can say, big picture–I can just ignore the 

temperature effects right now, and just look at what that helix angle is going to do… You 

can evaluate realistically what is important than what’s not.” 

Sam hinted that the SM approach helped to eliminate insignificant variables.  
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Sam said: “And you can say, well, increasing a force on something will increase the 

overall torque, and I want a better torque, so now I have to look at force. So, by doing that, you 

can now kind of eliminate some variables, and consider other ones more.” 

Theme 6: External Representation of Causal Relationship 

 External representation of causal relationship implies depicting and describing the 

operations, structure, and underlying causal relationships that exist within a system. Participants 

interviewed believed the system modeling (SM) instructional strategy promoted their ability to 

externally represent their understanding of causal relationships in the problem. Several categories 

supported the development of this theme including cause and effect visualization as well as 

system structure representation (see Table 2). Cause and effect visualization codes include: 

seeing cause and effects, identifying and thinking about causal effect, and cause and effect 

charts. System structure representation codes include: see underlying system structure, system 

visual representation and laying down system components. Participants’ descriptions that 

exemplified these categories are discussed below. 

 

Figure 13. Theme 6, External Representation of Causal Relationship Code Map 

Cause and effect visualization. Cause and effect visualization is the first category within 

this theme. Interviewees in this study narrated how the SM approach influenced their cause-and-

effect visualization during problem-solving. Bob stated: “…this is the cause of this, if I decrease 
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this then my force over here must increase, that was very helpful and nice to have.” Similarly, 

Sam described specifically how the SM approach promoted the picturing of cause-effect 

relationships which helped during problem-solving. He said: 

So, by using this specific approach ... it forces you to kind of break things down into 

relationships, cause and effect–for the cause-and-effect diagram. And it gives you a better 

idea of what exactly is going on here in this specific problem. Once you know what’s 

going on, that’s what helps you to know, okay, so, if, if I have this cause and effect, I’m 

looking to get a certain effect, so which causes am I looking for? And you can say, well, 

increasing a force on something will increase the overall torque, and I want a better 

torque so now I have to look at force. So, by doing that, you can now kind of eliminate 

some variables, and consider other ones more. 

Representation of the system structure. This is the other category within the external 

representation of causal relationship theme. Participants indicated the SM approach aided their 

representation of the problem or system. Bob stated that the SM helped “… solve the problem by 

laying down what you know.” He explained further that it “... would give us a nice visual 

representation of what is happening... I’m a very visual hands-on learner.” Also, Sarah 

mentioned that SM could help “…you see what the different components are… [in the 

problem].” 

Theme 7: Systematic and Forward-Thinking Process 

Participants revealed how the SM approach provided a systematic and forward-thinking 

approach to problem-solving. Three main categories informed the development of this theme 

including: pattern thinking, forward-thinking, and system thinking (see Table 2). Pattern thinking 

codes include: help to see patterns, patterning your thinking, and planning problem-solving. 



 81 

Forward-thinking codes include: layout beforehand, foresee and anticipate problems, and 

thinking ahead. Participants’ descriptions that exemplified these categories are discussed below. 

 

Figure 14. Theme 7, Systematic and Forward-Thinking Process Code Map 

Pattern thinking. Interviewees in this study described how the SM approach aided them 

during the problem-solving activity by patterning their thinking. Alex hinted: “I guess it’s, um, 

like patterning your thinking. It’s teaching you to look at things in a certain way....” She 

explained: “...everything involved in category, without even realizing it, in categorizing what to 

tackle first, what’s the biggest, most important part to tackle.” Bob echoed Alex’s perspective 

and added: “… if I would have had some sort of flow chart or a sheet like this when I’m trying to 

learn or understand the equations, I feel like being able to see the pattern on why something 

works, this particular way, would have been a lot easier.” 

System thinking. Interviewees also believed that the SM approach encouraged them to 

think systematically. Max mentioned: “Hmmm, I guess, it is forced you to think step by step and 

not go right away into conclusions ....” Tyler reiterated: “If you have a more complex system 

with different parts, if you can’t tie them together, … there’s no guarantee your systems gonna 

work out.” 
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Forward-thinking. Participants described their experiences using the SM approach as 

promoting their forward-thinking. Tyler stated: “…I’d say okay, this is kind of the problem I 

would run into if I had messed with say the chord length, or this is the problem I would run into 

if I mess with the height or the thickness. So, I would adjust it beforehand. Instead of after 

running the calculations.” He further explained: “Yeah, it just forced me to think about the 

beforehand, rather than considering possible after effects.”  

Students’ Learning Outcomes 

The second research question addressed was: How do students describe their experience 

with SM instructional approach in relation to their factual, conceptual, and application 

knowledge? Participants interviewed in this study described varying experiences using the SM 

approach in regards to their learning outcomes such as factual, conceptual, and application 

knowledge.  

Factual Knowledge  

When the participants in this study were asked about the importance of factual 

knowledge for mechanical engineers, most believed that it was important. Echo described the 

importance of factual knowledge as: “Super-duper important … factual knowledge is extremely 

important because you need to understand your basics… Is basically the ground that you’re 

standing on.” Max reiterated Echo’s perspective stating: “That’s key, you need to understand the 

basics before you can actually solve the problem.” Alex also confirmed: “I don’t think you can 

build concepts without knowing the facts first.” However, interestingly, Alex believed that 

engineers may not need to memorize factual knowledge as long as they know where to find it. 

She said: “I think … maybe that mechanical engineers, knowing that there is a fact, out there is 

almost good enough because you can go look it up. So, you don’t have to have it memorized.”  
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Participants were then asked to describe their experiences using the SM instructional 

approach in relation to their factual knowledge. They expressed varying perspectives on the 

effect of SM approach relative to their factual knowledge. Some participants believed that the 

SM approach affected their factual knowledge. For instance, Echo revealed that understanding 

the facts about units can greatly influenced the understanding of equations. She stated: 

The system modeling definitely helps kind of solidify the ground that you’re standing on 

… understanding how each variable comes across, or even each unit comes across was 

super helpful … Especially thermodynamics, we used it all the time, because you had to 

come out to a certain unit, and understanding the relationships between certain units 

based on their variables … and just really helps you understand what you’re learning. 

However, the other participants did not believe the SM approach affected their factual 

knowledge. Sarah commented: “I don’t really think it affects the factual knowledge as much 

as….” Similarly, Alex explained: “Not really. That strategy doesn’t seem like it’s focused on 

increasing factual knowledge but more on the way you use factual knowledge in problem- 

solving.” 

Conceptual Knowledge  

All participants believed that conceptual knowledge was important for mechanical 

engineers. John described the importance of conceptual knowledge as: “…you gotta have the 

basic knowledge of everything you’re working with, be it electrical, be it structural and statics 

and dynamics … So, the actual conceptual knowledge is very important.” Like John, Echo 

stated: “… conceptual knowledge really is important, because you’re going to be using it for 

everything, everything is connected and you definitely see that as you go into all your courses.” 

For Sam, conceptual knowledge is important to be able to apply knowledge. He stated: “… you 
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need to have a good base education on conceptual knowledge of all these different concepts so 

that you can apply them and use them in your career and be able to solve problems easier… have 

good problem-solving strategy.” 

When the participants were asked about the effect of the SM approach on their 

conceptual knowledge, most described a positive experience. For instance, Sam narrated how the 

SM approach helped him solve problems. He explained:  

“…because it allows you… to break down a problem, and pretty much look at different 

 parts… Finding those different parts can allow you to tap into your conceptual 

 knowledge, and then apply your conceptual knowledge and find out, okay, so I’m given 

 all of these variables. Let’s see what equation I need to throw them into to get what I 

 want out of this problem.”  

Likewise, Sarah also recounted the positive effect of the SM strategy stating: “Yeah, I 

think it provides you kind of an organized way to approach a problem.” Tyler supported Sam’s 

and Sarah’s perspectives. He stressed: “So, it allows me to, or it would allow me to, I guess, a 

little better express the concepts and how they relate to one another.”  

However, some of the participants did not believe that the SM approach affected their 

conceptual knowledge. Max stated: “I think that’s what’s missing here… They don’t seem like 

they give you a starting point to go by and you can feed off that.” John also echoed Max’s 

concern. He stated: “I don’t think it helped or impacted, helped or hindered in any way...” 

Application Knowledge  

All participants interviewed believed that application knowledge was important for 

mechanical engineers. They all agreed that the ability to apply knowledge is essential to become 

a successful engineer. John emphasized: “Application knowledge is very important for any 
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engineer… to be able to apply that knowledge to what you’re doing is just so important.” Like 

John, Echo also believed application knowledge is central to solving problems. She said: “… if 

you come across a problem… application knowledge is basically how you’re going to apply 

everything that you learned to solve this problem… And so, knowing how to apply all these 

equations that we learned is very important.” 

When the interviewees were asked about the effect of the SM approach on their 

application knowledge, all gave positive responses. They narrated the different ways that the 

approach helped them to apply their knowledge. For instance, Sam stated:  

“So, like all applications in engineering, the ability to break down problems to better 

 understand them, is a skill of every good engineer. So, using … the system modeling 

 approach can help you break down your problems to make them easier to understand.” 

 Alex went further to argue that the SM strategy helps students think like engineers. She 

stated: “So this instructional strategy and the loop… feedback loop was really helpful for people 

to think like an engineer… Where you can see what the effects of this thing are versus that thing 

in a very realistic way.” 

Problem-Solving and System Thinking Skills 

Research question three was: What perceptions do students have regarding the use of SM 

instructional approach in relation to problem-solving and system thinking skills? To address this 

question both interview data and students’ artifacts were collected and analyzed.  

Problem-Solving Skills 

Interview data. When the participants in this study were asked about the importance of 

problem-solving skills (PSS), they all agreed that it was important. Participants affirmed that all 

engineering is solving problems and as such problem-solving skills are paramount. Alex stated: 



 86 

“… all of engineering is trying to tackle problems… so you definitely need good problem-

solving skills and strategies to come out with anything helpful.” Mike also agreed with the 

importance of PSS. He mentioned:  “Well, to start, we are always solving problems. So, you 

need to have some kind of skill set to solve the problems.”  

When the interviewees were asked if they could describe how the system modeling 

instructional strategy had affected their problem-solving skills, all participants responded that the 

SM approach influenced their problem-solving skills. Reflecting on their experiences, 

participants used phrases like good intuitive feeling, visualizing bigger picture, seeing variable 

effects on output, eliminating variables, showing variables to pay attention to, and identifying 

solutions. For instance, Alex commented:  

Um, yeah it was a good exercise in… looking at the bigger picture and having a sense 

 for… if I change just this one factor, what does that do to all the other components of the 

 system … and to have a good intuitive feel for if this goes up that goes down, rather than 

 looking at a complex equation that has everything wrapped together into one thing with 

 lots of coefficients and variables and signs….  

Also, Echo said: “I guess it could affect, it affected my problem-solving skills by 

understanding how the variables affect the output….” Mike, who had more than 20 years of 

experience working as a field engineer, believed the approach mirrored what he has been doing 

in his work by helping “organize the thinking process.” 

Students’ Perceived Problem-Solving Skills. Data from the Problem-Solving Inventory 

Survey scale, which assessed students’ self-perception of problem-solving skills, was analyzed 

as part of the students’ artifacts. The PSI scale has three constructs containing 9 items (see 

Appendix D). The constructs include: (1) problem-solving confidence (PSC), (2) approach-
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avoidance style (AAS), and (3) personal control (PC). The survey assessed students’ perceptions 

of problem-solving skills with reference to the completed SM activities. Participants were asked 

to select their response using a Likert scale (1 = Strongly Agree to 6 = Strongly Disagree). Table 

3 reveals participants’ responses on the problem-solving survey. 

Overall, participants’ responses suggested that they believed the SM instructional 

approach affected their perceived problem-solving skills, especially their approach avoidance 

style (see Table 2). For instance, all participants reported that using the SM approach enabled 

them to think systematically during the problem-solving process. In addition, most of the 

participants indicated that the SM approach helped in promoting their problem-solving 

confidence. For example, most respondents reported that the SM task made them feel confident 

that they could solve new problems using the same method. Additionally, the survey showed that 

most of the participants believed the SM approach helped in making problem-solving plans, in 

solving new problems, and in thinking about multiple problem-solving approach. These were 

also common themes described during the interview.  

Table 3. Participants’ Responses to the Problem-Solving Survey 

Constructs  Questions (All items assessed problem-solving 
skills with reference to the SM activities) 

Some form of 
agreement 

Mean 

Problem- 
Solving 
Confidence 

The SM task helped me to make a problem-solving 
plan that will almost certainly work. 
 

87.50% 3.88 

The SM task makes me feel confident that I can 
solve new problems using the same method. 
 

87.50% 4.13 

The SM task helped me to think firstly about what 
exactly the problem is. 
 

75.00% 4.50 

Approach-
Avoidance 
style 

The SM task helped me to first evaluate the 
problem to identify important information about it. 
 

75.00% 4.50 

Using the SM approach enabled me to think 
systematically during the problem-solving process. 
 

100.00% 4.88 
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The SM task helped me to thinking about the 
multiple ways of solving a problem. 
 

87.50% 4.63 

Personal 
Control When presented with a problem, I avoid jumping 

directly into the solution. 

50.00% 
 

3.75 

When my first efforts to solve a problem fail, I 
become uneasy about my ability to solve the 
problem (R). 
 

25.00% 2.75 

When I work on a problem, I feel that I am not 
getting to the real solution (R). 
 

25.00% 2.75 

 

System Thinking Skills—Students’ Artifacts 

This study adopted a simple version of the Cognitive Mapping Assessment of System 

Thinking (CMAST) developed by Plate (2010). The tool was used to assess students’ causal 

structure. The participants’ causal structure reflected their system thinking skills, which was 

modeled/mapped using pencil and paper (Hopper & Stave, 2008). Hung (2008) used a similar 

technique to assess system thinking skills considering dimensions like identification of variables, 

linearity, interconnectivity, cause-effect relationship, and feedback loop processes. These system 

thinking dimensions were used in the current study.   

As described in the method session, participants completed system modeling training and 

were given problems solving activities related to the power screw topic (see Appendix C). On 

completion of the problem-solving task, students were asked to draw/model their understanding 

of the power screw system when raising a given load. Participants used a causal loop diagram to 

depict their understanding of the behavior of the power screw system including all relevant 

relationships. Students’ models were evaluated for quality and accuracy (i.e., examining the 

number of identified variables, linearity, interconnectivity, cause-effect relationship, and 

feedback loop processes). Table 4 below shows the result of participants’ casual loop diagram 

analyses including the five dimensions of system thinking evaluated. 
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The tallies in the table indicate the number of correctly identified dimensions in 

participants’ causal loop diagrams (see sample model diagrams in Appendix G). Overall, the 

casual diagram analyses suggested that all participants showed system thinking skills. Most 

participants were able to identify important variables within the power screw problem including 

screw pitch, lead angle, thread depth, mean pitch diameter, helix angle, and acme screw 

diameter. Interconnected parts within the problem were also accurately identified including the 

connection between the load and the required torque as well as the relationships between screw 

diameter and torque. Additionally, participants in this study correctly recognized cause-effect 

relationships in the problem such as the effect of increasing helix angle and coefficient of friction 

on torque in the system. However, some of the students were unable to identify the feedback 

processes within the system, and others recognized only linear relationship in places where 

multiple directional relationships existed. 

  

Table 4. Participants’ Casual Loop Diagram Analyses with the Number of Identified ST 
Dimensions 

Participants Important 
Variables 
Identified (ID) 
Total = 7 

Interconnect 
(IC) 
Total = 7 

Cause-Effect 
Relationship 
(CE) 
 Total = 7 

Linearity 
(L) 

 Total = 5 

Feedback 
Processes 

(FP)  
 Total = 5 

1. Alex 100% 57% 57% 100% 100% 

2. Bob 100% 14% 14% 80% 80% 

3. Echo 86% 57% 43% 80% 80% 

4. Jack 43% 43% 43% 40% 40% 

5. Max 86% 43% 57% 40% 0% 

6. Sam 100% 29% 29% 80% 80% 

7. Sarah 100% 57% 57% 80% 80% 

8. Tyler 86% 100% 100% 20% 20% 
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Additional Findings 

Mental Models 

Participants in this study used phrases that can be interpreted as mental models during the 

interview. These phrases included thought processes, visual representation of what is happening, 

and how things are working. For instance, in describing how the SM approach influenced his 

mental model, Sam stipulated: “…it gives you that base knowledge of what is going on in your 

problem and how things are working with each other.” He explained further: “... it makes it so 

much easier to look at something and just understand what's going on there.” Bob also 

mentioned that the SM approach “… gives us a nice visual representation of what is happening.” 

Like Bob, Max also believed that SM influenced his mental model. He stated it: “…organize[s] 

your thought process…”  

SM Approach Implementation and Challenges 

Some participants interviewed identified initial difficulty with the SM approach. They 

admitted being confused and expressed difficulty during the SM activity. For instance, Sam 

indicated that he found the approach initially confusing. He stated: “I found it at first…a little 

confused of what exactly to look for, but once I looked at the problem…it's very easy....”  

Other participants expressed concern with the difficulty of changing or deconstructing 

their established mental structure of problem-solving (analytic approach). For example, Alex 

stated: “it was almost more work to figure out how to do it this way than just to solve it the way I 

already knew, right.” Echo provided a more detailed explanation, stating: 

… Um, so basically, if I am taught a method of solving a problem, say I am solving beam 

deflection. Once I learned how… to do it, but if I’m taught another way to do it within a 

few days after initially learning that method, then I get more confused because there’s 
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more than one way to solve it. Which is fine … you got to kind of rearrange how to solve 

a problem rather than understanding a simple method. So, I tend to like block off that 

second method of solving it because it gets you the same ideas. And it’s just more 

confusing….” 

Participants interviewed did offer some recommendations to improve the SM approach 

implementation. Some suggested that the SM approach may be better introduced at a lower-level 

engineering course. For instance, Alex said: “I think if I had that way of problem-solving 

introduced to me early on, then it would become a really useful tool for me to use that would be 

much more instinctual....” In support of Alex’s perspective, Echo stated: “I guess it would be 

more efficient for those lower-level classes to understand how the variables affect each output 

and then as you develop, you grow into those upper-level classes....”  

However, not all participants agreed that SM was better implemented in lower-level 

engineering classes. For example, Tyler stated: “I think it’s definitely more applicable in higher-

level classes.” He justified his opinion by saying: “…lower-level classes… [are] pretty linear in 

terms of the problem to solution ….” So, Tyler believed that the SM approach was more 

applicable for more complex engineering phenomenon.  

Summary 

In this chapter, the qualitative data from participants’ interviews about their experiences 

using the system modeling instructional approach was presented. The analysis of interview data 

generated multiple significant statements that were transformed into codes and categories, which 

in turn were organized into themes. It also revealed findings from students’ artifacts analyses–

students’ model diagrams and their perceived problem-solving skills PSI survey. These analyses 

provided more insight about the effect of SM instructional strategy on students’ learning. The 
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final Chapter V presents additional interpretations, discussions, and implications, as well as the 

study limitations.  
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CHAPTER V 

DISCUSSION 

This qualitative study explores the efficacy of a system modeling (SM) instructional 

strategy in a mechanical engineering course. The main research questions investigated include: 

 1. What are students’ perceived efficacy of the use of SM instructional approach?  

2. How do students describe their experience with SM instructional approach in relation 

 to their factual, conceptual, and application knowledge?  

3. What perceptions do students have regarding the use of SM instructional approach in 

 relation to problem-solving and system thinking skills? 

In this chapter, I discuss the findings from Chapter IV, including the seven themes that 

emerged from the interview data and students’ artifacts, which includes a model diagrams 

analysis and a perceived problem-solving skills survey. The discussions relate the findings to the 

literature review and deliberate its interpretations, implications, and limitations, as well as 

conclusions.  

Discussion and Implications of Study Findings 

Research Question One: What are students’ perceived efficacy of the use of the SM 

instructional approach?  

Qualitative themes that emerged from the thematic analysis indicated students’ perceived 

usefulness of the system modeling (SM) instructional strategy. Specifically, students’ 

descriptions of their experiences using the SM approach during interviews fit into seven major 
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themes, including: problem diagnosis, interconnection and interdependency, linearity, external 

representation of causal relationship, wholeness and decision making, organize problem-solving 

approach, and systematic and forward-thinking process.  

Theme 1: Problem Diagnosis. Many of the participants believed the SM approach 

promoted their ability to diagnose the engineering problem including identify, analyze, and query 

problems. Specifically, most of the students acknowledged that the SM approach helped in 

problem identification, an important step in problem-solving. For instance, Sam stated that, “And 

it gives you a better idea of what exactly is going on here in this specific problem.” 

Prior studies have suggested that system modeling instructional strategies could help in 

the problem-solving process by promoting problem identification (Hung, 2008; 2009). Indeed, 

identifying and defining the problem is the first step in solving any problem (Jonassen, 2004; 

Newell & Simon, 1972; Reimann & Chi, 1989). Researchers like Rittle‐ Johnson (2006) and 

Hung (2009) suggested that the problem-solving process requires identifying and defining the 

problem in order to construct the problem space, which is the gap that exists between the given 

and the goal state of the problem (Newell & Simon, 1972).  

From an instructional point of view, SM could help foster problem identification and 

definition during problem-solving. For instance, the issues with students’ inability to diagnose 

engineering problems (Flemming & Johnston, 2020) might be alleviated by implementing the 

SM approach. This can be explained in part because the SM approach provides scaffolding that 

facilitates students’ cognitive process during problem-solving activities and reduces students’ 

cognitive load, which in turn promotes their problem-solving process. 

Theme 2: Interconnection and Interdependency. Many study participants believed that 

the SM strategy promoted their ability to visualize interconnections and interdependencies within 
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the given problem, using phrases like observe effects of change, see intertwined variables, and 

linking concepts. For instance, Echo stated, “… if you were to change a certain part within that 

variable… how would that impact the output variable…”   

Previous studies have indicated the effect of system modeling on students’ abilities to 

visualize interconnections and interdependencies within a problem. For instance, Hmelo-Silver et 

al. (2017) reported that conceptual representation intervention (an example of a modeling tool) 

helped students to examine the different elements of the system and how the individual parts are 

interconnected. Similarly, Hung (2008) indicated that the system modeling instructional strategy 

does allow students to visualize interconnections and interdependencies. 

This reported effect could be because the SM approach enabled the visualization and 

representation of abstract concepts and their interrelationships (Hmelo-Silver et al., 2017). 

Indeed, visualizing interconnections and interrelationship is essential in understanding a given 

problem. In other words, it is critical to first understand the network of interrelationships within a 

system in order to comprehend the emergent properties of that system (Hung, 2009).  

Although the interviewees identified interconnections in the given problem, they could 

not recognize the SM approach’s emergent properties. The emergent property is the product of 

the interacting parts within a system (Ackoff, 2004) and an integral characteristic of the SM 

approach. The lack of this realization might be because participants do not have sufficient 

cognitive and system thinking abilities to visualize the resulting effects of the interactions within 

the problem.    

Theme 3: Wholeness and Decision Making. Participants in this study held that the SM 

instructional approach helped in seeing the bigger picture and enhanced their decision-making 

abilities. According to the participants, examining “the wholeness of the problem” fostered their 



 96 

decision-making processes. For instance, Sarah mentioned that, “I guess it just helps to make 

decisions. You can… more easily see which are the variables that are easiest to control or to 

change, to get the desired outcome.”  

This theme was supported by Sedlacko et al. (2014), which revealed that system thinking 

could help system thinkers make inferences on the possible consequences during problem-

solving. Furthermore, Hmelo‐Silver et al. (2015) suggested that representational tools (like 

system modeling) could help students in the understanding of a system/problem by enabling 

them to observe the whole system instead of isolated parts. Observing the whole instead of 

individual parts is crucial because “the whole is more than the sum of its parts” (von Bertalanffy, 

1950, p.142). In other words, once a system is broken down into its parts, the fundamental 

properties of the whole will no longer exist (Capra, 1996). Hence, understanding a problem 

requires considering the whole system in which the problem exists. Evidently, a better 

understanding of a problem will foster the problem-solving decisions making process.  

Instructions that intend to guide students to see a problem as a whole and promote the 

decision-making process might benefit from adopting the SM approach. This is because, unlike 

traditional instructions, the SM approach guides problem solvers to not only visualize the 

isolated parts of the problem, but also to consider the problem as a whole. Indeed, when problem 

solvers are able to see the whole problem, they are able to focus on understanding the underlying 

causal structure of the problem rather than only its individual parts.     

Theme 4: Linearity in Relationships. Participants interviewed described how the 

system modeling (SM) instructional strategy helped in visualizing linear and non-linear 

relationships, therefore promoting their understanding of the problem. For example, Alex 

believed that the approach was “… a very linear way of problem solving…” On the contrary, 
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Tyler argued that the SM approach is a non-linear problem-solving approach and stated that, 

“And it lets you, I guess, spiderweb [non-linear] your way … to figure out what has changed and 

why, or what should change and why.”    

A plausible explanation could be that the SM approach focused students’ attention on 

recognizing the relationships that exist within the problem. This could be because the approach 

guides students to see and understand that one variable has multiple non-linear effects on other 

variables since all the parts of the problem are interconnected. 

Previous research has established that system-oriented instructions could foster students’ 

ability to identify non-linear relationships (Hung, 2009). In support, system thinking researchers 

have associated the ability to identify multiple dimensional relationships with the understanding 

of the system. For instance, Plate (2010) claimed that system-based instructions (like system 

modeling approach) could help students better identify non-linear relationships in a system, 

thereby demonstrating a deeper understanding of the causal relationships. Causal relationships 

within a system depict the underlying relationship pattern in a system (Capra, 1996). 

While participants identified simple linear relationships, they failed to recognize the 

looping effect of the SM approach. This was evident in interviewees’ narrations as well as their 

causal model diagram. The looping relationship is an integral characteristic of the SM approach 

and includes both the reinforcing and balancing loop. The students’ inability to recognize the 

looping effect could be related to their limited mental framework. Unlike novices, expert system 

thinkers have developed a complex mental framework that supports their ability to identify 

feedback loops that exist within a problem. Expert system thinkers recognize feedback loops that 

reflect sequences of action and information flow that exist within a problem.  
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Theme 5: Organize Problem-Solving Approach. Participants portrayed the use of the 

SM strategy as an organized problem-solving approach. In their descriptions, they used phrases 

such as organizes information, categorizes things, logical steps, and identify the starting point 

and important variables. Interestingly, participants also believed that the systemic nature of the 

SM approach prevented them from jumping to the answer, that is skipping steps and rushing to 

the solution. For instance, Max mentioned, “You can't just go one step to get the answer, you got 

to think about it, organize your thought process and go through step by step, solving whatever 

the problem is asking you to solve.” 

Prior research has established that students sometimes skip steps during the problem-

solving process (Czabanowska et al., 2012; Moust et al., 2005), thereby missing important details 

and jumping to the solution. SM approach may offer an instructional scaffold to support 

students’ problem thinking process in order to minimize the skipping of steps. This is because 

the system thinking process (SM approach) is a systematic step-by-step process (Goodman & 

Karash, 1995).   

Perhaps one of the most striking findings was that participants described the SM 

approach as “giving them a starting point for problems.” Students revealed that knowing where 

to start solving a problem could be challenging; therefore, having a strategy such as the SM 

approach may provide a good starting point during problem-solving. This provision could be 

because the SM approach allows students to focus on only the important variables in the 

problem. This was evident in Sarah’s narration when she said: “It helps me be more aware of 

which variables are the ones that I need to pay attention to.”  

Instructors who intend to help students understand how to initiate the problem-solving 

process may consider implementing the SM approach. This approach guides students into 
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developing a logical mental map that can enable them to envision and pinpoint solution paths 

within the problem. In this way, students can effectively identify the starting point, solution 

paths, and the end result of a given problem. This strategy may be particularly helpful with 

complex engineering problems in which students have difficulty identifying a starting point. In 

support of this, Echo stated during the interview:  

And so, just having the system modeling in those lower-level classes might limit the use 

 of chegging [an online homework resource discouraged by professor] because they don’t 

 know how to start a problem… system modeling will definitely help you understand … 

 how to start a problem…. 

Theme 6: External Representation of Causal Relationships. Participants believed the 

system modeling (SM) instructional strategy promoted their ability to represent their 

understanding of causal relationships externally. For example, Bob stated that the approach help 

you see, “…this is the cause of this, if I decrease this then my force over here must increase, that 

was very helpful and nice to have.”  

A plausible explanation for this result could be that the visual representative nature of the 

SM approach, as discussed in Chapter II. The SM approach is a representation tool that depicts 

the variables in the problem, the underlying mechanisms, the relationships, and their interactions. 

This external representation helps in visualizing abstract or non-perceivable variables and their 

causal relationship, thereby promoting the development of an effective mental model of the 

problem.   

From an instructional perspective, the SM approach could help scaffold students’ 

problem-solving process. For instance, novice problem solvers tend to overlook important 

variables and lack understanding of the causal relationship in the problem, thereby having 
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difficulty in solving the given problem. Scaffolding students to construct comprehensive and 

effective mental models of the problem using the SM strategy could minimize the tendency of 

students missing important problem variables, thereby promoting their construction of the 

problem space. Moreover, the representation of the causal relationship of a system enables 

students better grasp the underlying system structure, thereby promoting understanding of the 

problem (Hmelo-Silver et al., 2017).  

 Theme 7: Systematic and Forward-Thinking Process. Participants recalled that the 

SM approach provided a systematic and forward-thinking approach to problem-solving. They 

detailed how the approach helped in patterning their thinking, seeing patterns, forward-thinking, 

thinking systematically, and planning problem-solving. For instance, Alex stated, “I guess it's, 

um, like patterning your thinking. It's teaching you to look at things in a certain way...” 

One possible explanation could be that the SM approach guides students to see and think 

systematically. The method scaffolds the thinking process during problem-solving by providing a 

step-by-step guide. This step-by-step technique helps in laying out the important variables and 

relationships, thereby promoting the understanding of the underlying causal structure of the 

problem.  

 Studies have found that system-oriented instructions like system modeling can promote 

students’ system thinking (Hopper & Stave, 2008; Plate, 2010). For instance, Sedlacko et al. 

(2014) reported that the SM approach provided a means for guiding complex systems thinking as 

well as facilitating the systematic understanding of the problem. This could be particularly 

helpful in understanding the underlying structure of the problem during the problem-solving 

process.  
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From an instructional point of view, the SM approach could be implemented to foster the 

development of system thinking skills among engineering students. This might be explained in 

part because the SM approach could provide visual clues to lead students into identifying system 

boundaries, its different levels of organization, its feedback process, and emergence properties 

within the system. In this way, students can develop higher-order cognitive skills that will 

support the complex mental structure they require to tackle real-world and ill-structured 

engineering problems effectively.  

Research Question 2: How do students describe their experiences with the SM instructional 

approach in relation to their factual, conceptual, and application knowledge? 

Factual Knowledge. This is the basic knowledge of content elements in the discipline, 

including facts, definitions, and terminologies (Anderson & Bloom, 2001; Krathwohl, 2002). 

Participants in this study concurred that factual knowledge was important for mechanical 

engineers. Surprisingly, they gave varying descriptions of the influence of the SM approach on 

their factual knowledge. While some acknowledged the effect of SM, others did not. For 

instance, Echo stated, “The system modeling, definitely helps kind of solidify the ground that 

you're standing on … [helps] understanding how each variable comes across, or even each unit 

comes across was super helpful …” Contrary to Echo’s believe, Alex claimed that, “Not really. 

That strategy doesn't seem like it's focused on increasing factual knowledge but more on the way 

you use factual knowledge in problem solving.” 

These differences might be explained in part by the fact that participants in the study may 

have understood the definition of factual knowledge differently. While the researcher provided 

the definition of terminologies used in this study during the interview, participants may not have 

been able to relate it to their experience during the problem activities.  
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Some of the participants believed that the SM approach influences their factual 

knowledge. One plausible explanation may be that the SM approach could have helped students 

to meaningfully connect new abstract information (on the topic) with their prior knowledge. 

Prior research suggested that making meaningful connections between new information and prior 

knowledge can promote factual knowledge and its application (Anderson & Schönborn, 2008; 

Buch & Bucciarelli, 2015). 

Another possible explanation could be because of the external visual representation 

property of the SM approach. This may have helped reduce the level of abstraction of the 

problem, thereby allowing the students to visualize the abstract facts and concepts. By so doing, 

students can meaningfully organize their mental models such that they are easy for them to relate 

to and make necessary connections and establish the relevance of the content.   

One implication for this finding is that engineering instructors seeking to introduce new 

concepts or phenomena might consider adopting the SM approach. The SM approach is a 

cognitive activity that involves identifying abstract facts and recognizing non-perceivable 

variables within a given system. This cognitive activity enables students to see abstract variables, 

which can help in triggering their prior knowledge, thereby promoting their understanding of the 

engineering facts and phenomena.  

Conceptual Knowledge. This is the “knowledge of concepts” (Siegler, & Alibali, 2001), 

as well as the “understanding of the essential parts and cause-effect relationships that exist within 

a system” (Guenther, 1998, p. 289). All participants believed that conceptual knowledge was 

important for mechanical engineers. Most participants interviewed described the positive 

influence of the SM approach on their conceptual knowledge. For example, Sam stated that it 

allow you, “…to break down a problem, and pretty much look at different parts… Finding those 
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different parts can allow you to tap into your conceptual knowledge, and then apply your 

conceptual knowledge” This result was consistent with prior studies that examined similar 

system-based instructions (Grotzer & Basca, 2003; Hung, 2008; Prince, Vigeant, & Nottis, 

2009).   

This result may be explained by the fact that students were able to identify and connect 

multiple concepts during the SM activities. Making these connections may have enabled them to 

understand the concepts associated with the problem and their underlying relationships, thereby 

promoting problem space construction (Rittle‐ Johnson, 2006). Moreover, the ability to connect 

multiple concepts is crucial in solving complex engineering problems. This is because students 

mostly encounter difficulty when using the functional-reduction reasoning approach (i.e., linear 

approach) in solving complex engineering problems (Rozier & Viennot 1991; Wattanakasiwich 

et al., 2013).  

Surprisingly, not all the participants believed that the SM approach influenced their 

conceptual knowledge. This might be explained in part by the participants prior knowledge and 

experience. Interestingly, most of the participants who believed that the SM method did not 

contribute to their conceptual knowledge had several years of experience working as engineers. 

Therefore, they may already have had some background knowledge and developed complex 

engineering thinking patterns. In fact, unlike novices, experienced engineers use a non-linear 

multifaceted approach, such as SM thinking techniques, since they have been tackling real-world 

engineering problems. As a result, they may not have gained additional conceptual knowledge 

during the problem-solving activity.   

Overall, the result of this research finding has instructional implications. The SM 

approach could be adopted to foster the development of conceptual knowledge. The approach 
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could not only bolster the understanding of concepts but also the relationships between them. 

Moreover, SM approach could be a viable cognitive tool in addressing the issue of 

misconceptions in engineering. Misconceptions are learning issues, concept misunderstandings, 

or non-scientific beliefs that may interfere with the learning process (Sinatra, Brem, & Evans, 

2008). The SM approach might facilitate conceptual change and remedy misconceptions by 

guiding students to visualize the phenomenon, thereby observing its property, interpreting and 

generalizing its conclusions, and retaining accurate conceptions.   

Application Knowledge. This is the knowledge required to apply or use a procedure or 

content knowledge in a specific context (Krathwohl, 2002). All participants believed that 

application knowledge was important for mechanical engineers. Expectedly, they all indicated 

that the SM approach influenced their application knowledge. For instance, Sam stated that, “… 

the ability to break down problems to better understand them, is a skill of every good engineer… 

the system modeling approach can help you break down your problems to make them easier to 

understand.”  This result was in line with previous studies that found that modeling instructional 

strategies have a positive influence on students’ application knowledge (Hubbs, Parent, & 

Stoltzfus, 2017; Kamble & Tembe, 2013). 

A possible explanation for this might be that the SM approach forced students to identify, 

gather, and organize important variables as well as all possible interactions within the problem. 

In this way, students may have developed complete and effective mental structures that enabled 

them to contextualize their understanding of the problem, thereby promoting meaningful 

learning. In fact, Jonassen (1999) argued that instructions guide students to meaningfully connect 

abstract content knowledge with situations (where) and how the knowledge can be applied in real 

life promoted application knowledge. In other words, meaningful, logical, and contextualized 
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instructions help trigger students’ prior knowledge, thereby activating their pre-existing schema 

to help them interpret the content (Schunk, 2012) and foster its application.  

Moreover, application knowledge requires a highly complex cognitive process that 

involves making connections between concepts and real practical applications. This is an 

important step in knowledge integration and application. Application knowledge could be 

facilitated by developing a multifaceted conceptual understanding of the content domain and 

constructing a mental model of the problem-solving process. Hence, active learning instructions 

like SM could foster active engagement with the content (Hung, 2009) and facilitate the 

construction of a complete mental model of the problem, thereby promoting students’ application 

knowledge. 

Research Question Three: What perceptions do students have regarding the use of the SM 

instructional approach in relation to problem-solving and system thinking skills? 

Problem-Solving Skills. This is the ability to define the problem by identifying the 

unknowns and the gaps between the present and the desired state of the problem (Hung et al., 

2008). All participants in this study acknowledged the importance of problem-solving skills in 

engineering. Both the interview data and the perceived problem-solving survey indicated that the 

SM approach influenced participants’ problem-solving skills.  For instance, Echo stated that, “I 

guess it could affect it [affected] my problem-solving skills by understanding how the variables 

affect the output…” These findings supported the work of other studies linking system-based 

instructional strategies with enhancing problem-solving skills (DeFranco, Neill, & Clariana, 

2011; Mousoulides, Christou, & Sriraman, 2008).   

Several factors could explain this finding. Firstly, SM might have assisted the participants 

to identify the knowns and unknowns as well as the gaps in the problem. This is a vital first step 
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in the problem-solving process (Jonassen, 2004; Newell & Simon, 1972; Reimann & Chi, 1989). 

Indeed, the problem identification and definition promote understanding of the underlying 

mechanism, which in turn foster the accurate construction of the problem space (Hung, 2009).  

Another factor could be that the SM strategy aided students’ thinking processes, thereby 

allowing them to think through the problem-solving process and consider multiple solutions. 

This fact was evident in the students perceived problem-solving survey—specifically the 

approach-avoidance style. On the approach-avoidance style construct, all the participants 

indicated that the SM approach allowed them to think systematically, while 87.5% agreed that 

the approach helped them think of multiple ways to solving problems. Hence, SM instructional 

strategies may have the potential to help students promote problem-solving skills, especially the 

step of defining the problem and problem space. 

From an instructional perspective, SM could promote problem-solving skills among 

students, thereby offering engineering instructors an alternative to traditional instructions. The 

SM approach tends to guide problem solvers to effectively identify the problem, the current and 

desired state of the problem, as well as the gaps within a given problem. The focus on identifying 

the important elements in the problem and understanding the missing elements of the problem is 

an integral characteristic of the SM approach.      

System Thinking Skills. System thinking can be characterized into several dimensions, 

including identifying important variables, linearity, interconnectivity, cause-effect relationship, 

and feedback loop processes (Hung, 2008). Participants’ causal loop models were evaluated, and 

results suggested moderate system thinking skills. While most were able to identify critical 

variables and interconnections, and correctly recognized cause-effect relationships, others were 

unable to identify the feedback loops and non-linear relationships within the system.  
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A possible explanation for these results may be the lack of adequate system modeling 

training. The short length of instructions on the SM training may have contributed to students not 

fully grasping the SM concept. The issues with the SM instructions came up during the 

interview. John suggested that the SM training “… would have been better with more than just 

the one video… maybe stretch this out over like a month....” Similarly, Echo also stated: “And 

not only like one way of how to approach the system modeling strategy but like, providing a 

multitude of ways on how to approach the system modeling….”  

The students had a limited amount of experience with the SM, and as a result, the 

learning curve could have a major influence on their understanding of the approach. This 

appeared to be evident in the lower “Personal control” percentage reported in the PSI survey. 

The lack of adequate practice with the SM approach could have affected the participants’ ability 

to identify the feedback loops and non-linear relationships within the system, which require a 

higher cognitive understanding of the SM approach. Also, the short instructional time could have 

affected some students’ perception of the SM’s effectiveness in promoting their factual and 

conceptual understanding. The traditional instructions that the students are familiar with could 

also have affected their understanding of the SM approach.  

Another plausible reason why participants could not identify feedback loops and multiple 

dimensional relationships could be their analytic learning style (mechanistic). Hung (2003) found 

that the mechanistic reasoning process might hinder students’ ability to see multiple dimensional 

relationships. Moreover, system thinkers explained that mechanists believe that the world works 

like a clock (that is orderly, hierarchical, & linear), and as a result, they can only understand how 

things works by studying each individual part (Ackoff, 2000). Hence, this perspective of reality 

does not highlight the relationship between the whole and parts, and causal relationship. 
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These results have implications for engineering education. The SM approach has the 

potential to facilitate the development of system thinking skills among students. This is because 

the approach allows students to identify several dimensions of system thinking, including 

essential variables, linearity, interconnectivity, and cause-effect relationship. Unlike the 

traditional teaching method that emphasizes understanding individual parts of a problem in 

isolation, the SM approach fosters a systemic approach and knowledge integration rather than 

isolation. 

Additional Discussion and Implications 

Mental Models and Learning Outcomes 

Mental models represent an individual’s understanding of how things work (Monat & 

Gannon, 2015; Senger, 2006). Participants in this study indicated that the SM approach 

influenced their mental models. There are several plausible explanations for this result. The 

external representation property of the SM approach may have afforded students the opportunity 

to internally and externally validate their mental representations, thereby consolidating their 

mental model of the problem. This mental validation process can promote the construction of an 

accurate and complete mental model of the phenomenon under study (Hung, 2009).  

This result could also be partly explained by the fact that the SM approach is a cognitive 

activity in which students are engaged in identifying key variables and their causal relationship 

within a given problem. As a result of this activity, students become aware of non-perceivable 

variables in the problem, which in turn foster the development of their mental model. Moreover, 

the fact that the SM approach has the potential to guide and direct students into reorganizing 

their mental structure could also explain this result.  
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This study shows promising results in teaching and learning complex engineering 

problems. System-oriented instructions, like SM instructional approach, could offer a viable 

alternative to the traditional instructor-led instructions in promoting the construction of students’ 

mental models. The SM approach could provide an appropriate scaffold for identifying the 

unknowns and the gaps that exist between the current and desired state of a given problem, and 

as a result, help students in the construction of their mental model. By engaging in SM cognitive 

activities, students construct visual representations of problems, helping them alleviate the 

difficulties attributed to the abstract nature of engineering phenomena.    

SM Approach Implementation and Challenges 

Some participants reported being initially confused about the SM instructional strategy. 

This initial confusion may be related to the traditional analytic instructions that the students were 

accustomed to, and as such, they could not grasp the SM approach. Another interviewee stressed 

that it was difficult to change or deconstruct her established mental structure of problem-solving 

(analytic approach) in order to complete the SM activities. This resistance to unfamiliar 

instructional strategies (SM approach) has been widely reported in the literature. Prior studies 

have reported that traditional instructions which emphasize simple and linear causal structures 

impeded students’ learning about system thinking and understanding complex systems (Plate, 

2009; Perkins & Grotzer, 2005). Thus, students’ prior instructional preferences might explain 

their initial confusion and difficulty experienced during the SM activities.  

Participants interviewed did offer varying recommendations to improve the SM approach 

implementation. While some suggested that the SM approach might be better introduced at a 

lower-level engineering course, others believe that it is suited for higher-level classes. 

Participants who advocated that the SM approach be implemented at the lower-level classes 
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argued that introducing the approach early on in the engineering program will help students 

become more acquainted with the approach. On the other hand, proponents of implementing the 

SM approach in higher-level classes claimed that the SM approach is more suited of addressing 

complex problems which are not available in lower-level classes. 

Both arguments appear to be reasonable. The findings from this study suggest that the 

SM approach might be suited for both lower and higher-level engineering classes. Generally, the 

concepts taught in lower-level classes are mostly basic factual knowledge (lower-level skills) 

which might be supported by SM approach as indicated by the findings of this study. Similarly, 

higher-level classes that deal with more complex engineering problems requiring higher-order 

skills like problem-solving and system thinking skills can also be supported by the SM approach. 

Therefore, system-based instructions could be adopted at lower-level all the way to higher-level 

classes to facilitate the development of students’ systemic mental models required to deal with 

real-world engineering problems.  

Limitations  

Duration of Instructions 

One limitation of this study was the duration of the SM instructional strategy training. 

During the interview, some participants recalled having difficulties understanding the SM 

approach. Participants might not have been familiar with the SM approach. Therefore, extending 

the duration of the SM approach for an entire semester and including several examples for 

students to experience might have helped them better understand the approach. This could have 

reduced the initial learning difficulty experienced by the participants.  
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Interview Sessions 

 Another limitation of this study was the number of interviews conducted. While, this 

study utilized a single interview session per participants, follow up email interviews were 

conducted during the member checking sessions. Also, to ensure richness and accuracy of data 

collected, data triangulation was employed as described in chapter 3. The researcher collected 

data from multiple sources, and supplemented interview data with students’ artifacts (PSI survey 

& students’ causal model diagram). This multiple data sources enabled the researcher could 

generate rich data to deeply understand students’ experiences about the phenomenon under study 

as well as evaluate students’ claims.   

No Control and Experimental Group  

The current study does not have a control and an experimental group for using the SM 

instructional strategy. Instead, the study explored in-depth student perceptions and experiences 

using SM and its influence on their learning outcomes. Thus, the results from the PSI survey 

should be interpreted with caution as they only reflected the perceptions of students who used the 

SM instructional strategy and was not compared with a control group.  

Interview Medium 

 In this study, interviews were conducted via Zoom because of the global Covid-19 

pandemic restrictions, that is the researcher and students were not able to meet in a face-to-face 

environment. However, several precautions were implemented to ensure the validity and 

reliability of the data collected. For instance, interview manuscripts were sent to the interviewees 

to verify that the script reflected their perceptions and experiences. Also, triangulation of data 

sources was conducted to ensure the validity of the results. Data triangulation of sources by 
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integrating multiple data sources including interview data, member checking as well as 

integrating students’ artifacts. This was discussed more extensively in chapter 3. 

Researcher’s Bias 

This study is a qualitative inquiry that employed individual interviews to collect data 

about students’ perceptions and experiences using SM instructional model. The researcher 

implemented a rigorous protocol to minimize the effect of bias in the results. These rigorous 

measures included developing a robust research protocol that ensured that interview questions 

were the same and neutral throughout the interview process. Also, the researcher supported 

findings with direct quotations from the interviewees to minimize bias.  

Future Research  

This qualitative study provided insights into students’ perceptions and experiences using 

the SM instructional strategy in a mechanical engineering course. There is a need for mechanical 

engineering educators to adopt more active learning approaches in order to address the problems 

with traditional instructions identified in Chapter II. Thus, further studies (with larger sample 

sizes) that capture the perceptions and experiences of engineering students using system-oriented 

instructions would be immensely valuable to this area of research. Findings from such research 

could inform pedagogy in engineering education.  

This study identified seven major themes that described students’ perceptions and 

experiences with the use of the system modeling instructional approach. Future research could 

further explore the possibility of developing these themes and other similar qualitative studies 

into quantitative survey instruments that could be used to gather data regarding students’ 

learning outcomes in mechanical engineering. Limited research exists in academic literature 

about creating effective assessment tools specifically for mechanical engineering students.   
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Additionally, future research could contribute to the development of a generalizable 

system model tool that would build on the findings of this study and other similar work. For 

instance, this study reported findings from simple problem-solving activities. However, Jonassen 

and Hung (2008) described problems as varying in complexities and structure, and as such real-

world problems require a different breadth of knowledge and difficulty. Therefore, further 

research could examine the effect of SM instructional strategy on more complex and diverse 

problems.  

Conclusion 

This qualitative study aimed to understand students’ perceptions and experiences using 

the system modeling instructional strategy in a mechanical engineering course. The findings 

indicated promising effects of the SM approach on students’ learning outcomes. Seven major 

themes emerged from the in-depth interviews conducted to gain insights into students’ 

experiences using the SM approach. These themes included: problem diagnosis, interconnection 

and interdependency, linearity, external representation of causal relationship, wholeness and 

decision making, organize problem-solving approach, and systematic and forward-thinking 

process.  

Student artifacts and data presented in this study supported their positive experiences 

using the SM approach. The PSI survey responses indicated that most of the participants 

believed the SM approach affected their perceived problem-solving skills, especially their 

approach-avoidance style. Furthermore, the causal diagram analysis suggested that all 

participants showed moderate system thinking skills after the SM instructional strategy.  

Overall, the study findings provide potential evidence for SM instructional strategy as an 

alternative instruction to the traditional methods as well as to inform instructors of the potential 
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benefit of undergraduate educational instructions. Furthermore, this research serves as an 

example for instructors on how to implement the SM instructional strategy in a mechanical 

engineering course. The study partly demonstrates the efficacy of system-based instructions in 

supporting engineering students’ learning processes, thereby preparing them for their future 

workplace challenges. Hence, engineering education could benefit from implementing a 

constructivist, learner-centered approach like the SM approach to help foster students’ learning 

outcomes such as conceptual and application knowledge and problem-solving and system 

thinking skills. 
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APPENDIX A 

Invitation Email 

Dear Students.  
  
We would like to invite you to participate in a study on exploring engineering students' 
perception of the effect of system modeling (SM) instructional strategy on their conceptual 
knowledge and problem-solving skills. If you agree to participate, you will complete a consent 
form. We will ask you to complete a problem-solving task and take a PSI survey. You will be 
invited to participate in an individual interview about your perception of the SM instructional 
strategy. Your participation is voluntary and will not affect your grade in this class. 
 
The results of this study will help us gain an in-depth understanding about how to improve the 
teaching of mechanical engineering concepts and promote problem-solving among college 
students using the SM instructional strategy.  
 
If you have further questions about this study, you can contact the researcher, Ademola Amida at 
ademola.amida@und.edu.  
 
Thank you. 
Ademola Amida (Principal Investigator) 
Doctoral Student  
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APPENDIX B 

INFORMED CONSENT STATEMENT 
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APPENDIX C 

System Modeling Activity 

Student Name: ___________________ 
 
Instructions: 
Before you begin this activity, please review the System Modeling (SM) Training Module video 
attached to this activity. In this exercise, you will use the techniques you have learned from the 
SM training to represent and solve the Power Screw problem. This activity has two parts. Read 
the instructions carefully and provide your response.  
 
Part 1: Power Screw Problem Scenario  
The power screws concept is applied in systems such as the screw-type jacks, which are designed 
to generate a huge mechanical advantage in raising a given load (W). Imagine yourself as an 
engineer, and you need to design a screw jack system that will lift a nonrotating load (W). The 
screw jack system uses a double-thread Acme screw with a thrust collar.  
 
Applying your knowledge of the power screw concept, determine: 

a. What assumptions do you need to consider? 
b. What do you need to know to estimate the torque required to lift the given load?   
c. What relationships exist between the screw torque and the different variables required to 

raise the given load? 
d. How does an increase in torque affect the other variables and in what direction 

(increasing or decreasing)? 
 

Part 2: Draw a Causal Loop Diagram 
From the scenario above: 

1. Identify the different variables/elements of the problem (e.g., identified variables) 
2. Identify the interconnections between the variables and how one affects the other (what is 

changing and in what direction?) 
3. Identify the feedback process/paths in the scenario problem (if at all) 
4. Using circles and arrows (causal loop diagram), sketch the relationship between the 

different elements of the problem scenario on paper (include the torque and other 
variables you identified). Indicate whether your diagram is a reinforcing or balancing 
loop or both. Specify the direction of change using “+” for increasing and “-” for 
decreasing relationships. You will submit your diagram as part of the activity. 

 
 
Note: Please draw your causal loop diagrams on paper and take a picture or scan your diagram. Please 
submit only a clear diagram and show your thinking process. Please feel free to contact me if you have 
questions about this activity ademola.amida@und.edu.   
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APPENDIX D 

Problem-Solving Inventory Survey scale 
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APPENDIX E 

Interview Protocol 

Introduction Script 
Thank you for talking to me today. My name is Amida and I am conducting a research on the 
effect of system modeling on mechanical engineering students.  
 
Specifically, the study will seek to understand students’ perceptions and experiences with the use 
of system modeling in enhancing their learning outcomes–such as factual, application, and 
conceptual knowledge, as well as their perceptions of problem-solving and system thinking 
skills. Your participation is very important for our understanding of this topic. 
 
During this interview, I will ask you questions about your experience with the use of system 
modeling instructional strategy. Please note that there are no right or wrong answer. Instead, I 
only intend to understand your perceptions about the SM instructional strategy. You do not have 
to answer any questions that you are not comfortable with. You can ask me to skip questions or 
clarify or repeat any question you do not understand.    
 
We do encourage that you select a pseudonym for this session. For this interview, I will refer to 
you with your selected pseudo names (fake name).  
 
As indicated in the consent form you signed via UND DocUsign, all your comments will be 
confidential, so please answer openly and honestly. With your permission, I will audio record 
this session so that I do not miss any of your comments and I elaborate on my notes. It is my 
responsibility to ensure that your name does not appear in my dissertation. I will share with you a 
copy of the transcript to look at.  
 
This interview will last about 60 minutes or if no new information is emerging, the session will 
be concluded.   
 
Some of the questions may appear repetitive. Please answer as best as you can. 
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APPENDIX F 

Interview Questions 

Background Questions 

1. Could you please provide a background of your education and professional experience?  

2. Could you describe why you chose to pursue a career in mechanical engineer? 

3. What do you believe to be the essential skill sets and knowledge required to become a 

successful mechanical engineer?  

 

SM Questions 

4. Explain how the system modeling instructional strategy influenced your learning 

experience (if at all)? What aspects of your learning experience were influenced?    

5. Could you explain why problem-solving skills are important for mechanical engineers?  

6. Could you describe how the system modeling instructional strategy has affected your 

problem-solving skills? 

7. Could you describe how application knowledge is important for mechanical engineers?  

8. Can you describe how system modeling instructional strategy has affected your ability to 

apply knowledge to address real world problems? Why? 

9. Why is it important for mechanical engineers to gain conceptual knowledge of 

mechanical engineering? Do you think that the system modeling instructional strategy 

(SM) has impacted your conceptual knowledge of mechanical engineering? Why? 

10. How important do you think factual knowledge is for mechanical engineers? Why? 

11. Could you describe how the system modeling instructional strategy (SM) has affected 

your factual knowledge? Why? 

  



 123 

APPENDIX G 

STUDENTS’ MODEL DIAGRAMS 
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