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ABSTRACT

A major challenge in drug development is safety and toxicity concerns due to drug side 

effects. One such side effect, drug-induced liver injury (DILI), is considered a primary 

factor in regulatory clearance. To develop prediction models of DILI, the Critical 

Assessment of Massive Data Analysis (CAMDA) 2020 CMap Drug Safety Challenge 

goal was established with an ultimate goal to develop prediction models based on gene 

perturbation of six preselected cell-lines (CMap L1000), extended structural information 

(MOLD2), toxicity data (TOX21), and FDA reporting of adverse events (FAERS). Four 

types of DILI classes were targeted, including two clinically relevant scores and two 

control classifications, designed by the CAMDA organizers. The L1000 gene expression 

data had variable drug coverage across cell lines with only 247 out of 617 drugs in the 

study measured in all six cell types. We addressed this coverage issue by using Kru-Bor 

ranked merging to generate a singular drug expression signature across all six cell lines. 

These merged signatures were then narrowed down to the top and bottom 100, 250, 500, 

or 1,000 genes most perturbed by drug treatment. These signatures were subject to 

feature selection using Fisher’s exact test to identify genes predictive of DILI status. 

Models based solely on expression signatures had varying results for clinical DILI 

subtypes with an accuracy ranging from 0.49 to 0.67 and Matthews Correlation 

Coefficient (MCC) values ranging from -0.03 to 0.1. Models built using FAERS, 

MOLD2, and TOX21 also had similar results in predicting clinical DILI scores with 

xiii



accuracy ranging from 0.56 to 0.67 with MCC scores ranging from 0.12 to 0.36. To 

incorporate these various data types with expression-based models, we utilized soft, hard,

and weighted ensemble voting methods using the top three performing models for each 

DILI classification. These voting models achieved a balanced accuracy up to 0.54 and 

0.60 for the clinically relevant DILI subtypes. Overall, from our experiment, traditional 

machine learning approaches may not be optimal as a classification method for the 

current data. 
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CHAPTER 1

INTRODUCTION

Adverse drug reactions (ADRs) are a common concern of novel drugs and therapeutics. 

One of the more common targets of ADRs is the liver due to its role in the metabolism of 

compounds and resulting liver damage is termed as Drug-Induced Liver Injury (DILI) 1–3. 

DILI is a unique challenge in drug development due to the inability of animal models to 

translate to human clinical trials in treatment populations. Assessing DILI risk has been 

approached in multiple ways during drug development; however, officials often rely on 

post-marketing surveillance to detect possible long-term side effects such as DILI 4. The 

U.S. Food and Drug Administration (FDA) has established the DILIrank dataset, the 

largest reference drug list ranked for DILI risk in humans, to facilitate the development of

predictive models by enhancing drug label DILI annotation with weighted causal 

evidence5. This dataset contains four classifications, including most, less, ambiguous, and

no-DILI concern, regarding 1,036 FDA-approved drugs. Additionally, predicting DILI is 

difficult due to the absence of specific and reliable biomarkers. Traditional biomarkers, 

including alanine aminotransferase, total bilirubin levels, aspartate aminotransferase, and 

gamma-glutamyl transferase (among others) are not specific enough to separate DILI 

from other forms of liver injury6. Due to this reason, FDA in 2016 approved 

investigations into glutamate dehydrogenase and microRNA-122 as potential 

biomarkers7. Messner and colleagues characterized exosomal microRNA-122 
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in methotrexate and acetaminophen-induced toxicity in hepatic stem cells, HepaRG. They

confirmed that microRNA-122 can be used as a sensitive biomarker for DILI 8.

Predictive markers of DILI, determined by compound properties and known variables 

rather than preclinical studies, would facilitate drug development in a wide variety of 

ways9,10. Multiple groups have attempted to predict DILI using drug compounds or 

proposed drug properties. Chemical structures11, gene expression response12, and patient 

genetic data have been previously used for DILI prediction using traditional machine 

learning algorithms. Xu et al. proposed a deep learning model built on a “combined data 

set” gathered from a variety of sources and used a molecular structural encoding 

approach for the chemical structures of the drugs in their data13. Kohonen et al. proposed 

a ’big data compacting and data fusion’ concept14. In their approach, the authors utilized 

data from the Connectivity Map (CMap; Broad Institute) database, the Open 

Toxicogenomics Project-Genomics Assisted Toxicity Evaluation Systems (TG-GATEs; 

National Institutes of Biomedical Innovation, Japan), the US National Cancer Institute 60

tumor cell line screening (NCI-60), and the US FDA Liver Toxicity Knowledge Base 

(LTKB). Using these databases, they modeled a predictive toxicogenomics space that 

captured all possible well-known hepato-pathological changes14. 

Building upon these previous efforts to accurately predict DILI, the Critical Assessment 

of Massive Data Analysis (CAMDA) in collaboration with the Intelligent Systems for 

Molecular Biology (ISMB) has proposed the CMap Drug Safety Challenge for their 

annual conferences in 2018, 2019, and 2020 (Table 1). The previous challenges in 2018 

and 2019, while sharing a similar goal to predict potential liver toxicity, also had distinct 

parameters. The prediction DILI classification in 2018 was a binary positive or negative 
2



Table 1. Previous CAMDA Drug Safety Challenge Summary. 
The CMap Drug Safety Challenge has been a repeated effort by CAMDA to develop 
predictive models for DILI. Previous studies are cited by their year of publication and 
leading author while also describing the the year in which the challenge was 
administered by CAMDA and relevant data sources and DILI classifications for 
prediction.

Authors CAMDA 
Drug Safety
Challenge

Data Sources DILI conditions

Current: 
Adeluwa et 
al. 

2020 CMap L1000, MOLD2, FAERS, 
TOX21

DILI1, DILI3, 
DILI5, DILI6

2021: Liu et
al.

2019 CMap L1000, SMILES strings, 
SIDER 4.1, 

Most-DILI 
concern, Less-DILI
concern, 
Ambiguous DILI 
concern, No-DILI 
concern

2021: 
Aguirre-
Plans et al.

2019 CMap L1000, DisGeNET, 
GUILDify, SMILES, DGldb, 
HitPick, SEA

2021: 
Lesinski et 
al.

2019 CMap L1000, SMILES, annotated 
Images

2020: 
Chierici et 
al.

2018 Affymetrix GeneChip (MCF7, 
PC3)

DILI-1, DILI-0

2020: 
Sumsion et 
al.

2018 Affymetrix GeneChip (MCF7, 
PC3)
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DILI status, while in 2019 the challenge was more focused on the potential DILI risk 

ranging from no concern to most concern with four classifications reflecting the DILIrank

dataset5. The data, used for predicting the DILI classification of drugs in the 2018 

challenge, were limited to microarray data from MCF7 and PC3 cell lines. Chierici et al. 

in 2018 employed deep learning techniques for the microarray data from 276 compounds 

but only achieved Matthews Correlation Coefficient (MCC) values of <0.215. Sumsion et 

al. in the same challenge year utilized more traditional classification algorithms along 

with soft voting but reached a maximum MCC of 0.2 and maximum accuracy of 70%, 

while the voting model never performed the best when compared to individual models16. 

Both studies cite struggles with the small sample size and imbalanced datasets; however, 

resampling, in this case, led to overfitting rather than improved testing accuracy.

The CMap Drug Safety Challenge expanded in 2019 by including not only expression 

data from L1000 CMap but also by allowing a wide variety of external data sources that 

were incorporated into each study. Lesinski et al. achieved their best predictive results by 

incorporating molecular drug properties along with the most informative variables from 

5 of 13 cell line expression models via a super learner method17. Including molecular 

property information improved their cell line models’ accuracy up to 73% utilizing a 

random forest algorithm, which originally ranged from 55% to 61%. Liu et al. built 

support vector machine and random forest models using chemical descriptions from 

DILIrank annotation along with expression values from predicted protein targets 18. This 

approach produced models with an accuracy of 75.9% that were also able to correctly 

identify targets associated with the mechanism of action and toxicity of nonsteroidal anti-

inflammatory drugs, a class of drugs commonly associated with DILI. Aguirre et al. 
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utilized the widest array of predictive data, including L1000 CMap expression, drug-

target associations, structural data, phenotype-associated gene signatures, protein-protein 

interactions, and drug targets data19. Their models’ accuracy remained comparable to 

other study results at 70%, but they also identified structural dissimilarities within the 

DILI risk labels used. All three published studies from the 2019 CMap drug safety 

challenge cited data limitations within their study, including complex dosage-related 

toxicity, a small sample size, and a small number of compounds with hepatoxicity 

annotation.

The current CAMDA 2020 challenge was structured in a way to address the previous 

limitations, while also redefining the relevant DILI classifications. The challenge aimed 

to predict or classify positive and negative classes within each of four DILI designations, 

namely DILI1, DILI3, DILI5, and DILI6. DILI1 and DILI3 were clinical classifications 

based on specific severity scores or established FDA warnings and precautions, while 

DILI5 and DILI6 served as a negative and positive control class, respectively (Table 2). 

Drug class labels were assigned by the CAMDA 2020 challenge organizers. DILI1 was 

described as a severity score ≥ 6 which is associated with high risk based on the DILIrank

dataset and LTKB20. DILI3 was described as drugs withdrawn, given boxed warnings, or 

warnings and precautions from the FDA due to either known risk factors or adverse event

reporting. DILI5 served as a randomly assigned negative control, while DILI6 was 

constructed as a positive control based on molecular weight with positive compounds 

weighing >320 g/mol. The drug list for the study was expanded to 617 drug compounds 

to improve on the sample size limitations of previous studies; however, these datasets 

remained highly imbalanced. 
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Table 2. Drug-Induced Liver Injury Classifications. 
Four binary classes of DILI were provided by the CAMDA organizers. DILI1 positive 
compounds were based on the clinical severity score associated with liver necrosis. 
DILI3 positive compounds were based on drug already associated with warnings and 
precautions or that have been withdrawn due to liver toxicity. DILI5 was a random 
assignment from the organizers as a negative control group while the DILI6 
classification was based on molecular weight (>320 g/mol) to serve as a positive 
control.

Targets Positive group Negative group

DILI1 DILI Severity score ≥6 (N=141) DILI Severity score <6 
(N=476)

DILI3 Withdrawn, box warning, warning & 
precaution (N=227)

Adverse events and no match 
(N=390)

DILI5 Assigned DILI endpoint 1 (N=308 
positive)

(N=309 negative)

DILI6 Assigned DILI endpoint 2 (N=318 
positive)

(N=299 negative)

Note1: DILI5/DILI6 are controls; DILI5 is randomly split; DILI6 is the positive 
control, dividing compounds based on their molecular weight >320 g/mol

6



The imbalance within the clinically relevant DILI data is expected considering that many 

approved drugs do not have a significant hepatoxicity risk; however, the control classes 

of DILI5 and DILI6 were structured in a balanced manner (Table 3). For this challenge, 

L1000 drug expression signatures from primary human hepatocytes (PHH), liver 

carcinoma (HepG2), immortalized kidney cells (HA1E), human skin melanoma (A-375), 

breast cancer (MCF7), and adenocarcinoma (PC-3) were used as inferred from landmark 

genes defined by Connectivity Map21. These expression responses were simplified to one 

specific dose at one specific treatment time in order to yield the largest available dataset 

for training and testing while also addressing previous dosage toxicity concerns. Other 

non-gene expression data provided included molecular descriptors encoding two-

dimensional chemical structure information from MOLD222, post-marketing drug adverse

event information from FAERS23, and high-throughput liver toxicity screening results 

from TOX2124. While previous studies also utilized external data sources to improve 

model performance, the current study focuses on the various types of data processed and 

provided from the CMap drug safety challenge. 

We constructed models to predict each drug’s DILI class (positive or negative) within the

four DILI classifications (DILI1, DILI3, DILI5, and DILI6) by first evaluating the 

performance of each dataset in predicting DILI and also by employing ensemble voting 

with the top three performing models across data types. The gene expression data 

presented a unique challenge in that not all drugs were tested in each cell line or even in 

liver-relevant cell lines. To address this, we utilized a Kru-Bor merging method to merge 

the expression signatures across cell lines into one representative drug signature 25,26.
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Table 3. Training Data Imbalance. 
The data used for the clinical DILI classes of 
DILI1 and DILI3 were imbalanced which 
negatively influenced the models built to 
predict these classes.

DILI Class Negative Positive

DILI1 326 96

DILI3 262 160

DILI5 218 204

DILI6 197 225
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These expression signatures were narrowed down to the top and bottom 100, 250, 500, 

and 1,000 ranked genes and subjected to feature selection via a Fisher’s exact test based 

on their involvement in DILI positive/negative assigned drugs for each DILI class. 

FAERS, MOLD2, and TOX21 datasets were also used to construct DILI predictive 

models, and to address the imbalance of these data we tested resampling techniques. 

Various traditional classifier algorithms were used to build models on these datasets, and 

the models were evaluated on a blinded test set by the CAMDA committee. Based on the 

training area under the curve (AUC) values of these models, the top three algorithms for 

each datatype (cell expression, FAERS, MOLD2, and TOX21) for each DILI class were 

included in our ensemble voting model. We tested hard, soft, and weighted voting across 

these datasets to see if the varying dimensions of data can improve predictive 

performance. 
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CHAPTER 2

LITERATURE REVIEW

The purpose of this section is to describe the pathophysiology of DILI and to review the 

available literature on the status quo of DILI prediction.

Pathogenesis and Mechanisms of DILI

DILI occurs in the liver because the liver is an important site for the metabolism of 

compounds. Metabolism aims to transform lipid-soluble compounds – which are 

biologically active – into lipid-insoluble compounds that are easily excreted from the 

body. Lipophilic drugs are bioactive because they can easily cross the membrane barriers 

of cells. Usually, active drug compounds are metabolized into inactive forms at which 

stage they do not interfere with biological processes in the body27. In other cases, 

metabolism converts inactive drugs (prodrug) into active metabolites that can interfere 

with biological processes in the body27. It is also possible for an active metabolite to be 

converted into many other active metabolites27. 

These conversions are mediated by chemical reactions that take place in the liver. For 

nomenclature, these reactions are split into Phase I and II reactions but they don’t have to

take place in that order. Phase I reactions are mediated by the cytochrome P450 (CYP) 

superfamily of enzymes27. These enzymes modify drugs into lipophobic drugs i.e. water-

soluble drugs. The reactions they catalyze include oxidation, reduction, hydroxylation, 
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deamination, sulphoxidation, and various forms of dealkylation. Reactive metabolites that

are potentially – and directly – toxic to the cells are generated in this phase. 

In phase II reactions, reduced or oxidized forms of drug compounds are conjugated 

through various methods including acetylation by way of N-acetyltransferases (NATs), 

glucuronide conjugation by way of UDP-glucuronosyltransferases (UGTs), methylation 

through thiopurine S-methyltransferases (TPMTs) and/or catechol O-methyltransferases 

(COMTs), addition of glutathione substrates through glutathione S-transferases (GSTs), 

and sulfation by sulfotransferases (SULTs). These conjugation processes make it possible

for metabolites to be effluxed through transporters27. 

The amount of metabolites and reactive oxygen species (ROS) that the liver is exposed to

make it a potential site of damage. This is one proposed mechanism of the DILI 

formation. These metabolites can interfere with the structure of proteins – and 

consequently, their functions and localization – by covalent bonding [to these proteins]28. 

This direct mechanism of DILI formation can result in hepatocellular damage and death 

through endoplasmic reticulum (ER) stress, mitochondrial dysfunction, and interference 

with signaling pathways29. Intracellular calcium signaling and composition can be 

interfered with resulting in lysis of the cells30. While this direct mechanism of DILI 

formation is easily understood, it is insufficient in explaining the involvement of the 

immune system. Thus, the recruitment of other cells through the immune system is 

proposed as another important mechanism of DILI formation. 

The stress and damage caused by drugs can trigger inflammatory reactions of the innate 

immune system, through the release of damage-associated molecular patterns (DAMPs) 
11



like adenosine triphosphate (ATP), heparin sulfate, DNA, heat-shock proteins, and high 

mobility group box 1 protein (HMGB1)31. These DAMPs can lead to the production of 

reactive oxygen/nitrogen species, neutrophil inflammation, and an increase in cytokines 

and inflammatory chemokines through the activation of Toll-like receptors32. Also, 

DAMPs can be recognized by pattern recognition receptors (PRRs) that are present on 

antigen-presenting cells (APCs), leading to the activation of the adaptive immune system.

A more popular hypothesis for DILI formation that involves the immune system is the 

hapten hypothesis29,33. Here, it is proposed that DILI is caused by haptens which are small

molecules that become immunogenic when they are bonded with carrier molecules like 

proteins9. The formed hapten-protein adducts activate the innate immune system, which 

leads to the production of inflammatory chemokines and cytokines. Other inflammatory 

mediators like Fas and IFN-gamma (interferon-gamma) can cause direct liver damage 34,35.

In turn, the innate immune system activates the cells of the adaptive immune system 

through T cell responses. The manner through which these haptens are presented to T 

cells is dependent on the HLA (human leukocyte antigens) haplotype of the individual, in

turn determining the immune response, further explaining a genetic basis for 

idiosyncratic DILI34,35. 

As the principal system for exporting bile salts outside the liver, the blockade of the bile 

salt export pump (BSEP) has been hypothesized as another DILI mechanism. One study 

found that a genetic loss-of-function deficiency of the BSEP system led to liver failure 

and cholestasis36. By blocking the BSEP, there is an increased concentration of bile acids 

within the liver, which can lead to hepatocellular stress, mitochondrial dysfunction, ER 
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and organellar stress37,38. Medications like troglitazone, sunitinib, bosentan, and 

cyclosporine A have been implicated in inhibiting BSEPs and causing DILI37,39–43. 

Types of DILI

Classically, the pathogenesis of DILI has determined its classifications such that DILI is 

divided into two types, namely intrinsic (or direct) DILI and idiosyncratic DILI44. Some 

drugs can cause direct liver toxicity when used at high doses beyond their therapeutic 

indices. In this case, the DILI type is said to be intrinsic, and it is predictable and dose-

related44. In many cases, intrinsic DILI occurs after a short period of exposure to the 

medication (at doses beyond the recommended dose). Acetaminophen (Tylenol) is a 

commonly used non-steroidal anti-inflammatory drug (NSAID) for treating fever and 

pain that is well-characterized for causing acute liver failure slightly beyond the 

maximum recommended dose of 4g per day45–47. The acute liver failure in these patients 

was marked by elevated alanine aminotransferase (ALT)48 and aspartate aminotransferase

(AST)46. Interestingly, acetaminophen is responsible for most cases of acute liver 

failure48.

Nearly all presentations of DILI in the clinic are idiosyncratic (or unpredictable) DILI, 

and patient-dependent. This type of DILI is defined by having no direct liver toxicity, 

dose-independent (thus, occurring even at minimum/recommended doses), unpredictable,

severe (or fatal), and rarely-occurring49–52. One of the commonest histological phenotypes

of idiosyncratic DILI is acute hepatitis53, marked by increased alanine aminotransferase 

concentrations. Responsible for close to 15% of acute liver failure due to idiosyncratic 

DILI54,55, acute hepatitis is caused by medications such as diclofenac, nitrofurantoin, 
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isoniazid, sulfonamides, and floroquinolones56,57. Another phenotypic representation of 

DILI is cholestatic hepatitis defined by an impediment to the flow of bile from the liver. 

Symptoms include pruritus, jaundice, dark urine, nausea, and rash58. Serum biomarkers 

alkaline phosphatase (ALP) and bilirubin are significantly increased58,59, and medications 

like chlorpromazine, amoxicillin-clavulanate, cefazolin, azathioprine, ciprofloxacin, 

levofloxacin, cephalosporins, and terbinafine60–65. In many cases, if these medications are 

withdrawn quickly, cholestatic hepatitis usually resolves by itself64. Besides acute 

hepatitis and cholestatic hepatitis, other phenotypic representations of idiosyncratic DILI 

are chronic hepatitis and mixed hepatitis. 

Diagnosis of DILI

Taken together, acute and chronic hepatitis, cholestatic hepatitis, and acute and chronic 

cholestasis are the most common phenotypic representations of DILI. However, these 

histological patterns are not perfectly correlated with serum biomarkers and biochemical 

presentations of DILI. This non-correlation, coupled with the inability to differentiate 

DILI from liver disease not due to medications or supplements, makes the diagnosis of 

DILI difficult. For instance, drug-induced acute hepatitis shares strikingly similar 

symptoms with acute viral hepatitis, even with an increase in ALT concentration66. 

Symptoms of DILI are similar to those found in autoimmune hepatitis fatty liver disease 

and hepatic necrosis66. Therefore, DILI is usually diagnosed based on the exclusion of 

seemingly related liver diseases not due to the use of medications. Currently, there are no 

specific biomarkers for DILI diagnosis, but measurement of these serum biomarkers 

ALT, AST, ALP, and bilirubin are being used as diagnostic parameters67. In addition to 
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this is gamma-glutamyl transferase (GGT)67. These markers, used alongside Hy’s law, are

a tool approved for the determination of a medication’s ability to cause DILI. 

Hy’s law was proposed by Hy Zimmerman after certain clinical observations 68. He 

proposed that there is a 10% to 50% chance of mortality in patients with evidence of 

jaundice and hepatocellular damage68–71. Over time, the FDA has expanded and compiled 

these criteria such that a drug is determined to cause DILI if it meets the following 

conditions:

1. 3-fold elevation of aminotransferases (ALT or AST) above the normal upper 

limit

2. Alongside the previous criterion, a 2-fold increase in total bilirubin levels 

above the normal upper limit, barring the non-diagnosis of cholestasis

3. If there is no other diagnosis explaining the hepatocellular damage, for 

instance, acute viral hepatitis, congestive heart failure, 

In addition to the above criteria, a separate expert panel72 recommended the following:

1. A 5-fold elevation of aminotransferases (ALT or AST) above the normal 

upper limit

2. A 2-fold elevation of ALP above the normal upper limit

3. Alongside the first criterion, a 2-fold increase in total bilirubin above the 

normal upper limit. 
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Regardless of these criteria and biomarkers, determining DILI is still difficult primarily 

because separating drug-induced hepatocellular damage from non-drug-induced 

hepatocellular damage is challenging. In addition, determining causality is confounded by

the use of multiple medications and insufficient information on the doses and usage of the

medication(s). A pertinent challenge is these traditional biomarkers are not liver-specific, 

neither are they drug-specific, necessitating the need for more specific biomarkers 73. The 

FDA has launched investigations into finding new and specific biomarkers including 

glutamate dehydrogenase (GLDH) and miRNA-12274. Other potential biomarkers are the 

histological biomarker HMGB1, macrophage colony-stimulating factor receptor, and 

keratin-1875. 

To address the diagnostic challenge with DILI, researchers have turned to computational 

approaches, in particular, machine learning76–79. Given the exponential growth in next-

generation sequencing technologies, large biological datasets, faster computers, and more

efficient computational tools, data science-driven methods to understand patterns in DILI 

progression are an invaluable approach to this problem. 

Computational prediction of DILI has long relied on using molecular/chemical/structural 

information of drugs. The hypothesis is that the structure of drugs harbor information that

determines how they are metabolized and that the resulting metabolites can point to DILI 

development. Using 3D molecular descriptors as inputs to a linear discriminant analysis 

and an artificial neural network algorithm, Cruz-Monteagudo and others build predictive 

models on 74 drugs and achieved 82% accuracy on 13 drugs used as the test data80. 

Tropsha’s group developed a quantitative structure-activity relationship model using a k-
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nearest neighbor algorithm built on 200 molecular descriptors and tested on 37 drugs, 

achieving as high as 73% accuracy on the test set28. A challenge with these studies was 

that the models were never tested on large external datasets. Liu and colleagues used the 

chemical structure information of drugs in a CAMDA 2019 challenge to build predictive 

models of DILI. Using a support vector machine and a random forest algorithm, they 

achieved a mean balanced accuracy of 0.759 on an external test set 18.  In the same study, 

the authors used L1000 gene expression data for the drugs but noted that these datasets 

were not predictive of DILI18. 

To improve the prediction of DILI, researchers have turned to using – and integrating – 

diverse datasets including genetic data and toxicity information. Furlanello’s group used 

gene expression information of two cancer cell lines treated with 276 drugs to build 

binary classification models. They developed a random forest model, a single-layer 

neural network model, and three deep learning models but obtained poor performance. 

Lesinski et al., in a study published in 2021 integrated gene expression data and chemical

properties where their best model achieved an AUC of 0.73. 

Another approach to developing classifiers for DILI is integrating available datasets, 

especially when individual datasets are not predictive. Piccolo’s group attempted to 

integrate the strength of different models by aggregating many models in an ensemble 

approach, alongside alternative methods like class-weighting and dimensionality 

reduction. Regardless, their approach failed to generalize properly to the test set 16. Voting

approaches, however, have the potential to improve the prediction metrics that they are 

measured on81,82. 
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Problem Statement

The current status of DILI prediction has room for improvement. In our approach, we had

access to gene expression data across six cell lines, molecular descriptors for the drugs, 

toxicity information for the drugs, and patient-reported incidences of adverse drug 

reactions for each drug. The aim of this study was to (i) evaluate the quality of these 

individual datasets in predicting DILI, and (ii) to evaluate if integrating these dataset can 

improve DILI prediction. To this end, we developed a voting method to aggregate the 

strengths of models built in (i). 
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CHAPTER 3

METHODOLOGY

Data Processing

The overall workflow of our study is shown in Figure 1. Initially, the overlap of drugs, 

included in each of the gene expression cell data sets, was investigated using VennDetail

83 to create a Venn pie chart showing the various drug testing subsets across the six cell 

lines (Figure 2). Each of the non-gene expression datasets (FAERS, MOLD2, and 

TOX21) were treated as individual datasets, while the gene expression data were merged 

across cell lines to build classifier models. In general, we used standard preprocessing 

techniques, including removing zero variance features and missing values. DILI1 and 

DILI3 suffered from class imbalance (Table 3). For all non-gene expression data, to 

mitigate this issue, we attempted three oversampling techniques, including synthetic 

minority oversampling technique (SMOTE) 84, random oversampling examples (ROSE)

85, and a random upsampling of the minority classes. SMOTE balances data by randomly 

creating artificial samples between two nearest-neighbor samples, while ROSE uses a 

smoothed bootstrap technique to resampled the data 84,85. For comparison, models were 

built using imbalanced data as well. Before training non-gene expression datasets, they 

were standardized to have a mean of 0 and a standard deviation of 1. Preprocessing 

details specific to each dataset as well as some characteristics of the data are discussed 

below. 
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Figure 1.  Study Workflow. 
Data were separated into expression-based datasets and non-expression-based (FAERS, 
MOLD2, TOX21) for testing. Non-expression data was evaluated with resampling 
methods ROSE and SMOTE as well as an unbalanced dataset. Expression-based datasets 
were merged across cell lines into one representative expression signature per drug. 
These signatures were tested as the top and bottom 100, 250, 500, and 1,000 ranked 
genes for each drug. Following signature formation, feature selection using a fisher’s 
exact test was used to determine significant predictors of DILI classification. Machine 
learning was used on predictors for both expression-based and non-expression models, 
which were evaluated based on training AUC curve values as well as testing 
performance. The top three performing models for each DILI type were utilized in 
ensemble voting models in an effort to incorporate both expression and non-expression 
datasets.

.
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Figure 2. Drug Testing Cell Distribution. 
The Venn-Pie diagram depicts the overlap of drugs tested between each of the six cell 
lines used in this study. Each bar within the Venn-Pie represents an individual dataset 
while the color of the bars indicates the overlapping group of compounds across datasets. 
While 247 of the 617 drugs included in the training and test data were tested in all 6 cell 
lines, some compounds were only tested in a singular cell line and others did not have 
any expression information provided.
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Food and Drug Administration Adverse Event Reporting System (FAERS) 

The CAMDA organizers provided us with FAERS data for all 617 drug compounds. Of 

these, 422 were grouped as “training data”. This dataset contains 20 features 

corresponding to information on the percentage of reported adverse events for each drug 

compound by gender and age group demographic. After removing highly correlated 

features, we upsampled the data to cater to the class imbalance by randomly sampling 

with replacement from the minority class to balance the majority class. An additional 

preprocessing step was to create two new variables, namely “male ratio” and “female 

ratio”, taking into account all reported events irrespective of the gender, all reported DILI

events irrespective of gender, and the percentage of reported DILI events by gender.

Toxicology in the 21st Century (TOX21)

In addition to the FAERS dataset, we were provided with concentration-response 

information of 600 drugs. Of these, 412 were designated as “training data”. Thirty-two 

features corresponded to concentration-response curve ranks. Out of all 412 drugs for 

training, 57 drugs were removed for missing values. In addition, we removed highly 

correlated features using an arbitrary cutoff of 0.82 and catered to the class imbalance by 

using SMOTE.

Molecular Descriptors from 2D Structures (MOLD2)

Alongside the FAERS and TOX21 data provided, we had access to the 2D molecular 

descriptors or structural information of these 617 drug compounds. 422 of these drugs 

were designated for training. There were 777 features for each drug compound with each 
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feature corresponding to MOLD2 descriptors. To cater to class imbalance, we upsampled 

minority classes, as well as ROSE, and SMOTE. 

Connectivity Map L1000 Gene Expression Data

The L1000 assay data used in this study is a high-throughput gene expression assay that 

measures mRNA transcript abundance of 978 landmark genes based on an inference 

algorithm to infer the expression of 11,450 additional genes in the transcriptome 21. 

Utilizing simulation, it has been observed that this reduced representation of the 

transcriptome can recapitulate around 80% of the relationships of measuring the entire 

transcriptome directly. In this study, 12,328 de-identified predictor genes were provided 

by the CAMDA organizers with Z scores to indicate transcript abundance. The treatment 

time and dosage of each drug were selected by the CAMDA committee to produce the 

largest available dataset for both test and training data. 

Kruskal-Borda Merging

Since not all drugs were tested in each cell line data made available, we utilized the 

Kruskal-Borda (Kru-Bor) merging algorithm in the GeneExpressionSignature R package

86. This approach allowed us to generate a unified drug-induced expression signature 

across cell types since many drugs were not tested in the PHH or HepG2 liver cell lines. 

The Kruskal algorithm 87 finds a minimum spanning forest of an undirected edge-

weighted graph while the Borda merging method 88,89 uses ranked options in order of 

preference to determine the outcome. Thus each closest neighbor in rank merges one by 

one until a unified signature is formed. Following merging, the top and bottom 100, 250, 

500, and 1,000 ranked genes were selected as drug signatures for feature selection.
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Feature Selection

A method of feature selection utilized across the merged signatures produced via our 

Kru-Bor merging was based on a gene’s significance (p-value < 0.01) in predicting the 

DILI score via a Fisher’s exact test. If a gene is included in the top or bottom 100, 250, 

500, or 1,000 ranked list, depending on the model data, for any drug it would be assigned 

a 1 (True), or if it fell outside of that range it would be assigned a 0 (False). The classifier

for each type of DILI was also 1 (DILI positive) or 0 (DILI negative). We used these 

classifiers to identify if these highly influenced genes were predictive of a drug being 

DILI positive or DILI negative with a p-value cutoff of 0.01. 

Machine Learning

The prediction of DILI was treated as a binary classification problem for each DILI type. 

That is, for each of DILI1, DILI3, DILI5, and DILI6, outcomes were split between 

‘positive’ and ‘negative’. We used a 5-folds cross validation repeated 100 times, and a 

random search strategy to search for the best parameters for each model. The data was 

made available such that training and test sets had been pre-identified. Importantly, we 

did not have access to the correct labels for the test data. Models were built using 

traditional machine learning algorithms within the caret 90 package in R version 4.0.0 91. 

The machine learning algorithms we used are suitable for classification tasks. They 

include a Logistic Regression (LR) 92, Linear Discriminant Analysis (LDA) 93, Decision 

Trees (DT) 94, Support Vector Machines (SVM) 95, Naïve Bayes (NB) 96, a One-layer 

Neural Network (Nnet), and a Random Forest (RF) algorithm. LR and LDA are generally

categorized as linear classification models, with an assumption that the data follows a 
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normal distribution. Given a set of predictors, LR aims to build a linear model of these 

predictors by minimizing the sum of squared residuals. LDA uses the prior probability of 

belonging to a class to estimate posterior probabilities by using Bayes’ Theorem. DT and 

RF are often classified as trees and rules-based algorithms. Given a set of predictors, a 

decision tree works by using if-else conditions to build a definitive set of rules using 

splits. The challenge usually lies in determining optimal situations to apply a “then”-

clause (or a split). In RF, similar conditional statements are used. However, instead of 

using the entire sample of data for tree-building, RF uses many independent subsamples 

from the training data to build small decision trees. Each small decision tree classifies an 

observation by voting. Neural networks and SVMs are generally grouped as non-linear 

algorithms. Neural networks (in our case, a multilayer perceptron i.e. a neural network 

with one hidden layer), are modeled after how neurons in the human brain work. The 

outcome or prediction is a linear combination of the hidden layer(s) transformed by a 

non-linear activation function. There are several activation functions used, depending on 

whether the problem is a regression or classification problem. In our case, we used a 

sigmoidal or logistic function, since we were dealing with a classification problem. SVM 

aims to find support vectors or data points that separate the different classes as much as 

possible. Intuitively, these data points are the most difficult to separate (the reasoning is 

that they lie very close to one another and to the hyperplane or decision boundary), and 

are thought of to be important in separating classes. There are different flavors of SVMs 

depending on the kernel used (kernels are similar to non-linear activation functions used 

in neural networks). In the current study, we used polynomial, linear, and a radial basis 

function kernels.
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Model Evaluation

To evaluate the performance of our models, we focused on the area under the ROC 

(Receiver Operating Characteristic) curve (AUC) (Equation 6) value as well as the 

specificity (Equation 2), sensitivity (Equation 1), accuracy (Equation 3), and MCC 

(Equation 5) of the models on the test set. ROC illustrates the diagnostic ability of a 

binary classifier as its discrimination threshold is varied. It plots two characteristics, true 

positive rate (TPR) against the false positive rate (FPR), at various thresholds. Therefore, 

the AUC value is a measurement of the probability that a classifier ranks a randomly 

chosen positive instance higher than a randomly chosen negative one, and it is a widely-

used metric in binary classification problems. An AUC value of 1 indicates a perfect 

classifier, i.e. a model that is perfectly able to separate both classes, while an AUC value 

of 0.5 indicates a model that predicts at random. Depending on the application domain, 

AUC values of 0.7 and above are usually acceptable. Specificity measures the ratio of 

negative classes that were correctly identified by the model out of all negative classes, 

while sensitivity measures the ratio of positive classes that were correctly identified by 

the model out of all positive classes. These metrics are affected by how the target labels 

are structured and passed to the algorithm, and they range from 0 to 1. Additionally, we 

evaluated the performance of our models on the test set by calculating the balanced 

accuracy (Equation 4) of prediction. Balanced accuracy is the average of the sensitivity 

and specificity or the average of the fraction of correct labels that are predicted correctly 

(by the model) within each class. We used this metric because we observed that there was

class imbalance within our datasets regardless of DILI type. 
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The MCC is particularly useful in datasets of different class distributions (or imbalanced 

data) because it considers all of the false and true positives and negatives. It is calculated 

from the confusion matrix of a model and its values range from +1 to -1, with +1 

indicating a perfect classification, 0 indicating random classifications, and -1 indicating 

no relationships between the observed and predicted classes.

Equation 1

Sensitivity /TPR=
TP

TP+FN
 

Equation 2

Specificity/TNR=
TN

TN+FP
 

Equation 3

Accuracy ( ACC )=
TP+TN

P+N
=

TP+TN
TP+FN +TN+FP

 

Equation 4

Balanced accuracy=
TPR+TNR

2
 

Equation 5

Matthews Correlation Coefficient ( MCC )=
TPxTN−FPxFN

√(TP+FP ) (TP+FN ) (TN+FP ) (TN+FN )
 

Equation 6

AUC ( Area under the curve )=∫
x=0

1

TPR (FPR−1 ( x ) )dx ,
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Where TPR and TNR are the true positive rate and true negative rate respectively, TP, 

FP, TN, and FN are the number of true positive, false positive, true negative, and false 

negative, respectively while P and N are the number of positive cases and that of negative

cases in the data, respectively.

Ensemble Voting Machine Learning

In an attempt to improve the classification accuracy of our models, we used three 

ensemble voting approaches, namely soft voting, hard voting, and a weighted voting 

approach. These ensemble methods work best when there are varying algorithms of 

different strengths i.e. algorithms having varying underlying assumptions about the data, 

and when each one has reasonable predictive power 81,82. Using the gene expression data 

provided by CAMDA 2018 organizers, Sumsion and colleagues 16 used hard and soft 

voting ensemble methods in an attempt to improve prediction accuracy on DILI risk. As 

an extension of their work, we hypothesized that since we have access to larger and more 

diverse datasets, we could capture different aspects of predicting DILI types and use 

these ensemble methods to improve prediction. 

Hard voting, also known as majority voting, takes into account the predicted class labels 

of each classifier (or voter) 97. Voting is done by counting how many class labels (for 

each class) were predicted among all classes. The class label with the highest count is 

taken to be the predicted class label for that observation. On the other hand, soft voting 

considers the probabilities of each class label by each classifier 98. In other words, it 

considers how certain each classifier is about the class labels. For each class label, the 
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probabilities are averaged, and the label with the highest average probability is taken as 

the predicted class label for the observation. 

The third approach to voting involves using a weight to skew predictions towards the 

most certain models (Equation 7). In our approach, we used the AUC of each classifier as

a weighting parameter for the output probabilities. This was done to take into account 

that some classifiers might have better predictive power and should be given preference 

in determining the outcome of the voting. To weigh each probability, we multiplied the 

probabilities of each predicted class by the AUC and divided this by 1 subtracted from 

the weight, that is, the AUC of that model. Afterward, weighted probabilities were treated

just as in soft voting: by taking the average of all resulting weighted probabilities 

belonging to each class. The class label with the higher average was taken as the 

predicted class for that observation. Therefore, the predicted class, ŷ, of observation, 

given an output set of class membership probabilities across many models, P, is given 

by:

Equation 7

C ( ŷ|P )=argmaxc
1
m
∑
i=1

m

(wi∗pi
c

wi−1 ) 

i.e. a class with the highest weighted average membership of the models, where m is the 

total number of models, i.e., |P|=m, w iis the weighting parameter for a model i, and pi
c
 is 

the probability of class membership of model i to a class c. 
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CHAPTER 4

RESULTS

FAERS Modeling

The performance of FAERS data in predicting each of the DILI types can be seen in the 

bar plots in Figure 3. While we built many models, we compared and picked the best 

three models based on the AUC values to predict DILI class on the test set. We noticed 

that using the raw data (without resampling), models achieved classification accuracy 

between 0.51 and 0.55 and MCC between 0.04 and 0.14 on the training set and did not do

noticeably better on the test set (accuracy: 0.49 to 0.59, MCC: -0.03 to 0.22). On the 

other hand, using resampled datasets improved the accuracy of the models on the training

set to a range of 0.61 to 0.94 (MCC: 0.47 to 0.89). Using these models to predict the DILI

class of the test set showed a slight improvement in the accuracy (0.52 to 0.62). The 

MCC, however, was between 0.04 and 0.24.
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Figure 3. FAERS Model Performance. 
Performance evaluation of the DILI predictive models built using the FAERS reporting 
data was conducted on both the original unbalanced and the resampled/balanced datasets.
The best performing algorithm determined by AUC between GLM, IDA, NB, NNET, 
RF, RPART, and SVMPoly were selected. For DILI1 and DILI3, the highest accuracy 
was 0.62 with MCC values of 0.21 and 0.24, respectively. 
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MOLD2 Modeling

Similarly to how the FAERS data was handled, we selected the top three performing 

models built using MOLD2 data in each category (resampled or non-resampled) to 

predict the DILI class of the test data (Figure 4). Models built using the non-resampled 

MOLD2 dataset gave accuracies of 0.50 to 0.54, showing that the models were randomly 

predicting the classes (MCC: 0.00 to 0.17). This performance was similar on the test set 

(accuracy: 0.50 to 0.66, MCC: -0.01 to 0.36) with a slight improvement. Similarly to 

what we observed using FAERS data, resampling the dataset improved both the accuracy 

and the MCC of the training set (accuracy: 0.71 to 0.78, MCC: 0.56 to 0.76) but could not

generalize better than non-resampled MOLD2 data to the test set (accuracy: 0.51 to 0.67, 

MCC: 0.14 to 0.36). 
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Figure 4. MOLD2 Model Performance. 
The chemical structural information from MOLD2 was imbalanced between DILI 
positive and negative samples. Predictive models were evaluated on both the unbalanced 
and resampled/balanced datasets. The three best-performing models for each DILI type, 
based on AUC and resampling methods, are depicted in the bar graphs. 
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TOX21 Modeling

The top three models built using TOX21 data (using the AUC as the criterion) were 

evaluated on the test set (Figure 5). Using the data as is, without resampling, the accuracy

of the training data was between 0.50 and 0.57 (MCC: -0.02 to 0.17). As expected, the 

models failed to generalize to the test set (accuracy: 0.50 to 0.59, MCC: -0.04 to 0.19). 

Again, we observed that resampling slightly improved the accuracies of these models on 

the training set (accuracy: 0.62 to 0.76, MCC: 0.25 to 0.54). Yet, there was no major 

improvement on the test set (accuracy: 0.50 to 0.58, MCC: -0.01 to 0.20). 
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Figure 5. TOX21 Model Performance. 
The performance of DILI predictive models built using the toxicology information 
provided from TOX21. The three best-performing algorithms, based on training AUC 
and based on whether resampling was used or not, are presented in the bar plots.
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Connectivity Map L1000 Cell Expression Modeling

Cellular RNA expression levels in the form of microarray data have been previously 

investigated for their ability to predict DILI with limited predictive power 15. In the 

current study, the L1000 data from the Connectivity Map was used including both the 

measured landmark genes as well as the inferred transcriptome. We built models using 

each expression data to investigate which cell lines were most successful in predicting 

DILI. Table 4 summarizes the model results based on our training data. However, due to 

the limitation of each cell only providing expression response data from a subset of drugs

(Figure 2) involved in the training and test data, accuracy based on test data was not 

meaningful. Additional processing steps for this data involved merging across the six cell

lines to generate a representative signature, testing different cutoffs for the amount of 

highest- and lowest-ranked genes to utilize, as well as a feature selection for determining 

predictor genes. 

The models built using the merged expression signatures with the highest AUC from the 

training data were evaluated on the test set. The training and test results are summarized 

in the bar plots in Figure 6. None of the cell expression signatures performed well when 

predicting DILI3, DILI5, or DILI6 with an accuracy ranging from 0.39 to 0.64 and MCC 

values ranging from -0.03 to 0.1. These models did have some limited success predicting 

DILI1 with the merged SVM 1000 model performing the best, reaching an accuracy of 

0.67 but an MCC of 0.10 (Table 5). The poor predictability of DILI3 status by these 

models was unexpected with the accuracy of the best model being 0.49 with 0.33 

36



sensitivity and 0.66 specificity. The limited success in predicting DILI5 and DILI6 was 

expected based on the positive and negative control construction of these DILI classes, 

which are not reflected in the gene expression data. 
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Table 4. Training Performance on Independent Cell Line based Models. 
Each of the six cell lines with L1000 expression data were used to build predictive 
models of the four DILI classes. Training performance results for the best performing 
model for each cell type and DILI class are shown as well as the number of predictors 
following feature selection as described in the methods section.

DILI
Class

Cell Type
Tested

ML
Algorithm

Predictors AUC-
ROC

Sensitivity Specificity
D

IL
I 

1

PHH SVM 60 0.969 0.912 0.945

Hep G2 SVM 72 0.922 0.924 0.693

HA1E GLM 40 0.781 0.903 0.389

A-375 GLM 178 0.627 0.826 0.17

MCF7 GLM 65 0.722 0.898 0.222

PC3 RF 315 0.589 1.000 0

D
IL

I 
3

PHH NB 50 0.931 0.547 0.957

Hep G2 RF 75 0.913 0.942 0.625

HA1E SVM 176 0.922 0.953 0.788

A-375 SVM 3610 0.833 0.869 0.607

MCF7 SVM 74 0.861 0.872 0.742

PC3 SVM 345 0.844 0.863 0.606
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D
IL

I 
5

PHH GLM 8 0.723 0.484 0.761

Hep G2 RF 17 0.719 0.984 0.229

HA1E GLM 20 0.711 0.693 0.513

A-375 GLM 24 0.724 0.786 0.561

MCF7 RF 38 0.679 0.803 0.355

PC3 GLM 14 0.661 0.255 0.961

D
IL

I 
6

PHH GLM 2 0.574 0.087 0.990

Hep G2 RF 31 0.686 0.000 1.000

HA1E RF 27 0.688 0.247 0.949

A-375 GLM 16 0.619 0.181 0.945

MCF7 RF 24 0.689 0.186 0.975

PC3 RF 53 0.724 0.159 0.986
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Figure 6. Cell Expression Model Performance. 
A single cell expression signature for each drug was generated using Kru-Bor merging 
across all cell lines in which the drug was tested as described in the methods. Following 
merging, feature selection using a fisher’s exact test was performed on expression 
signatures of the top and bottom 100, 250, 500, and 1,000 ranked genes. Models built on 
these predictors were evaluated and the top-performing ones, based on AUC, are shown 
in the training set bar graph. 
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Table 5. Testing Performance of Top Models. 
The testing result metrics from the best model built using each dataset as well as the 
ensemble voting model.

Dataset DILI 
Class

Algorithm Test 
Sensitivity

Test 
Specificity

Test 
MCC

Test 
Balanced 
Accuracy

Merged 
Expression

DILI1 SVM 0.38 0.95 0.1 0.67

DILI3 SVM 0.33 0.66 -0.03 0.49

DILI5 SVM 0.58 0.7 0.06 0.64

DILI6 SVM 0.48 0.53 0 0.51

FAERS DILI1 NNET 0.51 0.73 0.21 0.62

DILI3 RF 0.54 0.71 0.24 0.62

DILI5 RPART 0.51 0.57 0.08 0.54

DILI6 RF 0.72 0.47 0.2 0.6

MOLD2 DILI1 SVMPoly 0.33 0.88 0.24 0.61

DILI3 SVMPoly 0.55 0.8 0.36 0.67

DILI5 SVMPoly 0.38 0.64 0.01 0.51

DILI6 SVMPoly 0.95 0.99 0.94 0.97
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TOX21 DILI

1

NNET 0.3 0.82 0.12 0.56

DILI

3

GLM 0.43 0.76 0.19 0.59

DILI

5

GLM 0.3 0.75 0.06 0.53

DILI

6

QDA 0.63 0.62 0.26 0.63

Ensemble 
Voting

DILI

1

Weighted voting 0.16 0.92 0.11 0.54

DILI

3

Weighted
voting

0.3 0.89 0.24 0.6

DILI

5

Weighted
voting

0.28 0.71 -0.01 0.5

DILI

6

Weighted voting 0.96 0.97 0.93 0.96
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Ensemble Voting Models Performance

Since the top three individual models did not perform well on the test set (Table 5), we 

asked if aggregating the top three models in an ensemble approach could improve the 

accuracy. To test this, we applied three ensemble voting methods namely soft voting, 

hard voting, and weighted voting. Hard voting gave accuracies of 0.39 and 0.37 on DILI1

and DILI3, respectively, while soft voting gave an accuracy of 0.44 and 0.40 for DILI1 

andDILI3, respectively" to "Hard voting gave accuracies of 0.39 and 0.37 on DILI1 and 

DILI3, respectively, while soft voting gave an accuracy of 0.44 and 0.40 for DILI1 

andDILI3, respectively (Figure 7). Soft voting slightly improved the accuracy of these 

models most likely because it considers membership probabilities rather than predicted 

class labels. We observed that weighted voting slightly improved the accuracy: 0.54 for 

DILI1 and 0.60 for DILI3. Our weighted approach considers both the probabilities and 

the AUC of the models and emphasizes the contribution of models with higher AUCs. 

Sumsion and colleagues used similar approaches (soft and hard voting) with gene 

expression data resulting in decreased accuracies 16. Compared to their study, our 

approach improved the accuracies of the models. However, our method(s) does not report

MCCs because we do not have access to the true positives, true negatives, false positives,

and false negatives in the test data. 
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Figure 7. Ensemble Voting Method Performance. 
To incorporate the various types of data provided ensemble methods including hard, soft, 
and weighted voting were tested using the top three performing models for each DILI 
type.
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CHAPTER 5

DISCUSSION

CAMDA 2020 was a collaborative challenge to establish predictive models of DILI using

gene expression data as well as a combination of data from clinically reported events, 

drug structure, and toxicology. In our study, we evaluated the predictability of these 

datasets on four DILI types, namely, DILI1 (severity score ≥ 6), DILI3 (withdrawn, box 

warning, warning, and precaution), DILI5 (negative control), and DILI6 (positive 

control). These datasets included gene expression/perturbation data on six cell lines 

(PHH, HEPG2, HA1E, A375, MCF7, and PC3), concentration-response or toxicology 

information, 2D molecular descriptors of the drug structure, and reported adverse events. 

To assess the predictive abilities of these datasets, we used various traditional machine 

learning algorithms. For non-gene expression datasets, we corrected the imbalance issue 

using well-known techniques like SMOTE, ROSE, and upsampling the minority class. 

While CAMDA previously approached predicting DILI, there have been significant 

improvements in the data provided and scopes of the challenge each year. In 2018 the 

challenge data only included microarray expression data from non-liver relevant cell lines

on 276 compounds with a binary DILI classification. Published results from the 2018 

challenge indicate limited success from both deep learning and soft voting approaches 

which achieved a maximum accuracy of 0.7 and MCC values <0.2 15,16. When the CMap 
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drug safety challenge was re-administered in 2019, the data expanded to L1000 

transcriptomic data on 13 cell lines and allowed participants to use external data sources 

such as protein-protein interactions, drug-protein targets, and chemical descriptors. The 

DILI classifications for this challenge also changed from binary to a most, less, 

ambiguous, and no-DILI concern which is in line with the FDA DILIrank dataset. 

Predictive model rates from multiple distinct approaches to this challenge in 2019 often 

yielded similar accuracy results around 0.70 17,18,99. 

While it is difficult to make a direct comparison across the years of these challenges 

considering how the fundamental elements of predictive modeling, such as the data 

sources and classifications, have changed, the goal of the challenge has remained the 

same in modeling the risk of a drug to lead to liver injury in patients. The data structure 

of the challenge has also improved in each iteration attempting to expand the predictive 

data power as well as the data sample size to allow for more robust modeling. However, 

as in previous years, the highest accuracy we were able to achieve in the current study 

was 0.67 for DILI1 and DILI3 with the highest MCC value of 0.36. This suggests that 

there are still rooms to improve both in model construction as well as in developing 

robust predictive data, which captures the scope of DILI.

In our study, we developed models with gene expression data using individual cell lines, 

as well as a merging of these datasets. Each cell line dataset did not include all the drugs 

thereby reducing the size of the training data and making it difficult to evaluate each of 

them on the test set. Therefore, we merged these datasets into one expression signature 

across cell types. Further, we selected the 100, 250, 500, and 1,000 most upregulated and 
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downregulated genes as an arbitrarily signature cutoff of the most perturbed genes by 

drug treatment. However, our approach failed to capture predictive differences between 

the positive and negative classes in each DILI type. Although we achieved an accuracy of

0.67 for DILI1 (on the test set), a sensitivity of 0.38 showed that our models were not 

learning the positive classes well enough. Usually, this problem is due to not having 

sufficient training examples for a particular class. In contrast, we could obtain specificity 

as high as 0.95, showing that the model could learn the negative classes well since there 

were more DILI negative drugs in the training set. Table 5 summarizes the best 

performances on the test set. We observed that many of these models failed to generalize 

to the test set i.e. they showed poor predictability on the test set (Table 5). 

Since the individual models did not perform well on the test set, we attempted ensemble 

(voting) methods to improve prediction accuracy. We used soft voting, hard voting, and 

weighted voting approaches. In weighted-voting methods, there are diverse ways through

which importance can be attached to each model. Weight-based ensemble methods tend 

to outperform single models, and even soft voting, because in addition to the posterior 

probabilities churned out by the models, they take into consideration some importance or 

weighting factor 100. Although these methods could not improve test accuracy beyond 

individual models, weighted voting performed better than soft and hard voting because 

weighs the predicted probabilities of the test examples by the performance of each model.

One challenge we had was that the training set was perhaps too small to be further split 

into a training and validation set. However, machine learning algorithms benefit most 

from having sufficient examples. For some datasets such as the gene expression datasets, 
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we did not have access to information on all 617 drugs, which reduced the size of the 

training data. Besides, the training data were largely unbalanced (Table 3). For instance, 

for DILI1, there were 96 positive examples and 326 negative examples. This problem 

resulted in many of our models having low sensitivities since the positive examples were 

insufficient. In an attempt to address this problem, we employed resampling techniques 

(SMOTE, ROSE, and upsampling minority classes) to balance the datasets. However, it 

was clear that models built using balanced (resampled) data were overfitting the training 

set. A possible reason for this was that due to our resampling approach, some training 

examples were also used in the validation stage during cross-validation. In addition, due 

to having blinded datasets, we could not explore how the features were influencing the 

models.

Future Work

In summary, our study suggests that currently available data, including mRNA 

quantification, molecular descriptors, clinically reported events, and toxicology profiles, 

may be inadequate to capture important information enough to separate DILI classes in 

real-world scenarios. 

Machine learning algorithms work best when the datasets are large enough to capture all 

predictive spaces. The size of current DILI datasets, however, is not sufficient. Larger 

datasets may be needed to encourage the application of deep learning algorithms which 

typically do better with bigger data. Additionaly, we suspect that a limitation to DILI 

prediction lies in inadequate biomarker identification, and in the lack of adaption of these

kind of information in predicting DILI. We hypothesize that an additional focus or 
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challenge to predict biomarkers specific for DILI using various –omics data, for instance,

single-cell data and metabolomics signatures, and incorporating these into the wider 

cause of DILI prediction will improve the status quo.

Another problem with DILI prediction is that it is heavily annotation-dependent. In a 

2015 paper, Xu and colleagues discussed how this discrepancy affected their predictive 

models13. The inconsistency in DILI annotations have been heavily discussed in 

literature101. To mitigate this issue, the FDA began unifying annotations resulting in the 

DILI rank dataset5, which was used in this study. Although today these annotations are 

better unified, they still present as a challenge because they are human-annotated, based 

on at least one reported incidence of the medication causing DILI, and may not hold 

information on mechanistic pathways of DILI development for each drug. To improve 

DILI prediction, we hypothesize that more sensitive annotations, based on some 

biological parameter e.g. presence or absence of some serum biomarkers, interference 

with an important DILI pathway, or upregulation of a set of DILI-related genes, may be 

needed, as opposed to annotations solely based on patients’ experiences.

In future studies, rather than use de-identified datasets for prediction, we aim to use 

unblinded data. By knowing the identity of the features we are dealing with, we can 

better understand and model the predictive space. Better still, we can include more 

complicated, in-depth analysis of the data like network and pathway analysis. Although 

the current status of DILI prediction is unsatisfactory, there has been much improvement 

over the years, especially regarding the kinds of datasets that might be needed, alongside 

computational methods that can improve the DILI prediction. In the coming years, we 
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hope that with more sensitive approaches that make use of mechanistic and molecular 

insights to the development of DILI, better machine learning models can be built to solve 

this problem.
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Drug-induced liver injury, or DILI, is an umbrella term for adverse reactions that affect 

the liver, and which are caused by the use of medications, dietary supplements, and other 

xenobiotics. These reactions may be caused by exposure to toxic doses of drug 

compounds or may present as unpredictable and unintended consequences of drug use 

even within non-toxic doses. Additionally, in the process of drug development and 

clinical trials, it is difficult to determine if a new chemical entity can cause DILI. 

Currently, DILI biomarkers are unspecific for drug-related hepatocellular injuries. 

Therefore, there is the need to develop novel approaches to predict DILI using drug-

related information. In this study, we present an evaluation of models built on a number 

of datasets using various traditional machine learning algorithms. These data include 

gene expression data, toxicology data, drug structure information, and reported cases of 

adverse events. Our study, consistent with other studies in this domain, showed that these
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data may not be sufficient to classify DILI types, and that to improve the current status of

DILI unpredictability, there is a need to consider larger and more sensitive DILI-related 

information. 

Data Availability

Data are available for download as provided by the CAMDA organizers at 
http://camda2020.bioinf.jku.at/doku.php/contest_dataset  .   The full processing code
of the data for the results obtained in this manuscript can be found at 
https://github.com/hurlab/CAMDA-Challenge-2020-Drug-Induced-Liver-Injury  .  

65



APPENDIX B

66



LIST OF ABBREVIATIONS

Abbreviatio
n

Meaning

DILI Drug-Induced Liver Injury
CAMDA Critical Assessment Of Massive Drug Analysis
MCC Matthews Correlation Coefficient
SMOTE Synthetic Minority Over-Sampling Technique
ROSE Random Over-Sampling Examples
FAERS Food And Drug Administration Adverse Event Reporting System
TOX21 Toxicology In The 21st Century
MOLD2 Molecular Descriptors From 2D Structures
AUC Area Under The Curve
LR Logistic Regression
RPART Recursive Partitioning And Regression Trees
GLM Generalized Logistic Model
RF Random Forest
SVM Support Vector Machine
NNET Neural Network
ADR Adverse Drug Reaction
FDA Food And Drug Administration
TG-GATE Toxicogenomics Project-Genomics Assisted Toxicity Evaluation 

Systems
NCI National Cancer Institute
LTKB Liver Toxicity Knowledge Base
ISMB Intelligent Systems For Molecular Biology
CMap Connectivity Map
SMILES Simplified Molecular Input Line Entry System
SIDER Side Effect Resource
PHH Primary Human Hepatocytes Cell Line
HEPG2 Human Liver Cancer Cell Line
MCF7 Breast Cancer Cell Line
HA1E Immortalized Kidney Cells
A375 Human Skin Melanoma Cell Line
PC3 Adenocarcinoma Cell Line
CYP Cytochrome P
NAT N-Acetyltransferase
UGT UDP-Glucuronosyltransferase
TPMT Thiopurine S-Methyltransferase
COMT Catechol O-Methyltransferase
GST Glutathione S-Transferase
SULT Sulfotransferase
ROS Reactive Oxygen Species
ER Endoplasmic Reticulum
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DAMP Damage-Associated Molecular Patterns
ATP Adenosine Triphosphate
HMGB1 High Mobility Group Box 1 
DNA Deoxyribonucleic Acid
IFN Interferon
HLA Human Leucocyte Antigen
BSEP Bile Salt Export Pump
APC Antigen Presenting Cell
PRR Pattern Recognition Receptor
NSAID Non-Steroidal Anti-Inflammatory Drug
ALT Alanine Aminotransferase
AST Aspartate Aminotransferase
ALP Alkaline Phosphatase
GGT Gamma-Glutamyl Transferase
GLDH Glutamate Dehydrogenase
miRNA-122 Micro-Ribonucleic Acid - 122
DT Decision Trees
NB Naïve Bayes
ROC Receiver Operating Characteristic
TP True Positive
TN True Negative
FP False Positive
FN False Negative
TPR True Positive Rate
TNR True Negative Rate
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