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ABSTRACT 

During this second year of the project, a network of three urban and one 

rural sampling stations has been established to monitor hazardous substances in 

the atmosphere of Illinois. Toxic trace elements and toxic volatile organic 

chemicals are the two important groups of chemicals selected for sampling. 

They can be released to the atmosphere as a result of the generation, 

treatment, or disposal of hazardous wastes and from a variety of other sources. 

Preliminary data show elevated concentrations of 2 out of 17 toxic trace 

elements analyzed in urban airborne particles in the Chicago and East St. Louis 

areas. The observed concentration levels are too low to have any known impact 

on human health, however. The toxic elements that were found probably resulted 

from a variety of industrial activities such as metal smelting, steel 

processing, and coal burning. Further data collection and analysis is under 

way to determine the particle size distribution of toxic trace elements, the 

concentration of vapor phase trace elements, and the concentration of volatile 

toxic organics in ambient air. Wind direction and other meteorological data 

will be correlated with the sampling of these chemicals to better estimate the 

relative contribution of various pollution sources to concentrations of 

hazardous substances in Illinois air. 
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EXECUTIVE SUMMARY 

The handling and disposal of hazardous materials can result in emissions 

of toxic chemicals to the atmosphere. Volatile chemicals can evaporate during 

transfer operations, from spills and leaks, or directly from disposal 

impoundments and landfills. Nonvolatile materials and poorly combustible 

materials can be emitted from incinerator stacks, generally in particulate 

form. In addition, some toxic materials can be formed and released during 

incineration. 

Two classes of toxic chemicals have been selected for examination in this 

study. One class consists of a group of 17 toxic trace elements and their 

compounds that have potential for human health impacts from airborne exposure. 

The elements chosen can be readily analyzed in aerosol particles using 

commercially available multi-element instrumental techniques. The second 

class, volatile toxic organic chemicals, includes both aromatic and halogenated 

hydrocarbons that also have potential human health impacts. These compounds 

will be collected and analyzed using recently developed techniques for handling 

trace organic gases in ambient air. 

Compounds in both classes are important components of hazardous wastes. 

However, the contribution of specific activities, such as the treatment of 

hazardous wastes to the atmospheric load of these toxic materials, is unknown. 

Furthermore, the concentrations in the atmosphere and sources of toxic trace 

elements and toxic volatile organics in Illinois are not well documented. 

Neither have airborne toxic chemicals been characterized in terms of gas-solid 

partitioning or particle-size distribution, two parameters important to 

understanding potential health and environmental effects. 

viii 



The overall objective of this project is to provide an in-depth chemical 

and physical characterization of airborne toxic trace elements and volatile 

toxic organic chemicals in Illinois. In addition, the data will be used to 

identify sources in the study areas that are important contributors to toxic 

chemicals in the atmosphere. During this second year of the proj ect, the 

following tasks were accomplished: 1) establishment of a network of four 

monitoring stations; 2) collection of size-fractionated aerosol samples for a 

toxic trace element data base; 3) development of sampling and analytical 

techniques for vapor-phase trace elements; and 4) development of an analytical 

capability for the volatile toxic organic chemicals of specific concern. 

SAMPLING NETWORK 

After review of Illinois Environmental Protection Agency monitoring data, 

three urban and one rural sampling sites were chosen. The urban sites are all 

in areas with high levels of suspended particulate matter and trace elements in 

the atmosphere. Two of the urban sites, 13th and Tudor in East St. Louis and 

Bright Elementary School at 10740 S. Calhoun in Chicago, are close to 

commercial hazardous waste incineration facilities. The air around these two 

sites and around the third urban site at 2001 E. 20th St. in Granite City is 

affected by a wide variety of industrial, transportation, and commercial 

sources. The three urban sites were chosen because they are impacted by a wide 

variety of sources and because they represent the worst air quality found in 

residential areas in Illinois. The fourth site is located 8 km south of 

Bondville, Illinois near Champaign. It is normally at least 50 km downwind of 

any significant sources and was chosen to determine background levels in 

Illinois. The urban sites selected for study are air quality problem areas in 

Illinois. The rationale for this selection is that a wide variety of sources 
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contributing to poor air quality can be studied at a few sites. The in-depth 

characterization of problems in these areas should be applicable to other urban 

areas with similar sources. 

Each site is equipped with an automatic dichotomous sampler capable of 

collecting size fractionated aerosol samples in order to provide information on 

particle-size distribution and vapor-particle partition. Meteorological 

equipment has also been installed at each site for monitoring wind speed and 

direction as well as other variables. A sampling schedule has been instituted 

to collect several types of samples to provide assessment of the temporal and 

directional variability of toxic trace elements. These sites will also be used 

to monitor volatile organics next year. 

TOXIC TRACE ELEMENT DATA BASE 

Data for 17 of 19 targeted toxic trace elements were obtained by x-ray 

fluorescence analysis on filters collected during late 1985 and early 1986 

(Table A). In most cases, trace element concentrations were comparable to 

atmospheric loading of trace elements in other urban areas around the country. 

Although these levels are currently considered too low to have a significant 

impact on human health, several of the elements are known or suspected 

carcinogens and the long-term impact of exposure at these concentrations is 

uncertain. 

The concentrations of certain toxic trace elements are higher than 

expected for a typical urban area. A mixture of trace elements including zinc, 

cadmium, copper, tin, and lead occurs in the fine particle aerosol collected in 

East St. Louis. The most likely source of this material is emissions from 

copper and zinc smelters located to the south and southwest of the sampling 
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Table A. Average Toxic Trace Element Concentrations 
in Inhalable Airborne Particles. a 

U.S. Averageb 

Element Bondville Chicago E. St. Louis Granite City Urban/Rural 

Vanadium (V) .003 .008 .006 .008 .021/.008 

Chromium (Cr) .002 .011 .008 .014 .011/.007 

Manganese (Mn) .009 .090 .025 .067 .038/.020 

Nickel (Ni) .001 .004 .004 .004 .010/.003 

Copper (Cu) .004 .018 .060 .036 

Zinc (Zn) .025 .134 .182 .146 

Selenium (Se) .002 .004 .003 .002 

Molybdenum (Mo) .001 .004 .003 .002 

Silver (Ag) .001 .003 .004 .002 

Cadmium (Cd) .002 .005 .021 .004 

Tin (Sn) .003 .011 .008 .006 

Antimony (Sb) .005 .014 .010 .010 

Barium (Ba) .010 .030 .030 .020 

Mercury (Hg)C .001 .001 .001 .001 

Cobalt (Co) .002 .006 .006 .006 

Lead (Pb) .028 .174 .175 .164 

Arsenic (As) .002 .005 .005 .007 

aparticle diameter <10 ~m, concentrations are in ~g/M3. 
bUSEPA Data (1979). 
cSubstantial amounts of Hg are in the vapor phase. 
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site. In Chicago and Granite City, the levels of manganese in coarse aerosol 

particles are relatively high. This is probably due to the presence of large 

steel mills in the vicinity of these sites. Finally, the high levels of 

selenium (Se) at Bondville are similar to those at the urban sites. Since this 

site is in a rural area, the concentrations of most elements related to man­

made pollution are 3-10 times lower than in urban areas. Selenium is known to 

be associated with coal burning and can be transported 1000 km or more in the 

atmosphere. In fact, Se is used as a tracer element to follow air masses 

originating in the Midwest due to the large number of coal burning power plants 

in the region. 

In a preliminary experiment, the particle size distribution of several 

elements was also determined. More complete analysis of several size classes 

of airborne particles will take place next year. This information can be used 

to differentiate emissions from combustion sources, which produce very fine 

particles, from emissions of mechanically generated dust (large particles). 

For example, selenium and lead result from combustion and are found principally 

on particles with diameters less than 2 p.m. Manganese, however, is often 

concentrated on particles between 4 and 10 p.m in diameter. I t is the fine 

particles that may be transported the greatest distances and are of most 

important health concern. 

Another useful tool in estimating the contribution of various sources is 

wind data. By analyzing filters collected during periods of steady wind 

direction, emissions can often be attributed to a particular source or group of 

sources. This technique was used to tentatively identify smelter emissions in 

East St. Louis and steel mill emissions in Chicago. A larger and more complete 
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data set will be available for the next report which should allow 

identification of more sources. 

VAPOR PHASE TRACE ELEMENTS 

The vapor pressure of a few of the target trace elements is high enough 

that a significant fraction exists in the gas phase under normal ambient 

conditions. These elements (mercury, arsenic and selenium) are significantly 

under-sampled using conventional particle-collecting filters alone which are 

almost universally used for regulatory compliance monitoring. The vapors can 

be better collected using appropriate absorbent materials and analyzed by 

neutron activation or atomic absorption analysis. This will be done during the 

next year of this study. 

To collect gas phase trace elements, cellulose filters impregnated with 

absorbent are placed downstream from the particle-collecting filters in the 

dichotomous sampler. In this way, both particle-bound and gas phase fractions 

of the volatile trace elements can be evaluated. After preliminary experiments 

with test absorbent materials, vapor phase sampling will be incorporated in the 

routine sampling schedule. 

VOLATILE TOXIC ORGANICS 

Work is progressing to develop sampling and analytical capabilities for 

ambient concentrations of volatile toxic organic chemicals. There are no 

generally accepted methods for this. The technique selected is to collect 

whole air samples in inert stainless steel canisters and then to concentrate 

the organics cryogenically for analysis by gas chromatography. Preliminary 

experiments indicate that this method should allow quantification of ambient 

air concentrations of benzene as low as 20 parts per trillion (ppt) and carbon 
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tetrachloride as low as 2 ppt. These concentrations are lower than those which 

have been measured in Illinois. Very little is known, however, about the 

ambient levels of toxic organic chemicals, so this aspect of our project will 

substantially increase the data base for hazardous materials in the atmosphere. 

CONCLUSIONS AND RECOMMENDATIONS 

Preliminary investigation of toxic trace element levels in urban areas in 

Illinois indicates that the amounts of most of the chemicals are within the 

range typically found in urban areas in the U.S. For a few of the elements, 

higher levels seem to be associated with emissions from zinc and copper 

smelters and manganese from steel mills. 

Of the trace elements sampled in this study only lead is covered by an 

ambient air standard. Even the highest concentration of lead measured so far 

in this project (0.6 ~g/cubic meter) is well below this standard (1.5 ~g/cubic 

meter). Although there are no standards for the other elements at this time, 

the levels found are well below those now known to cause health effects. 

However, a number of the trace elements are carcinogenic and the long- term 

impact of low ambient concentrations of mixtures of these chemicals on human 

health is uncertain. 

To fully assess ambient air concentrations of toxic elements in the urban 

study areas, more samples need to be collected during periods associated with a 

wide range of pollution levels. In addition, the particle size distribution 

and the vapor-particle partitioning of trace elements will help in assessing 

health effects and pinpointing sources. 

With the development of sampling and analytical capabilities for volatile 

toxic organics, measurements of atmospheric concentrations of these materials 

will be started. Ambient levels of toxic organics have been studied very 
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little in Illinois even though they pose at least as large a health threat as 

the toxic trace elements. For this reason, it is important to include them as 

part of an atmospheric hazardous materials data base for Illinois. 
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I. INTRODUCTION 

Toxic chemicals can enter the atmosphere from a wide variety of human 

activities including production, handling, and disposal of hazardous materials. 

Many chemicals with low volatility are released or formed during high 

temperature processes such as incineration and are vented to the atmosphere via 

smokestacks. On the other hand, 

are emitted from leaks, spills, 

some organic compounds with high volatility 

or open sources such as landfills. These 

emissions are termed "fugitive" emissions. 

Two groups of toxic chemicals have been selected for this study. The 

first consists of a number of toxic trace elements and their compounds that 

occur in urban air and may be present in emissions from hazardous waste 

incinerators. The second group consists of volatile halogenated aromatic 

hydrocarbons, which are normally present at levels between 0.1 and 5 parts per 

billion (ppb) in urban atmospheres and are important components of hazardous 

wastes. Chemicals in both of these groups have been implicated as maj or 

contributors to cancer risk from urban air in a nationwide study conducted by 

Thomson et al. (1985) for the U. S. Environmental Protection Agency (USEPA). 

There are, of course, many other types of toxic chemicals associated with 

hazardous waste facilities and urban air pollution. The two groups of specific 

chemicals selected in this study were chosen because there is little or no 

information about their occurrence or concentration levels in the atmosphere in 

Illinois. In fact, for some of these there is very little data about their 

occurrence anywhere in the world. 

In a recent report, Wallace and Trenholm (1985) concluded that the trace 

element emissions from individual hazardous waste incinerators are equivalent 

to those from a typical municipal solid waste incinerator of the same capacity 
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and 10 to 100 times treater than those from a coal fired power plant of the 

same capacity. Volatile elements such as mercury (Hg) , antimony (Sb), arsenic 

(As), cadmium (Cd) and lead (Pb) are emitted even when particulate control 

devices are present. Two locations near hazardous waste incinerators were 

chosen as sampling sites for this study along with another urban area with 

heavy trace element pollution and a rural control site. 

The Illinois Environmental Protection Agency (IEPA) currently monitors a 

limited number of toxic trace elements (lead, arsenic, nickel, manganese, 

chromium and cadmium) in 24-hour particulate matter samples collected at urban 

sites every 6 days (IEPA, 1985). However, IEPA provides no monitoring data on 

the other toxic elements chosen for this study and no information on particle 

size distributions or short term «24 hr) concentration extremes. Thus, peak 

concentration levels may occur at certain times of the day (e.g., traffic rush 

hour) that would not be determined by current monitoring systems. 

There have been only a few studies of toxic volatile hydrocarbons in 

Illinois, and these have been short-term in scope (Brodzinsky and Singh, 1983; 

Singh et al., 1985). Very little information is available on ambient levels of 

these compounds in the atmosphere, much less on the contribution of various 

sources to pollution from toxic volatile hydrocarbons. Currently, the only 

other study under way in Illinois is a USEPA experimental proj ect at a few 

locations in the Chicago area. The magnitude of releases of volatile toxic 

hydrocarbons from hazardous waste incinerators is unknown. However, they are a 

significant component of waste streams (Keitz et al., 1984) and thus could be 

present in hazardous stack and fugitive emissions from these facilities (U.S. 

EPA, 1985). 
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The overall objective of this project is to provide an in-depth chemical 

and physical characterization of airborne toxic trace elements and toxic 

volatile organic chemicals in Illinois. From July 1985 to June 1986, the 

second year of this project, our objectives were to carry out the following 

aspects of this work: 

1) Establish a network of 3 urban and 1 rural monitoring stations for 

the regular collection of air samples and meteorological data. 

2) Begin collection and analysis of size-fractionated aerosol samples 

for a toxic trace element data base. 

3) Develop techniques for the determination of selected vapor-phase 

trace elements. 

4) Develop analytical capability for toxic volatile organics. 

These objectives have in large part been accomplished or are well 

underway, and the results are presented in the remainder of this report. 
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II. SAMPLING NETWORK 

One rural and three urban sampling stations were established at the 

locations indicated in Figure 1. Each station has an automatic dichotomous 

sampler (Andersen Model 245) capable of collection of aerosol particles in 2 

size ranges, fine (less than 2.5 ~m) and coarse (2.5 to 10 ~m). In addition, 

wind speed and direction, relative humidity, temperature and solar radiation 

data are collected continuously at each site. Occasional aerosol samples are 

also collected using a high volume cascade impactor (Andersen Model 236) which 

segregates samples into 7 discrete size fractions (greater than 10 ~m, 4-10 ~m, 

1.5-2 ~m, . 75-1.5 ~m, .4-. 75 ~m, less than .4 ~m) and the Florida State 

University "streaker" sampler (PIXE International Corp.) , which is a 

dichotomous sampler capable of very short (1-2 hr) time resolution. The 

information gained by this combination of sampling and monitoring equipment 

will complement the IEPA data base by adding data on additional toxic elements, 

particle-size distributions, short-term maximum concentrations and the relative 

contribution of various sources to the urban toxic element load. These are all 

important in assessing the health impact of trace elements in the atmosphere 

and the impacts of potential inputs of toxic elements from human activities 

including those related to hazardous wastes. The results may also be used to 

help determine which source controls would be most effective. 

The Chicago site is located at Bright Elementary School, 10740 S. Calhoun 

in S. E . Chicago. It is in a residential area with nearby heavy industry 

(steel), landfill operations, expressways, coal-burning power plants and a 

variety of commercial and industrial facilities. It is also a sampling station 

used by EPA. A hazardous waste incinerator operated by SCA Chemical Services, 

Inc. is located about 2 km to the southwest. The air in this part of Chicago 
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Figure 1. Hazardous Air Pollutant Sampling Network. 
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typically has elevated levels of total suspended particulate matter (IEPA, 

1985) and manganese and zinc (Gatz and Sweet, 1985) compared to other urban 

areas in Illinois. 

The second urban site is in East St. Louis at 13th and Tudor and is also 

an IEPA sampling station. It is in a residential area with nearby nonferrous 

metals plants (copper and zinc smelting), expressways, coal-burning power 

plants and chemical plants. A hazardous waste incinerator operated by Trade 

Waste Incineration, Inc. is located about 2 km to the southwest. This site was 

one of 6 in the state which violated the annual average standard for total 

suspended particulate matter in 1984 (IEPA, 1985). Relatively high levels of 

cadmium, selenium, arsenic and nickel were recorded at this site during 1984 

(IEPA, 1985). 

Our third site, another IEPA sampling station, is at 2001 E. 20th St. in 

Granite City about 10 km north of the East St. Louis site. It is located in a 

residential/commercial area with nearby heavy industry (steel), a secondary 

lead smelter and a variety of other small industrial sources. Although there 

are no hazardous waste incineration facilities in the immediate vicinity, this 

site was chosen because it and other nearby sites frequently have the worst air 

quality in Illinois in terms of suspended particulate matter and trace 

elements. In 1984 (IEPA, 1985), this site had the highest mean concentration 

of< total suspended particulate matter for any monitoring station in the state. 

Relatively high levels of arsenic, manganese, nickel, lead and cadmium are also 

regularly recorded in Granite city. 

These three urban sites have the highest concentrations of airborne 

particulate matter for all sites in the state-wide IEPA network. They 

represent the worst known air quality in residential areas in Illinois. Many 



sources emit toxic materials to the air in these areas. For this reason, they 

provide an opportunity to study a wide variety of sources at a small number of 

sites. By fully characterizing the air quality at these three sites, 

information will be developed which should apply to many other urban areas in 

Illinois with similar sources. 

The fourth site in our network is located in a rural area outside of 

Champaign, 8 km south of Bondville, IL. This site is 13 km from the nearest 

urban area and about 50 km downwind from urban areas during times of 

prevailing SW and NW winds. In this location, it is expected that the trace 

element levels are typical of rural areas in most of Illinois. This site will 

provide background levels of toxic pollutants to compare with the urban levels. 

Installation, calibration and preliminary check-out of all the equipment 

in the network were completed in January, 1986. Since then, sampling and 

monitoring meteorological conditions have been carried out on a regular basis. 

The sampling plan at the four sites has a number of objectives. Samples 

are needed which will allow the determination of a wide range of toxic trace 

elements. To use wind trajectory analysis, the samples must be collected under 

conditions of relatively steady wind direction. The particle-size distribution 

and the importance of vapor-phase species must also be determined. Finally, 

the samples need to reflect the seasonal, diurnal and short- term (hourly) 

variations in trace element concentrations. 

All of these objectives cannot be met using a single type of sampler. The 

basic trade-off is between a large sample size which will allow quantification 

of the greatest number of trace elements and short-term or divided samples 

which provide more information on particle-size distribution, temporal 

variation and wind direction. The sampling plan used in this work is designed 

8 



to answer a variety of questions concerning concentrations of the target 

elements. 

The dichotomous samplers are used to collect 24-hour and l2-hour samples 

at the urban stations and 48-hour samples at the rural site. The longer 

sampling times provide sufficient aerosol to quantify most of the target 

elements and still have a reasonable possibility of steady wind direction. The 

shorter time, while less satisfactory in terms of element quantification, 

provides information on diurnal variations and has a much greater potential for 

constant wind direction. The dichotomous sampler is also used in some 

experiments with a back-up absorbent to sample vapor-phase species. For these 

experiments, very long sampling times are required (72 -100 hours) to obtain 

enough material for analysis. Approximately 35 pairs of dichotomous filters 

and 2 back-up absorbent filters are collected each quarter. Collection of this 

data for a full year will allow an estimation of seasonal variation. 

A second type of sampler, the cascade impactor, divides the aerosol 

particles into 7 size fractions for determination of particle size 

distributions. Due to the high analytical costs, only 1 cascade impactor 

sample is taken at each site per quarter. 

Finally, the "streaker" sampler is used to determine changes in trace 

element concentrations over very short time periods (2 hours). The "streaker" 

sampler serves 2 functions; it allows the estimation of peak concentrations due 

to short- term releases; and it provides samples which were taken under very 

steady wind direction for more reliable identification of sources. "Streaker" 

samples are also very expensive to analyze; consequently, they will only be 

taken annually. 
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TOXIC TRACE ELEMENT DATA BASE 

Nineteen toxic trace elements are listed in Table 1. This list includes 

the elements monitored as part of the National Air Surveillance Network (NASN) 

study (McMullen and Faoro, 1977; Evans et al., 1984) and those used in 

classifying waste as hazardous (Hinners et al., 1984). Two elements (iron and 

titanium) mentioned in these studies, were not included because of their low 

toxicities. Another element, tin (Sn), was added because it occurs in the 

atmosphere and can be biomethylated to form highly toxic organometallic species 

(Byrd and Andreae, 1982). 

Methods 

Analysis of aerosol filters is carried out using three multi-element 

instrumental techniques, x-ray fluorescence (XRF) , neutron activation analysis 

(NAA) and proton-induced x-ray emission (PIXE). Table 1 shows the methods 

which may be used for each of the target elements. None of the methods can 

detect thallium or beryllium. Of the remaining 17 elements, XRF can be used to 

detect 15. Two others (arsenic and cobalt) are rarely quantified by this 

method. 

The method chosen for analysis depends primarily on the filter matrix. 

Teflon filters from the dichotomous samplers were analyzed by NEA Inc., in 

Beaverton, Oregon, using x-ray fluorescence (XRF) analysis. This technique 

involves the bombardment of a thin layer of sample by high energy x-rays. 

Excited atoms of a particular element then emit fluorescent x-ray radiation 

with a characteristic wavelength. The intensity of this radiation can then be 

used to determine the concentration of the element. Approximately 10% of the 

dichotomous filters are also run using neutron activation analysis to quantify 

the 2 elements missed by x-ray fluorescence and for quality assurance purposes. 
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Table 1. Analysis Methods for Toxic Trace Elements. 

Manganese (Mn) P,X,N 

Copper (Cu) P,X,N 

Molybdenum (Mo) X 

Silver (Ag) X 

Tin (Sn) X 

Antimony (Sb) * X,N 

Barium (Ba) * * X,N 

Mercury (Rg) * X 

Cadmium (Cd) * * P,X 

Cobalt (Co) * N, (X) 

Lead (Pb) * * P,X 

Arsenic (As) * N, (X) 

Beryllium (Be) * * 
Thallium (Tl) * 

ap = proton-induced x-ray emission using the "streaker" sampler. 
X = x-ray diffraction 
N neutron activation 

() = usually below detection limits 
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Because of the thickness and non-uniformity of the deposits, the cellulose 

cascade impactor filters are not suitable for analysis by x-ray fluorescence. 

They can be readily analyzed by neutron activation, however. 

The streaker filters are analyzed by PIXE International, Inc. in 

Tallahassee, FL using proton-induced x-ray emission (PIXE). This technique is 

similar to x-ray fluorescence but has higher detection limits due to the small 

amount of aerosol analyzed. Nine of the 19 target elements can be determined 

using this method as shown in Table 1. 

this report. 

Streaker data were not available for 

Finally, neutron activation analysis (NAA) carried out at the University 

of Illinois will be used with dichotomous, impactor and vapor-phase filters. 

This method depends on the formation of radioactive isotopes of the target 

elements during neutron bombardment in a nuclear reactor. For arsenic and 

cobalt, detection limits are lower than with XRF or PIXE. No NAA data were 

available for inclusion in this report; however, we expect to be able to 

quantitate up to 11 elements using this method (see Table 1). 

From September 1985 through March 1986, approximately 550 dichotomous 

filters were collected. Of these, about 150 were analyzed for trace elements. 

Selection of filters for analysis is based on the following criteria: 

1) low variability in wind direction over the sampling period; 

2) representation of a wide variety of other meteorological conditions 

such as wind speed, temperature, and solar radiation; and 

3) inclusion of filters anticipated to have maximal and minimal 

loadings. 

The idea behind these criteria is to include the most directional data possible 

in the data base to assist in source identification. Maximum and minimum 

12 



concentration ranges can also be determined. Although the initial data may not 

represent average conditions well, the collection of more data throughout the 

third year of the project will provide a more reliable estimation of average 

annual trace element concentrations and seasonal variation. 

Quality Assurance 

The quality assurance program in this proj ect involves both sampler 

calibration and analytical quality control. Since sampler flow rates must be 

known to determine the volume of air sampled, all samplers are calibrated on a 

monthly basis. A Sierra-Andersen mass flow meter is used for the dichotomous 

samplers. The cascade impactor is run using a flow-controlled General Metal 

Works high-volume sampler calibrated with General Metal Works manometer. The 

streaker is calibrated using a Singer flow meter. 

For the analytical methods, the instruments are calibrated using National 

Bureau of Standards (NBS) aerosol standards. Field blanks are run and the 

results subtracted from the samples in calculating the final results. 

Co-located dichotomous samplers are run to determine the variability in 

the sampling method and occasionally samples are resubmitted for analysis to 

determine analytical variability. The results of two experiments are shown in 

Table 2. Most analyses agree quite closely for each set. The exceptions are a 

few of the heavier elements where the values are near detection limits. 

In the future, some samples will be analyzed with both x-ray fluorescence 

and neutron activation. 

report, however. 

These data were not available for inclusion in this 
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Table 2. Toxic Element Data from Co-located Samplers 
and Duplicate Analysis (p.g/filter)a. 

Co-located Sam:Qlers DU:Qlicate Analysis 
, , 

a a ~ ~ 

Vanadium Fb .053 .058 NDb ND 
C .125 .129 ND ND 

Chromium F .053 .044 .038 .032 
C .106 .111 .061 .063 

Manganese F .164 .168 .080 .076 
C .585 .557 .197 .218 

Nickel F .022 .024 .018 .018 
C .042 .053 .019 .022 

Copper F .055 .065 .042 .050 
C .040 .158 .043 .038 

Zinc F .769 .777 .287 .298 
C .368 .467 .159 .142 

Selenium F .092 .084 .041 .027 
C .041 .034 .015 .013 

Silver F .060 .065 .032 .026 
C ND ND ND ND 

Cadmium F .116 .046 .058 ND 
C .096 .046 ND ND 

Tin F .041 .068 ND ND 
C .137 .125 ND ND 

Barium F .488 .546 ND ND 
C ND ND ND ND 

Mercury F .018 .021 .003 .012 
C .020 .018 .013 .012 

Lead F 1. 355 1.307 .732 .632 
C .489 .492 .323 .266 

aAntimony, molybdenum, cobalt and arsenic were not detected in any of these 
samples. 
bF = fine filter C = coarse filter ND = not detected. 
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TRACE ELEMENTS 

Statistical information on the XRF data from dichotomous samples collected 

thus far is shown in Table 3. Of the 19 target elements, 17 could be detected 

in at least some of the samples. Arsenic (As) was below detection limits at 

all the stations except Granite City. Antimony (Sb), tin (Sn), silver (Ag) , 

molybdenum (Mo) and barium (Ba) were at or below detection limit for most of 

the samples at all four sites. 

For averaging purposes, values which are below detection limits are 

assigned a value of one half the detection limit. The rationale for this is 

that we know the true value is somewhere between zero and the detection limit; 

so one half the detection limit is a reasonable estimate of the true value. 

Obviously, when all or most of the points are below detection limits, the only 

quantitative information we have is that the true average value is somewhere 

below the detection limit. The values calculated in this way are comparable 

with recent IEPA Hi-vol data (IEPA, 1985) for most elements which were analyzed 

in both networks (Table 4). The concentration of manganese (Mn) is higher in 

the IEPA data because their collection method, high volume sampling, collects 

particles larger than the inhalable range sampled in this work. In contrast to 

the other elements measured in both networks, Mn is enriched on these larger 

particles. The concentrations of most of the elements listed in Table 4 are 

also well within national norms determined by the NASN (McMullen and Faoro, 

1977; Evans et al., 1984) for comparable urban and rural areas with the 

following exceptions. Cadmium (Cd) levels are relatively high at the East St. 

Louis monitoring site. Average concentrations there are higher than 95% of the 

urban samples taken nationwide in the NASN (Evans et al., 1984). Dzubay (1980) 

found similar Cd levels in the same area during the 1976 Regional Air Pollution 
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Table 3. Concentrations of Hazardous Trace E1ements. a 

SAMPLING STATION 
Bondville Chicago East St. Louis Granite City 

E1ementb Coarse Fine Coarse Fine Coarse Fine Coarse Fine 

Vanadium <.1-2.7 <.1-l.4 <.1-32 <.1-8.5 l.1-7.5 <1-7.0 2-4 <1-4.2 
(0.1) (l. 2) (l.1) (4.8) (2.7) (3.1) (2.6) (6.0) (2.4) 

Chromium <.2-2.5 <.2-l.5 <1-35 <1-18 <1-15 <1-12 2.3-25 <1-24 
(0.2) (l. 2) (0.7) (7.4) (3.8) (4.2) (2.6 (9.6) (4.0) 

Manganese 1-12 1-6.0 l.8-520 2.8-191 4.3-64 2.3-22 15-150 3.8-41 
(0.2) (5.8) (3.0) (60) (30) (17) (7.7) (53) (14) 

Nickel <1-l. 6 <1-l.1 <1-11 <.1-6.6 <1-4.9 <1-3.7 <1-5.8 <1-102 
(l. 0) (0.6) (0.5) (2.0) (2.2) (2.0) (l. 9) (2.0) (l. 9) 

Copper l.1-5.0 2-8.8 1.6-43 l.4-108 l.0-99 l.0-438 l.0-39 <1-76 
(l. 0) (l. 5) (2.1) (6.2) (12) (14) (46) (14) (22) 

Zinc 3-17 6-34 9-126 12-267 12-566 13-447 9.3-189 11-217 
(l. 0) (8.3) (17) (43) (91) (97) (85) (69) (77) 

Selenium <.2-.9 .7-2.8 <5-2.5 <.5-8.3 <.5-l.3 <.5-23 <.5-.9 .5-2.7 
(0.5) (0.4) (l. 5) (0.9) (2.7) (0.8) (2.1) (0.5) (l. 5) 

Molybdenum <1-2.3 ND <2-17 <2-18 <2 ND ND ND 
(2.0) (0.9) (0.5) (l. 8) (2.0) (1.7) (1) (1) (1) 

Silver ND <1-l.4 <2-2.7 <2-2.9 <2-4 <2-4 ND ND 
(2.0) (0.5) (0.9) (l. 6) (l. 6) (l. 8) (l. 8) (1) (1) 

Cadmium ND <2-2.5 <3-4.1 <3-6.3 <3-100 <3-82 ND <3-55 
(2.0) (1) (l. 3) (2.3) (2.5) (10) (11) (l. 5) (2.3) 

Tin <3-3 <3-3 <5-21 <5-48 <5-9.4 <5-37 ND <5-5.5 
(3.0) (l. 8) (l. 5) (4.3) (6.3) (4) (4) (2.5) (3.0) 

Antimony ND ND <10-18 <10-15 <10-10 <10-13 ND ND 
(10) (2.5) (2.5) (6.8) (7.2) (4) (6) (5) (5) 

Barium ND <10-14 <20-33 <20-31 <20-36 <20-3 ND ND 
(20) (5) (6.8) (14) (14) (17) (16) (10) (10) 

Mercury <.2-5 <.2-.6 <.5-l.5 <.5-l.7 <.5-2 <.5-1.7 <.5-1.7 <.5-1.9 
(0.5) (0.2) (0.3) (0.4) (0.9) (0.6) (0.6) (0.5) (0.7) 

Cobalt <2-5 ND <6-7.4 ND <6-l.1 ND ND ND 
(6.0) (l. 2) (1) (3) (3) (3) (3) (3) (3) 

16 



Table 3 (cont.) 

Lead 3-14 6-33 3.3-306 8.9-830 12-240 28-502 11-360 25-234 
(1. 0) (7.9) (20) (44) (130) (58) (117) (78) (76) 

Arsenic ND ND ND ND ND ND ND <3-45 
(5) (1) (1) (2) (3) (4) (6) (1. 5) (6.3) 

TOTAL MASS 3-18 6-22 6-80 9-41 10-51 6-85 11-41 9-97 
(J.tg/M3 ) (10) (13) (20) (23) (21) (20) (21) (34) 

aMinimum-Maximum (Mean) in nanograms (10- 9 g) per cubic meter; n<n = at or 
below detection limit; ND = All samples below detection limit. To 
calculate the mean, all samples below detection limit were assigned a 
value of one-half the detection limit. 

bDetection limits are given beneath each element in nanograms (10- 9 g) per 
cubic meter. The listed values are for the urban sites. Detection limits 
at the Bondville site are lower because of higher volumes sampled. 
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Table 4. Average Values for Toxic Trace Elements 
in Urban Particulate Matter (~g/cubic meter). 

ISWS (1986) IEPA (1985) RAPS (1976) 
ESIft CHI§; ESL CHI East St. Louis 

Arsenic <.020 <.010 .006 .001 

Cadmium .021 <.006 .016 .000 .027 

Chromium .007 .011 .001 .004 .037 

Copper .060 .018 .095 

Manganese .025 .090 .050 .193 .048 

Nickel .004 .004 .001 .003 .014 

Selenium .003 .004 .002 .002 .004 

Lead .175 .174 .330 .120 .585 

Vandium .006 .008 .018 

Zinc .182 .134 .096 

aESL = East St. Louis 
CHI = Chicago 

bArtifact due to sample contamination by Hi-Vol motors. 
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Study (RAPS) using similar sampling and analysis methods. Copper (Cu) levels 

were also elevated in the RAPS study and in our study. However, in the case of 

Cu, the NASN data cannot be used for comparison because the hi-vol samplers 

used in that study contaminate the filters with copper (Moyers et al., 1974). 

Dzubay concluded that nonferrous metals plants located to the southwest of our 

site were the probable sources of the excess Cd and Cu. 

Another element showing higher concentrations than national norms is 

manganese (Mn) at the Chicago site. This site is within a few kilometers of 

large steel mills which are recognized as sources of airborne Mn (National 

Research Council, 1973). 

Arsenic (As) is not included in the NASN database, so concentrations of 

this element cannot be compared to national norms. However, relatively high 

concentrations of As have been measured by IEPA (1985) in the Granite City and 

E. St. Louis areas. This study also found higher levels in the atmosphere in 

Granite City (Table 3). 

Finally, although selenium (Se) in the atmosphere is not thought to be a 

human health hazard, Se concentrations are known to be elevated in air in the 

Midwest (Rahn and Lowenthal, 1985). Since about 60% of the Se found in the 

atmosphere comes from the combustion of coal (National Research Council, 1976), 

this element is considered to be a good atmospheric tracer for emissions from 

coal-fired power plants in the region. An unusual aspect of Se concentrations 

in the atmosphere is that the rural levels are about the same as the urban 

levels, even though Se is derived almost exclusively from man-made sources 

(Shaw and Paur, 1983). This will be discussed further in the section on vapor­

phase trace elements. 
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PARTICLE SIZE DATA 

It has long been recognized that many industrial processes emit vapors and 

very fine particles which are not efficiently controlled and which carry toxic 

elements into the atmosphere (Lee and von Lehmden, 1973). Toxic elements on 

particles with diameters less than 10 micrometers (pm) are especially 

significant in terms of impact on human health due to their deposition in the 

respiratory system where toxins can be absorbed into the blood (Milford and 

Davidson, 1985). 

the atmosphere. 

Respirable particles usually have a bimodal distribution in 

Larger particles (2-10 pm) are produced by mechanical 

processes such as soil erosion, agricultural and construction activities, 

material handling and certain combustion processes. Small particles «2 pm), 

on the other hand, are commonly associated with high temperature processes such 

as welding, smelting of metals, and combustion of fossil fuels (Lee and von 

Lehmden, 1973). The dichotomous sampler is designed to sample these 2 particle 

size fractions. At our sites, a special inlet excludes non-inha1ab1e 

particles, (diameters greater than 10 pm). The inha1ab1e particles are then 

separated into fine (0.1-2.5 pm) and coarse (2.5-10 pm) components. 

In Table 3, the concentrations of toxic elements in the fine and coarse 

fractions are listed for each sampling station. Two of the elements, Pb and 

Se, are found primarily in the fine fraction at most of the sampling sites. 

The principal sources of these two elements are auto emissions for Pb and coal 

burning for Se (Shaw and Paur, 1983). Both of these high temperature processes 

produce fine particles which are widely dispersed in the environment. 

When winds are out of the southwest, high amounts of a group of elements 

(Zn, Cd, Cu, Sn) appear in the fine particulate matter collected in East St. 
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Louis. Dzubay (1980) noted the same elements during the 1976 RAPS study. He 

attributed them to the copper and zinc smelters in the area. 

The elevated levels of manganese (Mn) that occur at the Chicago and 

Granite City sites are mostly associated with the coarse particle fraction. 

The fact that high levels of iron are also found in these samples suggests a 

steel industry source for these elements. It has been shown that the steel 

industry is an important source of Mn to the atmosphere in Chicago (Scheff et 

a1., 1984) and that most of the Mn emitted to the air during steel processing 

is in the coarse respirable fraction (Dzubay, 1980). 

The cascade impactor provides a more detailed look at the size 

distribution of atmospheric particles in the respirable range. Figure 2 shows 

cascade impactor data from a sample collected at the Bondville field site. 

These samples were analyzed by proton-induced x-ray emission (PIXE) due to 

problems with the neutron activation analysis. Although this method is not 

ideal for the cellulose substrate, it does give an indication of the type of 

data which can be obtained. Due to the limitations of the method, only 5 of 

the 7 fractions could be analyzed. In this sample, Mn, Zn, Cu and Pb were 

detected. The particle-size distributions of these elements is similar to that 

found in urban air. Manganese is associated with the coarsest particles, and 

lead is attached to the finest particles. Zinc and copper are abundant in both 

fine and coarse particles. Since all of these elements are primarily 

associated with urban pollution rather than soil erosion, it seems likely that 

the sources of these elements are mostly in distant urban areas. Indeed, 

E1estad (1980) has detected urban air pollution plumes in Illinois up to 350 km 

from the urban source area. 
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Figure 2. Particle Size Data for Trace Elements 
Bondville Site 
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Additional cascade impactor samples from both urban and rural sites will 

be analyzed during the coming year. This technique is a useful tool in helping 

to assess health impacts and identifying sources of individual elements. 

-WIND DIRECTION DATA 

For preparation of this report, sufficient monitoring data for wind 

direction analysis was only available for the East St. Louis and Chicago sites. 

Only those toxic elements whose concentrations were above detection limits in 

at least 75% of the samples were selected for this analysis. In addition to 

the toxic elements, two non-toxic elements are also included, iron (Fe) and 

sulfur (S) along with total mass. These elements are tracers for steel plants 

and coal-fired boilers, respectively. The concentration data for all trace 

elements were sorted according to wind direction, and the mean concentrations 

and standard deviations are listed in Table 5. For both monitoring sites, 

there is considerable variation in element concentration for different wind 

directions. 

In East St. Louis, southwesterly winds result in high concentrations of 

Cu, Zn, Se and Pb. As discussed earlier, Dzubay (1980) found similar high 

concentrations of the same elements in a 1976 study in East St. Louis. He 

attributed these to emissions from copper and zinc smelters located to the 

southwest of our site. The predominance of southwesterly winds at this site 

means that the high concentrations associated with that direction make a large 

contribution to the average ambient levels listed in Table 3. Neither the 

total mass of respirable particulate matter nor the concentrations of other 

elements varied as much with wind direction at this site. Highest 

concentrations of Cr, Mn, Fe, S and total mass were obtained with winds from 

the southeast. 
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Table 5. Variation of Trace Element Concentrationa with 
Wind Direction. 

Element 

East V 
St. Cr 
Louis Mn 

Ni 
Cu 
Zn 
Se 
Pb 

Fe 
S 

Total Mass 

Chicago V 
Cr 
Mn 
Ni 
Cu 
Zn 
Se 
Pb 

Fe 
S 

Total Mass 

8 ± 1.5 
7 ± 3 

24 ± 7 
4 ± 1 

12 ± 4.5 
120 ± 37 

3 ± 1 
125 ± 40 

665 ± 250 
1475 ± 500 

40 ± 6 

12 ± 6 
15 ± 7 

138 ± 106 
5 ± 1.5 

26 ± 21 
162 ± 56 

4 ± 2 
129 ± 75 

1858 ± 1112 
2273 ± 854 

44 ± 11 

6 ± 1.5 
9 ± 4 

30 ± 14 
4 ± 1.4 

51 ± 50 
105 ± 66 

3 ± 1 
170 ± 85 

900 ± 530 
2700 ± 1250 

48 ± 17 

13 ± 4 
33 ± 11 

281 ± 91 
11 ± 3 
34 ± 16 

316 ± 35 
5 ± 1 

505 ± 200 

3316 ± 1250 
3392 ± 750 

84 ± 24 

3 ± 1 
5 ± 3 

21 ± 7 
5 ± 1 

200 ± 140 
525 ± 195 

5 ± 2 
300 ± 140 

620 ± 310 
1640 ± 560 

32 ± 8 

4 ± 1 
7 ± 2 

40 ± 21 
4 ± 1 

17 ± 6 
100 ± 30 

4 ± 2 
245 ± 208 

641 ± 260 
2308 ± 860 

48 ± 7 

aConcentrations in ng/M3 except for mass which is ~g/M3. 
coarse and fine fractions from dichotomous samples. 
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6 ± 3.2 
9 ± 3.5 

14 ± 4 
4 ± .7 

11 ± 4 
72±13 

3 ± .6 
135 ± 40 

320 ± 140 
1650 ± 530 

26 ± 10 

3 ± 2 
4 ± 2 

19 ± 10 
2 ± .6 
5 ± 2 

82 ± 37 
1 ± 3 

76 ± 42 

468 ± 290 
1150 ± 380 

29 ± 7 

These are the sums of 



At the Chic'ago site, high concentrations of Mn, Cr, Ni, Cu, Zn and Pb were 

associated with winds from the northeast and southeast. Highest average 

concentrations for all elements and total mass were obtained from the 

southeast. The lowest concentrations were obtained from the northwest 

quadrant. Except for Mn, none of the average ambient levels for these elements 

(Table 3) is elevated above normal levels for urban areas. This may be due to 

the fact that northeasterly and southeasterly winds are relatively uncommon at 

this site and so polluted air coming from these directions makes a relatively 

small contribution to the average ambient concentration. Samples taken when 

winds are out of the southeast have particularly high levels of these elements 

as well as high total particulate mass, iron (Fe) and sulfur (S). Harrison et 

al., (1971) in a study of trace elements in northwest Indiana, measured high 

concentrations of Fe and many of the same toxic trace elements. They 

attributed them to several large steel mills in East Chicago, Indiana, about 10 

km to the southeast of our site. Smaller steel mills are also located to the 

east and northeast of this site in Illinois. 





III. METHODS FOR VAPOR PHASE TRACE ELEMENTS 

Among the toxic trace elements studied in this project, there are 3 that 

have a significant vapor-phase component under ambient conditions. Airborne 

mercury (Hg) occurs as a number of volatile chemical species, including 

elemental Hg, HgC12 and alkylated mercury compounds. As a consequence of this, 

the particle-bound fraction of Hg in the atmosphere is often less than 10% of 

the total (Braman, 1983). Arsenic (As) is another element with a significant 

vapor component in the form of arsenic oxide or methylated arsenic. Appel et 

al. (1984) have suggested that this may lead to a significant undersampling of 

As using particle filtration techniques alone. Finally, selenium (Se) can 

exist in a variety of vapor forms including elemental Se, Se02 and organo-

selenides (Ross, 1984). Indeed, Pillay et al. (1971) found that about 60% of 

atmospheric selenium passes through aerosol filters. 

Two of these elements, As and Hg, have been specifically designated as 

hazardous air pollutants by the USEPA and are undergoing review to set emission 

standards (Cannon, 1986). Only 6 other toxic air pollutants are currently 

considered hazardous enough to warrant such emission standards. Although Se 

levels in the atmosphere are probably not high enough to be a health concern, 

little is known about vapor-particle partitioning of this element. The levels 

of particle-bound Se are relatively high in Illinois and do not vary much 

between urban and rural sites (Table 3). This may mean that the air near urban 

source areas is enriched in vapor-phase Se, which is not detected by aerosol 

sampling. This Se is likely to be converted to particulate Se as the air mass 

ages and moves into rural areas. Therefore, Se levels in urban areas may be 

higher than expected from measurements of particle-bound Se alone. Because of 
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the potential health effects of these three elements, it is important to 

include vapor phase measurements in this proj ect. The exposure to these 

elements may be greater than that estimated from particle measurements alone. 

Volatile forms of trace elements are generally collected by passing 

filtered air through a series of absorbents or impingers that chemically or 

physically bind the species of interest. The absorbent can be enclosed in a 

tube or impregnated into a standard filter medium. Walsh et al., (1977) used 

cellulose filters soaked in a non-volatile base to collect acidic vapors of 

arsenic trioxide. This absorbent should also work with other acidic species 

such as Se02' Activated charcoal is a very useful absorbent that has been used 

for collection of atmospheric Hg (Schroeder, 1982) . This absorbent also 

collects Se and the organometallic forms of a variety of trace elements. 

Two types of impregnated filters are being evaluated for trace element 

sampling in this work. The first is a cellulose filter (Whatman 41) soaked in 

a 10% solution of tetrabutylammonium hydroxide (TBAH) for collection of As and 

some forms of Se. The second is a commercial filter consisting of Whatman 41 

cellulose impregnated with activated charcoal. This should be useful in 

collecting Hg, Se, and the organometallics. The filters are mounted in plastic 

holders and positioned downstream from the Teflon filters in the dichotomous 

samplers. With this arrangement, particulate matter and vapor phase elements 

are collected from the same air. Typically, about 100 cubic meters of air are 

filtered; this should contain up to several hundred nanograms (10- 9 g) of each 

element. A back-up filter is used to detect breakthrough. 

Analysis can be by neutron activation analysis (NAA) or by atomic 

absorption. Neutron activation analysis is a multi-element method suitable for 

both As and Se; however, Hg often escapes by volatilization during the 



irradiation procedure, so the results for Hg are somewhat unreliable. Atomic 

absorption requires solubilization of the sample and analysis of each element 

individually. However, detection limits are adequate for all three target 

elements using vapor generation techniques. 

Preliminary screening of the two impregnated filter materials is being 

carried out by INM. Subsequent regular analyses will be done using atomic 

absorption after vapor generation instrumentation is installed. The analytical 

results from the preliminary experiments are not yet available. 
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IV. ANALYSIS OF VOLATILE TOXIC ORGANICS 

Volatile organic compounds are those which are in the vapor phase at 

normal ambient concentrations and conditions. This corresponds to a vapor 

pressure of about 10- 5 mm Hg or greater (Eisenreich et al., 1980). Compounds 

less volatile than this that occur in the atmosphere are mostly bound to 

particles in urban air. Two classes of volatile compounds are targets in this 

study: 1) halogenated hydrocarbons containing 1-3 carbon atoms and 2 or more 

chlorine or bromine atoms; and 2) lower molecular-weight aromatic hydrocarbons 

(e.g., benzene, toluene, xylenes, and ethylbenzene). Many of the halogenated 

hydrocarbons are widely used as solvents and are recognized carcinogens 

(Thomson et al., 1985). This combination of widespread use and toxicity give 

rise to a high potential for health impacts. The volatile aromatics are also 

widely used as solvents and at least one, benzene, is a known carcinogen. In 

addition, many of these compounds are abundant in motor fuels resulting in 

exhaust emissions of aromatics and fugitive releases during refueling. 

Compounds in these two classes are also likely to be present in emissions 

from hazardous waste facilities. Their widespread use in commerce and industry 

means that these materials make up a significant fraction of the waste handled 

by hazardous waste incineration facilities (Keitz et al., 1984). Fugitive 

emissions may occur during transfer operations, via leaks and spills, or 

through evaporation from impoundments and landfills. Incinerator stack 

emission of some of the halogenated hydrocarbons are also possible due to the 

refractory nature of certain of these compounds. However, in a recent report, 

the USEPA (1985) suggested that fugitive emissions and accidental spills may 

release as much or more toxic material to the environment than the direct 

emissions from incomplete waste incineration. 



Volatile organics are typically sampled by one of two methods. The first 

is trapping on a solid chemical absorbent. Currently, the most widely used 

material is Tenax-GCR , a polymeric substance with a strong affinity for many 

hydrocarbons (Krost et al., 1982). Air is passed over the absorbent and 

trapped chemicals are released for laboratory analysis by heating. For trace 

analysis, great care must be taken to adequately clean the absorbent and to 

prevent contamination or loss during transfer and storage before analysis. 

There are a number of problems with the use of Tenax for this purpose. 

Its use is limited to compounds with a relatively narrow range of volatilities. 

Highly volatile compounds are not trapped efficiently and compounds with low 

volatility are difficult to remove quantitatively. More importantly, Tenax 

reacts with ozone and other pollutants to form low molecular weight compounds 

that are subsequently desorbed and analyzed. These artifacts greatly 

complicate interpretation of the analytical results (Walling, 1984). 

The second method is cryogenic concentration. Typically, whole air 

samples are collected in the field and brought back to the laboratory for 

concentration and analysis. The air is dried and then passed through a tube 

packed with glass beads in contact with liquid oxygen or argon at about -1800 C. 

This temperature results in efficient trapping of the trace organics in the 

sample without condensing the oxygen in the air (McClenny et al., 1984). Upon 

heating, the trapped compounds are released for analysis. 

Analysis of volatile organics is best accomplished by gas chromatography 

(GC) which separates complex mixtures into individual chemical components. 

There are a variety of detectors which can be used with the GC. The mass 

spectrometer (MS) allows detection, quantification and identification of target 

compounds, which makes the GC-MS combination a very versatile tool in the 
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analysis of organics. Its major disadvantage is the high cost of 

instrumentation. Compounds can also be detected and quantified using the 

flame-ionization detector (FID) , which is sensitive to any organic compound, or 

selective detectors like the electron capture detector (ECD) for halogenated 

compounds and the photo ionization detector (PID) for aromatic compounds. 

Although identification is not as reliable with these detectors as compared to 

MS, detection limits can be much lower. 

The organic chemical analytical system being developed for this project is 

illustrated by the schematic diagram in Figure 3. Samples will be collected 

and stored in stainless steel canisters supplied by Scientific Instrumentation 

Specialists of Moscow, Idaho. These containers are capable of storing a wide 

variety of trace organics for 14 days with no change in concentration (Oliver 

et al., 1986). In the trapping mode, air from the canister will be drawn 

through a cryogenic trap into an evacuated 2.5 L cylinder. The change in 

pressure, measured by a precision vacuum gage, can be expressed in terms of the 

volume sampled. After sampling between 0.5 and 2 L of air, the trap will be 

heated to 800 C by immersion in a hot water bath and the sampling valve switched 

to the analysis mode. In this configuration, carrier gas sweeps the 

concentrated organic onto the GC column for analysis. The column effluent is 

split into 2 streams, one entering an FID and the other entering an ECD. This 

arrangement will allow detection of nonhalogenated target compounds like 

benzene, toluene and xylene using the FID and halogenated components of 

interest using the ECD which is more selective and sensitive. A similar 

simultaneous analysis system was used effectively by Cox and Earp (1982) to 

analyze a wide variety of organic compounds in ambient air. Using our system, 

it is possible to detect benzene concentrations as low as 20 ppt and carbon 
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Figure 3. Analysis Systems for Trace Organics in Air. 
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tetrachloride concentrations as low as 2 ppt. For these compounds, 

concentrations well below those of health concern will be measurable. 

Standards will be prepared using static dilution bottles as described by 

Morris et al. (1983). These standards will be used to prepare calibration 

curves for each target compound and for internal standards added to collected 

samples. Other quality assurance procedures will include running blank 

samples, duplicate samples and outside audit samples. In addition, about 10% 

of the samples will be run using GC-MS to verify compound identifications and 

to detect compounds which elute simultaneously from the GC. 

During the coming year, we plan to collect preliminary air samples at the 

four sites in our network to evaluate this method and then establish a schedule 

for regular organics monitoring at these sites. Some monitoring of fugitive 

emission will also be conducted near a hazardous waste landfill in Danville, IL 

which is scheduled for excavation and capping later this year. This work will 

begin the first long-term attempt to characterize the occurrence of volatile 

toxic organics in the atmosphere in Illinois. 
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v. CONCLUSIONS AND RECOMMENDATIONS 

The results reported here are preliminary in nature. The complete 

sampling network has been in place since February of 1986 and the earliest 

samples analyzed from any of the stations were collected in the fall of 1985. 

Therefore the current data base reflects conditions during late fall and winter 

when pollutant levels are typically at their lowest. Samples selected for 

analysis represent as many different wind directions as possible, however many 

wind directions were sparsely sampled because of their infrequent occurrence. 

Finally, the data from neutron activation were not available for this report so 

several toxic trace elements whose detection limits are high with x-ray 

fluorescence could not be quantified in most of the samples. 

With this in mind, the ambient levels of toxic trace elements measured can 

be compared to reported levels in other urban areas. The element 

concentrations which are higher than these norms, magnesium in Chicago, cadmium 

in East St. Louis and selenium throughout the region, appear to be due to known 

sources which have been documented in other work. At this time, there is no 

evidence that hazardous waste incineration is significantly affecting air 

quality at these monitoring stations in terms of toxic trace elements. In 

Chicago, the incinerator is located to the southwest of the sampling site. As 

shown in Table 5, trace element levels associated with winds out of the 

southwest at the Chicago site are relatively low. The incinerator at the East 

St. Louis site is also to the southwest of the site as are several nonferrous 

metal smelters. Winds from this direction correspond to elevated trace element 

concentrations. However, the trace elements found, their relative 

concentrations, and their particle size distribution are all similar to those 

determined in the RAPS study in 1976 before the incinerator was in operation. 
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The impact on human health of the trace element levels measured here is 

unknown. Currently, lead is the only trace element studied in this project 

that is covered by an ambient air standard. Even the highest concentration of 

lead measured so far in this project (0.6 ~g/M3) is well below this standard 

(1.5 ~g/M3). Although there are no standards for the other elements at this 

time, the levels reported here are well below those known to cause health 

effects. However, several of the trace elements are known (Cr, As, Cd) or 

possible (Hg, Ni) carcinogens. The long-term impact of low ambient 

concentrations or exposure to mixtures or these elements on human health is 

uncertain. 

To fully assess ambient air concentrations of toxic elements in Illinois, 

more samples need to be collected during periods associated with a wide range 

of pollution levels. In addition, the particle size distribution and the 

vapor-particle partitioning of trace elements will help in assessing health 

effects and pinpointing sources. 

With the development of sampling and analytical capabilities for volatile 

toxic organics, concentrations of these additional materials will be 

determined. Ambient levels of toxic organics have been studied very little in 

Illinois even though they pose at least as large a health threat as the toxic 

trace elements. For this reason, it is important to include them as part of an 

atmospheric hazardous materials data base for Illinois. 
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