
Architectures matérielles pour filtres morphologiques

avec des grandes éléments structurants

Jan Bartovsky

To cite this version:

Jan Bartovsky. Architectures matérielles pour filtres morphologiques avec des grandes éléments
structurants. Autre [cs.OH]. Université Paris-Est, 2012. Français. <NNT : 2012PEST1060>.
<tel-00788984>

HAL Id: tel-00788984

https://tel.archives-ouvertes.fr/tel-00788984

Submitted on 15 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://tel.archives-ouvertes.fr/tel-00788984

UNIVERSITE PARIS-EST: Ecole doctorale MSTIC

and

University of West Bohemia in Pilsen

THESIS

to obtain the Doctor of Philosophy degree of the University Paris-Est

with specialization in Computer Sciences

Hardware Architectures for

Morphological Filters with Large

Structuring Elements

Jan Bartovský
presented on November 14th 2012

Composition of the Examination Committee:

Michal KOZUBEK Professor, Masaryk University Brno Reviewer

Olivier DÉFORGES Professor, INSA Rennes Reviewer

Mohamed AKIL Professor, ESIEE Paris Director

Vjačeslav GEORGIEV Assoc. professor, UWB Pilsen Director

Eva DOKLÁDALOVÁ Assoc. professor, ESIEE Paris Examinator

Petr DOKLÁDAL Research engineer, ARMINES Paris Examinator

Václav MATOUŠEK Professor, UWB Pilsen Examinator

Michel BILODEAU Research engineer, ARMINES Paris Examinator

Abstract

Bartovský, J. Hardware Architectures for Morphological Filters with Large Struc-

turing Elements. University Paris-Est, University of West Bohemia. Directors:

Mohamed Akil, Vjačeslav Georgiev.

This thesis is focused on implementation of fundamental morphological filters

in the dedicated hardware. The main objective of this thesis is to provide a pro-

grammable and efficient implementation of basic morphological operators using ef-

ficient dataflow algorithms considering the entire application point of view.

In the first part, we study existing algorithms for fundamental morphological

operators and their implementation on different computational platforms. We are

especially interested in algorithms using the queue memory because their imple-

mentation provides the sequential data access and minimal latency, the properties

very beneficial for the dedicated hardware. Then we propose another queue-based

arbitrary-oriented opening algorithm that allows for direct granulometric measures.

Performance benchmarks of these two algorithms are discussed, too.

The second part presents hardware implementation of the efficient algorithms by

means of stream processing units. We begin with a 1-D dilation unit, then thanks

to the separability of dilation we build up 2-D rectangular and polygonal dilation

units. The processing unit for arbitrary-oriented opening and pattern spectrum is

described as well. We also introduce a method of parallel computation using a few

copies of processing units in parallel, thereby speeding up the computation. All pro-

posed processing units are experimentally assessed in hardware by means of FPGA

prototypes, and the performance and FPGA occupation results are discussed.

In the third part, the proposed units are employed in two diverse applications

illustrating thus their capability of addressing performance-demanding, low-power

embedded applications.

The main contributions of this thesis are: 1) new algorithm for arbitrary-

oriented opening and pattern spectrum, 2) programmable hardware implementa-

tion of fundamental morphological operators with large structuring elements and

arbitrary orientation, 3) performance increase obtained through multi-level paral-

lelism. Results suggest that the previously unachievable, real-time performance of

these traditionally costly operators can be attained even for long concatenations

and high-resolution images.

Keywords

Mathematical morphology, morphological filter, hardware implementation, algo-

rithm, FPGA.

Résumé

Bartovský, J. Architectures matérielles pour filtres morphologiques avec des

éléments structurants de grande taille. Université Paris-Est, L’Université de

Bohême de l’Ouest. Directeurs: Mohamed Akil, Vjačeslav Georgiev.

Le sujet de cette thèse concerne l’architecture matérielle et la mise en oeuvre

de filtres morphologiques, basés sur des itérations d’érosions/dilatations. L’objectif

principal de cette thèse est de proposer une mise en oeuvre efficace et programmable

de ces opérateurs en utilisant des algorithmes en flot de données tout en tenant

compte des besoins applicatifs globaux.

Dans la première partie, nous étudions les algorithmes existants d’opérateurs

morphologiques et leur réalisation sur différentes plates-formes informatiques. Nous

nous intéressons plus particulièrement à un algorithme de dilatation basé sur une

file d’attente car il permet de réaliser l’accès séquentiel aux données avec une la-

tence minimale, ce qui est très favorable pour le matériel dédié. Nous proposons

ensuite un autre algorithme basé aussi sur une file d’attente réalisant l’ouverture

morphologique directionnelle, pour angle arbitraire, et qui permet d’obtenir directe-

ment des mesures de granulométrie.

La deuxième partie présente la mise en oeuvre matérielle des algorithmes ef-

ficaces au moyen d’unités de traitement à flot de données. Nous commençons

par l’unité de dilatation 1-D, puis grâce à la séparabilité de la dilatation nous

construisons des unités 2-D rectangulaire et polygonale. L’unité de traite-

ment pour l’ouverture directionnelle et de son spectre est aussi décrite. Nous

présentons également une méthode de parallélisation de calcul en dupliquant des

unités de traitement. Toutes les unités de traitement proposées sont évaluées

expérimentalement par la réalisation des prototypes à base de circuits pro-

grammables (FPGA). Les résultats en termes d’occupation de surface et de vitesse

de traitement sont également discutés.

Dans la troisième partie, les unités de calcul proposées sont utilisées dans deux

applications différentes, illustrant ainsi leur capacité de répondre aux exigeances

des applications embarquées a basse consommation.

Les principales contributions de cette thèse sont : i) la proposition d’un nou-

vel algorithme d’ouverture directionnelle à angle quelconque, ii) la réalisation des

architectures matérielles dédiées et programmables d’opérateurs morphologiques

pour de grands éléments structurants et à angle quelconque ; iii) l’exploitation

de plusieurs niveaux de parallélisme afin d’améliorer les performances. Les per-

formances obtenues permettent de faire du temps-réel et de concaténer plusieurs

opérateurs sur des images à haute résolution.

Mots clefs

Morphologie mathématique, filtre morphologique, la mise en oeuvre du matériel,

algorithme, FPGA.

Anotace

Bartovský, J. Čı́slicové architektury morfologických filtr̊u s velkými strukturuj́ıćımi

elementy. Univerzita Paris-Est, Západočeská univerzita v Plzni. Vedoućı: Mo-

hamed Akil, Vjačeslav Georgiev.

Tato práce se zabývá implementaćı základńıch morfologických filtr̊u v č́ıslicových

obvodech. Hlavńım úkolem této práce je vytvořit programovatelné a efektivńı

č́ıslicové implementace základńıch morfologických operátor̊u za použit́ı výpočetně

efektivńıch algoritmů. Důležitým hlediskem je chováńı celé aplikace složené z v́ıce

operátor̊u.

V prvńı části jsou prostudovány existuj́ıćı algoritmy základńıch morfologických

operátor̊u a jejich realizace na vhodných výpočetńıch platformách. Z existuj́ıćıch

algoritmů se pro implementaci dilatace jako nejvhodněǰśı jev́ı algoritmy využ́ıvaj́ıćı

paměť fronty. Důvodem jsou vhodné vlastnosti pro č́ıslicové obvody, sekvenčńı

př́ıstup k dat̊um a minimálńı latence. Posléze navrhneme a poṕı̌seme vlastńı algo-

ritmus morfologického otevřeńı využ́ıvaj́ıćı stejnou paměť fronty, který umožňuje

výpočet pod libovolným úhlem a př́ımý výpočet granulometrie. Výkonnostńı

parametry obou dvou algoritmů jsou zde diskutovány.

Druhá část obsahuje popis obvodové implementace těchto algoritmů ve formě

výpočetńıch jednotek. Napřed vytvoř́ıme 1-D jednotku dilatace, pomoćı které

d́ıky rozložitelnosti dilatace vytvoř́ıme 2-D jednotku dilatace pomoćı obdélńık̊u a

polygon̊u. Návrh výpočetńı jednotky algoritmu orientovaného otevřeńı a spektra

vzor̊u je také uveden v této části. Abychom dosáhli vyšš́ıho výpočetńıho výkonu,

použijeme metodu paralelńıho výpočtu, která využ́ıvá několika kopíı použitých

výpočetńıch jednotek pracuj́ıćıch ve stejném čase. Všechny navržené výpočetńı jed-

notky byly experimentálně ověřeny v č́ıslicových obvodech typu FPGA, výsledky

výpočetńıho výkonu a potřebné plochy čipu jsou diskutovány.

Ve třet́ı části jsou navržené výpočetńı jednotky použity ve dvou r̊uzných ap-

likaćıch, č́ımž ilustruj́ı svoji využitelnost v embedded aplikaćıch vyžaduj́ıćıch velmi

velký výpočetńı výkon a zároveň ńızkou spotřebu.

Hlavńı př́ınosy této práce jsou následuj́ıćı: 1) vlastńı algoritmus morfologického

otevřeńı a spektra pod libovolným úhlem, 2) č́ıslicová implementace základńıch mor-

fologických operátor̊u filtr̊u s velkými a libovolně orientovanými strukturuj́ıćımi el-

ementy, 3) zvýšeńı výpočetńıho výkonu d́ıky v́ıceúrovňovému paralelńımu výpočtu.

Dosažené výsledky ukazuj́ı, že výpočet těchto náročných operátor̊u v reálném čase,

kterého dosud nebylo možné doćılit, je nejen dosažitelný ale i udržitelný pro dlouhé

zřetězené filtry a vysoké rozlǐseńı zpracovávaných obraz̊u.

Kĺıčová slova

Matematická morfologie, morfologický filtr, obvodová implementace, algoritmus,

FPGA.

Acknowledgment

I am glad to express hearty appreciation to my thesis directors Mohamed Akil and

Vjačeslav Georgiev for their time, patience, consideration, and support by thoughts

and motivation. Their kind and selfless help in both thought and bureaucratic crises

was highly appreciated.

I am very grateful to my thesis advisors Eva Dokládalová and Petr Dokládal for

their tremendously kind, insight, endless support. Without their everyday effort in

enhancing my work the thesis could not have been completed in time.

I am very thankful to Michel Bilodeau who accepted me into the FREIA project,

and thereby opened the doors to the Centre of Mathematical Morphology for me.

I am grateful to Michel Couprie, Thierry Grandpierre, Laurent Perroton, Hugues

Talbot, Eric Llorens, Christine Auger, and the other members of the A3SI team at

ESIEE Paris for friendly welcome and nice working environment.

My internship in the Centre of Mathematical Morphology was very inspiring

and fruitful. The credit goes to all the staff: Fernand Meyer, Dominique Jeulin,

Serge Beucher, Étienne Decenciére, Jesús Angulo, Beatriz Marcotegui, Petr Matula,

Guillaume Thibault, Catherine Moysan, and the others.

I would like to thank all my fellow students and colleagues Václav Kraus, Aleš

Krutina, Radek Šalom, Michael Hoĺık, Martin Poupa, Nicolas Ngan, Imran Taj,

Ramzi Mahmoudi, Rostom Kachouri, Jeoffroy Marbeaux, Oussama Feki, Xiwei

Zhang, Vincent Morard, Santiago Velasco, and many others.

I should also thank the members of examination committee Olivier Déforges,

Michal Kozubek, and Václav Matoušek for their time necessary to read and under-

stand the manuscript.

The most eminent thanks goes to my parents who were unconditionally encour-

aging me during the entire university study to achieve the goals I can be proud

of.

Glossary

List of Symbols
α Orientation of the line SE

ϕ Closing

∁ Complementation operator

δ Dilation

ε Erosion

I, f Discrete image

Q Set of rational numbers

mod Remainder of integer division

γ Opening

⊕ Minkowski addition

PD Parallelism Degree

PS Pattern spectrum

R Set of real numbers

x, y Element of set

X,Y Set

Z Set of integer numbers

ζ Serial concatenation of operators

AQ Array of Queues

B Structuring element

l Length of the SE

N ×M Width×height of the image

Q Queue

W ×H Width×height of the SE

Oimage() Computational complexity against the whole image

O() Computation complexity

List of Abbreviations
n-D n-Dimension(al)

ALU Arithmetic Logic Unit

AR Average pixel Rate

ASFλ λ-order Alternate Sequential Filter

ASIC Application-Specific Integrated Circuit

bpp Bits Per Pixel

BRAM Block RAM memory

CAM Content Addressable Memory

CCT Connected Component Tree

CPU Central Processing Unit

DMA Direct Memory Access

FIFO First In First Out

X

FPGA Field-Programmable Gate Array

FPS Frame-Per-Second ratio

FREIA Framework for Embedded Image Applications

FSM Finite State Machine

GPP General-Purpose Processor

GPU Graphics Processing Unit

HDTV High-Definition Television

HGW Dilation algorithm proposed by van Herk, and Gil and Werman

HW Hardware

LUT Look-Up Table

MMB Mathematical Morphology Blocks

MPMC Multi-port Memory Controller

PLB Peripheral Local Bus

PoC Processor-on-chip

PRR Partial-Result Reuse

RAM Random Access Memory

SE Structuring Element

SIMD Simple Instruction, Multiple Data

SoC System-on-chip

SSE Streaming SIMD Extension

TEMAC Tri-Mode Ethernet Media Access Controller

UHDTV Ultra High-Definition Television

VFBC Video Frame Buffer Controller

VHDL Very-high-speed integrated circuits Hardware Description Language

VLIW Very Long Instruction Word

Contents

1 Introduction 1

1.1 Applications of Mathematical Morphology 2

1.1.1 Vision Application Constraints 3

1.2 Roles of Dedicated Hardware for Vision Applications 4

1.3 Contributions of the Thesis . 5

1.4 Outline . 6

2 Fundamental Operators of Mathematical Morphology 9

2.1 Erosion and Dilation . 10

2.1.1 Composition of Structuring Elements 13

2.2 Opening and Closing . 14

2.3 Alternating Sequential Filters . 14

2.4 Granulometry and Pattern Spectrum 16

3 State of the Art 21

3.1 Advances of Basic Morphology Algorithms 22

3.1.1 1-D Dilation Algorithms . 22

3.1.2 2-D Dilation Algorithms . 24

3.1.3 1-D Opening Algorithms . 26

3.1.4 2-D Opening Algorithms . 28

3.1.5 Choice of Algorithm for Hardware Implementation 28

3.2 Advances in Morphology Implementation 29

3.2.1 General-purpose Processors 29

3.2.2 Graphics Processing Units . 30

3.2.3 Dedicated Hardware . 31

3.3 Conclusions . 38

4 Algorithm Description 41

4.1 1-D Dilation Algorithm . 41

4.1.1 Illustration of Dokládal Algorithm Run 44

4.2 2-D Dilation by Rectangular SE . 46

4.2.1 1-D Vertical Dilation . 48

4.2.2 2-D Algorithm for Rectangles 49

4.2.3 GPP Experimental Results of Dokládal Algorithm 49

4.3 Polygonal SE . 52

XII Contents

4.3.1 Oblique 1-D Structuring Element 56

4.3.2 Translation-Variant SEs on 8-connected Grid 57

4.4 1-D Opening Algorithm . 58

4.4.1 Illustration of Streaming Peak Elimination Algorithm Run . . 61

4.4.2 Pattern Spectrum from Opening 63

4.4.3 Arbitrary SE Orientation . 64

4.4.4 Experimental Results of Streaming Peak Elimination Algorithm 69

4.5 Conclusions . 74

5 Hardware Implementation 77

5.1 1-D Dilation Architecture . 78

5.1.1 Horizontal Architecture . 79

5.1.2 Vertical Architecture . 80

5.1.3 Reducing the Impact of Data Dependency 81

5.2 2-D Rectangular Dilation Architecture 83

5.2.1 Parallel Rectangle Architecture 86

5.2.2 Conclusions . 89

5.3 2-D Polygonal Dilation Architecture 90

5.3.1 1-D Line Unit Architecture 90

5.3.2 Polygon Unit Architecture . 92

5.3.3 Parallel Polygon Architecture 94

5.3.4 Conclusions . 96

5.4 1-D Synchronous Dilation Architecture 97

5.4.1 Conclusions . 101

5.5 1-D Opening and Spectrum Architecture 101

5.5.1 Arbitrary Orientation . 102

5.5.2 Conclusions . 106

5.6 Conclusions . 106

6 Implementation Results 109

6.1 Rectangle Dilation Unit . 111

6.2 Polygon Dilation Unit . 114

6.3 1-D Synchronous Dilation Unit . 115

6.4 Opening and Spectrum Unit . 116

6.5 Comparison of the Proposed Implementations 117

6.6 Comparison with Existing Implementations 119

6.6.1 Comparison Using Alternating Sequential Filters 121

6.7 Conclusions . 122

Contents XIII

7 Applications 125

7.1 FREIA Platform . 125

7.1.1 Top-level Platform Description 126

7.1.2 Bart proc Peripherals . 128

7.1.3 Bart proc Pipeline . 129

7.1.4 FREIA Interface . 130

7.1.5 FREIA Performance Evaluation 131

7.2 Classification of Particles Recorded by the Timepix Detector 133

7.2.1 Classification Using Morphological Characteristics 133

7.2.2 Method Description . 134

7.2.3 Hardware Architecture . 138

7.3 Conclusions . 141

8 General Conclusions and Perspectives 143

8.1 Perspectives . 145

Publications 147

Bibliography 149

1 Introduction

Contents

1.1 Applications of Mathematical Morphology 2

1.1.1 Vision Application Constraints 3

1.2 Roles of Dedicated Hardware for Vision Applications . . . 4

1.3 Contributions of the Thesis 5

1.4 Outline . 6

In this thesis we focus on hardware implementation of fundamental algorithms

of mathematical morphology. Mathematical morphology is a popular image pro-

cessing framework providing a complete set of tools for filtering, multi-scale image

analysis, or pattern recognition. It has been used in a number of applications,

including biomedical and medical imaging, video surveillance, industrial control,

video compression, stereology or remote sensing since its very first appearance in

the late 1960’s, see [Matheron 1975] [Serra 1988] [Serra 1992].

Considering the hardware implementation context, several different trends have

been observed. A recent technological advance of imaging sensors stimulated the

development of applications by means of high-resolution images that became a

standard. This trend of increasing resolution is widely expected to carry on, such

as UHDTV [ITU-R 2012], the public broadcasting of which may be ready by 2016.

Needless to say large images impose challenging requirements on the computation

platform in terms of both performance and memory.

On the other hand, the industrial context often induces severe real-time con-

straints on applications. As these demanding image-interpretation applications re-

quires a high correct-decision liability, robust but costly multi-criteria and/or multi-

scale analyses are used. Provided that slow image processing may deteriorate some

industrial production, the latency and computational performance are of high in-

terest in this context.

In embedded systems, the most important concerns are low power consump-

tion (and consequently low heat dissipation) and small resources occupation, which

allows for better embedding. All these considerations combined together infer over-

whelming requirements on the architecture of polyvalent processing units addressing

many different contexts.

2 1. Introduction

1.1 Applications of Mathematical Morphology

Examples of the most frequent morphology operators and their applications follow

below.

• Filters: Filters are low-level vision operators and serve either to eliminate

noise that deteriorates an image by some undesired artifacts [Heijmans 1997]

[Serra 1992] [Maragos 2005], or to simplify image topology in order to make

further processing easier. Morphological filters are commonly used in pre-

processing stage of many complex higher-level operators, such as image com-

pression and image segmentation [Gorpas 2009].

• Granulometry: Granulometry (so-called size distribution) measures distribu-

tion of object size in a population of objects [Matheron 1975] [Maragos 1989].

It can be considered as an ordered set of operators—sieves—each of which

allows only objects larger than a given size to pass. [Urbach 2004] used gran-

ulometry of an inner cell texture for automatic diatom cell identification and

classification. [Bagdanov 2002] utilized granulometry in genre classification

of printed documents, and more recently [Karas 2012b] took advantage of

arbitrary-oriented granulometries for rotation detection of music sheet scans.

• Image enhancement: Image enhancement is a common technique to improve

some visual features with respect to different criteria, e.g., contrast enhance-

ment, toggle mapping [Serra 1989]. For another examples, [Zhang 2011] de-

tected microaneurysms on eye fundus images, and [Wei 2007] used a multi-

scale top-hat transformation to locally increase contrast of orthopaedic X-ray

images, which were then easier to read.

• Classification: In general, classification aims at identifying to which of a set

of classes a new observation belongs. Mathematical morphology has been

mainly used in classification of images (or sections of images) with respect to

spatial features. [Moore 2007] used mathematical morphology for the clas-

sification of astronomical objects, both for star/galaxy differentiation and

galaxy morphology classification.

• Segmentation: Segmentation is another key tool of image processing ap-

plied to a large number of problems. For example, see contouring blobs

of proteins in an electrophoresis gel, separation of overlapping grains, both

[Beucher 1992].

• Statistical learning: A selected set of morphological operators can be sep-

arately applied to an image and used as a vector of descriptors for pixel-

wise statistical learning, see [Vapnik 1995] for the domain introduction.

[Cord 2007] devised a method for segmentation of random textures using

a vector of 126 morphological descriptors.

1.1. Applications of Mathematical Morphology 3

1.1.1 Vision Application Constraints

From the applications in literature we can recognize the most common constraints

shared among various vision applications as follows:

• Real-time processing: We understand as real-time processing the capabil-

ity of processing data at a rate at least equal to the acquisition/input data

rate. This constraint is closely related to performance, however, the exact

value depends on a given application. For example, the common video cam-

era formats specify the minimum frame-per-second (fps) performance to 25,

30, etc., respectively; pixel detectors take from 30 to 100 fps; and for high-

end industrial applications, even more diverse values (1–1000 fps) may be

encountered. Clearly, the values above reflect complexity of applications;

however, the higher performance of computation platform helps us to meet

the application-specific real-time constraint.

• Latency: The excessive latency of computation has two main implications on

an application. First, the larger latency usually implies the larger memory

requirements, either as an image storage (input, intermediate, output) or as

a working memory. Second, the excessive latency may be limiting for certain

applications that need results as soon as possible for further processing, e.g.,

iterative reconstruction, etc.

• High-definition resolution: The resolution of images varies within a large

range from a small resolution 256×256 of the pixel detector, through dis-

tinct video format resolutions (nowadays standards 640×480–1920×1080, or
even UHDTV 7680×4320), up to industrial sensors with resolution of tens of

megapixels. The high resolution impacts computation performance, so it is

more challenging to achieve real-time processing, and memory requirements.

In non-destructive testing by machine vision, searching for small defects (or-

ders of micrometers) in large-size pieces (orders of square meters), one easily

encounters extreme resolution requirements.

• Reliability, power consumption: In certain industrial applications such as

road monitoring and obstacle detection [Beucher 1995] or track autonomous

following [Marion 2004], high system reliability and low power consumption

are very important constraints. This constraint is typical for all embedded

systems.

All these constraints combined together infer overwhelming (and even some-

times contradictory) requirements on the computational platform. We recognize

three general computation platforms suitable for such vision applications: general-

purpose processor (GPP, so-called CPU), graphics processing unit (GPU), and ded-

icated hardware. The conveniences of these platforms for vision applications are

discussed in the following section.

4 1. Introduction

1.2 Roles of Dedicated Hardware for Vision Applica-

tions

Probably the most popular and common computation platform is a general-purpose

processor that appears in a variety of general-purpose computing devices: personal

computers, multi-core workstations, or many-core clusters. Despite the wide spread,

and recent technological advances, the performance of the GPP is rather low given

some complex vision application as it is partly sacrificed in favor of large universality.

The computation is carried out sequentially in a GPP (there are exceptions like the

SIMD instruction set, superscalar CPUs etc.).

The second platform suitable for vision applications is graphics processing unit

(GPU). A GPU consists of many light-weight processors interconnected in given

hierarchy, each of which executes several threads of the application code. Hence,

this platform provides some parallelism via many threads being computed at the

same time. However, the threads are processed sequentially, and the inter-thread

communication is penalizing. The GPU platforms can achieve higher performance

than GPP for applications that takes advantage of thread-wise parallel computation,

thus weakening universality.

The dedicated hardware (we focus chiefly on FPGAs, however, the following

holds true for ASICs as well) goes even farther. It provides the designer by a large

amount of logic resources (that carry out arithmetic, logic operations, etc.) and

interconnection resources, and let him to decide the way how the processing archi-

tecture should be assembled. Such an approach results in a great opportunity for

parallelism of different kinds (spatial, temporal) that leads to the highest perfor-

mance for certain applications. These target applications are supposed to involve

rather dense numerical computation per datum with less conditional jumps and

context switching, such as digital filters, video coding/decoding, etc.. Obviously,

most vision applications (including mathematical morphology) satisfies the first pre-

sumption. In order to comply with the latter, we have to beware of very complex

applications or applications that need large diversity of operators.

Notice that for changing the computation context, like in the case of complex or

general-purpose applications, the dedicated hardware must be either reconfigured,

see [Hauck 2007] or [Gokhale 2010] for FPGA reconfiguration, or it must possess

computation resources for every used context and programmable interconnection.

Either way, it results in inefficient hardware utilization.

The dedicated hardware is a platform that can address each one of the appli-

cation constraints mentioned above. On the other hand, the real power of this

platform can only be exploited, above all, in single-purpose applications, which at-

tain efficient resources utilization. We see mainly two target application groups of

dedicated hardware as follows:

• High-performance single-purpose applications: That is applications demand-

ing a huge computational power tailored to only one purpose. Then dedicated

hardware allows for real-time processing even in the most demanding appli-

1.3. Contributions of the Thesis 5

cations, for which the other platforms are not powerful enough. Dedicated

hardware is definitely capable of improving the overall performance.

• Low-power embedded applications: The other group of dedicated hardware

applications stand on the opposite side of performance scale. For low-power

embedded applications the computational performance is not the main mea-

sure, but it is power consumption or resources occupation. In this field ded-

icated hardware is better choice than other platforms thanks to low power

and area demands.

Considering the other two constraints, hardware platforms improves them as

well. The hardware platform clearly allows a designer to devise an architecture

with zero additional latency, or an architecture supporting large images with no

penalization (unless all resources are used). On the other hand, dedicated hard-

ware can hardly constitute a general-purpose computation platform for a complete

set of vision applications. Large polyvalence of applications would gravely reduce

computation performance due to inefficient utilization of hardware resources.

1.3 Contributions of the Thesis

The aim of the thesis is to propose hardware implementation of adaptable process-

ing units for vision applications based on mathematical morphology. The thesis

develops in three main stages: algorithms of mathematical morphology, hardware

implementation of processing units, and applications.

First, we evaluate algorithms for low-level mathematical morphology and rec-

ognize the Dokládal algorithm (published in [Dokládal 2011]) to be the best choice

for hardware implementation. As the first contribution, we enrich the family of

supported structuring elements by inclined lines that can form regular polygons.

For the inclined lines the computation of dilation proceeds along an inclined dis-

crete line the coordinates of which are determined using Bresenham line algorithm

[Bresenham 1965]. A similar approach was used by [Soille 1996] and [Morard 2011]

but our solution preserves sequential access to data whatever the inclination angle,

a very beneficial property of the algorithm.

After that we propose an original algorithm for arbitrary-oriented 1-D opening

and pattern spectrum called streaming peak elimination. Even though opening is

commonly obtained as a concatenation of erosion and dilation, direct computation

of opening is faster and easier to implement. The proposed algorithm is targeted

to hardware and GPU implementation. The performance benchmark reveals that

our algorithm outperforms all other algorithms using graphics cards.

Second, we propose the dedicated hardware implementation of the Dokládal al-

gorithm as a fully programmable 1-D dilation processing unit supporting different

orientations, which is used as a building brick in concatenations of any length. This

inter-operator parallelism is illustrated on the 2-D rectangular and polygonal dila-

tion processing units. Then, we introduced a method of parallel computation that

6 1. Introduction

uses a few copies of processing units in parallel, each of which however processes

its dataflow sequentially. This intra-operator parallelism almost linearly increases

the performance of both rectangular and polygonal processing units. Compared to

other recent architectures, our processing units outperform the others for structur-

ing elements larger than 3×3. The difference is even more evident in the case of

compound operators, for instance serial filters.

In a later part, we implemented the streaming peak elimination algorithm as a

fully programmable 1-D opening and pattern spectrum processing unit supporting

arbitrary orientation. This processing unit allows for inter-operator parallelism of

complex morphological operators demanding multiple orientation analysis, such as

oriented pattern spectra or image enhancement.

Third, we utilize the proposed processing units in two applications. We inte-

grate the units into the FREIA (Framework for Embedded Image Applications,

[FREIA 2011]) platform that is supposed to address the most computation per-

formance demanding vision applications. From the FREIA viewpoint, the main

contribution of the proposed architectures is efficient computation of large and ori-

ented SEs. The second application classifies high-energy particles recorded by the

Timepix detector. We show that a basic classification of particle shapes can be re-

alized in a streaming manner in an embedded device using the proposed processing

units.

Considering performance of the designed computing units, this scalable and

programmable computing platform allows us to obtain previously unachievable,

real-time performances for the traditionally costly morphological operators. Along

with ability to implement large SEs without decomposition, it opens the accessibility

of advanced morphological operators in industrial systems. The number of examples

includes the on-line production control, aging material defectoscopy, etc. Thanks

to its high degree of universality, it shall allow application developers to utilize this

framework instead of an expensive ad-hoc development.

1.4 Outline

The rest of the manuscript is organized as follows. Chapter 2 recalls the basic

terminology of image processing and fundamental operators of the mathematical

morphology.

In Chapter 3, we present the review of the literature on advances in basic mor-

phology algorithms, chiefly dilation and opening, and decides which algorithm has

the most pleasant properties for hardware implementation. We also outline ad-

vances in morphology implementation. We discuss especially in detail existing im-

plementations on general-purpose processors, graphics processing units, and dedi-

cated hardware.

Chapter 4 is devoted to the thorough description of the selected morphological

algorithm used in implementation later. We also propose an original algorithm for

1.4. Outline 7

morphological opening in this chapter. Performance benchmarks of these algorithms

with respect to other state-of-the-art algorithms are mentioned using different com-

putation platforms.

In Chapter 5, we present hardware implementation of basic morphological op-

erators using efficient algorithms that have been chosen in the previous chapters.

The proposed programmable processing units can be used as basic bricks to build

up more complex operators. We also shows how to speed up the performance by

introducing two levels of parallelism. Chapter 6 presents experimental performance

and FPGA implementation results of the proposed processing units with respect

to various properties. The proposed architectures are also compared with other

state-of-the-art hardware implementations in order to evaluate the contribution.

Chapter 7 contains description of two practical applications that utilizes the

proposed processing units. The purpose of this work is to illustrate usability of the

units both high-performance and low-power, embedded applications. Finally, chap-

ter 8 concludes the manuscript and outlines the perspectives and the undergoing

work.

2 Fundamental Operators of

Mathematical Morphology

Contents

2.1 Erosion and Dilation . 10

2.1.1 Composition of Structuring Elements 13

2.2 Opening and Closing . 14

2.3 Alternating Sequential Filters 14

2.4 Granulometry and Pattern Spectrum 16

In the following sections, we review the basic image processing terminology used

in the thesis. The definition of the most important morphological operations follows

below.

First of all, we focus on a discrete (digital) image. The transformation of contin-

uous image into discrete image is called digitalization and consists of sampling (i.e.,

discretization of spatial coordinates) and value quantization. Let X be a countable

set called support, and Y a countable set of defined values. We consider a family

of discrete images I an application of some function f : X → Y where X is usually

a rectangular domain, X ⊂ Z2 or X ⊂ Z3. An element x ∈ X is called an image

point. Depending on the definition of the support X, we call an image point a pixel

if X ⊂ Z2, or a voxel if X ⊂ Z3. The value y of a pixel x is defined as y = f(x).

We can further specify the type of image according to the set of image values Y .

We call f a binary image if Y contains exactly two elements. The grey-scale images

consider Y ⊂ Z, or even Y being a subset of a set of floating-, fixed-point numbers

(such sets are countable). In general, all image operations Ξ : I → I, g = ξ(f) can

be broken down with regard to the influence scope into three basic types:

• Pixel operations. The output g(x) depends only on the input at the very same

position f(x), it is independent of all other pixels in the image. For instance,

threshold, contrast addition, subtraction, stretching are pixel operations.

• Neighborhood (local) operations. The output g(x) depends on a given set of

input pixels f (P(x)) ;P(x) ⊂ X (P(X) is a subset of X) often surrounding x,

hence called a neighborhood of x. The examples of neighborhood operations

are, e.g., various filters (morphological, smoothing, Laplacian), convolution,

gradient, sharpening, etc.

• Global operations. The output g(x) depends on the entire input image f(X).

The global operations are designed to reflect some statistical information

of the image, e.g., distance transformation, histogram equalization, or they

10 2. Fundamental Operators of Mathematical Morphology

extract some hierarchical information, e.g., connected components trees, seg-

mentation, scene parsing.

Morphological operators aim at extracting some relevant spatial information

from an image, see [Serra 1982, Matheron 1975] for extensive information. Since

the image is considered to be a set X, it can be achieved by probing the image with

another set of a known shape. Hereafter, we call the probe Structuring Element

(SE), in other literature sometimes called window or kernel. The shape of the SE

has very significant influence on the result of any morphological operation, and

therefore, the choice of the shape and size is often made according to some a priori

knowledge of the image geometry.

Although a SE may be generally n + 1-dimensional for n-dimensional images,

we focus on n-dimensional SEs. These SEs are referred to as flat because they have

only 2 dimensions in the case of 2-dimensional image, which is the most common.

The n+1-dimensional SEs are called volumic, non-flat, or gray-scale, and omitted in

this memory due to high computation complexity and restricted usage. Regardless

the type, each SE is equipped by an origin that allows positioning of the SE at a

given point of an image.

2.1 Erosion and Dilation

The erosion and dilation are fundamental operations of mathematical morphology;

they answer to the most obvious question while probing an image (the following

questions quote [Soille 2003]).

The binary dilation answers the question “Does the structuring element hit the

set?”. The result set contains the points where the answer is affirmative. The

binary dilation of a set X by a SE B is denoted by δB(X) and it is defined as

δB(X) = {x | B̂(x) ∩X 6= ∅} (2-1)

where the SE B is considered to be flat, i.e., B ⊂ Z2 (translation-invariant),

equipped with an origin x ∈ B. The transposed SE B̂ is equal to the geomet-

ric reflection of B around the origin

B̂ = {x | −x ∈ B}. (2-2)

The binary dilation can be also defined by means of Minkowski set addition, such

as

δBX = X ⊕B =
⋃

b∈B

Xb (2-3)

where for set X and element b, the subscript Xb denotes translation of X by b.

This latter definition allows for direct extension to gray-scale images (functions).

The definition of the gray-scale dilation by a flat SE also exists in two versions. First,

the extension to functions of the Minkowski set addition, such as

[δB(f)](x) =

[
∨

b∈B

fb

]
(x) (2-4)

2.1. Erosion and Dilation 11

where fb denotes translations of f by vectors b ∈ B. The second definition is

obtained by extension to functions of the set intersection/inclusion given by

[δB(f)](x) = ∧{v ∈ Y | B̂ + v ≥ f}. (2-5)

The implementation of the gray-scale dilation essentially consists of searching the

maximum of f within the scope of B such as

[δB(f)](x) = max
b∈B

[f(x+ b)] (2-6)

The example of an image dilated by SEs of various sizes is displayed in Fig. 2.1. At

first sight, the light regions, which have high gray-level values, are stretched out.

(a) Input image (b) Dilation by 11×11 (c) Dilation by 21×21 (d) Dilation by 31×31

Figure 2.1: Example of images processed by dilation with various SEs. (a) input

image f , (b) dilated by SE 11×11, (c) dilated by SE 21×21, (d) dilated by SE

31×31.

The output of the binary erosion is a set of points where the answer to “Does

the structuring element fit the set?” is positive. The binary erosion of a set X by

a structuring element B is denoted by εB(X) and it is defined a

εB(X) = {x | B(x) ⊂ X} (2-7)

where the SE B is considered to be flat equipped with an origin x ∈ B. The binary

erosion can be also defined by means of Minkowski set addition, such as

εBX = X ⊖B =
⋂

b∈B̂

Xb (2-8)

where for set X and element b, the subscript Xb denotes translation of X by b.

This latter definition allows for direct extension to gray-scale images (functions).

The definition of the gray-scale erosion by a flat SE also exists in two versions. First,

the extension to functions of the Minkowski set addition, such as

[εB(f)](x) =

∧

b∈B̂

fb

 (x), (2-9)

where fb denotes translations of f by vectors b ∈ B computed as f(x+ b). The sec-

ond definition is obtained by extension to functions of the set intersection/inclusion

given by

[εB(f)](x) = ∨{v ∈ Y | B + v ≤ f}. (2-10)

12 2. Fundamental Operators of Mathematical Morphology

The implementation of the gray-scale erosion essentially consists of searching the

minimum of f within the scope of B such as

[εB(f)](x) = min
b∈B̂

[f(x+ b)] (2-11)

The example of erosion by SEs of various sizes is displayed in Fig. 2.2. Erosion

expands the dark regions as those have small gray-level value.

(a) Input image (b) Erosion by 11×11 (c) Erosion by 21×21 (d) Erosion by 31×31

Figure 2.2: Example of images processed by erosion with various SEs. (a) input

image f , (b) eroded by SE 11×11, (c) eroded by SE 21×21, (d) eroded by SE

31×31.

Both dilation and erosion share some important properties. First of all, they

are dual operation to each other. It means that an erosion of an image is equal

to complementation of the dilation of the complemented image (and the other way

around). Complementation is a basic set operator, and complementation of some

image f , denoted as ∁f , is defined for each pixel x as the maximum value of the

data type used for storing the pixel tmax minus the value of image f at position x,

such as

∁f(x) = tmax − f(x). (2-12)

From the implementation point of view, one can omit dealing with an erosion if he

has a dilation and some light-weighted, efficient complementation operator ∁,

δB(f) = ∁ε
B̂
∁(f). (2-13)

Dilation and erosion also form an adjunction pair

δ(X) ≤ Y ⇔ X ≤ ε(Y). (2-14)

The adjunction is necessary to obtain properties allowing for combining dilation

and erosion to form filters.

Other properties are increasingness, ordering relations, invariance to translation,

distributivity, etc., the thorough description of which can found in [Soille 2003].

2.1. Erosion and Dilation 13

2.1.1 Composition of Structuring Elements

The last, and very important, property of erosion and dilation is SE composition

(sometimes referred to as SE decomposition). The composition property claims

that a sequence of dilations (or erosions) is equivalent to only one operation by

the SE equal to the Minkowski addition ⊕ of both original SEs, see (2-15). This

property is very useful because it allows us to compose more spatially complex SEs

using elementary SEs that often decreases the order of computation complexity.

Figure 2.3 displays the composition of rectangle, hexagon, and octagon from lines.

This decomposition is often used to approximate circle SEs.

δB1
δB2

(f) = δB1⊕B2
(f) (2-15)

=>

=>

=>(a)

L
0°

L
90°

L
0°

L
0°

L
45°

L
135°

L
90°

L
60°

L
120°

(b)

(c)

Figure 2.3: Examples of regular polygon SE composition: (a) rectangle, (b)

hexagon, (c) octagon.

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

E
1

E
2

E
3

E
4

Q
8

Q
9

Q
10

Q
11

Q
12

Q
13

(a) Xu (b) Normand

Figure 2.4: Classes of primitive SEs. Any 8-convex polygon SE is decomposable

into either: (a) Xu class, or (b) Normand class while using union along with ⊕.

Another principle of SE decomposition was proposed by [Xu 1991] (similar to

[Zhuang 1986]). It claims that any 8-convex polygon (convex on 8-connectivity

grid, hence 8-convex) is decomposable into a class of 13 nontrivial indecomposable

convex polygonal SEs Q1 −Q13 shown in Fig. 2.4 (a). [Normand 2003] reduces the

class of shapes to only four 2-pixel SEs, see Fig. 2.4 (b), by allowing the union

operator to take place in SE decomposition. For instance, Q12 by Xu is obtained

as (E3 ⊕ E3) ∪ E4 by Normand.

14 2. Fundamental Operators of Mathematical Morphology

2.2 Opening and Closing

Concatenations of a dilation and an erosion form elementary filters called opening

and closing, see Fig. 2.5.

The binary opening preserves the whole set of the SE if the SE fits into an

image. The binary opening by a flat SE B is denoted by γB(X) and defined as

γB(X) =
⋃

x

{B(x) | B(x) ⊆ X}. (2-16)

The gray-scale opening is defined as the union of all SEs that fit under the graph

of a function f such as

γB(f) = ∨{B + v ≤ f}, (2-17)

and it can be implemented by

γB(f) = δ
B̂
[εB(f)]. (2-18)

The result of the binary closing filter does not contain any point of SEs that fit

the background set. The binary closing of a set X by a flat SE B is denoted by

ϕB(X) and defined as

γB(X) = ∁

[
⋃

x

{B(x) | B(x) ⊆ ∁X}
]
. (2-19)

The gray-scale closing is defined as

γB(f) = ∧{B̂ + v ≥ f}, (2-20)

and it can be implemented by

ϕB(f) = ε
B̂
[δB(f)]. (2-21)

The opening and closing are dual operations according to the complementation ∁,

such as

ϕB(f) = ∁γ
B̂
∁(f) (2-22)

2.3 Alternating Sequential Filters

From opening and closing, one forms alternating filters obtained as γϕ, ϕγ, γϕγ

and ϕγϕ. The number of combinations obtained from two filters is rather lim-

ited. Other filters can be obtained by combining two families of filters. This

leads to morphological Alternating Sequential Filters (ASF), originally proposed by

[Sternberg 1986], and studied in [Serra 1988], Chapter 10. In general, it is a family

of operators parameterized by some λ ∈ Z+, obtained by alternating concatenation

2.3. Alternating Sequential Filters 15

(a) Input image (b) Opening by

11×11

(c) Opening by 21×21 (d) Opening by

31×31

(e) Input image (f) Closing by 11×11 (g) Closing by 21×21 (h) Closing by 31×31

Figure 2.5: Example of images processed by opening and closing with various

SEs. (a) (e) input image f , (b) opening by SE 11×11, (c) opening by SE 21×21,
(d) opening by SE 31×31, (f) closing by SE 11×11, (g) closing by SE 21×21, (h)
closing by SE 31×31.

of two families of increasing and decreasing filters {ξi} and {ψi}, respectively, such
that ψn ≤ . . . ≤ ψ1 ≤ ξ1 ≤ . . . ≤ ξn.

The most known ASF are those based on openings and closings, obtained by

taking ψ = γ and ξ = ϕ :

ASF λ = γλϕλ . . . γ1ϕ1 (2-23)

starting with a closing, and

ASF λ = ϕλγλ . . . ϕ1γ1 (2-24)

starting with an opening, the example of which for different orders is shown in

Fig. 2.6.

(a) Input image (b) ASF1 (c) ASF3 (d) ASF5

Figure 2.6: Example of images processed by ASF of various orders with a rect-

angular SE. (a) input image f , (b) ASF1, (c) ASF3, (d) ASF5.

16 2. Fundamental Operators of Mathematical Morphology

2.4 Granulometry and Pattern Spectrum

Another application of opening and closing is called granulometry, or pattern spec-

trum. The concept of granulometry was introduced by [Matheron 1975] in a study

of porous materials. Let Ψ = (ψλ)λ≥0 be a family of image transformations de-

pending on a parameter λ. This family constitutes granulometry if and only if it

forms a decreasing family of openings, that is

∀λ ≥ 0, ψλ is an opening (2-25)

∀λ ≥ 0, µ ≥ 0, λ ≥ µ⇒ ψλ ≤ ψµ (2-26)

The above definition does not require the opening ψλ to be a morphological

opening. Algebraic granulometries, e.g., granulometry by area, based on algebraic

openings are also valid, see [Serra 1988]. However, we will focus on a morphological

granulometry hereafter.

The family Γ = (γλ)λ≥0 of openings by homothetics λB = {λb|b ∈ B}, λ ≥ 0,

of B is a granulometry if and only if B is convex. In more practical way it means

that provided a convex primary grain B, the family of openings with all the scales

of B is a granulometry.

The granulometric analysis of a set f is often presented as a sieving process, f

is sieved through a set of sieves with increasing mesh size. Each opening removes

more than the previous one. In order to quantify the rate of sieving f , a measure

m(f) is used. In the most cases, m(f) measures the sum of all pixels remaining in f .

The measure constitutes a granulometric curve of f with respect to granulometry

Γ = (γλ)λ≥0 such as

GΓ(f) = m(γλ(f))−m(γλ−1(f)). (2-27)

The pattern spectrum is an operator very similar to the morphological gran-

ulometric curve, but it was defined in different way in [Maragos 1989]. Let SλB:

R2 → R be a single value of the pattern spectrum, parameterized by a SE B ⊂ R2

and its size λ, defined as

SλB(f) = −
d

dλ
‖γλBf‖; f : R2 → R. (2-28)

Since we are interested in discrete images with bounded support X ⊂ Z2, X =

[1,M]× [1, N], the discrete value of SλB is transformed to

SλB(f) =
∑

X

(
γλBf − γ(λ+1)Bf

)
; f : D → R, (2-29)

considering the pattern spectrum step dλ = 1.

In the following definitions, we consider γαl be the opening by a line SE Lα
l . This

SE has a shape of a discrete line of length l rotated by angle α from the positive

x-axis counterclockwise (γαl is also called linear opening) and is commonly used

for extracting information about orientation of objects. Using this SE we obtain

2.4. Granulometry and Pattern Spectrum 17

1

1

2

3

4

5

2 3 4 5 6 7 8 9 t

f (t)

1 2 3 4 5 6 7 l

PS(l)

(a) Input signal f

1

1

2

3

4

5

2 3 4 5 6 7 8 9

1f

t

f (t)

1

4

2 3 4 5 6 7 l

PS(l)

(b) Computation of PS(2)

1

1

2

3

4

5

2 3 4 5 6 7 8 9

2f

t

f (t)

1

4
5

2 3 4 5 6 7 l

PS(l)

(c) Computation of PS(5)

1

1

2

3

4

5

2 3 4 5 6 7 8 9

3f

t

f (t)

1

4
5

7

2 3 4 5 6 7 l

PS(l)

(d) Computation of PS(7)

Figure 2.7: Example of 1-D signal f and creation of the pattern spectrum PS(l).

the equation for the oriented pattern spectrum PS: Z2 → R in (2-30). Such a

pattern spectrum PS of an anisotropic texture is the size distribution expectancy

of a 1-D signal obtained by intersection with a randomly drawn straight line. The

expectancy is approximated by the frequency count.

[PS(α, l)] (f) =
∑

X

(
γαl f − γαl+1f

)
. (2-30)

Figure 2.7 shows an intuitive representation of the pattern spectrum PS(l) on

1-D signal f , so only the length of the SE l is variable. We start by computing the

18 2. Fundamental Operators of Mathematical Morphology

first element PS(1) =
∑

(γ1f − γ2f). Since neither γ1 nor γ2 changes the signal f ,

see Fig. 2.7 (a), PS(1) remains empty. Then we go one step further, we compute

γ3f and subtract that from already computed γ2f . As we can see in Fig. 2.7 (b),

γ3 cuts off the signal cord f1, the area of which is the result of the sum of the two

openings in PS(2). Note that the length of the eliminated cord is 2 (equal to the

length of the SE l = 2) but PS contains its area 4. In the next two steps, i.e., for

l = {3, 4}, the PS contains zero values as both openings return the same signals.

For l = 5 in Fig. 2.7 (c), the subtraction of γ5f and γ6f results in the area of the

5-pixel-wide cord labeled f2 that goes to PS(5). The openings γ7 and γ8 reveals the

7-pixel-wide cord in Fig. 2.7 (d).

In conclusion, this operator decomposes the original signal into a set of signal

cords obtained as the residue in the equation (2-30) above (cords of length l). They

are represented as a discrete histogram of the sum of their area so that the area of

a cord of length l contributes to the l-th bin.

The oriented linear opening γαl can be used for the detection of local orientation

(orientation field) ζl: Z
2 → [0, 180) by looking for angle α that causes the greatest

response of γαl (f) at each point as

ζl(f) = arg max
α∈[0,180)

γαl (f). (2-31)

Examples of ζl applications are shown in Fig. 2.8. The first application shows the

local orientation of elongated papillary lines of the fingerprint, the second example

determines the orientation of the road lines in the image of a road.

(a) Fingerprint

0

30

60

90

120

150

180

(b) Local orientation of fingerprint

(c) Road

0

30

60

90

120

150

180

(d) Local orientation of road

Figure 2.8: Extraction of local orientation on (a) a fingerprint and (b) a road

image.

Another operator χ : Z2 → R may also take advantage of γαl for image restora-

tion by taking a pixel-wise supremum of openings by different angles in each pixel

2.4. Granulometry and Pattern Spectrum 19

as

χl(f) =
∨

α∈[0,180)

γαl (f) (2-32)

The last two operators are rather application-oriented. They demonstrate the

feasible applications of linear openings with arbitrary orientation.

3 State of the Art

Contents

3.1 Advances of Basic Morphology Algorithms 22

3.1.1 1-D Dilation Algorithms . 22

3.1.2 2-D Dilation Algorithms . 24

3.1.3 1-D Opening Algorithms . 26

3.1.4 2-D Opening Algorithms . 28

3.1.5 Choice of Algorithm for Hardware Implementation 28

3.2 Advances in Morphology Implementation 29

3.2.1 General-purpose Processors 29

3.2.2 Graphics Processing Units . 30

3.2.3 Dedicated Hardware . 31

3.3 Conclusions . 38

This chapter surveys the state of the art of mathematical morphology from two

different perspectives. At first, algorithmic advances of the low-level morphologi-

cal operators dilation and erosion in literature are reviewed. Dilation and erosion

are the fundamental and most common operators; they are utilized in almost every

application that concerns mathematical morphology. Also, many complex morpho-

logical operators and methods are composed of various concatenations of these basic

operations.

Later, we outline major previous contributions to implementation of the math-

ematical morphology on different platforms. We are interested in three platforms

most suitable for complex image processing applications: general-purpose proces-

sors (GPP, CPU), graphics processing unit (GPU), and dedicated hardware (chiefly

FPGA).

In the following paragraphs, we use the O() notation to express the asymptotic

computation complexity (sometimes called time complexity, or big O notation) of an

algorithm as proposed by [Knuth 1976]. The computation complexity stands for a

number of atomic instructions that must be executed to apply a given algorithm on

a single pixel in dependence on some quantity, size criterion n. Asymptotic property

means that we are only interested in the order of complexity, e.g., the algorithm

of O(100n2) ≡O(n2) has far lower complexity than the algorithm of O(0.01n3)
≡O(n3). Hereafter, the quantity criterion n is the size of the SE. On some special

occasions, for instance when algorithm is of O(1) and we want do express the

influence of image borders, we use the complexity against the size of the image.

That is denoted by Oimage() and should be comparable to Oimage(MN) for O(1).
For further reading and examples of algorithm analysis see [Leiss 2007, Knuth 1997].

22 3. State of the Art

Also, a few terms concerning the latency should be noted as we will use them

in the thesis. The latency is a measure expressed in a number of data samples, e.g.,

pixels. We define the latency introduced by the dependence of the result on future

data samples as operator latency. For example the max filter yi = max(xi−2, xi−1,

xi, xi+1, xi+2) has operator latency 2, defined by the distance between xi and xi+2.

Operators with non-zero operator latency are sometimes referred to as non-causal.

We define as algorithm latency any additional latency introduced by the algorithm,

e.g., the necessity to perform a reverse scan on data, computing intermediate re-

sults, etc. Last, computing latency measures the impact of the implementation on

computation. For instance, the polyadic max from the example above can either

be executed sequentially on a sequential machine, in a pipeline, or entirely in par-

allel on a dedicated hardware. The system latency, or simple latency, in the usual

sense is the sum of these three terms.

3.1 Advances of Basic Morphology Algorithms

The mathematical morphology itself has been studied since its first appearance

to improve efficiency and enrich applicability. The development of algorithms at-

tracted a large portion of mathematicians’ attention throughout the whole time. It

is worthy to recall that the efficiency of an algorithm directly affects its usability

whenever the processing time is the main concern.

The following paragraphs present advances of two essential low-level morpho-

logical algorithms, dilation and opening. The most efficient dilation algorithms are

based on the SE decomposition to a set of basic, more easily optimized shapes. A

special attention is paid to the n-D SE decomposition into 1-D SE because the 1-D

algorithms obtain the most significant gain in the overall performance.

3.1.1 1-D Dilation Algorithms

The simplest method to compute dilation is the exhaustive search for maximum

in the scope of SE B according to definition (2-6). This naive solution tends to

need a large number of comparisons, which are on most platforms diadic (with two

operands). The number of comparisons is considered as a metric of algorithm com-

plexity, so the naive algorithm has complexity O(l) as it has to carry out l−1 com-

parisons for an l pixel long SE. Such complexity suggests that the naive algorithm

is inefficient for any large SEs. [Pecht 1985] proposed a method to decrease the

complexity based on logarithmic SE decomposition, thereby achieving O(⌈log2(l)⌉)
complexity.

The first 1-D algorithm that reduced complexity to a constant is often referred

to as HGW (it was published simultaneously in two papers: [van Herk 1992] and

[Gil 1993]). The computation complexity is constant, i.e., of O(1), which means

the upper bound of the computation time is independent of the SE size. The HGW

algorithm uses two buffers g(x) and h(x), which are divided into segments of the SE

3.1. Advances of Basic Morphology Algorithms 23

length l. Each segment of the first buffer is filled by the forward propagation of local

maxima (3-1) (within the scope of a segment), whereas the second buffer stores the

reverse propagation (3-2). The result y(x) = δBf(x) is obtained by merging both

buffers such as (3-3).

g(x) =

{
f(x) if xmod l = 0

max(g(x− 1), f(x)) otherwise
, x = [0..N − 1] (3-1)

h(x) =

{
f(x) if (x+ 1)mod l = 0

max(h(x+ 1), f(x)) otherwise
, x = [N − 1..0] (3-2)

y(x) = max(g(x+ (l − 1)/2), h(x− (l − 1)/2)), x = [0..N − 1] (3-3)

An example of the HGW algorithm run for l = 3, N = 12 is illustrated in

Fig 3.1. First, the original signal (a) is forward scanned to compute the forward

propagation of maxima in buffer g(x) (b). Notice that the maxima do not propagate

beyond the segment of l pixels, see for instance the first segment. The second buffer

h(x) (c) is computed in the same way while backward scanning f(x). Finally,

the two buffers are merged into the output signal by pixel-wise maximum such as

y(x) = max(g(x+ 1), h(x− 1)).

propagation

of maxima

3 71121(a) f (x) 1 2 3 6 3 1

3 71221(b) g (x) 1 2 3 6 6 6

propagation

of maxima

max()

7 77122(c) h (x) 3 3 3 6 3 1

7 73222(d) y (x) 7 3 6 6 6 3

Figure 3.1: Illustration of the HGW algorithm run with SE B long l = 3 px: (a)

input signal f(x), (b) forward propagation buffer g(x), (c) backward propagation

buffer h(x), (d) output signal y(x) = δBf(x).

The simplified description above does not correctly handle all the possible cases

(e.g., when N mod l 6= 0, border pixels), but rather presents the major drawback of

this algorithm, the requirement of two data scans: forward and reverse (so-called

causal and anti-causal). The unlike scans impose significant restrictions to the

implementation on platforms with limited memory management (e.g., dedicated

hardware) and infer high latency, especially in the vertical direction. [Gil 2002]

proposed an improved version of HGW that lowered the number of comparisons per

element, but at the cost of increased memory usage and implementation complexity.

[Lemonnier 1995] proposes another algorithm of O(1) that also identifies local

extrema and propagates their values. This algorithm does not divide f(x) into

segments, but propagates the maxima of f(x) as long as it is covered by the SE

24 3. State of the Art

B instead. At first step, the algorithm forward propagates all local maxima by

k = (l − 1)/2 pixels storing results in a buffer g(x), see Fig 3.2 (b) for example

of l = 5, k = 2, N = 12. We notice that each local maximum is propagated only

2 pixels rightwards. The second step backward propagates maxima of the buffer

g(x) for the maximal distance of k pixels leftwards, see Fig 3.2 (c). Again, the

limiting forward and reverse scans are needed for every non-causal SEs. Although

this algorithm needs only 2 max operations per pixel, its implementation results in

a large number of if statements to properly treat all boundary conditions.

propagation

of maxima

3 71121(a) f (x) 1 2 3 6 3 1

3 72221(b) g (x) 7 7 3 6 6 6

propagation

of maxima

7 77222(c) y (x) 7 7 6 6 6 6

Figure 3.2: Illustration of the Lemonnier algorithm run with SE B long l = 5

px: (a) input signal f(x), (b) forward propagation of maxima in g(x), (c) output

signal y(x) = δBf(x).

[Lemire 2006] proposes a fast stream-processing algorithm O(1) for causal line

SEs. It replaces the line buffers of previous algorithms by a more specific mem-

ory structure—double-ended FIFO (queue). This algorithm uses two queues of

length W in order to store the pixels that form locally monotonous signal (i.e.,

monotonously increasing and decreasing). Although it produces both erosion and

dilation simultaneously, has lower memory requirements and zero latency, it works

with causal SEs only. This downside was solved later in [Dokládal 2011] who pro-

posed another queue-based algorithm (see Section 4.1 for further description of his

algorithm). The advantages of these queue-based algorithms are low memory re-

quirements, zero latency, and strictly sequential access to data.

Table 3.1 sums up the most important properties of the 1-D dilation algorithms

mentioned above.

3.1.2 2-D Dilation Algorithms

As mentioned before, 2-D dilation can be obtained by composition of 1-D dilation.

However, this often used technique covers only a limited family of shapes, such as

rectangles, diamonds. In the following we will present the overview of algorithms

that allow us to obtain more complex 2-D SEs.

[Soille 1996] propose an approach to approximate circles and polygons by using

SE decomposition into a set of line SEs rotated by different angles. The complete

dilation by a polygon requires several iterations over the image. Each line SE

is computed by the fast 1-D HGW algorithm oriented by the desired angle. The

3.1. Advances of Basic Morphology Algorithms 25

Table 3.1: Comparison of fast 1-D dilation algorithms.

Algorithm SE type Comparisons Algorithm Data Working

per pixel latency memory memory

Naive 1-D User l − 1 0 N 0

HGW Sym 3− 4/l l N 2l

Lemire Causal 3 0 0 2l

Lemmonier Sym NC (O(1)) N N N

Van Droogenbroeck Sym NC (O(1)) 0 N N +G

Buckley

Dokládal User 3 0 0 2l

Sym = symmetric SE; User = User-defined SE; l = length of a 1-D SE; N = line

size; G = number of gray levels; NC = not communicated.

orientation of the SE is achieved through image partition into discrete lines (parallel,

with no overlap), along which the HGW operates. The main drawback of such an

image partition is that the result SE is translation variant; the shape of the SE varies

along the discrete line. The translation variance, which makes that the adjunction is

not verified, may introduce undesired artifacts to many application, such as filters.

In [Van Droogenbroeck 1996] the authors proposed an algorithm for arbitrary-

shaped 2-D SEs that takes advantage of a histogram to compute the dilation of

pixels covered by the SE scanning the image. As the SE slides over the image by

1 px long translation, the histogram is not computed all over again from scratch,

but only updated instead. The update of the histogram consists of removing pixels

that are no longer covered by the SE (see the left-hand side of the SE in Fig. 3.3

(b)), and adding new pixels that become covered at the current position (see the

right-hand side of the SE in Fig. 3.3 (b)). The SE does not slide over an image

in the common scan order, it uses a horizontal zigzag pattern instead, see Fig. 3.3

(c). Typical complexity (for a square SE) of this algorithm is O(H log2(G)), but

this algorithm suffers from usage of the histogram (which does not allow for high-

precision numbers) and non-causal zigzag image scan.

1

1

M

N

1 px

added

pixels

pixels retained in histogram

removed

pixels

origin

(c) Order of image scan (b) SE translation(a) SE

Figure 3.3: Histogram-based algorithm for arbitrarily shaped SEs: (a) example

of SE, (b) SE translation by 1 px, (c) horizontal zigzag scanning pattern.

Recently, [Urbach 2008] propose an algorithm for arbitrary-shaped 2-D flat SEs

26 3. State of the Art

based on decomposition of the SE into a set of Nc elementary line SEs called chords,

see Fig. 3.4 (b). The whole set of chords (Nc = 4 chords in the case of Fig. 3.4)

is computed for every pixel and stored in a look-up table. The result is then

computed by taking a maximum from the values of all chords (stored in the look-

up table) corresponding to the shape of the SE. Although the computation time is

independent of the image content, a large look-up table (easily dozens of chords for

each pixel) and non-optimized search of the maximum from the look-up table are

the limiting factors for hardware implementation.

Table 3.2 outlines overview of the 2-D dilation algorithms described above.

B
1

B
1

B
3

B
1

B
4

B
2

B
1

B
2

B
2

B
3

B
4

(a) SE B (b) B as 7 chords (c) Used chords B
1-4

Figure 3.4: Chords decomposition algorithm: (a) example of SE, (b) SE chords

decomposition, (c) set of chords B1−4 to be computed for each pixel.

Table 3.2: Comparison of fast 2-D dilation algorithms.

Algorithm SE type Complexity Algorithm Data Working

per pixel latency memory memory

Naive 2-D User O(WH) 0 MN 0

Urbach- User O(Nc+ MN MN NH log2(W)

Wilkinson log2(Lmax(C))

Van Droogenbroeck- User O(H log2(G)) 0 NH WHG

Talbot

Dokládal Rect O(1) 0 0 2(W +NH)

(SE decomposition)

Rect = rectangular SE; User = User-defined SE; N ×M = image size; W ×H = SE size;

G = number of gray levels; Lmax(C) = maximum chord length, Nc = number of chords.

3.1.3 1-D Opening Algorithms

1-D opening algorithms can be divided into three classes: (i) two-stage algorithms,

(ii) direct computation, and (iii) connected component trees (CCT). The last-named

approach is very complex containing several advanced techniques such as building

CCT, computation of attributes, image restitution, and is mentioned just for com-

pleteness. The description of CCT algorithms can be found in [Salembier 1998]

[Menotti 2007] [Wilkinson 2008] [Matas 2008].

The two-stage algorithms stem from a concatenation of erosion and dilation,

3.1. Advances of Basic Morphology Algorithms 27

such as

γB(f) = δ
B̂
[εB(f)]. (3-4)

where the hat̂denotes the transposition of the structuring element, equal to the

set reflection B̂ = {x‖ − x ∈ B}, which may be difficult to achieve efficiently for

some shapes of SEs. Also this approach demands two scans of input image. These

two downsides can be overcome by the direct computation.

x

B

B
B

B

anchor points

(a) Input signal f (x) (b) Output signal γ
B
 f (x)

f (x)

x

f (x)

Figure 3.5: Illustration of opening algorithm using anchors. Anchors are those

points of the signal that are not changed by opening: (a) input signal f(x), (b)

output signal γBf(x).

One direct approach was introduced in [Van Droogenbroeck 2005]. The authors

brought in a new notion of anchors, the points that are not changed by the opening

operation, i.e., f(a) is an anchor if f(a) = γBf(a). In order to decide whether a pixel

is an anchor or not, 6 different signal patterns are to be tested. All pixels between

two anchors are replaced by the value of anchors. This tends to a rather complex

code (however, O(1)), large memory demands, random access to data, and due to

the use of a histogram, the high-precision data are very penalizing. Therefore, this

algorithm is suitable for neither the GPU nor dedicated hardware implementation.

On the other hand, it is still the fastest solution for opening on general-purpose

processor platforms, which cope with random memory accesses and complex code

much better.

[Morard 2011] developed another direct opening algorithm with O(1) that de-

composes the input signal into a set of flat zones (signal segments with a constant

value). It uses a stack to store the partially processed flat zones, the endpoint of

which has not been encountered yet. When the endpoint of the topmost stacked

flat zone is reached, which indicates this flat zone is complete now, all stacked flat

zones are examined whether they are complete as well. If any particular complete

flat zone is shorter than the SE, it is dropped from the stack. If the flat zone is

longer than the SE, this flat zone and all the others currently in the stack form the

output signal of opening and are written to the output, then erased from the stack.

Writing the output in such a manner is however quite irregular, the output data

are written in bursts at a random, data-dependent time.

Recently, [Bartovský 2011a] proposed another direct method for 1-D opening

that overcomes the Morard’s drawback of the irregular output data access. The

algorithm is called streaming peak elimination. It uses a queue to store pixels in the

28 3. State of the Art

scope of the SE and erases all signal peaks detected in the queue. See Section 4.4 for

a thorough algorithm description and Section 4.4.4 for a performance comparison.

Table 3.3 contains overview of the described 1-D opening algorithms.

Table 3.3: Comparison of fast 1-D opening algorithms.

Algorithm Comparisons Algorithm Data Working

per pixel latency memory memory

Naive 1-D 2(l − 1) N N 0

Morard NC (O(1)) N 0 2N

Van Droogenbroeck NC (O(1)) 0 N N +G

Buckley

streaming peak elimination 6 0 0 2l

l = length of a 1-D SE; N = line size; G = number of gray levels; NC = not

communicated.

3.1.4 2-D Opening Algorithms

2-D opening is not separable into two orthogonal 1-D openings as dilation is. Hence,

one cannot directly combine two orthogonal 1-D openings to obtain 2-D opening.

However following (3-4), one can form two-stage, 2-D openings by concatenating

2-D erosion and 2-D dilation, which are separable into 1-D scopes. To our knowl-

edge, there is no efficient direct algorithm for 2-D opening with comparable gain of

efficiency over the direct computation as there is for dilation. The CCT can be the-

oretically used for morphological 2-D opening, but it is more useful for other kinds

of opening, such as attribute opening, area opening, etc.

3.1.5 Choice of Algorithm for Hardware Implementation

Effectively all aforementioned algorithms concentrate on the optimization of dila-

tion/erosion by means of reducing the number of operations without taking into

account either the entire application or limited memory. This is a consequence in-

ferred from the computer architecture, which offers only limited parallelism through

the parallel instructions SSE or multi-threading but has the huge and cached data

and instruction memory. Such a platform can well cope with a complex program

consisting a several very heterogenous, different-purpose parts of code, and with

very large memory demands.

For the purpose of dedicated hardware, other considerations should be taken

into account. The absolute number of comparisons is no longer the best indicator of

performance provided that some of them can be evaluated in parallel. The hardware

platforms usually possess a very limited amount of a high-speed memory, which is

suitable to be used as the working memory. Therefore, the memory requirements

of an algorithm is of much greater importance than in the case of computers. The

3.2. Advances in Morphology Implementation 29

limited working memory, which is often smaller than an image itself, infers further

constraints on the data access and makes the algorithms with reverse scan processing

hard or even impossible to implement. Needless to say, the algorithms with strictly

sequential access to data are preferred.

As a conclusion, the queue-based algorithms supporting stream processing and

requiring a low amount of working memory seem to be a reasonable choice for

the hardware platforms. From the two aforementioned dilation algorithms we have

chosen the Dokládal published in [Dokládal 2011] over the one by [Lemire 2006] for

its support of non-causal SEs and simpler code (note that [Lemire 2006] computes

both dilation and erosion). The [Bartovský 2011a] algorithm seems to be the best

choice for opening for the same reasons.

3.2 Advances in Morphology Implementation

In this section, we present an overview of algorithm implementations on differ-

ent platforms. Besides general-purpose processors, this section aims also at less

common platforms in general-purpose image processing: graphics processing units

and dedicated hardware. Both platforms can obtain a significant speed-up against

computers for certain applications, and can be employed in applications where com-

puters are not suitable, e.g., embedded systems.

3.2.1 General-purpose Processors

A very traditional platform for processing of any kind is a general-purpose proces-

sor (GPP, so-called CPU, e.g., personal computer), used by a numerous community

of programmers, and does not need any thorough introduction. Since the mathe-

matical morphology has been recently adopted in a several image processing stan-

dards, we can find morphological operators in a plenty of image processing libraries

or commercial tools, the purpose of which scales from proof-of-concept to profes-

sional performance. For instance, see [MATLAB 2012] image processing toolbox,

[Octave 2012], [OpenCV 2012] library (leveraging Intel Processing Primitives IPP),

[Mamba 2012], or proprietary [Morph-M 2012]. Also, each previously cited algo-

rithm was developed on a GPP first, and therefore, its efficient implementation is

included in some small, personal library.

Besides GPP, the mathematical morphology can be a subject of the implementa-

tion on signal processors. [Brambor 2006] explores capabilities of the SIMD instruc-

tion set to speed up morphological algorithms using Haskel functional language. He

proposed a method that divides an image into many macro blocks and executes a

particular operation on a several macro blocks simultaneously. [Clienti 2009] took

advantage of the VLIW processor achieving thus a reasonable level of instruction

parallelism. Such a processor executes different stages of a few threads at the same

time. The same author also developed [Fulguro 2010]. It is a library for image pro-

cessing using SIMD optimizations and smart threading to cope with the real-time

30 3. State of the Art

constraints.

3.2.2 Graphics Processing Units

Another platform that is supposed to be suitable for mathematical morphology is

a GPU. Surprisingly, there are only few implementations targeted to this massively

parallel platform. Let us recall that a GPU composes of several light-weighted

processors, each of which executes a number of threads of the program at a time.

Therefore, there may be thousands of threads running that implies two important

aspects to consider. First, the program to execute in the GPU has to be decom-

posable into thousands of threads (most favorably independent threads) in order to

keep occupied as many processors as possible. The second aspect is the mutual syn-

chronization of threads. Although the global memory is very fast with wide data

bus, the maximal bandwidth (in orders of 100 GB/s) is achieved only when each

block of adjacent threads (32 threads in the case of nVidia [nVidia 2012]) accesses

consecutive addresses, so the memory can handle the whole block of threads during

a single so-called coalesced memory read/write cycle. As a consequence, the syn-

chronization of threads within such a block is worthwhile of attention to deliver the

highest performance. There are several development tools that help a programmer

to cope with these issues and to utilize the whole GPU parallelism in a relatively

easy-to-use way.

The widely adopted framework for writing programs that execute on dif-

ferent heterogeneous platforms (including many-core CPUs, GPUs, FPGAs) is

[OpenCL 2012]. It is derived from C99 language, but it is further extended with vec-

tor types, operations, synchronization, and API functions. OpenCL is integrated in

drivers and development tools of both major GPU vendors ATI and NVidia. In ad-

dition, both vendors support GPUs with their own development toolkits by means

of low-level drivers and high-level API that allows prospective designers to program

GPUs right away (cf [CUDA 2012] by NVidia). Finally, one can cite OpenGL or

OpenVidia libraries that serve for the purpose of producing 2-D and 3-D graphics

instead of graphics processing.

Considering the implementation of the basic morphological algorithms,

[Clienti 2009] evaluated several trade-offs of a naive algorithm in his thesis. How-

ever, his study was focused rather on the comparison of the naive algorithm among

different platforms than on searching the algorithm with the best performance. As

a matter of fact, even basic benchmarks reveal that many of the publicly available

GPU implementations ([OpenCV 2012]) use a naive algorithm. Despite the naive

solution tends to long execution time for large SEs due to the quadratic complex-

ity O(n2), the regular memory access and simplicity aspects seem to be of higher

importance.

As one of non-naive implementations we can cite [Karas 2010]. The authors

compute the morphological sequential reconstruction (using HMAX transform for

a marker creation) on 3-D images from confocal microscopy with significant speed-

3.2. Advances in Morphology Implementation 31

up. [Karas 2012b] implements in GPU two algorithms for arbitrary-oriented linear

opening by [Bartovský 2011a] (described in Section 4.4) and [Morard 2011]. It

proves that the state-of-the-art algorithms based on the use of a special memory

structures (queue, stack) can be efficiently implemented on the GPU and outperform

computers by a speed-up of approximately 35×.
The GPU performance results could satisfy some applications in terms of the

absolute throughput, but the energy consumption and space occupation remain high

against optimized hardware/embedded architectures. The fixed GPU architecture

also put some restrictions on temporal parallelism one can exploit. For instance,

consider a concatenation of operators such as ψξ, where output data of ψ is the input

data to subsequent ξ, so we say ξ is dependent on ψ. In order to keep both operators

running at the same time, a complex system of synchronization (e.g., semaphores)

is to be established. On the other hand if the operators are applied one after the

other, the latency will linearly increase with the length of the concatenation and

may be unacceptable for time-critical applications.

3.2.3 Dedicated Hardware

The development of dedicated hardware has been always driven by different con-

straints than GPP. While developing an application for GPP, a programmer’s main

interest that leads to a fast solution is to keep the number of instructions as small

as possible. In the low-level mathematical morphology, the number of instructions

almost directly depends on the number of pixel comparisons. Hence, the aforemen-

tioned algorithms in Section 3.1 compete in decreasing the amount of comparisons

compromising regularity of memory accesses.

On the other hand, a hardware developer can afford a greater amount of compar-

isons provided they can be applied by dedicated resources in parallel. The memory

access patterns are, however, of much bigger concern. Computers are equipped with

tens of gigabytes of memory whereas the dedicated hardware has less on-chip mem-

ory in orders of magnitude. The on-chip memory is often in range of 1–10 Mbits,

which may not fit even one image to process. Therefore, the algorithms working

with regular (sequential) dataflows that eliminate the image storing are preferred

in dedicated hardware.

So, we assume that the input data to process form a stream (usually horizon-

tal scan ordered) that flows through a processing block. The architectures that

processes the data in a stream are often called dataflow architectures in literature,

which can be classified into three groups: (i) 3 × 3 neighborhood processors, (ii)

partial-result reuse (PRR), and (iii) implementing efficient 1-D algorithm withO(1).

3.2.3.1 3× 3 neighborhood processor

This approach aims at computing morphological operations on a programmable

3× 3 SE using some naive computation method. As the SE is small and the max()

32 3. State of the Art

on the nine values can be parallelized, the naive computation does not deteriorate

performance. The neighborhood processors have usually 2 stages: SE extraction,

and morphological computation.

The SE extraction stage determines which pixels of the dataflow are currently

covered by the SE, and therefore should be taken into account by the computation

stage. According to the fact that SE consists of more than one pixel, it must be

able to preserve all the pixels of data flow that might be needed by the SE in future

samples. The most popular concept for the SE extraction is based on delay lines.

The delay-line concept consists of one FIFO memory of length N − 3 for each line

of SE except the first one, and 3 registers for each line of the SE, see Fig. 3.6.

Notice that the SE virtually slides over the image as the input data flows through

the block. The following architectures use delay lines for SE extraction, and only

differ in mechanisms that carry out the computation of morphological operation,

i.e., (2-4) or (2-9).

Delay lines

(N - 3) T

T T

D

A

G

E

B

H

F

C

1 N

1

M
I

I H G

F E D

C B A

T

T T T

T T T(N - 3) T

SE extraction

Input

dataflow

Input

dataflow

Stored in

delay lines

Output

dataflow

Output

dataflow

Figure 3.6: Delay-line architecture for 3×3 SE extraction.

One of the first delay-line architectures was the texture analyzer [Klein 1972]. It

was optimized for linear and rectangular SE by decomposition into line segments.

In [Klein 1989] the authors devised PIMM1 (Processeur Intégré de Morphologie

Mathématique) ASIC that contains one numerical unit for gray-scale images and

8 binary units. The scale of supported operations was quite large including dila-

tion/erosion, opening/closing, top hat, distance and so forth. However, the mech-

anism of computation was not communicated.

More recently, [Velten 2004] proposes another delay-line based architecture for

binary images supporting arbitrarily shaped 3×3 SEs. The computation of dilation

max({A− I}) is realized by OR gates (topology was not communicated, probably a

tree of diadic OR gates similar to one in Fig.3.8) achieving good performance, which

was further improved by spatial parallelism. In the parallel mode, the OR gates

are p-times duplicated, and p succeeding results are computed over the (2 + p)× 3

extracted neighborhood at the same time.

[Clienti 2008a] proposes a highly parallel morphological System-on-Chip. It is

a set of neighborhood processors PoC optimized for arbitrarily shaped 3×3 SE

interconnected in a partially configurable pipeline displayed in Fig. 3.7. Each stage

of the pipeline contains 2 processors that can process 2 parallel image streams and

an ALU. The reconfiguration allows all the processors to be connected in one chain

in order to employ all processors when only one image stream is used.

3.2. Advances in Morphology Implementation 33

Stage 1 Stage n

PoC

PoC

ALU

PoC

PoC

ALU

Input 1

Input 2

Output 1

Output 2

Figure 3.7: Top-level view of the Clienti pipeline architecture.

The PoC processor takes advantage of the delay-line SE extraction mentioned

above. The shape of the elementary SE is given by masking the undesired pixels by

recessive values (∧f for dilation, ∨f for erosion). For instance to obtain the dilation

by horizontal 3 × 1 SE, one masks the pixels {A,B,C,G,H,I} by 0. The dilation

itself is carried out by a tree of diadic max() operators, see Fig. 3.8. The max-tree

is pipelined. It first computes column-wise partial results, and then merges these

results into the output value of the desired dilation. The column-wise scheme was

chosen for the sake of parallel computation that computes a several consecutive

pixels. The SEs of these pixels overlap each other by 1 or 2 columns, so column-

wise partial results can be reused and participate in computation of multiple pixels

at the same time.

T

A

D

G

δ
ADG

δ
BEH

δ
CFI

δ
A-I

T

B

E

H

T

C

F

I

Figure 3.8: Tree of diadic max operators for dilation on the 3 × 3 SE. A − I
denote extracted pixels of the SE.

3.2.3.2 Partial-result reuse

All the previous architectures use a naive method to compute the morphological

operations. This approach may be reasonable for small SEs, but it becomes very

inefficient for large SEs because of an excessive number of comparisons. On the

contrary, the PRR approach (name proposed in [Chien 2005]) does not strictly

separate the SE extraction stage and the computation stage from each other, but

mixes them. As the name indicates, a partial result of a morphological operation

by some neighborhood B1 in an early stage is delayed by delay lines in order to

be reused later in computation by some other neighborhood B2 obtaining other,

usually larger, B3 decreasing a necessary number of comparisons.

34 3. State of the Art

One of the first PRR architectures for 1-D dilation was proposed in [Pitas 1989]

and improved in [Coltuc 1997]. The principle is based on an exponential growth

of the intermediate neighborhoods in the partial-result reuse scheme. The better

understanding can be gained from an example for SE long l = 8 px shown in Fig. 3.9

(T stands for one period of the clock, A through D are different neighborhoods).

From the left, the input pixel A is compared with 1-cycle-delayed input pixel, i.e.,

the previous pixel B, resulting in 2-pixel SE AB. This SE is compared with 2T -

delayed version of AB labeled C resulting in 4-pixel SE ABC. This partial result

is compared with 4T -delayed D giving us the result 8-pixel ABCD. To get better

intuition of how the SE composition works, the delaying of partial results by some

SE can be understood as translation of the SE, and the max comparison as a union

(merging) of the translated and the original SE.

The advantage of this architecture is a reduced number of comparisons from

general l − 1 to ⌈log2(l)⌉. However, the method, so-called logarithmic SE decom-

position, restricts a family of possible SE shapes to rectangles.

T

A

B C D

A

AB

ABCD

BCD

AB ABC ABCD

2T 4T

(a) Architecture (b) SE composition

Figure 3.9: Pitas PRR architecture using the logarithmic SE decomposition.

A−D denote neighborhoods, T denotes period of the clocks.

The family of SE shapes has been enriched by [Chien 2005]. The authors pre-

sented more general concept of PRR that does not stick to the exponentially in-

creasing partial neighborhoods but builds the desired SE by a set of distinct partial

neighborhoods computed by a dedicated algorithm. As a result, it supports arbi-

trary 8-convex polygon at the cost of some additional comparisons. In [Chien 2005]

the PRR method was implemented as an ASIC chip supporting 5-diameter disk SE

shown in Fig. 3.10 (a).

The desired disk SE is composed as follows. From the left, the input pixel A

is delayed by 4 different time intervals to obtain 4 different-located SEs: (N − 1)T

for B, NT for C, (N + 1)T for D, and 2NT for E. These five singleton SEs are

merged to obtain the cross SE ABCDE, see Fig. 3.10 (b). The ABCDE is then

delayed by (N − 1)T (F), merged with the former one into A−F SE, which is also

delayed by (N + 1)T (G) to obtain the result A−G SE, see Fig. 3.10 (d–e).

Although the proposed ASIC chip achieves a high performance (thanks to a

high frequency), it has a few downsides limiting its applicability in vision systems.

First, the shape of the SE is fixed to 5-diameter disk. Second, the supported image

width N is also fixed to 90 px, so any larger image must be divided into 90-pixel

vertical stripes, which are processed either sequentially, which infers random access

to the image, or in parallel by multiple chips.

A similar approach has been published by [Déforges 2010]. Based on the

3.2. Advances in Morphology Implementation 35

(N-1)T

A

A

D C

E

B

F
G

B C D E F G

ABCDE

ABCDE

A-F

A-F

A-G

A-G

(N-1)T (N+1)T(N-1)TT T

(a) Chien architecture for 5-diameter disk SE

(b) A, B, C, D (c) F (d) G (e) A-G

Figure 3.10: Illustration of the Chien’s approach. (a) ASIC chip architecture

for 5-diameter disk SE, (b–e) successive composition of the SE.

[Normand 2003] SE decomposition (a SE is decomposed into a number of causal

2-pixel SEs, which are applied in sequence or in parallel, see Section 2.1.1) and

combined with a stream implementation, the authors propose a methodology for

pipeline architecture design supporting arbitrary convex SEs in only one scan of

the input image. It takes advantage of two elementary blocks: programmable de-

lay (either one from {T , (N −1)T , NT , (N +1)T}, according to four 2-pixel SEs of

the decomposition), and max operator. Let us recall that the Normand decomposi-

tion employs also a union of SEs, so unlike the Chien architecture that has only one

pipeline, the Déforges’s uses a couple of pipeline branches in parallel and merges

them together to get the desired SE shape.

The Déforges method is illustrated on an example of an 8-convex polygon SE

in Fig. 3.11. At the beginning, the 2-pixel B SE is computed in the way described

above. Then the pipeline is branched. The first branch vertically elongates B

through C up to D, whereas the second branch diagonally extends B to E. Finally,

both branches are merged by the union operation forming the result F polygonal

SE.

This approach presents a method for design of morphology hardware imple-

mentation with 8-convex SEs. The principal limitation comes from a limited pro-

grammability of the pipe, and therefore, of the SE shape. So, the synthesized

architecture is designated just to one SE.

3.2.3.3 O(1) algorithm implementation

The efficient algorithm implementation field has always been a little bit omitted

by the mathematical morphology community in favor of the previous two op-

tions. In literature there are only two proposals, moreover published together in

36 3. State of the Art

T

TT

T

T

(N + 1)T

A

B
B

C

C

D

D

E

E

F

F

N T

N T

(N - 1) T

(a) Déforges architecture for convex SE (b) SE composition

Figure 3.11: Example of the Déforges’s approach. (a) architecture for a given

polygon SE, (b) SE composition.

[Clienti 2008b].

The first one directly implements the 1-D Lemonnier algorithm (see description

above). According to the algorithm, the architecture consists of two propagation

units, one for forward and one for backward direction, see Fig. 3.12. And here

comes the main bottleneck of this solution, transforming the forward scan ordered

output of the first propagation unit h into the backward scan ordered input of

the second unit h′. This problem is addressed by a ping-pong pair of line buffers

with unlike reading and writing orders. The term ping-pong means that when

input h is being written to one buffer, the output h′ is being read from the other

buffer. Reversing the data scan order represents the main disadvantage and infers

the following unpleasant properties: large memory requirements 2N (recall N ×M
image size), large delay of N pixels, and backward output scan order (reversing it

back needs another pair of line buffers).

h h‘ y‘f
Propagation

unit

forward scan order

control

backward scan order

Propagation

unit

Line buffer

Line buffer

Figure 3.12: Clienti’s implementation of the Lemmonier algorithm.

The second attempt to implement an efficient algorithm uses the HGW algo-

rithm described above. Since the algorithm also involves backward maxima propa-

gation, the architecture needs some reverse units, similar to the ping-pong buffers

in Lemmonier implementation. However, there is no need to reverse the whole line.

As the line is divided into independent segments (of length l equal to the SE size)

3.2. Advances in Morphology Implementation 37

for the maxima propagation in g and h, it is sufficient to reverse the data order

within each segment only. This segment reversing unit needs ping-pong buffers of

length l instead of N , which significantly reduces memory requirements and latency

compared to the original HGW algorithm or the implementation of Lemonnier.

f g g
delayedPropagation

unit

f‘ h‘ h

y

Propagation

unit

Merge

unit
Delay l

Segment reverse

unit

Segment reverse

unit

Figure 3.13: Clienti’s implementation of the HGW algorithm.

The processing of input signal f takes place in two branches. The first one

computes the forward propagation g, the second one computes the backward prop-

agation h using a pair of segment reverse blocks. The second branch is too much

delayed, so an extra delay unit has to be used in the forward branch to have a cor-

rect delay for the merge unit. The total memory requirements of such architecture

are reduced to 5l pixels and latency to 2l pixels. However, these values are still

very high considering the 1-D SE. The only upside is that the hardware complexity

excluding the memory is independent of the SE size. It means that the two prop-

agation units and the merge unit combined contains only 3 comparators regardless

the SE size.

Another major drawback of the two implementations above is incapability of

supporting vertical, or 2-D, SE along with horizontal scan data reading. They

allow for vertical SE only with vertical scan order, which is insufficient for almost

any vision application. The transformation between horizontal and vertical scan

orders is very expensive in terms of the time and resources, and it is not possible

to demand such transformation for a low-level operation.

3.2.3.4 Miscellaneous

To complete this brief state of the art, we shall also cite some less traditional ap-

proaches to morphological architectures. One of them is a systolic array. The

systolic array is a matrix network arrangement of dataflow processing units. The

common inconvenience of systolic arrays are the need of an intermediate storage for

2-D SE, large number of processing elements, and high response time of the system.

[Diamantaras 1997] devised a 1-D systolic architecture for basic gray-scale morphol-

ogy operations. The concept is scalable with respect to the SE size. The computing

of compound morphological filters requires an intermediate storage. [Malamas 2000]

proposes a systolic binary morphological architecture equipped with universal mor-

phological processing elements. It supports 2-D SEs of shapes decomposable into

1-D segments. Several image lines are processed in parallel, and their results feed

a simple AND/OR gate. It leads to the requirement of the random access to the

38 3. State of the Art

input image and consequently to computation inefficiency.

[Ikenaga 2000] proposed a Content-Addressable Memory (CAM) based archi-

tecture with a large processing element array (up to hundred thousand processing

elements). Although the processing speed of the architecture is very high (sev-

eral microseconds for 512×512 px), the hardware cost of CAM memories and their

power consumption become limiting for larger images.

Finally, [Hedberg 2009] proposed an architecture for binary morphology with a

spatially variant SE. The SE is decomposed into vertical, one column wide slices,

the results of which are at the end merged together by AND gate. The binary

morphological erosion within a slice SE is computed via the distance from the

currently processed line to the closest upward background pixel. If the distance is

greater than the height of the slice, the result is foreground, otherwise background.

The drawback of this solution is the support of only binary images.

3.3 Conclusions

After reading the brief state of the art above, we can claim that there are manifold

algorithms for mathematical morphology supporting various shapes of SEs. Even

when we constrain ourselves to 1-D algorithms, which clearly allows for SE com-

position into higher dimensions, we still have several efficient O(1) algorithms to

choose between. In a search for the best candidate for hardware implementation

we did not primarily follow the optimization effort in terms of the number of com-

parison that is more common for GPPs, but we rather paid augmented attention

to hardware considerations, especially to regularity of data accesses, memory re-

quirements, latency etc. The group of queue-based algorithms conforms the best to

these premises, from which we have chosen Dokládal algorithm for implementation

of dilation because it supports a richer family of SE shapes and its code is simpler

than Lemire, and streaming peak elimination for opening.

We have also reviewed implementations and found out that there are many

solutions for GPPs beginning from personal libraries up to powerful and proprietary

software packages. On the contrary, there are few software tools using GPUs, most

of which moreover focus on a small number of operations only. In the state of

the art of dedicated hardware implementations we have introduced a representative

selection of recent solutions, chiefly targeted to an FPGA device.

For our intention of real-time processing, the field of the dedicated hardware

is the most suitable one because neither GPP nor GPU satisfies the requirements

of vision applications (cf. Section 1.1.1 on page 3) such well as the dedicated

hardware. Even though GPP and GPU have satisfactory computational power for

a single operator even on large images, the performance of the entire application

is not large enough to comply with the real-time constraint. Also the undefined,

variable, and usually large latency of these two platforms is unpleasant for hardware

implementations requiring strict timing. On the other hand, the dedicated hardware

3.3. Conclusions 39

allows for real-time processing of high-demanding applications with fixed latency

and low power consumption.

In the target hardware field we have found a few recent publications that attain

a reasonable features in terms of either performance and versatility. They are either

optimized for small SEs or, on the other hand, they support too wide family of SE

shapes. Both these properties result in a decrease of performance, and the respec-

tive implementations do not satisfy timing or performance demands of high-end

applications. In the course of this manuscript we will describe how these unfa-

vorable properties can be overcome by implementing the algorithm that remains

efficient for large SEs, but supports only a limited number of shapes.

4 Algorithm Description

Contents

4.1 1-D Dilation Algorithm . 41

4.1.1 Illustration of Dokládal Algorithm Run 44

4.2 2-D Dilation by Rectangular SE 46

4.2.1 1-D Vertical Dilation . 48

4.2.2 2-D Algorithm for Rectangles 49

4.2.3 GPP Experimental Results of Dokládal Algorithm 49

4.3 Polygonal SE . 52

4.3.1 Oblique 1-D Structuring Element 56

4.3.2 Translation-Variant SEs on 8-connected Grid 57

4.4 1-D Opening Algorithm . 58

4.4.1 Illustration of Streaming Peak Elimination Algorithm Run . . 61

4.4.2 Pattern Spectrum from Opening 63

4.4.3 Arbitrary SE Orientation . 64

4.4.4 Experimental Results of Streaming Peak Elimination Algorithm 69

4.5 Conclusions . 74

In this chapter, we describe two queue-based morphological algorithms that we

consider to be convenient for the hardware and GPU implementation. We begin

with Dokládal 1-D dilation (published in [Dokládal 2011]) algorithm as dilation is a

fundamental operator and can be found in almost every compound morphological

operation (erosion by duality is omitted in the text for brevity). The algorithm

allows the SE composition in order to obtain 2-D rectangular and polygonal SEs

according to the theory.

In a later part, we introduce a new 1-D opening algorithm referred to as stream-

ing peak elimination. This algorithm computes an opening (closing by duality is

omitted in the text for brevity, published in [Bartovský 2011a]) and a pattern spec-

trum ([Bartovský 2012a])) in O(1) with the same properties beneficial for hardware

as the Dokládal algorithm. However, because an opening does not have such a com-

position property as a dilation (two 1-D openings do not form a 2-D opening), this

algorithm can only be used for acceleration of the applications of 1-D opening, such

as feature enhancement, local orientation extraction, oriented spectrum, etc.

4.1 1-D Dilation Algorithm

The dilation algorithm [Dokládal 2011], referred to as Dokládal hereafter, computes

the dilation y = δBf for some 1-D finite input signal f : {X ⊂ Z;X = 1 . . . N} → R.

The algorithm processes the input signal f sequentially, that is it computes one pixel

42 4. Algorithm Description

of the dilated signal Y = y(wp) at the time while reading one sample of input signal

F = f(rp). The coordinates wp and rp stand for the current writing and reading

positions in the 1-D signal, which are generally different. The reading position

represents the most recently read pixel in the input signal whereas the writing

position points to the origin of the SE as depicted in Fig. 4.1. Note that rp ≥ wp,

and the delay between rp and wp is given by the right-hand size of the SE referred

to as lright. We consider a 1-D connected SE containing its origin described by the

distance from the origin to the right-hand end lright and to the left-hand end lleft.

The result length is lright + lleft +1.

rpwp

lleft lrigth

x-1x-2x-3x-4x-5f

SE

x+1 x+2 x+3 x+4 x+5

Figure 4.1: Illustration of a centered 1-D SE positioned over signal f . wp/rp

writing and reading position, lleft/lright left-hand and right-hand size of SE.

As the algorithm processes one pixel at the time, the algorithm can be decom-

posed into the core function One Pass Dilation, which accepts one input pixel

F , returns one output sample Y (described later, see Alg. 2), and an outer loop Di-

late 1D that calls the core function for each input pixel of signal f as outlined in

Alg. 1. This function iterates N + lright times for N -pixel signal; lright is caused by

the signal borders. In each cycle, the current reading and writing position is set to

rp ← column, wp ← column − lright first (max() and min() operations from Alg. 1

only prevent pointers from overflowing the signal boundaries), and then the core

function is called. Clearly, the used for loop implies the strictly sequential access

to input and output data.

Algorithm 1: y ←Dilate 1D (f , lright, lleft, N)

Input: f - input signal; lright, lleft - SE size towards right and left end; N -

length of the signal

Result: y - output signal

1 init(Q) ; // Initialize queue

2 for column = 1 : N + lright do

3 rp← min(column, N); // Set current reading position

4 wp← max(column− lright, 1); // Set current writing position

5 y(wp)← One Pass Dilation (f(rp), rp, wp, lright, lleft, N , Q) ; // Call

core function with one input pixel, it returns one pixel of the dilated signal

Now let us focus on the core function One Pass Dilation that applies the

actual algorithm. Its main principle is to avoid unnecessary comparisons as much

as possible. It is achieved by discarding all those pixels that will never take over in

the result of dilation as soon as it is known. This step of the algorithm is so-called

4.1. 1-D Dilation Algorithm 43

elimination of useless values. The computing δBf(x) needs only those values of

f that can be seen from x when looking over the topographic profile of f . The

valleys shadowed by mountains contain unneeded values, see Fig. 4.2. Notice that

the masked values depend only on f . More formally, for some causal SE B, all

f(i) such that f(i) ≤ f(j) and i < j are useless values and can be dropped from

computation of δBf(x) for ∀x ≥ j.

tx

f(t)

Figure 4.2: Computing the dilation δBf(x): Values in valleys shadowed by

mountains when looking from x over the topographic relief of f are useless.

Algorithm 2: Y ←One Pass Dilation (F , rp, wp, lright, lleft, N , Q)

Input: F - input sample f(rp); rp, wp - current reading, writing position;

lright, lleft - SE size towards right and left end; N - length of the

signal; Q - Queue

Result: Y - sample of δBf(wp)

Data: Q - Queue FIFO structure

back1(Q).{val, pos} - accesses the latest pair {F , rp}
front(Q).{val, pos} - accesses the oldest pair {F , rp}

1 while back1(Q).val ≤ F do

2 dequeue(Q) ; // Dequeue useless values

3 push(Q,{F , rp}) ; // Enqueue current sample

4 if wp - lleft > front(Q).pos then

5 pop(Q) ; // Delete outdated value

6 if rp > lright then

7 return (front(Q).val) ; // Return valid value

8 else

9 return ({}) ; // Return empty

The core function One Pass Dilation is based on usage of a queue memory,

a FIFO-ordered (First In, First Out) memory structure. In addition to the basic

FIFO features push(), pop(), queue provides front(), back1(), and back2() operations

to access the oldest, the latest, and the second to the latest values, respectively, but

keep them at their original position unaffected. Also, dequeue() operation discards

the most recently pushed element. Each element stored in the queue is composed

44 4. Algorithm Description

of two attributes {F, rp}: the pixel gray-level value F = f(rp) and its reading

position rp in input data stream. Both attributes can be accessed separately, e.g.,

back1(Q).val accesses the value of the last element and back1(Q).pos its position.

The queue memory serves as a storage for the past values in the scope of the SE

and as the main working memory. One call of the One Pass Dilation function

proceeds in the following steps:

• Dequeue useless values

• Enqueue current sample

• Delete outdated value

• Return output sample

At the first step, all past values of f within the scope of the SE (these values are

stored in the queue) that are found to be useless (the shadowed values in Fig. 4.2)

should be dropped from the computation. A past value is useless if and only if it is

lower or equal to the current value F . As a consequence, the algorithm stores only

the decreasing intervals of f (represented by a thick line in Fig. 4.2). The values

that happen to belong to increasing or constant intervals in the scope of SE are

dropped. Therefore, the search for the useless values to drop starts from the most

recently stored value and carries on until some past value greater than F is reached.

The dequeuing iterates sequentially as outlined in Alg. 2 lines 1–2.

Second, the currently read value F is pushed into the queue in form of a pair

{F, rp}, the sample F and its reading position rp (line 3).

Third, the outdated values are retrieved from the queue. A value is outdated

when it is no longer covered by the sliding SE, and that is determined using the

position of the stored value (lines 4-5).

Finally, the result of the dilation is located at the front of the queue (line 7). The

result becomes available as soon as enough input data have been read, otherwise

the output is empty (line 9). The last condition only transforms the causal SE,

which was considered in dequeuing step, to more universal non-causal SE using the

property that a dilation commutes with a translation as

δB+tf(x) = δBf(x− t) (4-1)

where t ∈ X.

4.1.1 Illustration of Dokládal Algorithm Run

Now, let us observe an illustration of the dilation algorithm run (i.e., Dilate 1D)

on a signal example f with SE of lright = 2 px, lleft = 2 px in Fig. 4.3 (a)–(i).

The input signal f is depicted in (a) along with the queue initialized to empty. In

the first cycle of the for loop (b), rp and wp are set to 1 and the core function

One Pass Dilation enqueues the first pixel into the queue. The second cycle

(c) also only pushes the current second pixel into the queue as its value is smaller

4.1. 1-D Dilation Algorithm 45

(a) Input signal (b) Cycle 1, rp=1, wp=1

(c) Cycle 2, rp=2, wp=1 (d) Cycle 3, rp=3, wp=1

(e) Cycle 4, rp=4, wp=2, first stage (f) Cycle 4, rp=4, wp=2, second stage

(g) Cycle 5, rp=5, wp=3 (h) Cycle 6, rp=6, wp=4

(i) Cycle 7, rp=7, wp=5 (j) Dilated signal

1

1

2

3

4

5

2 3 4 5 6 7 t

f (t)
Value Position

1

1

2

3

4

5

2 3 4 5 6 7 t

f (t)
Value

rp

rp
rp

rp

wp

wp

Position

4 1

1

1

2

3

4

5

2 3 4 5 6 7 t

f (t)
Value Position

back1(Q)

push(Q)

push(Q)

push(Q)

back1(Q)

4 1

2 2

1

1

2

3

4

5

2 3 4 5 6 7 t

f (t)
Value Position

4 1

2 2

1 3

rp

dequeue(Q)

dequeue(Q)

1

1

2

3

4

5

2 3 4 5 6 7 t

f (t)
Value Position

4 1

2 2

1 3

push(Q)

back1(Q)

1

1

2

3

4

5

2 3 4 5 6 7 t

f (t)
Value Position

4 1

3 4

rp

wp

push(Q)

back1(Q)

1

1

2

3

4

5

2 3 4 5 6 7 t

f (t)
Value Position

4 1

3 4

0 5

rpwp

push(Q)

pop(Q)

1

1

2

3

4

5

2 3 4 5 6 7 t

f (t)
Value Position

4 1

3 6

rpwp

push(Q)

1

1

2

3

4

5

2 3 4 5 6 7 t

f (t)
Value Position

5 7

1

1

2

3

4

5

2 3 4 5 6 7 t

f (t)
Value Position

Figure 4.3: Illustration of the Dokládal algorithm run: (a) original input signal

f , (b)–(i) iterations of the algorithm cycle-by-cycle, (j) dilated signal y. Light,

medium, and dark gray rectangles denote input, stored in the queue, and output

pixels, respectively. The tables on the right represent contents of the queue at the

particular time. SE features: lright = 2 px, lleft = 2 px.

46 4. Algorithm Description

than the first pixel. During the third cycle (d) the pixel at the current reading

position is again pushed into the queue without dequeuing any other pixel (notice

the decreasing signal interval at time samples 1–3). At this point a sufficient amount

of data to produce the output at time sample 1 has been processed (rp > lright) so

the oldest pixel from the queue is returned as a result.

The fourth cycle rp = 4 is divided into two stages in Fig. 4.3 for clarity. The

first stage (e) manages the dequeuing step of the core function. We observe that the

current pixel has value 3 that is greater than the previously pushed pixel {1,3} with
value 1. The latter becomes useless in dilation (it is a signal valley, see Fig. 4.2), and

therefore dequeued. The dequeuing while loop does not stop but iterates one more

time taking into account the pixel {2,2}. This pixel is also smaller, and dequeued.

As far as the very oldest pixel {4,1} is reached, the dequeuing process is stopped

leaving only one pixel in the queue. The second stage (f) shows the common pushing

the current pixel and returning the oldest pixel.

In the fifth cycle (g) the current pixel is pushed and the oldest is returned in an

ordinary way. During cycle 6 the dequeuing step erases two pixels from the queue

with value ≤ 3 ({0,5}, {3,4}), and the current pixel is enqueued. Then the oldest

stored pixel {4,1} is found outdated as its position is smaller than wp − lleft, and
deleted by the pop() operation. As a consequence, the pixel pushed in this cycle is

the oldest one and represents the output sample.

Cycle 7 reads the pixel greater than the stored one {3,6}, and therefore, replaces

it (dequeue() and push() operations). The currently read value is also the output.

The algorithm proceeds on in the same manner until the whole signal is processed

as shown in Fig. 4.3 (j).

4.2 2-D Dilation by Rectangular SE

The separability of n-D morphological dilation into lower dimensions is a well-known

and very often used property (cf. Section 2.1.1). Hereafter, we are especially inter-

ested in decomposition of dilation by 2-D shapes, especially rectangles and polygons,

into 1-D dilation. Despite the fact that a rectangle belongs to the polygon family

of shapes in geometry, we follow the traditional description that treats rectangles

separately.

A rectangular SE R decomposes as R = H ⊕ V where H and V are horizontal

and vertical segments and ⊕ is the Minkowski addition. Hence from, the dilation by

rectangle R can be computed as a concatenation of two perpendicular 1-D dilations,

horizontal and vertical, such as

δR(f) = δH⊕V (f) = δV (δH(f)). (4-2)

The concatenation of the two dilations means that each pixel of the input image

is first processed by horizontal and then by vertical dilation. Effectively all the 1-D

algorithms mentioned in Chapter 3 uses two image scans to obtain rectangles, one

4.2. 2-D Dilation by Rectangular SE 47

for horizontal and one for vertical dilation because of unlike orientation of the two

image scans. This approach that needs the whole image to be stored in the memory

is reasonable for GPP and GPU, but limiting for dedicated hardware due to large

memory occupation and latency.

Our approach, on the other hand, aims at preserving stream processing for 2-D

dilation. It can be achieved only when both horizontal and vertical dilations process

an image in the same stream, i.e., with sequential access to data. Let us assume

now that we can compute vertical dilation with horizontal scan access to data. Such

vertical dilation is described below in Section 4.2.1.

The example of the dilation by rectangle R=H⊕V of an N×M image is shown

in Fig. 4.4 (a). The image is sequentially read in the common horizontal raster

scan, line by line from left to right. The various indices rp and wp denote reading

and writing positions of the segments H and V , and the rectangle R, respectively.

The computation is illustrated for column i and line j, i.e., the result δRf(i, j) is

to be written at writing position wpR.

1 i

1

k

j

i

k

i

k

j

M

N

1

1

M

N1

1

M

N

rpH
wpH

rpV

wpV

rpR

wpR

l left l right

l down

l up

l rightl left

l down

l up

(a) Dilation by rectangular SE δ
R

(b) Horizontal dilation δ
H
 (c) Vertical dilation δ

V

Figure 4.4: Decomposition of the dilation by rectangle R (a) into two 1-D di-

lations by horizontal segment H (b) and vertical V (c) according to (4-2). Light

gray denotes pixel already output by the respective dilation.

48 4. Algorithm Description

The computation of δR = δV δH decomposes as follows: The current reading po-

sition of δR rpR coincides with reading position of horizontal dilation rpH in Fig. 4.4

(b), that is rpR = rpH . The result of the horizontal dilation on line k at writing

position wpH is immediately read by the vertical dilation in the corresponding col-

umn i in Fig. 4.4 (c), that is wpH = rpV . The result of the vertical dilation δV is

written at the writing position wpR in Fig. 4.4 (a), i.e., wpV = wpR.

The very important property of this method is that there is no necessary inter-

mediate storage between horizontal and vertical dilation, that is wpH = rpV always

holds. The latency of δR is then given by distance between rpR and wpR in the

sense of the image scan such as

Tlatency = lright + ldown ×N [px] (4-3)

which is the minimal, further irreducible operator latency.

The origin of R is positioned within the SE by lleft, lright, lup, and ldown from

the left, rigth, up, and down edge of the rectangle, respectively.

4.2.1 1-D Vertical Dilation

The main difficulty of the 1-D vertical dataflow dilation δV from (4-2) is to handle

the unlike orientation of the vertical SE and the horizontal dataflow. An intuitive

solution one can think of uses one vertical instance of the 1-D dilation algorithm per

column. As the input data are fetched in the horizontal scan, each vertical dilation

has actually only one pixel to process in a course of the whole line; it is kept waiting

for the next data to process during the rest of the line. However, such an approach

would be inefficient regarding the synchronization between the respective dilations.

Because access to data is to be strictly sequential on both input and output ports,

the overlap of processing any two adjacent pixels (i.e., in columns k and k + 1)

is undesirable and can be eliminated when the processing of pixels is exclusively

column-ordered. That means the pixel in column k+1 is not read until the vertical

dilation processes the pixel in column k. Then N vertical dilation instances can be

replaced by only one dilation δV operating with an array of N independent queues

called Array of queues AQ . The operator δV then uses i-th queue AQ (i) for k-th

column only.

Figure 4.5 (a) illustrates the coverage of the vertical queues in the image to

process after reading the whole line j. In a course of this line, the result pixels in

respective columns were written in line i. After that the algorithm starts reading

line j+1 writing result into line i+1. It uses a dedicated queue for computation in

each column shifting thus its coverage one pixel down. The situation of processing

k-th pixel in this line ([j + 1,k]) looks like outlined in Fig. 4.5 (b). When [j + 1,k]

is processed, the result in k-th column is written to [i + 1,k], and the next pixel

[j + 1,k + 1] can be read, and so on.

In this way the algorithm applies the vertical-oriented 1-D dilation on the hor-

izontally scanned dataflow. Even though this approach increases the number of

4.2. 2-D Dilation by Rectangular SE 49

1

i

1

j

M

N 1

i

i+1

k+1kk+1k

j+1

1

j

M

N

(a) (b)

Figure 4.5: Position of N queues within the image: (a) after reading the whole

line j (writing the result in line i); (b) after processing the k-th pixel of line j+1.

Light gray denotes the output pixels already written.

queues to N (in the case of vertical image scan, only one queue is necessary), it

actually makes hardware implementation of rectangles feasible as it eliminates the

necessity of image storage. The queues represents the working memory so their

allocated size defines memory requirements.

4.2.2 2-D Algorithm for Rectangles

At this moment we assemble perpendicular 1-D computations described above into

the 2-D computation thanks to the sequential access to data at both levels, 2-D

and 1-D, and for both input and output data. There is no additional latency and

no intermediate storage of data between the two dilations.

The simplified algorithm for dataflow dilation by rectangles is outlined in Alg. 3.

The algorithm processes the 2-D image in an ordinary double loop. For each pixel

of the image, a set of reading and writing pointers is determined (lines 5–8), the

horizontal dilation is computed (line 11) and stored in dF auxiliary variable, which

is used as input value for the vertical dilation (line 15). The conditions on lines 9

and 14 only handles the image boundaries.

4.2.3 GPP Experimental Results of Dokládal Algorithm

We present the execution time of two basic benchmarks of Dokládal algorithm

with rectangular SE in the following. We intend to illustrate the computational

complexity of this dilation algorithm as well as to provide a comparison with

other efficient algorithms namely Soille et al. ([Soille 1996]), Van Droogenbroeck

and Buckley ([Van Droogenbroeck 2005]), Urbach and Wilkinson ([Urbach 2008]),

Lemire ([Lemire 2006]), and OpenCV 2.2 library ([OpenCV 2012]). The bench-

marks were performed on Intel Xeon E5620 @2.4GHz CPU using gcc compiler with

-03 optimization. The time reported in the tables below refers to the user CPU

time consumed by the respective algorithms averaged over 100 independent runs.

50 4. Algorithm Description

Algorithm 3: y ←Dilate Rectangle (f , lright, lleft, ldown, lup , N , M)

Input: f - input image; lright, lleft, ldown, lup - SE size towards right, left,

down, and up end; N - image width; M - image height

Result: y - output image

Data: Q,AQ - Queue memories

1 init(AQ) ; // Initialize array of vertical queues

2 for line = 1 :M + ldown do

3 init(Q) ; // Initialize horizontal queue

4 for column = 1 : N + lright do

5 rp hor ← min(column, N); // Set horizontal rp

6 wp hor ← max(column− lright, 1); // Set horizontal wp

7 rp ver ← min(line,M); // Set vertical rp

8 wp ver ← max(line− ldown, 1); // Set vertical wp

9 if line ≤M then

10 F ← f(rp hor +N × line); // Read input pixel

11 dF ← One Pass Dilation (F , rp hor, wp hor, lright, lleft, N , Q)

; // Call core function for horizontal orientation

12 else

13 dF ← ∅ ; // Use empty value outside image

14 if column > lright then

15 Y ← One Pass Dilation (dF , rp ver, wp ver, ldown, lup, N ,

AQ(wp hor)) ; // Call core function for vertical orientation

16 y(wp ver +N × wp hor)← Y ; // Write output pixel

We use the mountain natural photo as a testing image, originally introduced in

[Van Droogenbroeck 2005].

The first benchmark in Fig. 4.6 plots dependence of the algorithm on the size

of square SEs. The Dokládal algorithm shows only small variation of the execution

time throughout the entire scale verifying declared complexity O(1). Observing the

other algorithms, Van Droogenbroeck outperforms our solution by a firm rate (2.5×
in average). However, this algorithm has a couple of properties that are limiting

when either different settings is used or hardware implementation is considered.

They are: (i) use of histogram, limiting for high-precision data and hardware; (ii)

large memory requirements of 2MN unsuitable for hardware; (iii) non-sequential

access to data, which also makes hardware implementation difficult. The other fast

solution is the one provided by popular OpenCV 2.2 library. It performs quite well

thanks to the use of highly optimized Intel Processing Primitives. Soille and Lemire

perform little worse than Dokládal. Urbach and Wilkinson performs the worst from

the selected algorithms as their algorithm is designed for arbitrary-shaped 2-D SE

and it becomes inefficient for large, regular SEs, which can be easily decomposed

4.2. 2-D Dilation by Rectangular SE 51

into lower dimensions.

11 31 51 71 91 111 131 151
0

10

20

30

40

50

60

70

80

→ Size of square SE [px]

→
 E

x
e
c
u
ti
o
n
 t
im

e
 [
m

s
]

Dokladal

Van Droogenbroeck

Soille (HGW)
Urbach & Wilkinson

Lemire

OpenCV

Figure 4.6: Execution time of dilation versus the SE size, SVGA natural image.

0.48 1.92 4.32 7.68 12

10
1

10
2

10
3

 800x600

 1600x1200

 2400x1800

 3200x2400

 4000x3000

→ Image size [Mpx]

→
 E

x
e
c
u
ti
o
n
 t
im

e
 [
m

s
]

Natural photo
Random
Constant

Figure 4.7: Execution time of dilation versus the image size. The structuring

element is square 101×101 px.

Second, we evaluate the execution time with respect to the image size in Fig. 4.7.

The results for each image type lie on a perfect straight lines (straight lines connect

values obtained for the smallest and the largest image) in the log-log scale that

illustrates the complexity of Dokládal algorithm is effectively independent of the

image size. However, due to the bounded image support, the exact complexity

per image is little affected by the SE size as Oimage((N + lright)(M + ldown)). The

52 4. Algorithm Description

reason for extra algorithm iterations is the algorithm latency. In other words,

when the last pixel of the image is processed, there are still ldownN pixels to be

output. As these iterations do not read new input pixels, the dequeuing process

is not involved, and consequently, they are faster then ordinary iterations. So the

complexity Oimage((N+lright)(M+ldown)) reaches Oimage(NM) provided lright ≪ N

and ldown ≪M .

The same Fig. 4.7 also shows dependence on the image content. Such depen-

dence is caused by the dequeuing loop that may iterate multiple times, or not at all,

during processing one pixel with respect to the past image data stored in the queue.

The random number of loop iterations does not change the complexity because each

pixel is at most once pushed into the queue and also at most once discarded from

the queue (by either pop() or dequeue() operations). The only thing that changes

pixel by pixel is when the pixel is discarded. In the case of constant image, the

loop iterates exactly once per pixel, but for random noise image, the number of it-

erations per pixel is random. This uncertainty makes various CPU optimizations,

such as branch prediction, more difficult and tends to slow down the computation.

However, the natural photo image used in benchmarks, which contains some super-

imposed noise, performs at similar performance as the worst-scenario random noise

image.

4.3 Polygonal SE

Rectangular SEs are very popular for their simplicity. However, they suffer from

angular anisotropy as the difference between the side length and the diagonal length

is significant, see Fig. 4.8. Such a SE may not be feasible for some operations, such

as image enhancement, filtering, or granulometry.

(a) ASF6 by rectangle (b) ASF6 by octagon

Figure 4.8: Image filtered by (a) rectangles, and (b) octagons. Notice better

isotropy of octagons.

These operations are highly sensitive to the shape of the SE, so, unless one has

some a priori knowledge of image contents, circular SEs are preferred. However,

circles are very difficult to implement efficiently because there is little regularity

4.3. Polygonal SE 53

in their shape (discrete), and none of the SE decomposition methods can be used

for efficient implementation. As a consequence, circles are often approximated by

regular polygons (all sides have the same length) that are easily decomposable into

1-D SEs, cf. [Adams 1993, Xu 1991]. Any 2n-top (n ∈ N) regular polygon SE P2n

can be decomposed into a set of n line SEs Lαi
, i = [1, n],

P2n = Lα1
⊕ · · · ⊕ Lαn︸ ︷︷ ︸
n times

(4-4)

oriented by angles αi, such that

αi = (i− 1)
180◦

n
[◦] (4-5)

The length of all Lαi
is equal to the side of the desired polygon and can be

computed from the circumcircle radius r as

‖Lαi
‖ = 2r sin

(
180◦

2n

)
. (4-6)

For example, a hexagon can be obtained by three Lαi
oriented in αi = { 0◦, 60◦,

120◦} on a 6-connected grid, and an octagon by four Lαi
, αi = { 0◦, 45◦, 90◦, 135◦}

using an 8-connected grid, see Fig. 4.9.

=>

1α 2α

3α

1α 2α

=>

3α1α 2α

(a) Hexagon, αi = { 0◦, 60◦, 120◦}

=>

=>

=>

4α 4α

1α 2α 1α 2α

3α1α 2α

3α 3α1α 2α

(b) Octagon, αi = { 0◦, 45◦, 135◦, 90◦ }

Figure 4.9: Polygon SE composition of line SEs. (a) hexagon is composed of

3 segments, (b) octagon is composed of 4 segments. ⊕ operator stands for the

Minkowski addition; αi stands for Lαi
.

Hence from (2-15) and (4-4), a 2-D dilation by a 2n-top polygon δP2n
of some

function f : R2 → R can be obtained by n consecutive 1-D dilations δLαi
, i = [1, n],

by line segments oriented by αi as

δP2n
(f) = δLα1

(. . . δLαn︸ ︷︷ ︸
n times

(f)). (4-7)

54 4. Algorithm Description

The aforementioned decomposition holds true for the unbounded support Z2.

However, when using real images with a bounded support D ⊂ Z2, D = [1,M] ×
[1, N], decomposition boundary effects appear if at least one Lαi

6= {0◦, 90◦} is used.
The cause is that the Minkowski addition of all decomposed line segments of (4-4),

which are cropped by image boundaries after every Lαi
of that concatenation, does

not necessarily correspond to P2n cropped by image boundaries just once as desired.

It is expressed by the following expression where D∩ represents an intersection with

the image support D

D ∩ (Lα1
⊕ . . .⊕ Lαn) 6= D ∩ (Lαn ⊕ . . . D ∩ (Lα2

⊕D ∩ (Lα1
))). (4-8)

The illustrative example of such boundary effects with a hexagonal SE is de-

picted in Fig. 4.10. We can see that the composition α1⊕α2 is incomplete compared

to the desired one in Fig. 4.9; a small part of the SE is missing. It holds true even

for the entire hexagon, the composition Lα1
⊕ Lα2

⊕ Lα3
is also incomplete. It is

caused by the right boundary cropping not only the final P2n, but also all interme-

diate results. The cropped values are later missing to form an appropriate polygon

section.

00
0

NN

M

0

M

missing

part

missing

part

(a) α1 ⊕ α2 incomplete (b) α1 ⊕ α2 ⊕ α3 incomplete

Figure 4.10: Polygon SE composition without padding. The desired SEs pre-

sented in Fig. 4.9 are incomplete, a small triangle is missing.

This issue is solved by adding a padding to the image. The section of P2n

contained inside the image support is then complete, the missing part of P2n is

located in the padding area. The added padding contains recessive values, i.e.,

values that do not affect the computation of particular morphological operator (for

f :D → V , ∧V for dilation, ∨V for erosion). Thickness of the padding is different in

horizontal and vertical direction and is determined by the size of oblique segments,

particularly by the half of vertical and horizontal projection

BH = ‖Lαi
‖ cos (α2) /2 [pixels] (4-9)

BV = ‖Lαi
‖ sin (α2) /2 [pixels]. (4-10)

The 1-D Dokládal algorithm described above can be used for the computation

of Lαi
segments in a stream as well. Then, for example, three instances of this

algorithm can be concatenated to compose a hexagon as depicted in Fig. 4.11. The

image is sequentially read by horizontal L0◦ at the global reading position rpP (a).

4.3. Polygonal SE 55

The result of the horizontal segment is immediately provided as input to the first

oblique L60◦ at (b) so that the reading position of L60◦ coincides with the writing

position of L0◦ . By the very same rule, the result of the L60◦ is brought as input

data to the second oblique α3 at (c), the writing position of which is the writing

position of the complete polygon (d). The total latency is then defined by distance

between reading (a) and writing positions (d) of the polygon P .

L

L

L

Figure 4.11: Stream concatenation of three Lαi
into a hexagonal SE P . rp/wp

- reading/writing position.

Considering the computation of particular segments of the polygon decompo-

sition (4-7), the horizontal segment L0◦ as well as the vertical L90◦ is computed

on the corresponding line or column separately. There is much redundancy in the

computation because any two adjacent segments (adjacent according to the orien-

tation αi) have a large overlap, e.g., two L0◦ of length l at the points [x, y] and

[x+1, y] have overlap of l− 2 points. This property allows a great speed-up by us-

ing Dokládal algorithm or any other algorithm that reuses some results computed

for pixel [x, y] in the computation of the following pixel [x + 1, y]. At the same

time, the processing can be ordered in the way that the input and output are read

and written in the raster scan provided that each pixel is read exactly once.

The aforementioned manner of computation would bring a considerable speed-

up for oblique segments if it was preserved. Generally, for Lαi
, ∀αi 6= {0◦, 45◦, 90◦,

135◦} at 8-connected grid or ∀αi 6= {0◦, 60◦, 120◦} at 6-connected grid, the overlap

of two adjacent segments is both small and disconnected.

This fact has an impact on the computation of hexagons (or other polygons more

complex than octagons, e.g., decagon, dodecagon; we will focus on hexagons only)

that can be carried out using either 6-connected or 8-connected grid. When using

the 6-connected connectivity, which is usually artificially made from 8-connectivity

for the purpose of hexagonal neighborhoods, the Dokládal algorithm allows for per-

fectly shaped hexagons. In the following implementation sections we will use the

6-connected grid for hexagons.

In the case of 8-connected grid, the exact computation of hexagons cannot be

done in the way of partitioning the image into inclined corridors as in the case of

scanning in rows or columns, or 6-connectivity. However, when the computation is

56 4. Algorithm Description

done in inclined corridors it retains the large overlap of two adjacent Lαi
and enables

the computation speed-up. As a downside, it makes Lαi
translation variant, and

consequently, the resulting hexagon is approximated, see Section 4.3.2.

4.3.1 Oblique 1-D Structuring Element

The oblique segments included in a hexagon and octagon, i.e., Lαi
, αi = 45◦,

60◦, 120◦, 135◦, need some mapping in order to determine which pixels belong

to L at given position. Because all inclinations verify αi ≥ 45◦, and the tangent

coefficients ki verify ki = tanαi ≥ 1, modifying the column position column handles

the mapping of an image into an inclined space. The inclination deviation from

the vertical direction is then obtained by additive constant line/ki. Hence at the

position [line, column], the shifted position corresponds to [line,columnshift],

columnshift = (column+ line/ki)mod (N + 2BH), (4-11)

where the inclination deviation from the vertical direction line/ki is called offset.

Notice that in the horizontal scan offset changes its value only with the beginning

of a new line. In our implementation of polygons we use k45◦,135◦ = ±1 for octagons

on 8-connected grid, and k60◦,120◦ = ±2 for hexagons on 6-connected grid, which

assure that the computation of polygonal SE is translation invariant. Unfortunately,

this does not hold true for more complex polygons or other connectivity. Then

the oblique segments become translation variant as it is described in the following

section.

Algorithm 4: offset ← Discrete line (Long leg, Short leg, Init)

Input: Long leg - long leg of the right triangle; Short leg - short leg of the

right triangle; Init - initilize/reset

Result: offset - inclination offset of the discrete line

Data: error - current error variable

offset - current offset variable

1 if Init = true then

2 error ← Long leg/2 ; // Initialization of error and offset variables

3 offset ← 0 ;

4 else

5 error ← error − Short leg ;

6 if error < 0 then

7 error ← error + Long leg ;

8 offset ← offset +1 ; // Increment offset value

9 return offset ; // Return current offset value

4.3. Polygonal SE 57

4.3.2 Translation-Variant SEs on 8-connected Grid

In the following paragraphs we will discuss the issues related to the computation of

oblique SEs on 8-connected grid using the image partitioning into inclined corridors.

Even though such an approach results in translation-variant SEs, it speeds up the

computation through usage of an efficient 1-D algorithm. The translation variance

issue on 8-connected grid has been already studied by [Soille 1996].

Fig. 4.12(a) presents an example of the mapping for L60◦ on an 8-connected grid.

The pixels of the oblique corridor (emphasized by dark grey color; the nearest pixels

to the precise Euclidian line oriented by the desired angle) have the same shifted

column address thanks to the added offset. Consequently, these pixels are processed

using the same queue dilating the image in an inclined direction. Obviously, the

task of offset calculation is equivalent to the computation of discrete line coordinates

from its tangent k. For the sake of an efficient implementation, we consider that

ki ∈ Q, ki = tanα = Long leg/Short leg is a rational number defined by two legs

of a right triangle (Short leg, Long leg) including α. The offset of the discrete

line is then calculated by the simplified Bresenham line algorithm in Alg. 4. This

algorithm computes offset by using only one addition, subtraction, and comparison

of two integer numbers per one pixel.

x x x x

x xxx

1

1 2 3 4 . . .

2
3
4
5
6
7
8
9
10

. . .

. . .

. . .

M

60°

N

offset of

column

addressing
line 7 line 8 line 9 line 10

line 3 line 4 line 5 line 6

(a) (b)

Figure 4.12: Oblique linear segment computation. (a) Pixels of the discrete line

lying under Euclidian line, and (b) the spatial variance of oblique segments.

The translation variance can be observed in Fig. 4.12(b). The depicted segments

of the computed discrete line α = 60◦ from image lines 2 to 9 display that the

shape of the segment varies with translation. The effect of translation-variant 1-D

segments to the result hexagon is displayed in Fig. 4.13. One can see that the

hexagon on 8-connected grid has edges little bit corrupted in terms of the border

pixels. In addition, the shape of such SEs is also translation variant.

In conclusion, the 6-connected grid is the preferred one for hexagons as it allows

for the fast and exact computation. We will also consider 6-connectivity in the im-

plementation part below. For more complex polygons or lines oriented by arbitrary

angle more natural 8-connectivity is used resulting in a slight shape approximation

58 4. Algorithm Description

and variance to translation.

(a) 8-connectivity (b) 6-connectivity (c) Difference

Figure 4.13: The translation-variant hexagon SE obtained on 8-connected grid,

translation-invariant SE on 6-connected grid, and the difference.

4.4 1-D Opening Algorithm

We describe the main principles of the originally proposed 1-D opening algorithm

referred to as streaming peak elimination algorithm hereafter. We begin with the

description of the main principle of the algorithm, and develop its pseudocode.

Later, we enrich this algorithm by computation of the pattern spectrum in a single

image scan. We also present the arbitrary angle orientation of the 1-D SE on a 2-D

image support.

At first, let us observe the influence of opening γB (2-18) on a simple 1-D signal

f : Z → R in Fig. 4.14. The opening literally cuts off the peaks narrower than

the length l of the SE (closing on the other hand fills the valleys narrower than

l). Remark here that γB is invariant to the translation of the SE B so γB is not

affected by the origin of B.

In the previous sections, we have already established an assumption that se-

quential access to data is very beneficial, and effectively necessary, for high per-

formance in hardware. Accordingly, our algorithm accesses both input and output

data strictly sequentially with the fixed latency equal to the operator latency (l in

the case of horizontal SE).

The proposed algorithm executes the recursive peak elimination with each new

sample of input data. Naturally, this elimination is applied only on l recently read

data covered by the current position of the SE, which slides in time over the input

data f . The elimination process cuts a peak iteratively from the top downwards by

each gray-level the peak contains.

Contrarily to the traditional approach in which opening is obtained through

concatenation of erosion and dilation by (2-18) on page 14, our algorithm handles

image borders correctly such that the peak of the whole size of l is eliminated even if

it touches the border, see Fig. 4.14. The behavior of (2-18) near borders is affected

by the origin of B, and it is always incorrect at either edge. If the SE is centered,

(2-18) cuts only peaks narrower than l/2 pixels.

4.4. 1-D Opening Algorithm 59

� �

���������	�AB

CDEF�� EF��

�

EF�� �����F���CD

(a) (b) (c)

Figure 4.14: Effects of opening and closing on a 1-D signal: (a) opening cuts

the peaks off; (b) closing fills the valleys; (c) opening near an edge: our algorithm

processes the signal by the full length of the SE l, compared to the conventional

solution (2-18) that uses only the half of the SE length.

In the following paragraphs we will describe the main principles of this opening

algorithm. For better understanding let us first suppose that the input signal f :

{X ⊂ Z;X = [1, N]} → R does not contain any constant intervals so it verifies

f(x) 6= f(x + 1), x ∈ X. The proposed 1-D algorithm, see Alg. 5, computes the

opening y = γBf in a loop by calling the core function One Pass Opening in

Alg. 6 for each sample of f . It reads input pixel F = f(rp) at the reading position

rp and outputs pixel Y = y(rp− l) of the result image in the course of a single call

of core function One Pass Opening in Alg. 6.

Algorithm 5: y ←Opening 1D (f , l, N)

Input: f - input signal; l - SE size; N - length of the signal

Result: y - output signal

1 init(Q) ; // Initialize queue

2 for column = 1 : N + l do

3 rp← min(column, N); // Set current reading position

4 y(wp)← One Pass Opening (f(rp), rp, l, Q, 0) ; // Call core function

of streaming peak elimination algorithm

The core function One Pass Opening is based on usage of the queue memory.

The queue memory serves as a storage for the past values in the scope of the SE

and as the main working memory just like in the case of One Pass Dilation

algorithm. One call of this function in Alg. 6 proceeds in the following steps:

• Eliminate peak values

• Enqueue current sample

• Delete outdated value

• Return output sample

At the first step, all past values of f within the scope of the SE (these values

are stored in the queue) that are found to be peak values are dropped. A peak is a

60 4. Algorithm Description

point of the input signal f(x) when both its very precedent f(x−1) and subsequent

f(x+ 1) points are smaller, such as

f(x) > f(x− 1) and f(x) > f(x+ 1) (4-12)

In order to reveal a peak, the algorithm recognizes 4 possible configurations of these

three points ((a) and (b) are peaks, (c) and (d) are not), see Fig. 4.15, each of which

is treated in a different manner.

�

����

��������

����

������� �

����

������� �

����

�������

(a) (b) (c) (d)

Figure 4.15: Four different pixel configurations for peak identification. Conf.

(a) and (b) characterize a peak, conf. (c) and (d) do not.

The points f(x − 1), f(x), and f(x + 1), which are needed for the peak elimi-

nation, are reachable in the queue as follows:

• f(x− 1)← back2(Q).val (second to the latest)

• f(x)← back1(Q).val (latest)

• f(x+ 1)← F = f(rp) (current)

The peak elimination step proceeds in one main while loop (code line 1) that ensures

the condition f(x+1) < f(x) of (4-12). If two consecutive pixels are equal f(x+1) =

f(x), the first one is erased from the queue (line 2-4), and replaced by the second

one. As a consequence, a flat plateau (zone of constant value) is represented in

the queue by the last pixel and its position. We can see that the initially imposed

premise of no constant intervals in f was introduced only for the sake of simplicity

of configurations; the constant intervals are handled correctly.

Then the condition f(x − 1) < f(x) of (4-12) is tested (back2(Q).val<

back1(Q).val on line 6). If the result is false, f(x) is not a peak and the elimi-

nation loop is quit (configuration (d), line 11). Otherwise, f(x) is a peak and will

be erased from the queue (line 9) and replaced by either f(x−1) in configuration (a)

(back2(Q).pos← back1(Q).pos on line 8), or by f(x+1) in configuration (b) (needs

only line 9). This is decided upon condition f(x+1) < f(x− 1) (F < back2(Q).val

on line 7). Obviously, the while loop iterates until a non-peak configuration ((c) or

(d)) is encountered.

When all peaks in the scope of B are erased, the current pixel value is uncon-

ditionally pushed into the queue along with the current reading position (line 12).

The oldest stored pixel is checked whether it has been stored in the queue for too

long. This check is carried out by comparing the stored reading position plus the

SE size with current rp (line 13). Outdated values are immediately deleted. The

4.4. 1-D Opening Algorithm 61

Algorithm 6: Y ← One Pass Opening (F , rp, L, Q, α)

Input: F - input sample f(rp); rp - current reading position; l - SE size; Q -

Queue; α - angle

Result: Y - sample of y(rp− l)
Data: Q - Queue

back1(Q).{val, pos} - accesses the latest pair {F , rp}
back2(Q).{val, pos} - accesses the second to the latest pair {F , rp}
front(Q).{val, pos} - accesses the oldest pair {F , rp}

1 while F ≤ back1(Q).val do

2 if F = back1(Q).val then

3 dequeue(Q) ; // Remove equal values

4 break ;

5 else

6 if back2(Q).val<back1(Q).val then

7 if F < back2(Q).val then

8 back2(Q).pos ← back1(Q).pos ; // Configuration (a)

9 dequeue(Q) ; // Discard peak, configuration (b), (a)

10 else

11 break ; // Configuration (d)

12 push(Q,{F , rp}) ; // Enqueue current sample

13 if rp = front(Q).pos + l then

14 pop(Q) ; // Delete outdated value

15 if rp ≥ l then
16 return (front(Q).val) ; // Return opening sample

oldest stored value front(Q).val is the result of Alg. 6 as soon as rp exceeds the SE

size l (line 15).

4.4.1 Illustration of Streaming Peak Elimination Algorithm Run

Now, let us observe an illustration of the streaming peak elimination algorithm run

(i.e., Opening 1D) on a signal example f with SE of l = 5 px in Fig. 4.16 (a)–

(i). The input signal f is depicted in (a) along with an empty queue. In cycles

1 through 3 the new read samples are only pushed into the queue as there are no

peaks on f present. Notice for instance in (d) that the first three pixels constitute

a monotonously increasing signal that conforms to the non-peak configuration (d).

Cycle 4 represents more interesting behavior, and therefore it is divided into two

stages. At the first one in Fig. 4.16 (e) the current pixel {4,4} reveals a peak on the

input signal f because f(x+ 1) < f(x) > f(x− 1) having the values f(x+ 1) = 4,

f(x) = 5, f(x − 1) = 3. So the pixel {5,3} is dequeued. No other peak on f is

62 4. Algorithm Description

(a) Input signal (b) Cycle 1, rp=1, wp=1

(c) Cycle 2, rp=2, wp=1 (d) Cycle 3, rp=3, wp=1

(e) Cycle 4, rp=4, wp=1, first stage (f) Cycle 4, rp=4, wp=1, second stage

(g) Cycle 5, rp=5, wp=1 (h) Cycle 6, rp=6, wp=2, first stage

(i) Cycle 6, rp=6, wp=2, second stage (j) Result signal

1

1

2

3

4

5

6

2 3 4 5 6 7 t

f (t)

Value Position

1

1

2

3

4

5

6

2 3 4 5 6 7 t

f (t)

Value Position

rp

push(Q) 1 1

1

1

2

3

4

5

6

2 3 4 5 6 7 t

f (t)

Value Position

rp

push(Q)

back1(Q) back2(Q)

back1(Q)

back2(Q)

back1(Q)

1 1

3 2

1

1

2

3

4

5

6

2 3 4 5 6 7 t

f (t)

Value Positionrp

push(Q)

1 1

3 2

5 3

1

1

2

3

4

5

6

2 3 4 5 6 7 t

f (t)

Value Position
rp

dequeue(Q)

dequeue(Q)

dequeue(Q)

dequeue(Q)

back2(Q)

back1(Q)

1 1

3 2

5 3

1

1

2

3

4

5

6

2 3 4 5 6 7 t

f (t)

Value Position
rp

push(Q)

1 1

3 2

4 4

back2(Q)

back1(Q)

1

1

2

3

4

5

6

2 3 4 5 6 7 t

f (t)

Value Position

rp

wp

1 1

3 2

4 4

6 5

1

1

2

3

4

5

6

2 3 4 5 6 7 t

f (t)

Value Position

rp

push(Q)

1 1

3 2

4 4

6 5

1

1

2

3

4

5

6

2 3 4 5 6 7 t

f (t)

Value Position

rpwp

1 1

2 6

1

1

2

3

4

5

6

2 3 4 5 6 7 t

f (t)

Value Position

push(Q)

pop(Q)

Figure 4.16: Illustration of the streaming peak elimination algorithm run: (a)

original input signal f , (b)–(i) iterations of the algorithm cycle-by-cycle, (j) result

signal y. Light, medium, and dark gray rectangles denote input, stored in the

queue, and output pixels, respectively. The tables on the right represent contents

of the queue at the particular time. SE features: l = 5 px.

4.4. 1-D Opening Algorithm 63

present, so the algorithm can proceed to pushing the current pixel in the queue, see

the second stage in Fig. 4.16 (f). The next pixel read in cycle 5 (g) has no impact

on peak elimination due to its value is greater then the others and is just pushed to

the queue. At this moment the large enough portion of data has been processed to

produce the correct result of the opening by SE with l = 5 px, so the oldest sample

in the queue is written on output.

The sixth cycle is divided to two stages, too. During the peak elimination step

(h), first the pixel {6,5} is dropped, then the pixel {4,4} is dropped, and finally the

pixel {3,2} is dropped, all by configuration (a). In the second stage (i) the current

pixel is pushed into the queue. The oldest sample {1,1} is found to be outdated

and is erased from the queue. That makes the currently pushed pixel the oldest

one (the only one) and also the output value. The result signal after the algorithm

finishes is depicted in Fig. 4.16 (j)

x

length of slice

height

tx-1

f(t)

x+1x

length of slice

height

tx-1

(a) (b)

(c)

f(t)

x+1

1

1

1

2

3

4

5

2 3 4 5 6 7 8 9

f
2f

3f

4f

3f

1f

t

f (t)

1

1

2

2 3 4 5 6 7 length

height

Figure 4.17: Size spectrum increment for: (a) configuration (a); and (b) config-

uration (b). (c) The peak is sliced by each gray level it contains.

4.4.2 Pattern Spectrum from Opening

The algorithm presented so far computes opening using the principle of peak elim-

ination that discards the peak values. Now, we extend the opening core function

Alg. 6 to compute the pattern spectrum PS , see the extended core function in

Alg. 7. As the opening algorithm eliminates a peak successively level-by-level, it

literally cuts the peak by each gray level the peak contains. The peak slices of the

same length are can be then accumulated in the same variable to obtain the pattern

spectrum, which is usually obtained by openings of increasing size, see Section 2.4

on page 16. The length of the slice is determined by the distance between its end-

points f(x) and f(x− 1) that need not necessarily be 1 but varies from 1 to l − 1

(f(x± 1) designates precedent/subsequent value of f(x)). See the computation of

64 4. Algorithm Description

the length on line 7. The height of a peak obviously depends on the mutual rela-

tionship of f(x+ 1) and f(x− 1) according to configuration (a), (b), see Fig. 4.17

and lines 9, 12. The increment of an appropriate length in the pattern spectrum is

carried out on line 13. Thereby we obtain the pattern spectrum PS with minimum

extra effort.

Algorithm 7: Y ← One Pass Opening PS (F , rp, L, Q, α)

Input: F - input sample f(rp); rp - current reading position; l - SE size; Q -

Queue; α - angle

Result: Y - sample of y(rp− l); PS - pattern spectrum

Data: Q - Queue

back1(Q).{val, pos} - accesses the latest pair {F , rp}
back2(Q).{val, pos} - accesses the second to the latest pair {F , rp}
front(Q).{val, pos} - accesses the oldest pair {F , rp}

1 while F ≤ back1(Q).val do

2 if F = back1(Q).val then

3 dequeue(Q) ; // Remove equal values

4 break ;

5 else

6 if back2(Q).val<back1(Q).val then

7 length ← back1(Q).pos − back2(Q).pos ; // Length of the slice

8 if F < back2(Q).val then

9 height ← back1(Q).val - back2(Q).val ; // Height of the slice

10 back2(Q).pos ← back1(Q).pos ; // Configuration (a)

11 else

12 height ← back1(Q).val - F ; // Height of the slice

13 PS(α, length) ← PS(α, length) + height; // Accumulation of PS

14 dequeue(Q) ; // Discard peak, configuration (b), (a)

15 else

16 break ; // Configuration (d)

17 push(Q,{F , rp}) ; // Enqueue current sample

18 if rp = front(Q).pos + l then

19 pop(Q) ; // Delete outdated value

20 if rp ≥ l then
21 return (front(Q).val) ; // Return opening sample

4.4.3 Arbitrary SE Orientation

The streaming peak elimination algorithm can be used for a 2-D input image support

D ⊂ Z2, D = [1,M] × [1, N] as well. It only needs an image to be partitioned

4.4. 1-D Opening Algorithm 65

(mapped) into independent, 1 pixel thin discrete lines (called corridors) oriented

in the same angle as the SE and computed according to Alg. 6. See Fig. 4.18 for

examples of such partitioning. Because the input data arrive sequentially, and the

computation takes place in one corridor at the time, each corridor does not need

the whole instance of Alg. 6, but only queue Q for storage of intermediate results.

So an array of queues AQ is used, and one instance of Alg. 6 uses all the queues in

a circular order, see Alg. 8. The pixel at position [j, i] (line j, column i) is mapped

to pji-th queue of AQ, Qji = AQ(pji),

pji =

{
(i− j tan(90− α))mod(#AQ) if 45◦ ≤ α ≤ 135◦

(j − i tanα)mod(#AQ) otherwise
(4-13)

where #AQ is a number of queues with upper-bound limit N + L cos(45◦). The

set of corridors is a partition of the image support D; hence each pixel is read by

the algorithm once and only once. The orientation also influences the definition of

reading position such as

rp =

{
j if 45◦ ≤ α ≤ 135◦

i otherwise.
(4-14)

1

1

M

N 1

1

M

N 1

1

M

N 1

1

M

N

(a) (b) (c) (d)

Figure 4.18: Image corridors (discrete lines) mapping for different SE orienta-

tions (a) a horizontal SE, (b) a vertical SE, and (c) and (d) inclined SEs.

1 i
1

j

M

N

k

1 i
1
j

M

N

k

1 i
1

j

M

N

k

l

Pixels stored in queue

Written To read
.

. . .

. . .

. . .

(a) (b) (c)

Figure 4.19: Image configuration for different SE orientations (a) a horizontal

SE, (b) a vertical SE, and (c) an inclined SE. × denotes the pixels to be read in

the next iteration, ◦ denotes the previous output pixels.

The main advantage of partitioning the image into a set of discrete lines, cor-

ridors, along which the 1-D algorithm computes, is a large overlap of two adjacent

SEs (adjacent within a corridor), already discussed in Section 4.3.1. This property

enables the use of an efficient 1-D algorithm such as streaming peak elimination to

speed up the computation. On the other hand, resulting SEs are in general transla-

tion variant (but opening with these SEs remains idempotent). We have learned in

66 4. Algorithm Description

the previous sections that the translation variance is a limiting property of dilation

or erosion because for some B we are not necessarily able to find B̂, and there-

fore, construction of some operators (opening, filters, gradient, etc.) is impossible

compromising thus the number of suitable applications.

The case of oriented 1-D opening is quite different. This operation is not often

used together with another operation that needs the transposed SE B̂, which would

be limiting. Indeed, the linear opening and the pattern spectrum are often used

completely alone to measure the properties of image features such as the length

or the orientation, see for instance equations (2-30), (2-31), or (2-32) from the

introduction. For such purposes, the slight spatial variation of the SE does not

bring any worse results than the translation invariant SEs by means of the obtained

information.

Algorithm 8: y ←Opening Oriented(f , l, N , M , α)

Input: f - input image; l - SE size; N - image width; M - image height

Result: y - output image

Data: AQ - Array of queue memories

1 init(AQ) ; // Initialize array of queues

2 if 45◦ ≤ α ≤ 135 then

3 steep← true ; // Rather vertical orientation

4 else

5 steep← false ; // Rather horizontal orientation

6 for line = 1 :M + l cosα do

7 for column = 1 : N + l sinα do

8 if steep then

9 rp← min(line,M) ; // Set reading position to line number

10 pji ← (column− line tan(90◦ − α))mod(#AQ) ; // Compute index

of queue

11 else

12 rp← min(column, N) ; // Set reading position to column number

13 pji ← (line− column tanα)mod(#AQ) ; // Compute index of

queue

14 if read conditions then

15 F ← read(f); // Read the following pixel of input image

16 Y ← One Pass Opening (F , rp, l, AQ(pji), α) ; // Call core

function

17 if write conditions then

18 y ← write(Y); // Write result pixel to output image

Figure 4.19 illustrates the image configuration for different α. Let us focus on

(a) that displays the horizontal configuration for processing line k. The algorithm

4.4. 1-D Opening Algorithm 67

(Alg. 6) has just read pixel [k,j], i.e., it has output pixel [k,i]. It will read [k, j + 1]

and output [k, i + 1] in the next iteration. In the vertical case (b), the algorithm

uses AQ , but only one Q is used at the time (marked by black color), others are put

aside (gray color) until the computation proceeds to their column. The depicted

configuration in Fig. 4.19 (b) corresponds to the time after processing [k,i]. The

situation with the inclined direction is very similar to the vertical one except the

corridors are inclined. Note that all pixels of the dataflow between × and ◦ are

stored in the queues defining thus the system latency. Nevertheless, it is the minimal

achievable and fixed operator latency considering unlike orientations of the SE and

the scan order.

The final algorithm for oriented 1-D opening is outlined in Alg. 8 in a simplified

version. At the beginning the steepness of the SE is determined. This variable

affects which queue will be used for the current pixel as well as the sense of the rp

increment. The algorithm works in a common double for loop over the whole image

support, which is extended by the size of the SE for boundary handling. For each

pixel of this extended support rp and pji are determined (line 8–13), new input

pixel is read (line 15), the core function is called (line 16), the return value of which

is written into the output image (line 18). The read and write conditions handle

correctly support boundaries and vary with different orientation of the SE. More

details on the algorithmic issues and a demonstration copy including source code

of this algorithm can be found online at [Karas 2012a].

The proposed algorithm has very limited memory consumption. The only mem-

ory elements are queues whose depth and count are inferred by the SE orientation

and image width N . The formulas are provided later in Section 5.5.

Examples of the pattern spectra for three different textures can be found in

Fig. 4.20. Comparing the PS of textures 1 and 2 one can see the different orientation

of the “butterfly-shaped” spectrum whereas the PS of texture 3 is “circle-shaped”,

i.e., uniform in all the orientations. Such a circular PS suggests that the texture is

rather isotropic, any non-symmetrical PS reveals anisotropic textures. We perform

two measures on PS for better illustration of the texture analysis. The first measure

reveals the influence of orientation by taking the sum over all the slice lengths such

as

ma(α) =
∑

∀li<lMAX

PS(α, li). (4-15)

This measure is depicted in Fig. 4.20 (g) and can be used to determine the dominant

orientation as αDOM = argmin∀α(ma). There are clear negative peaks at ma for

our textures 1 and 2 that measures their dominant orientation of 45◦ and 110◦,

respectively. The dominant angle of texture 3 is 118◦, but as the ma curve is flat,

texture 3 is very isotropic and the dominant angle measure does not have much

sense.

The second measurement mb consider the thickness of the image objects regard-

68 4. Algorithm Description

(a) Texture 1 (b) Texture 2 (c) Texture 3

50−50

50

−50

100−100

100

−100 min

max

(d) PS of texture 1

25−25

25

−25

50−50

50

−50 min

max

(e) PS of texture 2

25−25

25

−25

50−50

50

−50 min

max

(f) PS of texture 3

0 50 100 150

50

75

100

→ Orientation of SE α [°]

→
 R

e
s
p

o
n

s
e

 o
f

m
a
 [

%
]

Texture 1

Texture 2

Texture 3

(g) Measure ma w.r.t. α

0 10 20 30 40 50
0

25

50

75

100

→ Length of SE L [px]

→
 R

e
s
p

o
n

s
e

 o
f

m
b
 [

%
]

Texture 1

Texture 2

Texture 3

(h) Measure mb w.r.t. L

Figure 4.20: Pattern spectra of textures with different isotropy and their mea-

surement. △ α = 1◦, LMAX = {50, 100}.

less its orientation such as

mb(l) =
∑

∀αi<αMAX

PS(αi, l). (4-16)

4.4. 1-D Opening Algorithm 69

This second measure is plotted in Fig. 4.20 (h) and it shows different thickness of

veins in textures 1 and 2 as well as the typical diameter of cells in texture 3.

4.4.4 Experimental Results of Streaming Peak Elimination Algo-

rithm

We present essential CPU and GPU timing benchmarks of opening algorithms in

this section. The main intention is to illustrate the computational complexity of

the streaming peak elimination algorithm as well as to provide a comparison against

a few other efficient opening algorithms, namely Soille et al. ([Soille 1996]), Van

Droogenbroeck and Buckley ([Van Droogenbroeck 2005]), Urbach and Wilkinson

([Urbach 2008]), and Morard ([Morard 2011]). The benchmarks were performed on

Intel Xeon E5620 @2.4GHz CPU running 64-bit Linux, and nVidia Tesla C2050

GPU with 14 MPs at 1.15 GHz and 3 GB RAM. The time reported in the tables

below refers to the user time consumed by the respective algorithms.

0.48 1.92 4.32 7.68 12

10
−2

10
−1

→ Test image size [Mpix]

 800x600

 1600x1200

 2400x1800

 3200x2400

 4000x3000

→
 E

x
e

c
u

ti
o

n
 t

im
e

 [
s
]

Figure 4.21: Execution time of opening/spectrum versus the image size. Struc-

turing element is vertical 101 px.

CPU Implementation

At first, we evaluate the CPU execution time benchmark with respect to (shortened

as w.r.t. hereafter) the image size, see Fig. 4.21. The results that lie on a perfectly

straight line in the log-log scale illustrate the complexity of our algorithm is effec-

tively independent of the image size. However, due to the bounded image support,

the precise complexity per image is theoretically affected by the SE size (W × H
denotes projected width and height of the SE) as Oimage((N +W)(M +H)). The

reason for extra algorithm iterations is the operator latency. So when the last pixel

of the image is processed, there is still approx. HN of pixels to be output. As

these iterations do not read new input pixels, the peak elimination process is not

involved, and consequently, they are faster then ordinary iterations. So the com-

70 4. Algorithm Description

plexity Oimage((N +W)(M + H)) can be approximated as Oimage(NM) provided

W ≪ N and H ≪M .

The second benchmark in Fig. 4.22 retains the same image size and varies the

length of the horizontal SE to show that the execution time is independent of the SE

size (however the value of the execution time is dependent on the image content).

The measured curve is practically constant (except a small decrease for short SEs)

and approves thus the constant complexity O(1). Notice that the boundary effect

takes place here as well, but it is compensated by some other effect, probably caused

by optimization processes in a CPU. The same phenomenon can be observed for

Morard and Van Droogenbroeck as well.

Observing the other algorithms, Van Droogenbroeck outperforms our solution

by a non-negligible rate (3× in average). It is worth mentioning that this measure

was obtained with the configuration quite favorable for Van Droogenbroeck: (i)

the 8-bit gray-scale image (Van Droogenbroeck uses a histogram, which increases

memory consumption and the computation time with a higher data precision),

(ii) the horizontal orientation (Van Droogenbroeck is implemented for horizontal

and vertical orientation only; although we assume the performance would not drop

down drastically for the arbitrary orientation if the discrete-line partition method

was used).

The Morard algorithm is also faster than ours, however the difference is less

significant. One of the reasons may be the less homogeneous algorithm run that

results in less comparisons and conditions per pixel, but infers non-regular access to

data and larger memory requirements. However, the CPU can cope with the latter

inconveniences quite well.

The complexity of Urbach and Wilkinson is of O(⌈log2(l)⌉), so the computa-

tion time increases in steps every time the size of the SE l exceeds a power of two.

Our solution becomes faster than this one for SEs longer than 64 px. The imple-

mentation by Soille is more than two times slower than ours. However, an opening

in Soille’s case is obtained by concatenation of dilation and erosion, so performing

two complete image scans.

The experiment in Fig. 4.23 reveals an influence of the SE orientation angle

α to the execution time. The proposed algorithm exhibits a small variation of

execution time for the different octants. It is caused by the different spatial relation

between corridors and horizontal scan that demands few additional conditions to be

added for certain angles (α < 45◦ or α > 135◦). Also the border effects expressed

in the complexity per image Oimage((N + W)(M + H)) very slightly affects the

execution time. The border effect is strongest for α = {45◦, 135◦} and decreases for

other angles up to purely horizontal and vertical orientation that has the minimal

influence. The border effects also diminish with larger images verifying W ≪ N

and H ≪M .

The Soille and Morard algorithms hold a constant value for the entire scale of

orientation. The property that most likely allows for such consistency is random

data access. They do not preserve the horizontal scan order for non-horizontal

4.4. 1-D Opening Algorithm 71

11 31 51 71 91 111 131 151
0

0.005

0.01

0.015

0.02

0.025

→ Size of horizontal SE [px]

→
 E

x
e

c
u

ti
o

n
 t

im
e

 [
s
]

Peak elimination

Van Droogenbroeck

Soille

Urbach & Wilkinson

Morard

Figure 4.22: Execution time of opening versus the size of the horizontal struc-

turing element. Natural 8-bit photo 800 × 600 px is used.

orientation as our algorithm, but scans the input image along the α-oriented discrete

lines instead. Obviously, the resulting random access is not an issue on a CPU

platform. The Urbach and Wilkinson algorithm results in much larger variation

w.r.t. the orientation. The reason is hidden in the used decomposition of the SE

into horizontal or vertical (whichever is better suited) chords that are computed

using an efficient algorithm. As soon as dilation for these chords is computed,

the results are naively compared together. And the naive computation of dilation

from chords is the main bottleneck of this algorithm for arbitrary-oriented line

SEs. One can see that for α = 0◦ the SE consists of only one long chord. While

increasing α the number of horizontal chords is also increasing up to α = 45◦ when

the SE decomposes into l chords of length 1 and the algorithm becomes completely

naive. The further increase of α decreases the number of chords (now vertical).

This decomposition, which can handle SEs of arbitrary shapes, results in triangular

peaks in our case as in Fig. 4.23.

The last experiment in Table 4.1 reveals the influence of the image data precision

to the execution time. The results suggest that although the performance is slightly

worse for long integer and floating point data formats, the absolute difference is

not significant. It is not surprising, the higher data precision only demands more

memory for queues and higher bit-width of pixel data comparisons that is not a

burden for CPU platforms either.

There are two additional thoughts to be pointed out to make our case more

convincing. First, our algorithm computes not only opening, but also the pattern

spectrum PS (so does Morard). Recall that the pattern spectrum requires a large

number of openings when the traditional residual approach (2-29) is chosen. For

example, let us consider the pattern spectrum for lMAX = 100. Even if we omit

72 4. Algorithm Description

0 20 40 60 80 100 120 140 160 180
0

0.02

0.04

0.06

0.08

0.1

0.12

→ Rotation of line SE [°]

→
 E

x
e

c
u

ti
o

n
 t

im
e

 [
s
]

Peak elimination

Soille

Urbach & Wilkinson

Morard

Figure 4.23: Execution time of opening versus the rotation angle α. Natural

photo 800 × 600 px is used.

Table 4.1: Execution time of opening versus the data type. Struc-

turing element is vertical segment 101 px; image size is 800 × 600

px.

Data type char short int long float double

Bit length 8 16 32 64 32 64

Execution time [ms] 10.7 10.5 10.6 11.6 11.3 11.9

the arithmetic operations, the pure time for computation lMAX times γl will take

100×2.7 ms = 270 ms using the fastest Van Droogenbroeck’s algorithm. Our algo-

rithm computes the pattern spectrum in a single run, i.e., in 9.9 ms with speed-up

27×. Second, the CPU is not the only possible platform that takes advantage of

efficient morphological algorithms. In the following sections we will consider GPU

and FPGA as well.

GPU Implementation

In [Karas 2012b] we have implemented several state-of-the-art 1-D opening algo-

rithms on a GPU and proved that streaming peak elimination opening algorithm is

actually the best solution for a GPU platform achieving a high performance. Nat-

urally, the algorithm designed to perform well on the dedicated hardware can be

expected to bring good results on GPU platforms also, as both these platforms

share some common requirements and have similar constraints. Recall that the

beneficial properties of our algorithm are: sequential access to input/output data,

minimal and fixed latency, small memory requirements. Let us break down how

these properties influence the GPU implementation.

4.4. 1-D Opening Algorithm 73

The sequential access to data has a positive impact on the performance. Even

though the image is divided into many blocks of threads, 1 thread per column,

scheduled by the GPU itself, and the blocks may be processed in arbitrary order,

sequential access to data helps the threads within each block to be better synchro-

nized, so-called coalesced. The thread synchronization is very important because

the GPU achieves a large bandwidth to the global memory only when accesses

are coalesced, that is multiple accesses can be handled by one memory operation.

Accesses are coalesced if their addresses are consecutive, for example i-th thread

accesses address Ai = A0 + i× sizeof(float).

The fixed latency is another factor that helps the scheduler to keep the threads

within a block synchronized. Alternatively, if the latency of two threads was not

fixed but variable, memory accesses at either reading or writing side could not be

coalesced.

The memory requirements property is not very significant by means of the

amount of necessary memory to allocate because modern GPUs contain large global

memories of size in orders of GBs. However, limited memory requirements allow

us to better use a shared memory; a small local memory that is much faster than

the global memory and does not need coalesced accesses. Further aspects of GPU

programming and memory hierarchy can be learned from [nVidia 2012].

In the aforementioned publication [Karas 2012b] we exploited all these advan-

tageous properties and provided the GPU library for arbitrary-oriented opening

available online in [Karas 2012a]. According to the inherent structure of GPUs, a

few optimization techniques were developed to provide better and more consistent

performance for different image sizes and orientation. The optimization includes an

enhancement of parallelism by splitting the image into smaller partitions, a partial

use of the shared memory, and rotating the image when beneficial.

The first benchmark of the GPU opening algorithm w.r.t. the image size is

displayed in Fig. 4.24. The size of the SE is approximately equal to 5% of the image

width. The performance of streaming peak elimination algorithm increases with the

image size because larger image contains more threads that allow the scheduler to

better cope with the global memory latency, cache misses, etc. There is a simple

rule of thumb that more threads bring better performance until a sufficiently large

number of threads is achieved, for which the performance saturates. The same

performance growth is also observed for the Morard algorithm.

The OpenCV 2.2 implementation does not follow this trend of the performance

growth, but on contrary it drops down. The reason is that OpenCV implements

the morphological operators in a less efficient way (of complexity O(l), l is length

of the SE); therefore, the larger image using proportionally larger SE implies lower

performance.

In the second benchmark in Fig. 4.25, we display the impact of variable SE

size on our algorithm. In contrary to the CPU when the performance was nearly

constant, we can observe a slight decrease of the throughput w.r.t. the SE size.

This phenomenon can be explained by the use of shared memory, the amount of

74 4. Algorithm Description

0.4 1.6 6.6 26.2 104.9
10

25

50

100

250

500

1000

→ Size of image [Mpx]

→
 P

e
rf

o
rm

a
n

c
e

 [
M

p
x
/s

]

Peak elimination 0°

Peak elimination 90°

Peak elimination 45°

OpenCV_GPU 0°

OpenCV_GPU 90°

OpenCV_GPU 45°

Morard 0°

Morard 90°

Figure 4.24: Performance of GPU opening versus the image size, SE is approx.

5% of the image width. We used D15 texture from [T. Randen 2012].

2 4 8 16 32 64 128 256
100

250

500

1000

2500

→ Size of SE [px]

→
 P

e
rf

o
rm

a
n

c
e

 [
M

p
x
/s

]

Peak elimination 0°

Peak elimination 90°

Peak elimination 45°

OpenCV_GPU 0°

OpenCV_GPU 90°

OpenCV_GPU 45°

Figure 4.25: Performance of GPU opening versus SE size, image

[T. Randen 2012] D15 5120×5120

which is limited. So for larger SEs when the size of queue exceeds the per-thread

dedicated amount of shared memory, the slower global memory must be used. On

the other hand, the performance saturates on a value exceeding 1000 Mpx/s for

arbitrarily long SEs.

4.5 Conclusions

We have discussed the Dokládal dilation algorithm, its properties, and how instances

of this algorithm can be concatenated in order to compose 2-D SEs, either rectan-

gular or polygonal. Even for 2-D SEs, it preserves the sequential access to data and

small latency, the properties that are very favorable to the hardware implementa-

tion. In addition, the benchmark-verified constant complexity O(1) suggests that

the prospective implementation shall be efficient for a large scale of SE sizes, which

4.5. Conclusions 75

is an important intention of our contribution.

As for the streaming peak elimination algorithm, the main principles of the algo-

rithm and how it can make use of a queue memory were described. Then we enriched

the algorithm with the capability of obtaining the pattern spectrum at effectively

no additional cost. The direct computation of the pattern spectrum conveys a sig-

nificant speed-up against a conventional approach using residue of opening. The

algorithm also supports arbitrary angle orientation of the SE that enlarges the fam-

ily of possible applications by those involving the notion of orientation, such as thin

feature enhancement, local orientation measure, or oriented spectrum.

The algorithm retains the sequential access to data and minimal latency re-

gardless the orientation of the SE. The importance of the considered sequential ac-

cess was also supported by the GPU implementation that achieves the best results

among several GPU solutions partly thanks to the sequential access. Furthermore,

it computes opening and a pattern spectrum in O(1), that is independently of the

SE size. Taking into account the implementation on a GPU and an FPGA, the

proposed opening and pattern spectrum algorithm is an important contribution to

the state of the art. Even though the CPU performance is only moderate, the algo-

rithm achieves the highest performance to date using a GPU. All these properties

suggest that the streaming peak elimination algorithm should suit well the dedi-

cated hardware platform and allow for an efficient implementation, especially for

large SEs.

5 Hardware Implementation

Contents

5.1 1-D Dilation Architecture . 78

5.1.1 Horizontal Architecture . 79

5.1.2 Vertical Architecture . 80

5.1.3 Reducing the Impact of Data Dependency 81

5.2 2-D Rectangular Dilation Architecture 83

5.2.1 Parallel Rectangle Architecture 86

5.2.2 Conclusions . 89

5.3 2-D Polygonal Dilation Architecture 90

5.3.1 1-D Line Unit Architecture 90

5.3.2 Polygon Unit Architecture . 92

5.3.3 Parallel Polygon Architecture 94

5.3.4 Conclusions . 96

5.4 1-D Synchronous Dilation Architecture 97

5.4.1 Conclusions . 101

5.5 1-D Opening and Spectrum Architecture 101

5.5.1 Arbitrary Orientation . 102

5.5.2 Conclusions . 106

5.6 Conclusions . 106

This chapter deals with the hardware implementation of basic morphological

operators, which constitutes one of the main contributions of the thesis. We al-

ready know that most of the previous proposals followed the naive computation

taking advantage of the massive parallelism in the dedicated hardware, especially

FPGAs. However, while increasing the SE size, the naive approach becomes even-

tually inefficient by means of performance or hardware resources.

We, on the other hand, have decided to use efficient algorithms O(1) that are

expected to allow for an implementation that retains its efficiency for various sizes

and shapes of SEs. From all O(1) algorithms, the Dokládal dilation algorithm

and the streaming peak elimination opening algorithm showed the most convenient

properties for the dedicated hardware. The description is structured as follows.

First, we focus on the implementation of the Dokládal algorithm that forms a

basic programmable 1-D block supporting either horizontal and vertical SEs (pub-

lished in [Bartovský 2010]). Thanks to the separability, it can be used as a building

brick in concatenations of any length. We illustrate this inter-operator parallelism

below on the 2-D rectangular dilation. Then, we introduce the further intra-operator

parallelism that almost linearly increases the performance of rectangular SEs (in

[Bartovský 2011b]).

78 5. Hardware Implementation

Second, we extend the basic 1-D block to compute inclined SEs and create a

pipeline concatenation of such blocks that provides a polygonal SE within a single

image scan. The intra-operator parallelism is also employed (in [Bartovský 2012b]).

Last, we implement streaming peak elimination algorithm and provide a pro-

grammable block supporting the oriented opening and pattern spectrum. This

block can take advantage of inter-operator parallelism to speed up computation of

the applications that includes multiple opening or pattern spectrum operations (in

[Bartovský 2012c]).

5.1 1-D Dilation Architecture

At first glance at the 1-D Dokládal algorithm presented in Section 4.1, it is clear

that it comprises an inherent sequential behavior. It contains a while loop with an

a priori unknown number of iterations that can not be unrolled. The common way

to implement such a system is the Mealy Finite State Machine (FSM) [Mealy 1955].

The FSM is generally an abstract machine that can be in one of a finite number

of states. It changes the state upon some triggering condition called a transition.

During a transition one command or a signal can be issued, used for various purposes

(typically control of some underlying system).

In our implementation the FSM manages the algorithm behavior, controls the

input and output dataflow, and issues all the FIFO operations to the queue. It

consists of 2 main states {S1, S2}, see Fig. 5.1 for state diagram.

S1

S2

End

Start

push(Q, {F, rp});
pop(Q);

return (front(Q).val);

return (front(Q).val);

dequeue(Q);

back1(Q).val > F

End of data

not End of data

back1(Q).val ≤ F
output:

output:

output:

output:

Figure 5.1: State diagram of the 1-D algorithm FSM. State transition conditions

are typed in bold; the output signals are given in gray rectangles.

The S1 state dequeues useless values of Alg. 2 on page 2. It is a data-dependent

stage of the algorithm as it dequeues an a priory unknown number of pixels. This

is represented in the code by the while statement (code line 1). Consequently, its

computation time varies from 1 to l clock cycles (l denotes the length of the SE)

in the worst case when all the previously stored pixels are useless. The enqueue

current sample operation (code line 3) is issued upon the transition from S1 to S2.

5.1. 1-D Dilation Architecture 79

The S2 state handles code lines 4 and 5, delete too old values, and the lines 6 to

9 return valid value or return empty. These instructions are independent and simply

executed in parallel. Consequently, the execution of S2 takes only one clock cycle.

In the following we will describe architectures supporting horizontal and vertical

SEs separately.

5.1.1 Horizontal Architecture

The hardware implementation for horizontal SEs is divided into 2 areas (Fig. 5.2),

the FSM part and the memory part. The FSM manages the entire computing

procedure and temporarily stores values in the memory part. The memory part

contains one queue implemented in the dual-port RAM memory. The Control unit

is a sequential circuit that manages the state transitions. It increments the rp,

wp and manages the rp counter appropriately. The Control unit also performs the

queue memory operations and handles the backward full flag used for a dataflow

control.

A >< B

F
S

M
M

E
M

O
R

Y

QUEUE

>

<

=

push

back1 dequeue, pop

front

+counter rp

+ counter wpINPUT
OUTPUTcomparator 1

Input fifo empty Output fifo full

A ≤ B ≤

A - B

comparator 2
A < B<

comparator 3
l
right

l
left

Dilation / Erosion

C
O

N
T

R
O

L
 U

N
IT

Figure 5.2: Overview of the 1-D horizontal architecture. The FSM part manages

computation, the memory part contains one queue.

Principle

In the beginning of S1, the last queued pixel is invoked by the back() operation

from the queue and fetched to Comparator 1 where it is compared with the current

sample. The Control unit decides on the basis of comparison results and selected

morphological function (dilation or erosion) whether the enqueued pixel is to be

dequeued (lines 1-2). Otherwise, the current pixel is extended with the reading

position rp and enqueued (line 3).

The S2 invokes the oldest queued pair {F , rp} by front() operation. The read

pixel is a correct result if rp has already reached or exceeded the lright parameter.

80 5. Hardware Implementation

This output condition (line 6) is checked by Comparator 2. The deletion of outdated

values is performed by comparing the reading position of the oldest pair with the

current wp minus the lleft length in Comparator 3. Notice that the deletion has

no impact on the output dilation value because the pop() operation (lines 4 and 5)

issued by the Control unit has effect only with the next clock edge.

The entire set of parameters, i.e., SE dimensions and selection of the morpho-

logical function, is run-time programmable. These parameters have to be set before

processing a frame. In addition, no further controller is needed; the internal be-

havior is driven only by the regular scan order dataflow. Such a processing unit is

sometimes called data-stream-driven machine as the incoming dataflow triggers the

computation.

5.1.2 Vertical Architecture

The architecture supporting vertical SEs stems from the horizontal one and is de-

picted in Fig 5.3. The main distinction is that the vertical architecture does not

have in the memory part only one queue but N queues called Array of queues AQ

in Section 4.2.1. As the algorithm uses only i-th queue AQ(i) in the i-th column,

the whole AQ can be considered as a set of independent, parallel queues that can

be addressed by one variable called page. Then keeping page equal to the column

coordinate will handle the appropriate switching of queues such that the pixels in

each column are not mixed up with pixels in other columns. That conforms to the

desired column-by-column image partitioning. Incrementing page variable is car-

ried out by the page counter that is incremented with every new pixel and reset at

the end of the image line.

A >< B

F
S

M
M

E
M

O
R

Y

QUEUE

>

<

=

count. page +

push

back1 dequeue, pop

front

+counter rp

+ counter wp
INPUT OUTPUT

comparator 1
Input fifo empty Output fifo full

A ≤ B ≤

A - B

comparator 2
A < B<

comparator 3

N times

l
down

l
up

Dilation / Erosion

C
O

N
T

R
O

L
 U

N
IT

Figure 5.3: Overview of the 1-D vertical architecture. The FSM part manages

computation, the memory part contains N queues called Array of queues.

5.1. 1-D Dilation Architecture 81

5.1.3 Reducing the Impact of Data Dependency

Hereafter, we briefly describe two techniques brought to the system to obtain a

higher throughput and lesser area occupation. This optimization affects both ar-

chitectures described above, however, the impact is more significant for the more

complex vertical architecture.

Number of Dequeue Steps

The data dependent number of dequeue steps (below denoted by Steps) has unpleas-

ant consequences on the hardware design: longer balancing FIFOs (see Fig. 5.6),

lower data throughput. The number of pixels stored in the queue is within the in-

terval [1, l). For a hardware design it is important to minimize the worst-case upper

bound Stepsorig=l− 1. The worst case appears when the queue is full and the cur-

rent input pixel is greater then all the queued pixel, which therefore have to be

erased at once.

Suppose that we are about to dequeue D pixels at a given moment. We know

that the pixels are queued in a strictly decreasing order. Thus, if the DL-th pixel

(DL < D) can be dequeued, all previous pixels can be dequeued, too. This can be

done in a single atomic operation. The number of dequeue steps is then given by

Steps = D divDL+DmodDL, (5-1)

where div and mod denotes the integer division and the remainder operations. The

term D divDL represents the number of large dequeue steps (DL pixels at the time)

and DmodDL the number of ordinary dequeue steps (1 pixel) for given values of D

and DL. For example, let D = 30 and DL = 7. Steps is then equal to 30 div 7 = 4

large steps of 7 pixels each and 30mod 7 = 2 ordinary steps.

When searching for the worst case, we have to examine all the possible values

of D for the given length of the SE l, such as D∈[1, l). The worst-case number of

dequeue steps reduces to

StepsWC = max
D<l

(D divDL+DmodDL). (5-2)

For example let l = 31 and DL = 7. When we set D = l− 1 = 30, Steps is equal to

6 as computed above. However, what if only 27 pixels are to be dequeued? Then

Steps = 27div 7 + 27mod 7 = 3 + 6 = 9 is actually worse than the former case of

30 pixels, and proves that the search over all D < l is necessary.

In order to find the optimal worst-case number of dequeue steps Stepsoptim, we

minimize the worst case (5-2) over all possible DL values such as

Stepsoptim = min
DL<D

max
D<l

(D divDL+DmodDL). (5-3)

The argument of the DL minimization gives us the optimal value DLoptim that

ensures the minimal number of the worst-case dequeue steps such as

DLoptim = arg min
DL<D

max
D<l

(D divDL+DmodDL). (5-4)

82 5. Hardware Implementation

Table 5.1 presents the original and optimal number of dequeue steps for some SE

sizes. Notice that more than one DLoptim can exist. The DL is also a programmable

parameter of the proposed architecture so its value can be modified when different

l is used.

Table 5.1: Optimal dequeue length, original and reduced number of

dequeue steps for selected SE sizes

SE size l 3 11 21 31 41

Stepsorig 2 10 20 30 40

DLoptim 2 3, 4 4, 5, 6 5, 6, 7 6, 7

Stepsoptim 2 4 7 9 10

A><B

A><B

F
S

M
M

E
M

O
R

Y

QUEUE

>

<

=

>

<

count. page +

rp mod l +

push

back1

back2
DL

dequeue, pop

front

+ counter rp

+ counter wp
INPUT OUTPUT

comparator 1
Input fifo empty Output fifo full

comparator 4 A≤B

Switch

request

logic

≤

comparator 2

A<B<

comparator 3

N - vert.

1 - horiz.

l
right

l
left

+l
right

Dilation / Erosion

C
O

N
T

R
O

L
 U

N
IT

Figure 5.4: Overview of the optimized 1-D vertical architecture. Comparator 4

is added for DL dequeuing, and deleting outdated values is simplified.

The DL dequeuing needs DL-th pixel from the back to be fetched from the

queue, so the queue is extended by the back2DL operation for this purpose, see

Fig 5.4. The retrieved value is then compared against the current input pixel,

and the Control unit dequeues either DL pixels, one pixel, or none depending on

the outcome of comparators. Notice that the added memory port and comparator

do not increase a number of cycles to process a pixel as the dedicated hardware

performs the respective operations in parallel (the queue is implemented in a dual-

port memory, so reading two values on different addresses at the same time is

possible).

The DL dequeuing significantly decreases the number of worst-case dequeuing

steps, e.g. for l = 31, from Stepsorig = 30 to Stepsoptim = 9. This optimization is

convenient for hardware implementation as the processing is more regular and the

balancing FIFOs may be smaller, see (5-5) (5-6) below.

5.2. 2-D Rectangular Dilation Architecture 83

Pixel Addressing

The absolute pixel addressing in the queues can be advantageously replaced in the

hardware by using the modulo addressing. Hence, instead of the absolute reading

position rp, we use the relative modulo position rpmod l. The pixels are enqueued

by push(Q, {f, rpmod l}) (code line 3).

The delete condition of line 4 changes accordingly. Using the modulo addressing,

a stored pixel becomes outdated whenever its modulo address equals the current

pixels’s one (rpmod l =front(Q).val).

The advantage of the modulo addressing is a smaller data width. It fits into

⌈log2(l−1)⌉ bits, whereas the absolute addressing requires ⌈log2(N −1)⌉ bits. This
is mainly advantageous for vertical orientation which needs N queues per a unit.

5.2 2-D Rectangular Dilation Architecture

As we know, dilation is separable into lower dimensions, e.g., δR(f) = δH⊕V (f) =

δV (δH(f)), see (4-2). The dilation by a rectangle can be implemented as a con-

catenation of two 1-D dilation blocks working with horizontal and vertical SEs.

Before connecting two processing blocks into a pipeline we study their latency and

processing pixel rate.

Considering the operator latency, the latency introduced by the dependence on

the future data samples, the horizontal architecture shows latency of lright pixels

and the vertical architecture ldownN pixels (recall N denotes the image width). The

value of this latency is highly dependent on the size of the SE, and it is given in

terms of pixel-delay between input and output dataflows.

The computing latency measures the number of clock cycles needed for process-

ing one pixel. In both horizontal and vertical cases its value is highly dependent

on image contents, it varies from pixel to pixel. This latency consists of 1 to

1 + Stepsoptim iterations of the FSM state S1 and 1 iteration of S2. The best-case

computing latency of 2 clock cycles happens when there is no pixels to dequeue

(constant or decreasing signal, empty queue, etc.). The worst case arrives whenever

a monotonously decreasing signal is followed by a value greater than the previous

signal, see Fig. 5.5 for an example. The pixels of the decreasing interval have to

be stored in the queue for a possible future use in the computation filling up the

queue in Fig. 5.5 (a). When a high value arrives in Fig. 5.5 (b) all pixels stored in

the queue have to be discarded at once. As an a priory unknown number of pixels

may be dequeued, the computing latency varies in the interval [2, 2 + Stepsoptim].

The average pixel rate denotes the number of clock cycles needed per pixel in

average and it stays in the interval from 2 clock cycles per pixel for the best-case

image (e.g., constant image), up to 3 clock cycles per pixel for the worst-case image

(it is not a random noise but saw-shaped signal as shown in Fig. 5.5). The best-case

2 cycles per pixels (one S1 and one S2) takes place when no pixels are dequeued,

the worst-case 3 cycles per pixel arrives when all the processed pixels are dequeued

84 5. Hardware Implementation

(a) rp=6, wp=1 (b) rp=7, wp=2

rp

wp

1

1

2

3

4

5

2 3 4 5 6 7 t

f (t)
Value Position

4 2

3 3

2 4

1 5

0 6

rpwp

dequeue(Q)

dequeue(Q)

dequeue(Q)

dequeue(Q)

dequeue(Q)

1

1

2

3

4

5

2 3 4 5 6 7 t

f (t)
Value Position

4 2

3 3

2 4

1 5

0 6

Figure 5.5: Illustration of the worst-case computing latency for an anti-causal

SE l = 6. (a) The queue is full after processing the decreasing signal, (b) the

following high value causes that the queue has to be emptied at once.

(it adds one cycle per pixel in average). The current rate between 2 and 3 clock

cycles per pixel depends on the image contents.

wp

rp

x 1-D

dilation

1-D

dilation

balanc.

FIFO

input

FIFO

output

FIFO
horizontal unit vertical unit

Figure 5.6: 2-D implementation is composed of two 1-D blocks, one for each

direction.

In order to concatenate the processing units with different and varying latency

and processing rates, we need to use some coupling elements to balance the dif-

ference. The most common solution is insertion of a FIFO memory as shown in

Fig 5.6. The depth of this FIFO directly defines the upper bound of the system

latency of the 2-D block and increases memory requirements. In cases when pre-

serving continuity of the input/output dataflows is crucial, that is the dataflows are

not interruptible and the processing must be stall-free, the necessary depths of in-

put and balancing FIFOs can be computed from the dequeuing worst case and the

stream rate (a number of clock cycles per pixel) as follows

Finput =
Stepsoptim + 2

StreamRate
− 1 (5-5)

Fbalance = N

(
Stepsoptim + 2

StreamRate
− 1

)
. (5-6)

The output FIFO ensures a permanent stream delay in all circumstances. Its

maximal size is a sum of both FIFOs (input and balancing). The instantaneous

filling of output FIFO is complementary to the filling of both FIFOs combined.

The overall delay does not change. If more 2-D blocks are pipelined to form com-

pound operators (e.g., opening, closing, ASF), only one output FIFO at the end is

necessary.

The output and balancing FIFOs can be merged (see Fig. 5.7) into one memory

thanks to the following properties: i) the vertical unit reads exactly one pixel from

5.2. 2-D Rectangular Dilation Architecture 85

balancing

FIFO

output

FIFO

0

depth of

output FIFO

output.front

balancing.back

output.back

balancing.front

input FIFO

merged !fo

1-D

DILAT
1-D

DILAT

horizontal unit

vertical unit

IN
OUT

Figure 5.7: Merged FIFO replaces the balancing and output FIFOs to reduce

memory requirements.

the balancing FIFO for each pixel written to the output FIFO. Consequently, filling

of these two FIFOs is complementary; the occupied memory spaces can not collide

with each other, ii) the read/write activity is at most 1 access per 2 clock cycles.

Hence, reading ports of both FIFOs can use one memory port and the writing ports

can use the other memory port (without overloading). Merging both FIFOs reduces

the memory to approximately one half. The result merged memory (see Fig. 5.7)

has two pairs of standard FIFO ports, but it contains only one dual-port RAM.

Memory Requirements

The memory requirements of the 2-D architecture consist of horizontal and vertical

computation-involved queues and two balancing FIFOs, defined by (5-5) and (5-6).

The size of the queue is equal to the upper bound of the programmable SE size.

In the vertical case, the algorithm uses many queues. Instantiating N separated

memories would be resource inefficient because the FPGA RAM blocks could not

be exploited. Instead, these queues are gathered in a single dual-port memory (see

Fig. 5.8) since only one queue is accessed at the time (the others are idle). A single

memory block also allows usage of either on-chip block memory or off-chip memory.

Queue 1 Queue 2 . . . Queue N

0 H-1 2*H-1 ((N-1)*H)-1 N*H-1Address:

Q1.back

Q1.front

Q2.back

Q2.front

QN.back

QN.front

Figure 5.8: Vertical queues are mapped into linear memory space side by side.

The front and back pointers are stored in a separated memory.

Every queue has a related pair of front and back pointers which must be retained

throughout the entire computation process. The appropriate pair is always read

before the particular queue is used and the result pointers are stored back after

the computation left the queue. These pointers are stored in a separated pointer

memory. The queues are efficiently packed into RAM blocks resulting in a small

memory extension.

Let W×H denote the width×height of the rectangular SE, and bpp bits per

pixel. The memory requirements per a 2-D unit is given by:

Mhor =W (bpp+ ⌈log2(W − 1)⌉) [bits] (5-7)

Mver =N(H(bpp+ ⌈log2(H − 1)⌉) + 2⌈log2(H − 1)⌉) [bits] (5-8)

86 5. Hardware Implementation

The following example illustrates very low memory consumption achieved thanks

to the stream processing. Neither the input, output, nor any intermediate image is

buffered.

Example: Consider a dilation of 8-bit SVGA image (i.e., 800×600=N×M) by

a square, 31x31 SE. The computation (the queues) requires (5-7) and (5-8)

Mhor = 31(8 + 5) = 403 bits

and

Mver = 800(31(8 + 5) + 2× 5) ≈ 330.4 kbits

resulting in a total of 331 kbits for the 2-D dilation.

The input and the balancing FIFOs for stall-free stream processing require (5-5)

and (5-6)

Finput + Fbalance = (N + 1)

(
Steps+ 2

StreamRate
− 1

)
8bit =

= (800 + 1)

(
9 + 2

3
− 1

)
8bit ≈ 17 kbits

The total memory needed to implement the 2-D dilation is 331+17=349 kbits. This

is far below the raw size of the image itself 800 × 600 × 8bpp≈ 3.84 Mbits which

does not need to be stored.

These low memory requirements allow to fit the architecture to small devices

supporting large images. It should be pointed out that memory requirements are

larger for landscape images (N > M) than for portrait images (N < M). Another

important aspect is that the architecture can be dimensioned to different image size

by only changing the size of the memory, which can be placed out of the chip.

5.2.1 Parallel Rectangle Architecture

This section develops and implements the concept of intra-operator parallelism in

the dilation/erosion operator. Its main objective is to increase the pixel rate while

maintaining the beneficial properties of the proposed algorithm, namely sequential

access to data and minimal latency as much as possible. We know that the pixel

rate of the rectangle architecture is in the interval from 2 to 3 clock cycles per

pixel. Such a throughput may not be sufficient for the most demanding application

targeted to high definition images.

The principle of parallelization is based on utilization of concurrently working

units that process different parts of the image simultaneously. The number of units

used in parallel for horizontal and vertical directions defines the parallelism degree

(PD). In the ideal case with a zero overhead, the computation should be sped up

PD times.

Using PD units of each kind in parallel needs us to determine which part of the

image will be processed by each unit, such that each pixel is assign to one unit of

5.2. 2-D Rectangular Dilation Architecture 87

each kind. This process is commonly called partitioning. Considering that the input

data are fetched line by line, we propose a solution minimizing the waiting-for-data

periods of all units.

The partition of the image among horizontal units is interleaved line-by-line,

such that i-th line is processed by {((i − 1)modPD) + 1}-th horizontal unit. The

vertical units use the partition into compact blocks of height M and width N/PD

(if N modPD 6= 0, some of the blocks may be 1 pixel wider than the others). The

image partition for 2-D dilation conforms to the intersection of the two partitions

(Fig. 5.9). Its granularity is determined by PD .

Horizontal

H1
H2
H3
H1
H2
H3. . .

. . .

. . .

. . .

Vertical

○ =V1 V2 V3

H1○V1
H2○V1
H3○V1
H1○V1
H2○V1
H3○V1

H1○V2
H2○V2
H3○V2
H1○V2
H2○V2
H3○V2

H1○V3
H2○V3
H3○V3
H1○V3
H2○V3
H3○V3

Final segments

Figure 5.9: Example of image partition for PD =3: image is divided horizontally

line by line and into PD equal stripes in a vertical direction. The final image

partition is obtained by intersection.

During the parallel processing, the computation runs simultaneously at multiple

segments of the image, see Fig. 5.10. These segments must belong to different

columns and lines, i.e., must be placed on a diagonal. It is given by the fact that

one unit can compute only one segment at the time, so e.g., segments H1◦V1 and

H2◦V1 can not be processed at the same time because V1 can not compute two

segments simultaneously. Also all the units computes segments in the order of the

horizontal data scan.

H1

H2

H3

V1

V2

V3

H1

H2

H3

V1

V2

V3

H1

H2

H3

V1

V2

V3

H1

H2

H3

V1

V2

V3

. . .

. . .

. . .

H1○V1

H2○V1

H3○V1

H1○V1

H1○V2

H2○V2

H3○V2

H1○V2

H1○V3

H2○V3

H3○V3

H1○V3

. . .

. . .

. . .

H1○V1

H2○V1

H3○V1

H1○V1

H1○V2

H2○V2

H3○V2

H1○V2

H1○V3

H2○V3

H3○V3

H1○V3

. . .

. . .

. . .

H1○V1

H2○V1

H3○V1

H1○V1

H1○V2

H2○V2

H3○V2

H1○V2

H1○V3

H2○V3

H3○V3

H1○V3

. . .

. . .

. . .

H1○V1

H2○V1

H3○V1

H1○V1

H1○V2

H2○V2

H3○V2

H1○V2

H1○V3

H2○V3

H3○V3

H1○V3

(a) (b) (c) (d)

Figure 5.10: Image partitioning and switch routing in parallel processing for PD

=3. Decomposed in time: (a) beginning of processing, (b)–(d) after kN pixels,

k=1..3. The shading denotes the state: Dark gray - being computed, light gray -

already computed, white - waiting.

The input data rate can be theoretically PD-times faster than the computational

throughput of the unit. Therefore, each image line needs to be buffered in a line

buffer, so there are PD input line buffers and PD output line buffers. According to

the partitioning, the i-th buffer stores {i+(k−1)PD}-th image line. The input line

88 5. Hardware Implementation

buffers are filled at the external, fast pixel rate and read by the internal PD-times

slower rate.

Figure 5.10 gives an example for PD = 3, hence we have three horizontal (H1–

H3) and tree vertical (V1–V3) processing units. As soon as the line buffer receives

the first pixel, the first horizontal unit H1 starts the processing and feeds results to

the first vertical unit V1. Its output is fed to the first output line, see Fig. 5.10(a).

After N received pixels, the output of H1 is connected to V2 which is connected

to output line 1. Since the H1 left V1 and line 2 is already being read, the H2 can

start processing second line feeding V1 connected to output line 2, see Fig. 5.10(b).

As soon as 2N input pixels have been received, the H1 connects to V3, H2 connects

to V2 and H3 connects to V1, see Fig. 5.10(c), and so on.

The parallel architecture depicted in Fig. 5.11 contains four separable generic

parts scalable by PD : input buffer, horizontal and vertical parts and output buffer.

The input buffer is mainly composed of 1-to-PD multiplexer and PD line buffers.

It divides the fast input stream into PD (PD-times slower) streams processed by

computation units as the i-th image line is connected to the {((i−1)modPD)+1}-
th line buffer. The output buffer merges PD slow streams of the processed data

into a single fast output stream respecting the image horizontal scan order. The

operator blocks can be concatenated into more complex functions (opening, closing,

ASF, etc.), the buffers are used only at the beginning and at the end of the chain.

H1

H2

HPD

INPUT BUFFER HORIZONTAL PART

. . .

. . .

. . .

. . .

. . .

. . .

VERTICAL PART OUTPUT BUFFER

Stream clock Processing clock Stream clock

switch

basic

unit

basic

unit

basic

unit

line bufferline buffer fifomux fifo demux

V1

V2

VPD

switch

basic

unit

basic

unit

basic

unit

Figure 5.11: Overview parallel 2-D architecture. The horizontal and vertical

stages can be instantiated several times between input/output buffers to create

compound operators.

Both horizontal and vertical parts instantiate PD balancing FIFOs, PD hori-

zontal or vertical units, and one switch that manages the interconnection. Each

horizontal unit along with the front-end FIFO conforms to Section 5.1.

The width of segments proportionally affects both vertical memories, see (5-6)

and (5-8). The area of every horizontal unit remains unchanged, since every unit

processes the entire line. The overall memory of the horizontal part is a factor of

PD . Contrarily, the memory requirements of every vertical part is divided by PD

because it processes only a fraction of the original image width.

5.2. 2-D Rectangular Dilation Architecture 89

Switching

The routing of the computation units is handled by a switch block. Every switch

contains PD input ports from previous units and the same number of output ports

linked to the subsequent units. The purpose of the switch is to manage up to

PD interconnection channels. Notice that they are bidirectional: forward data and

backward FIFO full flag. As described in Fig. 5.10, the output switching of all

input ports is circular, i.e., V1, V2 ... VPD , V1, V2, ... and so forth. This property

makes the switching easier because the only condition to evaluate is when to switch

and whether the requested output resource is available; the destination port is given

by the sequence. The switching moment is provided by the preceding unit switch

request logic which generates a switch request impulse every time it crosses the

border of adjacent segments.

...

...
. . .

Control

block A

A(1:PD) - destination identifier

A:N(1) - source identifier

B:N(1)N(1:PD) A(2)
set of

Fifo full

set of

Input data
A(PD)

Halt

Fifo full

Input data

IN
P

U
T

 P
O

R
T

 A

 Signals to/from switch basic units for ports B:N
O

U
T

P
U

T
 P

O
R

T
 AOutput data

Fifo full
Switch

request

Figure 5.12: Basic unit of the switch. Every switch contains n basic units for a

correct routing between n input/output ports.

Figure 5.12 depicts the basic unit of the switch for one pair of input/output

ports referred to as A. For PD pairs of ports this circuitry is instantiated PD-

times. Each input port possesses a related control unit block that manages all

channel transitions considering the availability of the requested partition. If this is

still occupied, the requesting computation unit is stalled by holding its FIFO full

flag active.

5.2.2 Conclusions

In the previous paragraphs we have implemented the Dokládal algorithm in the form

of the 1-D horizontal and vertical units and concatenated them to constitute the

2-D rectangle unit. The rectangle unit processes the image of programmable size

in a stream by either erosion or dilation using the rectangular SE of programmable

size. All these parameters are programmable until their respective upper bounds

that are application-specific and used in the synthesis process as constants affecting

the system clock frequency and FPGA area occupation. The memory requirements

90 5. Hardware Implementation

are very small and the latency is mostly equal to the operator latency (given by

causality of the SE). In order to speed up the computation we have applied the

concept of intra-operator parallelism that allows us to linearly increase the pixel

rate of the simple rectangle unit at the cost of increased FPGA area occupation.

The proposed rectangle unit supports simple unit concatenation, so many units

can be connected one after each other to create a pipeline that computes the whole

application in one image scan. This is very advantageous for traditionally costly

operators like the ASF and granulometry.

5.3 2-D Polygonal Dilation Architecture

The rectangular SEs described so far have one unpleasant property for image pro-

cessing, the angular anisotropy. In the applications of size measurement or image

enhancement, one prefers to use more isotropic SEs that affect the image equally

in all directions. Because circles with a programmable diameter are very difficult

to implement efficiently, one uses approximation by regular polygons that can be

decomposed into lines. The theoretical background of this decomposition has been

given in Section 4.3 on page 52. Any 2n-top regular polygon SE P2n can be decom-

posed into a set of n line SEs Lαi

P2n = Lα1
⊕ · · · ⊕ Lαn︸ ︷︷ ︸
n times

, (5-9)

hence from

δP2n
(f) = δLα1

(. . . δLαn︸ ︷︷ ︸
n times

(f)). (5-10)

A hexagon can be obtained by three Lαi
oriented in αi = 0◦, 60◦, and 120◦ on

a 6-connected grid; and an octagon by four Lαi
, αi = 0◦, 45◦, 135◦, and 90◦ on an

8-connected grid. Therefore, we need to enrich the 1-D dilation block described in

Section 5.1, which was designed for the horizontal and vertical orientation only, to

rotate the SE under the angles αi = 45, 60, 120, 135◦. We will call this 1-D dilation

block Line Unit (LU) described in the following.

5.3.1 1-D Line Unit Architecture

The architecture of the LU unit capable of dilation by oriented line segments is

shown in Fig. 5.13. The basic behavior of this architecture conforms to the version

supporting only horizontal and vertical orientation from section 5.1. A few modifi-

cations, however, have been applied to the former version to allow the oblique Lαi
.

We have namely added the Slope control unit, highlighted in Fig. 5.13.

The other modification is that the memory part instantiates one queue in the

case of horizontal segment, N queues in the vertical case (N is the image width),

or N + BH queues in the slope case (BH stands for the horizontal padding size).

5.3. 2-D Polygonal Dilation Architecture 91

Input and output ports are multiplexed; hence a multiplexer select signal can eas-

ily address the one queue to work with at a time. The shifted column address

colshift (4-11) is used as the select signal according to the theoretical description in

Section 4.3.1.

A><B

F
S
M

SLOPE CONTROL

M
E
M
O
R
Y

QUEUE

>

<

=

Position

+

push

back1 dequeue, pop

front

+

+

+

Position

and pointer

counters

col shiftUpdate offset

INPUT
OUTPUTcomparator 1

Input fifo empty Out. fifo full

Set of

output

compar.

A<B <

comparator 2

counter 1

counter 2

Horizontal - 1

Others ≈ N

SE2 SE1

SE1+SE2

Dilation / Erosion

C
O

N
T

R
O

L
 U

N
IT

Figure 5.13: Overview of Line Unit architecture. The FSM part manages com-

putation, memory part contains the data storage–queues.

The purpose of the Slope control is to select the corresponding queue memory

which is currently used by Alg. 2. The queues are addressed by the colshift counter,

which is incremented with every pixel of the input image because any two hori-

zontally adjacent pixels belongs to different corridors, recall ki = tanαi ≤ 1, and

reset at the end of image line. The initial reset value of the colshift counter is offset

(introduced in Section 4.3.1).

error

Short leg

A - B

subtracter sign bit (1 for negative)

A + B

0

1 up/down

Fall/Rise slope

offsetadder

register

Offset

counterEnd of line

constant

Long leg
constant

Figure 5.14: Inner schematic layout of Update offset block.

The offset is updated at the end of every image line. For some general in-

clination, it is done on a basis of one iteration of the Bresenham line algorithm

that is implemented as shown in Fig. 5.14. It can handle any angle the tangent

of which can be expressed as a rational number. In such a case the angle can be

expressed by legs of the right triangle including it. For instance, one can use leg

constants 26 and 15 for hexagonal SE on an 8-connected grid as the angle is equal

to α = arctan(26/15) = 60.02◦. As we have already shown, the SEs with angles

αi 6= i45◦, i ∈ N are translation variant that makes them unfeasible for some appli-

cations, and therefore, we use hexagons on 6-connected grid only. The use of proper

92 5. Hardware Implementation

connectivity simplifies the computation of offset because k45◦ = 1 and k60◦ = 2 are

both integers. Then the circuit for Bresenham algorithm can be replaced by the

combination of a simple counter and a 2× frequency divider. The sense of the

slope is defined by the offset counter direction; up-counting for a fall slope and

down-counting for a rise slope.

5.3.2 Polygon Unit Architecture

The previously described LU units can be arranged in a sequence to form a 2-D

polygon unit called Polygon Unit (PU). It is allowed by the LU property of the

strictly sequential input and output data access. The overall architecture of the

PU unit, Fig. 5.15, is composed of three different purpose parts: computation part,

controller, and padding part.

The computation part mainly contains four LUs for distinct Lαi
. There are the

horizontal unit (α1 = 0◦), the rise inclined unit (α2 = 45◦ or 60◦), the fall inclined

unit (α3 = 135◦ or 120◦), and the vertical unit (α4 = 90◦) connected in a simple

pipeline; the output of each unit is read by the successive unit which processes the

image by further Lαi
. The computation part is able to operate either with hexagon

or octagon SE. The vertical unit is bypassed in the case of hexagon SE.

Note that the output of every computation unit is a partially processed, scan-

ordered image data which can be brought out and used for another purpose, e.g.,

a multi-scale analysis descriptor. Then the dilation by line, rectangle, and octagon

SEs (all centered) can be obtained during a single image scan (considering units

re-ordering). Only the Remove padding block is to be cloned several times for each

output data stream.

Slope

FIFO

Horiz.

FIFO

Add

padding

Input

FIFO
Remove

padding

Output

FIFO

Controller
SE size

Diameter

Input

Border

Vertical

FIFO

Slope

FIFO

Computation part

Shape

Output

1α
LU

2α
LU

3α
LU

4α
LU

Figure 5.15: Overall architecture of polygonal PU unit. It contains one LU for

each δLαi
of (4-7), control, and border handling unit.

According to the borders handling in Section 4.3, the inclined units need the

padding to extend the original image at the front end of the processing. The very

same padding is removed after the last 1-D unit. It is carried out by a pair of dual

padding handling blocks at the beginning and the end of computation part.

The controller ensures the correct global system behavior. It accepts the SE

diameter and the shape select signal, then it deduces particular SE sizes for ev-

ery LU and padding from them, and initiates the computation. The entire set of

5.3. 2-D Polygonal Dilation Architecture 93

parameters, i.e., the image width and height, SE features (size and shape), and mor-

phological function select is run-time programmable at the beginning of the frame.

These parameters are run-time programmable within the upper bound specified

during the synthesis.

For instance, consider the SE size upper bound a 91×91 bounding box, and

octagon-capable architecture. This means, the architecture has four LU; each LU

supporting at most l=31 pixels segments. During the operation – at the beginning

of a frame – the SE can programmed to either of the following: a line up to 31 pixel

long, a rectangle up to 31× 31 pixels, or an octagon up to 91× 91.

To enable processing a uniform input stream, one needs to handle unequal pro-

cessing rates of LUs. As we know, the algorithm has a variable latency to compute

a dilation for one pixel. Therefore, the balancing FIFO memories are inserted in

front of each 1-D unit, and to the input and output ports. The depth of input and

output FIFOs depends on the timing of input data stream according to (5-5) and

(5-6).

Memory Requirements

At this moment, let us evaluate the memory requirements of the polygonal unit

PU. Not surprisingly, the obtained formulas are very similar to those obtained for

the rectangular unit. The most significant memory demand is made by the set of

queues. Although the algorithm works with separated queues, the queues within

each LU are merged into a single dual-port memory, mapped side by side in a linear

memory space. Every queue has a related pair of front and back pointers which

must be retained throughout the entire computation process in the pointer memory.

This approach leads to more efficient implementation.

The LUs have the following memory requirements (considering N×M image

including padding, Lαi
with bounding boxes W{H, V, S}×H{H, V, S}, and bpp bits

per pixel):

Mhor =WH(bpp+ ⌈log2(WH − 1)⌉) [bits] (5-11)

Mver =N((HV − 1)(bpp+ ⌈log2(HV − 1)⌉)
+ 2⌈log2(HV − 1)⌉) [bits]

(5-12)

Mslope =(N +WS)((HS − 1)(bpp+ ⌈log2(HS − 1)⌉)
+ 2⌈log2(HS − 1)⌉) [bits]

(5-13)

Example: suppose a dilation of 8-bit SVGA image (i.e., 800×600=N×M) by

a hexagon with radius 41 px. Such a SE is decomposed into horizontal SE 21 px

wide, and 2 slope SE each 11 px wide and 19 px tall (hexagon SE bounding box is

41×37 px).

94 5. Hardware Implementation

The computation memory (the queues) requires (5-11,5-13)

Mhor =21(8 + 5) = 273 [bits]

Mslope =(811 + 11)((19− 1)(8 + 5) + 10) =

=200, 568 [bits]

resulting in a total consumption of Mall = Mhor + 2Mslope
∼= 392 kbits for the 2-D

dilation by hexagon. This is far below the mere size of the image itself Mimage =

800× 600× 8bpp ∼= 3.66 Mbits which does not need to be stored at any moment.

5.3.3 Parallel Polygon Architecture

This section describes the Parallel Polygon Unit (PPU) that aims at increasing the

computational performance while maintaining as much as possible the beneficial

streaming properties of the proposed algorithm as in the case of rectangles. The

parallelism is again achieved through utilization of concurrently working units that

simultaneously process different parts of the image (spatial parallelism). The num-

ber of instantiated units defines the parallelism degree (PD), exactly like in the

rectangle unit case. Since the processing runs in a stream, we propose a solution

that transforms the input stream into a set of PD streams in a way to minimize the

waiting-for-data periods of all units. For the sake of clarity, we use PD=2 in the

description hereafter.

The partition of the input image is twofold, see Fig. 5.16: an interleaved line-

by-line partition for the horizontal α1 units, and vertical stripes for the vertical and

inclined α2, α3, α4 units. The final image partition of 2-D image is the intersection

of both.

Horizontal

H1

H2

H1

. . .

. . .

. . .

Vertical & inclined

Stream switching

○ =V1 V2

H1○V1 H1○V2

H2○V1 H2○V2

H1○V1 H1○V2

Final segments

Figure 5.16: Example of image partition for PD=2: line by line for horizontal

orientation; vertical stripes for non-horizontal orientation.

Intuitively, the streams have to be transformed from one type to the other be-

tween α1–α2, and α4–output in the PU. The transformation is done by simple circu-

lar stream switching when a partition edge is encountered in the very same manner

as with rectangles. With the beginning of the image, it starts with the H1◦V1 seg-

ment at the first line. When the end of this segment is reached, the streams are

switched such that segments H1◦V2 (1st line) and H2◦V1 (2nd line) are processed

at the same time. Later, it proceeds to segments H2◦V2 (2nd line) and H1◦V1 (3rd

5.3. 2-D Polygonal Dilation Architecture 95

line) and so forth. In general PD segments located on a backward diagonal run si-

multaneously throughout the image (note that the streams are mutually delayed by

N/PD pixels).

Processing the partition segments separately introduces undesired border effects

on each partition edge. A common solution – similar to padding at image borders

– is to introduce an overlap of partitions. Contrarily to the padding that adds

recessive values, the overlap extends a partition by a portion of the neighboring

partition. The width of the overlap depends on the size of the SE, and is equal to the

width of the horizontal padding BH. Intuitively, the overlap introduces redundant

computation, and slightly degrades the performance and minimal latency.

Remove

padding

Add

padding

Remove

overlap

Remove

overlap

Add

overlap

Add

overlap
SwitchSwitch

Vertical

units

Inclined

units

Inclined

units

Horizontal

units

Horizontal streams H1, H2

I1 O1

O2
I2

Horizontal streams H1, H2Vertical streams V1, V2

Output

stream 1

Output

stream 2

1α
LU

1α
LU

2α
LU

2α
LU

3α
LU

3α
LU

4α
LU

4α
LU

Input

stream 1

Input

stream 2

Figure 5.17: Overall architecture of the parallel polygonal unit PPU for PD=2.

The controller and balancing FIFOs are omitted.

At this point, all the previously mentioned principles are brought together to

form the Parallel Polygon Unit (PPU). The PPU (see Fig. 5.17) is scalable with

respect to PD, the number of parallel streams it can process at the time. Each

stream needs one pipeline of four LUs (αi, i = 1..4, just like the PU), two add

overlap blocks in front of inclined LUs, two remove overlap blocks behind inclined

LUs, add padding at the front end, and remove padding at the back end. The PPU

also contains a pair of switches to transform the streams from one type to the other.

Figure 5.18 shows the introduction of the overlap in a course of the i-th image

line. As we know, this line is split into two streams. The streams are labeled I1, I2

before the padding addition and O1, O2 after (refer also to Fig. 5.17). The entire

I1 stream plus BH pixels of I2 form O1 output stream with overlap, and last BH

pixels of I1 and the whole I2 stream form O2.

During the overlap sections, either I1 or I2 stream is mapped to both output

streams at the same time. This data duplication temporarily disables parallel pro-

cessing of both streams and may result in stalling of either stream. However, the

effect of the overlap is negligible given BH ≪ N .

Two important properties are to be noted: (i) input and output streams are

mutually delayed by N/PD (ensured by stream switching); (ii) several PPUs can

be chained into a pipe. The result schematic of some application, e.g., an ASF, may

look like Fig. 5.19. At the front end there is an input buffer transforming the input

stream (which is PD-times faster than each of PD processing streams) into PD

96 5. Hardware Implementation

Input streams I1, I2

I1

1

i

i

i

N

1

N

N/2+BH

N/2

N/2–BH

I2

Output streams O1, O2

O1

O2

overlap - I2 extends I1

overlap - I1 extends I2

Figure 5.18: Addition of overlap on one image line

processing streams Hi (i = 1..PD). The transformation only needs i-th image line

to be stored in {imodPD}-th line buffer. In this manner, the processing streams

are properly delayed by N/PD pixels. The output buffer transforms PD processing

streams into one fast stream in the opposite way. One can place as many PPUs as

desired between these two buffers in a pipeline or other topology.

Input buffer Processing pipeline

Parallel

polygon

unit 1

(PPU)

Parallel

polygon

unit n

(PPU)

. . .

. . .

Output buffer

Stream clock Processing clock Stream clock

line buffersline buffersmux demux

Figure 5.19: Overall architecture of parallel ASF application.

The PPU involves the following limitations on the programmability of parame-

ters: the image size is set before synthesis, and padding sizes BH, BV are computed

for the maximal allowed SE, specified before the synthesis. The reason is that han-

dling the varying SE and image sizes would introduce an unreasonable hardware

overhead of image partition, padding, and overlap features. The SE remains fully

programmable.

5.3.4 Conclusions

In the previous paragraphs we have enriched the original implementation of the

Dokládal algorithm (for horizontal and vertical SE) to support the inclined SEs and

called it the Line Unit (LU). Then we have placed four LU units in a pipeline to

obtain the polygon unit. The polygon unit processes the image of programmable

size in a stream by either erosion or dilation using the polygonal SE of programmable

5.4. 1-D Synchronous Dilation Architecture 97

size. All these parameters are programmable until their respective upper bounds

that are application-specific and used in the synthesis process as constants affecting

the system clock frequency. The memory requirements are very small and the

latency is mostly given by the operator latency (given by causality of the SE) and

the padding issue.

In order to speed up the computation of a simple polygon unit we have applied

the concept of intra-operator parallelism that allows us to linearly increase the pixel

rate of the simple polygon unit at the cost of increased FPGA area occupation.

However, the parallelism combined with padding and overlap issues limits the pro-

grammability of the image size, which is an application-specific parameter in the

parallel case.

The proposed polygon unit also supports unit concatenation, so many units can

be connected one after each other to create a pipeline that computes the whole

application such as granulometry or ASF in one image scan.

5.4 1-D Synchronous Dilation Architecture

In this section we describe a synchronous dilation architecture supporting long

line SEs oriented at an arbitrary angle. This architecture uses basic, well-known

principles, such as delay lines and full search for maximum, which has been used

in many past implementations, see Section 3.2.3 of the introduction. However, the

previous work supports either basic SE shapes (horizontal, vertical lines, rectangles

by decomposition) or small 3×3 arbitrary SEs. The methods based on partial-result

reuse provide more complex, usually convex, shapes but the programmability of the

size and shape of the SE is compromised. The architecture proposed in this section

computes dilation by translation-invariant, arbitrary-oriented line SE that has not

been reported in the literature yet. The length and orientation of the SE are run-

time programmable parameters (until an upper bound given before the synthesis).

The computation of dilation conforms to the definition (2-4) on page 10, so it

proceeds in two steps: SE extraction, and maximum search over the extracted SE.

SE extraction is based on delay lines and defines which pixels of an image are at

a given time covered by the SE. The SE is considered to be a discrete line of length

l oriented at angle α. The origin of the SE is located in the middle of the SE, so

l is an odd number; and the SE is symmetric. Examples of line SE extraction for

vertical and horizontal inclined SEs are shown in Fig. 5.20. As for the vertical case

in Fig. 5.20 (a), any two adjacent pixels of the SE are either N or N + 1 pixels of

datastream apart of each other. For instance, the delay between pixels A and B

is equal to N , the delay between C and D is N + 1. In the case of a horizontal

inclined SE in Fig. 5.20 (b), any two adjacent pixels are either 1 or N + 1 pixels

apart. Note that distance from A to B is 1 pixel and distance from C to D is

N + 1 pixels (with respect to the image dataflow). Hence, a chain of delay lines

with programmable delay of either 1, N , or N + 1 pixels extracts an oriented line

98 5. Hardware Implementation

SE. Such a programmable delay line is labeled by xT (x stands for {1, N,N + 1}).

N T

A

E

D

C

B

A

B

(N+1)T

C

(N+1)T

D

N T

E

T

A B

(N+1)T

C

(N+1)T

D

T

E

AB

C

DE

N pixels to store

1 pixel to store

1
1

N

M

1
1

N

M

N+1 pixels to store
N+1 pixels to store

(a) Vertical inclined SE (b) Horizontal inclined SE

Figure 5.20: Extraction of inclined line SEs using programmable delay lines: (a)

vertical inclined lines, (b) horizontal inclined SE.

A naive computation of maximum on the extracted SE is carried out by a

cascade of dyadic max() operators represented by ∨ in Fig. 5.21. Another possible

hierarchy of dyadic max() operators is a binary tree, however, a cascade allows for

better programmability of the SE length l. The number of max() operators l − 1

is the same either way (e.g., l=8, the cascade needs l− 1 = 7 operators and binary

tree needs 4 in the first layer, 2 in the second, and 1 in the last layer, so 7 operators

in total). The proposed cascade computes dilation immediately with no additional

delay. On the other hand, real hardware implementation would be very slow due to

a long critical path from the input through all l− 1 max() operators to the output.

x T x T x T x T

programmable delay lines

max()

input

output

Figure 5.21: Simplified architecture of the naive approach to dilation.

In order to reduce the critical path, we pipeline the cascade by placing a register

in front of each max(), see Fig. 5.22 for the architecture. At the same time we must

extends delays of the delay lines to counterbalance the delay of inserted registers,

for instance by inserting registers behind delay lines as well. The pipelined archi-

tecture allows for fast hardware implementation, but also introduced an additional

computation latency l − 1 pixels.

We already mentioned that the cascade is advantageous for programmability of

the SE. It is because of the n-th partial results (n ∈ N, n < l− 1) of the cascade is

equal to dilation by a partial SE containing n+1 recent pixels. Therefore, selecting

an appropriate partial result is equal to programming the SE length. Instead of

5.4. 1-D Synchronous Dilation Architecture 99

x T T
input

SE length l

1st bit

1st bit (LSB) (MSB)

2nd bit 3rd bit

3rd bit

(l-1)th bit

(l-1)th bit

SE shape configuration

T

2l-1 -1

x T T

T

x T T

T

x T T

T
output

2nd bit

Figure 5.22: Naive architecture supporting programmable oriented line SE.

using a multiplexer, which would need to have l − 1 inputs and would deteriorate

performance (for example l = 31, 8-bit 31-to-1 multiplexer is very complex circuit),

we propose a method of enabling max() operators.

The inner schematic of the max() operator with enable input is displayed in

Fig. 5.24 (b). First, the two operands, A from the precedent max() in the cascade

and B from a delay line, are compared. The result of comparison is connected

to a multiplexer that selects the larger operand. The enable signal when set to 0

overrides the result of the comparison and selects A to be the output regardless the

value of B, such as

Y =

{
A enable = 0

max(A,B) enable = 1
(5-14)

So when the max() is not enabled, it only propagates the result of the precedent

max() to the output.

(a) Horizontal inclined SE

= 0

. . .

. . .

= 1

= 0

= 1

0 1 0 1 1 0 1 0SE configuration:

4 3 2 1 1 2 3 4Order of comp.: Order of comp.:

0 1 1 0

2 1 1 2

SE configuration:

(b) Vertical inclined SE

Figure 5.23: SE shape configuration. Whenever two adjacent pixels belong to

the same line (or column), the configuration bit is set to logic 0, otherwise to logic

1. (a) horizontal case, (b) vertical case.

For a given SE length l only first l−1 max() operators, which are necessary, are

enabled. The enable signal for the n-th max() operator is given by the n-th bit of

the binary number 2l−1−1, where the least significant bit (LSB) is the first bit. For

example consider 9-pixel SE l = 9 (the cascade is designed for lmax ≥ 9). The enable

100 5. Hardware Implementation

word 29−1 − 1 = 25510 = 0..0 1111 11112 shows that the first eight operators are

enabled and all further operators are disabled. The number of disabled operators

depends on length lmax of the cascade.

A

A

B

B
Y

enable

not

comparator
or

enable

(a) Top level (b) Inner schematics

Y=max(A,B)

A > B

0

1

Figure 5.24: Max() operator: (a) top-level symbol, (b) detailed inner view.

In the architecture scheme shown in Fig. 5.22, the shape of the SE is configured

by (l − 1)-bit configuration word. Each bit of this word is connected to one delay

line and selects the value of delay. Notice that only two different values of delay are

possible for given steepness (either horizontal or vertical). Figure 5.23 (a) displays

an example of how the SE shape configuration looks for a horizontal inclined SE.

When two adjacent pixels belong to the same line, the delay between them is 1

pixel; when they belong to two different lines, their mutual delay is N + 1 pixels.

We assigned the 1-pixel delay to logic 0, and the delay N + 1 to logic 1 for the

configuration word. The vertical case is treated in a similar way, see Fig. 5.23 (b).

Let us recall that the SE is defined by its length l, orientation α, and that the

SE is symmetrical. So we need to compute only a half of the configuration word

beginning from the center. The other half is mirrored. An order of the computation

is included in Fig. 5.23 as well. The computation itself is carried out in the same

way as described in Sections 4.3.1, so by the Bresenham algorithm Alg. 4 on page

56 implemented in very similar way to one shown in Fig. 5.14. The configuration

block computes the SE configuration word on basis of the SE length and angular

coefficients (Short leg, Long leg).

Memory Requirements

The only memory requirement is made by the set of programmable delay lines that

must fit the whole image line of length N . The synchronous architecture has the

following memory requirements (considering N×M image, l length of the SE, and

bpp bits per pixel):

M = N(l − 1)bpp [bits] (5-15)

Example: suppose a dilation of 8-bit SVGA image (i.e., 800×600=N×M) by

an arbitrarily oriented line SE of l = 31. The set of delay lines requires (5-15)

M = 800(31− 1)8 = 192, 000 [bits]

5.5. 1-D Opening and Spectrum Architecture 101

This is far below the mere size of the image itself Mimage = 800× 600× 8bpp ∼= 3.66

Mbits which does not need to be stored at any moment.

5.4.1 Conclusions

In the previous paragraphs we have implemented the synchronous dilation unit

based on the traditional SE extraction by delay lines and full maximum search by

a chain of dyadic maximum operators. This synchronous unit processes the image

of programmable size in a stream by either erosion or dilation using the arbitrary-

oriented line SE of programmable size. All these parameters (image size, length and

orientation of the SE) are programmable until their respective upper bounds that

are application-specific and used in the synthesis process as constants. The memory

requirements are very small and the latency is equal to the operator latency (given

by causality of the SE).

The proposed unit follows the traditional approach of dilation computation that

combined with arbitrary orientation gives us a tool that better handles orientation-

sensitive information in images. For example the oriented line dilation can be

used to detect the dominant orientation, or when two units are concatenated, they

compute 1-D oriented opening suitable for granulometry or detection of the texture

orientation. Also, the translation-invariant 1-D SEs can be conveniently used in

2-D SE composition to form exact polygons on the 8-connected grid.

5.5 1-D Opening and Spectrum Architecture

This section describes the hardware implementation of the streaming peak elimina-

tion algorithm for 1-D oriented opening and pattern spectrum already introduced

in Section 4.4 and Alg. 6 on page 61. The proposed architecture computes both

opening γαl and PS(α, :) on a horizontal scan ordered data stream of the input im-

age. It consists of two parts (see Fig. 5.25): an opening part that controls the entire

algorithm behavior and calculates the opening; and a spectrum accumulation part

that stores and accumulates the spectrum.

The heart of the opening part is a sequential algorithm control block. It is

a Finite State Machine implementing the conditional behavior of the algorithm

(while, if) and ordering of commands in a similar way as the dilation algorithm was

implemented. At first, let us focus on how an input pixel is processed. We assume

the horizontal SE orientation, and the Array of queues AQ contains only one queue

Q for the sake of simplicity.

In the beginning, the input pixel F is compared with two pixels previously

stored in Q by comparators 1–3 in order to reveal a peak value to drop. If a peak is

recognized, the controller issues the dequeue and accumulate operations, and reads

two other latest pixels in order to iterate the while loop one more time. When no

peak is found, F along with its reading position rp is pushed into the queue. The

outdated pixel is potentially popped by comparator 4, and the value of the oldest

102 5. Hardware Implementation

O
P
E
N
I
N
G

S
P
E
C
T
R
U
M

A
C
C
U
M
U
L
A
T
I
O
N

algorithm control

Array of queues

AQ

position rp

readout

counter

p
C

o
n
tr

o
ll

er

push

control
OUTPUTINPUT

pop

back1 back2

front

Spectrum

addr1

data1data2
accumulate

addr2

N

M

l

α

F ≤ back1

comparator 1

ji

counter 1 counter 2

F ≤ back2

comparator 3

height lengthsubtractor 1

PS(α,length) += height

PS(α,:)

adder 1
subtractor 2

back2 < back1

comparator 2

rp
 =

 f
ro

n
t+

L

comparator 4

Spectrum

readout

pji

Figure 5.25: Architecture of the opening unit with spectrum accumulation.

queue element is the output of opening.

The start and end points of the dropped peak slice are passed to the spectrum

accumulation part, which computes length and height of the peak slice. The accu-

mulation part then retrieves the length-th spectrum value PS(α, length), and adds

the height of the dropped flat zone. As soon as the whole image is processed, the

spectrum PS(α, :) can be read out by some simple back-end controller through a

standard FIFO interface.

5.5.1 Arbitrary Orientation

The used algorithm supports arbitrary orientation of the SE; and as the horizontal

orientation alone limits applicability of the 1-D opening, we are interested in de-

veloping the architecture supporting arbitrary orientation as well. In Section 4.4.3

on page 64 we mentioned that one of the best approaches is to partition an image

into corridors parallel with the SE and let each corridor have its own designated

queue memory Q, one from the array of queues AQ. As the algorithm reads data

sequentially in the horizontal scan order, i.e., for most orientations across the cor-

ridors, the main task is to determine to which corridor Qji = AQ(pji) the current

pixel at position [j, i] belongs. Then the task of SE orientation reduces to the mere

5.5. 1-D Opening and Spectrum Architecture 103

calculation of the select pointer pji such as (reminder of equation (4-13))

pji =

{
(i− j tan(90◦ − α))mod(N + l cos 45◦) if 45◦ ≤ α ≥ 135◦

(j − i tanα)mod(N + l cos 45◦) otherwise.
(5-16)

The pji computation uses the Bresenham line algorithm Alg. 4 to efficiently

handle the j tan(90◦ − α) (or i tanα) from (5-16) in hardware, as it was the case

of inclined dilation. This term is called offset in accordance to the previous termi-

nology. The detailed architecture of the pji counter from Fig. 5.25 is depicted in

Fig. 5.26. The main difference against the former implementation is that the ori-

ented opening demands all the possible angles in contrary to a single orientation

for polygons. Therefore, the appropriate Long leg and Short leg constants are read

from the memory of coefficients before the computation begins. Also the orienta-

tion α is threshold by 90◦ to determine the fall/rise slope sense. Again the value

of offset is the initial/reset value of the pointer counter, the output of which is the

desired value of pji. Notice that selecting the appropriate queue by pji completely

ensures the image partitioning into corridors, and consequently, orientation α of the

SE.

error

Angle

coefficients Short leg

A - B

subtracter

α > 90°

comparator

sign bit (1 for negative)

A + B 1

0

up/down

fall/rise slope

adder mux

Offset

counteredge of j

edge of iend of line

constant

dataaddr

register

memory
α

Long leg

constant

reset value
rst

pointer

p
ji

p counter
ji

counter

Figure 5.26: Schematic of the offset computation using Bresenham algorithm.

Having introduced arbitrary orientation, the Array of queues no longer contains

only one queue as for the horizontal SE, but N + l cos 45◦ queues instead. It can

implement entire AQ in a single dual-port memory because only one Q chosen by

pji is used at a time. Packing queues into one memory eases implementation process

and allows the use of either on-chip block RAM or off-chip RAM memory.

The proposed opening unit allows the inter-operator parallelism to be employed

when necessary. Thanks to the dataflow processing, a single input data stream

is brought to multiple units working in parallel with different parameters, e.g.,

orientation α. However, some synchronization problems may occur on the output

ports due to different latency. We will consider both opening and pattern spectrum

separately.

In the case of the patter spectra computation for multiple angles, there is no

104 5. Hardware Implementation

issue likely to appear. The respective spectra PS(αi, :) represent relatively small

amount of data and they can be read out in any order. Also stalling the read-

out process does not really compromise performance. For instance, the complete

spectrum PS(:, :) with ∆α = 180◦/n can be calculated in a single image pass using n

parallel units connected as in Fig. 5.27 at almost the same time like single spectrum

PS(αi, :).

1α
γ α1

L

PS(α1,:)

2α
γ α2

L

PS(α2,:)

nα
γ αn
L

PS(αn,:)
PS(:,:)

input image

. . .

. . .

Figure 5.27: Parallel computation of PS(:, :) using n units.

The case of opening is different. The output data contain the entire image in

the form of a data stream, which can not be stalled for a long time. One usually

does not have sufficient bus bandwidth in order to read out all n output streams

independently (except some platforms equipped with DDR memories, and small

values of n). Therefore, inter-operator parallelism is supposed to be used rather

in applications that allow some further pre-processing before outputting the result

in order to decrease the output bandwidth. An illustrative example of such an

application is opening χl, which runs as (introduced in (2-32))

χl(f) =
∨

αi∈[0,180)

γαi

l (f). (5-17)

In this form χl computes the pixel-wise supremum of 180 openings γαl , that is

for 180 different angles with the orientation resolution ∆α = 1◦. According to

the associativity of the supremum, instead of first computing 180 openings and

then finding the supremum, we clearly can compute only several openings, find the

supremum of them that is a partial result χ
(j)
l given as

χ
(j)
l (f) =

∨

αi∈Aj

γαi

l (f), (5-18)

where Aj is an n-element set of angles that constitutes the j-th partial opening. We

can repeat the computation m times for different orientation (with the same input

image, therefore, the input image has to be stored in some memory), and find the

supremum of all partial results χ
(j)
l , j ∈ [1,m], afterwards in some post-processing.

The post-processing pixel-wise supremum of m images is not particularly compu-

tation intensive and can be easily done in either computer or dedicated hardware.

Implementing the equation of χ
(j)
l opening (5-18), two facts should be con-

sidered. First, we need to compute n openings γαi

l with constant length l but

with different orientations αi that causes different latencies of the opening units.

5.5. 1-D Opening and Spectrum Architecture 105

However, as the supremum operation is commutative, we can always sort Aj

such that the delays of openings γαi

l for all αi ∈ Aj are ordered in an increas-

ing order. The delay of the proposed opening unit is proportional to the verti-

cal projection of the SE |l sinαi|, so the previous condition can be formulated as

| sinαi| ≤ | sinαi+1|, i ∈ [1, n). For example, Aj = {0◦, 45◦, 90◦, 135◦} should be

sorted into Aj = {0◦, 45◦, 135◦, 90◦} because | sin 135◦| < | sin 90◦|.

γ α1

l

input image f

partial result χ l

(j)

supremum

operationunit 1

ALU 2

ALU 3

ALU n

unit 2

unit 3

unit n

multi-line

buffers

γ α2

l

γ α3

l

γ αn

l

Figure 5.28: Parallel computation of j-th partial result χ
(j)
L using n opening

units.

Second, the supremum operator in (5-18) is associative, so it can be implemented

as a chain of diadic supremum operators. The basic architecture for computing χ
(j)
l

is shown in Fig. 5.28. All n parallel units are fed by the common input image

stream. Provided | sinαi| ≤ | sinαi+1|, the output of unit 1 is connected via a

multi-line buffer, which balances the delay difference of units 1 and 2, into ALU

2 that computes the first supremum of γα1

l and γα2

l . The output of ALU 2 is

connected also via a multi-line buffer to ALU 3, and so forth.

Memory Requirements

The proposed architecture has very limited memory consumption. Although the

algorithm works with many separated queues, the queues of each 1-D opening unit

are merged into a single dual-port memory, mapped side by side in a linear memory

space. Every queue has a related pair of front and back pointers which must be

retained throughout the entire computation process in the pointer memory. This is

the same approach that was chosen in the case of the dilation architecture.

Let l, α denote the length and orientation of the line SE Lα
l , and bpp bits per

pixel of an M × N image. The memory consumption of purely horizontal, and

106 5. Hardware Implementation

arbitrary-oriented implementations are, respectively:

Mhor =l(bpp+ ⌈log2(l − 1)⌉) [bits] (5-19)

Morient =(N + l cos 45◦)× [l(bpp+ ⌈log2(l − 1)⌉)+
+ 2⌈log2(l − 1)⌉].

[bits] (5-20)

Example: Let us compute an opening of 8-bit, SVGA image (i.e., 800×600 =

N×M) by a SE 41 px long. The computation memory requires (5-19) (5-20)

Mhor =(41)(8 + 6) = 574 [bits]

Morient =(800 + 29)(41(8 + 6) + 12) = 485, 794 [bits]

resulting in the maximal consumption of Mmax = Morient
∼= 475 kbits for the

arbitrary-oriented opening. This is once again far below the mere size of the image

itself Mimage = 800 × 600 × 8bpp ∼= 3.66 Mbits which is never stored. It is worth

mentioning that these numbers are effectively equal to the memory consumption

of the dilation unit. If we wanted to compute the opening by composition (such

as γB(f) = δ
B̂
[εB(f)], (2-18)), we would have to use two dilation/erosion units,

which have together as twice as large memory requirements. In addition, the com-

position can be used for the translation invariant SEs only (more precisely, it must

be possible to have B̂ for any given B), so the discrete-line approach to arbitrary

orientation can not be used.

5.5.2 Conclusions

In the previous paragraphs we have implemented the streaming peak elimination

algorithm in the form of the 1-D oriented opening and pattern spectrum unit. This

unit processes the image of programmable size in a stream. It computes opening by

the 1-D oriented SE of programmable orientation α and length l and the pattern

spectrum PS(α, :) for all possible lengths shorter than l. All these parameters are

programmable until their respective upper bounds that are application-specific and

used in the synthesis process as constants. The memory requirements are very small

and the latency is mostly equal to the operator latency (given by causality of the

SE).

The proposed rectangle unit supports simple parallel interconnection so multiple

units can work in parallel processing the same input image stream by different

operators. This property is convenient for the computation of the full orientation

spectrum PS(:, :) or opening χl(f) (5-17), which would need many image scans if

computed sequentially.

5.6 Conclusions

In this chapter we have presented the dedicated hardware implementation of the

chosen algorithms in the form of dataflow processing units. Their common property

5.6. Conclusions 107

is programmability; the image size, SE features, and selected operation are run-time

parameters setting up the processing unit according to the application currently in

hand. The parameters are bounded by some maximal values, which are passed to the

synthesis process to produce an appropriately scaled design. As the size of queue

memories is the element most sensible to parameters, the memory consumption

seems to be the main consideration when the parameter boundaries are chosen.

In addition, once the design is synthesized with given boundaries, a change of

parameters results in only a partial use of the allocated memory. Therefore, the

boundaries should be kept as small as possible whenever the application allows it.

Another shared property of all proposed units is the dataflow processing. The

given operation is applied to the scan-ordered stream of data as it inputs the unit,

and the result data leave the unit in the very same order. This property allows

for easy serial or parallel interconnection hierarchies, which conveniently enhance

performance through so-called inter-operator parallelism. Although no coupling el-

ements are essentially necessary (unless stall-free processing), small FIFO memories

are used to suppress the data dependency and dataflow stalling.

The architectures providing a dilation by rectangles and polygons were further

enhanced by so-called intra-operator parallelism. This method instantiates multiple

copies of the proposed units in parallel, and in order to keep them all working at

the same time, it divides the data stream into multiple slower substreams, each

of which is processed by one unit from multiple parallel copies. The division of

the data stream can also be seen as division of the image into partitions, a couple

of which are processed at a time. This parallel approach is finely scalable, so the

design may be adjusted appropriately to meet the application requirements.

The opening and pattern spectrum incorporates only the inter-operator paral-

lelism paradigm because the 1-D opening itself is scarcely used alone but, on con-

trary, in complex applications that comprise many opening operations. Then the

broad inter-operator parallelism level provides a sufficient way to efficiently exploit

the available hardware resources, linearly speeding up the performance of the whole

application. Without having implemented it, we allege that the intra-operator par-

allelism can be used with the oriented opening as well if necessary. This case is

very similar to the inclined units of polygons, so the whole parallel processing is-

sue can be solved by the same method (i.e., image partition, overlap of partitions,

etc.). We did not do so because the inter-operator parallelism alone is sufficient and

also it is more hardware-efficient than the intra-operator parallelism.

All proposed units in the past chapter are supposed to be used as basic bricks

to build up larger, more complex architectures. For this reason, two main aspects

were especially taken into account to ease the design: (i) dataflow processing that

enables easy block interconnection, and (ii) programmability of the main properties.

In the following chapters, we will measure some important features and evaluate

the aforementioned properties on a set of applications.

6 Implementation Results

Contents

6.1 Rectangle Dilation Unit . 111

6.2 Polygon Dilation Unit . 114

6.3 1-D Synchronous Dilation Unit 115

6.4 Opening and Spectrum Unit 116

6.5 Comparison of the Proposed Implementations 117

6.6 Comparison with Existing Implementations 119

6.6.1 Comparison Using Alternating Sequential Filters 121

6.7 Conclusions . 122

In this chapter, we present implementation results of the proposed architectures

by means of timing and FPGA resources. These basic measures may help to easily

estimate the system performance and FPGA resources occupation, and to observe

how the architectures scale with different parameters. We begin with the rectan-

gular dilation block and its parallel version, the polygonal dilation block and its

parallel version, and finally, the opening and pattern spectrum block. All these

architectures have been synthesized by the XST tool and targeted to the Xilinx

Virtex5 or Virtex6 FPGAs (XC5VSX95T-2, XC5VLX50T-1, or XC6VLX240T-1).

Before looking at the experimentally obtained figures, let us focus on some

common properties of both Dokládal and streaming peak elimination algorithms

and discuss their implications on hardware. Both algorithms are queue-based; that

means their behavior is mainly based on operations over a queue memory, and these

operations take the majority of the algorithm computation time. For this reason,

the way how the queues are implemented is important.

As we already know, the queues in each 1-D unit are merged together into a

single dual-port memory block in order to allow taking advantage of the Block

RAMs (BRAM) available in an FPGA. Although the algorithms were presented

as having small memory requirements (compared with other algorithms they are

indeed small), their values are rather large from the FPGA resources point of view.

For instance, enumerating (5-8) for an SVGA image 800×600 and 31×31 SE, we

get the queue requirements of 322,400 bits (24,800×13 bits) in contrast to 36 kbits

(2,048×18 bits) of a single BRAM. So, 13 BRAMs (⌈24, 800/2, 048⌉ using low power

mapping algorithm of the Xilinx taxonomy) are to be used in practice to fit the

queues. The size of this memory and its access time inevitably affects the critical

path delay, and therefore, the maximum frequency.

The algorithm FSM and balancing FIFOs are straight-forward synthesized by

the XST in the logic, i.e., look-up tables (LUT) and registers, and their impact

110 6. Implementation Results

on implementation result is rather less significant. The size of distributed balanc-

ing FIFOs varies with N
√
l and the FSM scales only slightly with the increasing

bit-width of the SE size ⌈log2(l)⌉, and the image size ⌈log2(N)⌉⌈log2(M)⌉. Assum-

ing some approximation and the fact that FIFOs may be omitted, the amount of

necessary logic is proportional to the factor

⌈log2(l)⌉⌈log2(N)⌉⌈log2(M)⌉. (6-1)

The obtained maximum frequency varies between 150 and 180 MHz in depen-

dence on many factors, such as the supported image size, the speed grade and type

of the FPGA, various synthesis tool settings. For the sake of simplicity, we use the

frequency of 100 MHz or 125 MHz in all demonstration platforms and we assume

the frequency of 100 MHz in the following timing tables.

We evaluated mainly two kind of timing benchmarks, one against varying size

of the SE, and one against varying image size. We used natural photos of multiple

resolutions as test images: CIF 352×288, VGA 640×480, SVGA 800×600, XGA

1024×768, and 1080p 1920×1080. We report several measures as follows.

• The latency is expressed in a number of image lines. The latency is mostly

equal to the operator latency, the further irreducible factor corresponding to

dependency of the output on the input. This corresponds to the half-, or full-,

height of the SE that we need to wait to have read enough data to compute

dilation, or opening, respectively. Note that this abstraction of latency is not

pixel-wise precise, the exact latency may vary in order of pixels depending

on the image contents.

• The experimental pixel rate PRexperimental gives an average number of clock

ticks to process one pixel. It is given by the overall number of clock ticks

divided by the image size as

PRexperimental =
Tproc
M N

[clk/px]. (6-2)

One can observe that the rate is almost constant w.r.t. both the size of the

image and the size of the SE. The slight variation is caused by the bounded

support effects verifying the computation complexity per image Oimage().

• The compensated pixel rate PRcompensated eliminates the effects of image

boundaries and verifies O(1). This artificial measure serves for the purpose

of constant complexity O(1) demonstration and is computed as

PRcompensated =
Tproc − 2(lrightM + ldownN)/PD

M N
[clk/px] (6-3)

• The FPS is the throughput in terms of the number of frames per second

computed from the clock frequency and the measured time of processing

FPS =
fclk
Tproc

[frame/s]. (6-4)

6.1. Rectangle Dilation Unit 111

• The experimental speed-up shows the performance increase of the parallel

architecture over the simple one experimentally measured on a real image. It

is computed as

Experimental speed-up =
Tsimple

Tparallel(PD)
, (6-5)

where Tsimple is the processing time of the simple architecture and

Tparallel(PD) is the processing time of the parallel architecture of PD degree.

We also measures FPGA resources in terms of a number of used LUTs (look-up

tables), registers, and BRAMs (36-kbit block dual-port on-chip RAM memories)

for the two aforementioned benchmarks, one against varying size of the SE, and

one against varying image size. In this case the current value of either image or

SE size is considered to be the upper bound that scales the FPGA implementation.

Obviously changing a run-time programmable parameter of a processing unit has

no effects on implementation results.

6.1 Rectangle Dilation Unit

Let us begin with the non-parallel rectangular dilation block, the benchmarks of

which are outlined in Tables 6.1 and 6.2. The measured latency is equal to the

operator latency, which means it is equal to ldown, i.e., a half of the rectangular SE

height. The PRexperimental shows a small fluctuation with varying both SE and image

size as this measure reflects the image boundary effects Oimage((N + lright)(M +

ldown)). Then the pixel rate is deteriorated by (lright + ldown)/(M + N) fraction.

The boundary influence is eliminated in compensated pixel rate PRcompensated that

effectively remains constant illustrating thus O(1).
Concerning the area occupation (see the Xilinx documentation for more details

[Xilinx 2009]), the amount of the glue logic is logarithmically dependent on N,M, l

according to (6-1); the number of LUTs and registers increases when a power of two

of either parameter is exceeded. The number of BRAMs also follows the computed

requirements (5-8), but due to the fixed memory geometry (addresses × bits-of-

word) its value is more discrete; it increases in larger steps. For instance, assume

VGA image and 31×31 SE. The required memory has 640×31=19,840 addresses and

each word is 8+log2(31)=13 bits wide. Such a memory fits to 13 36-kbit BRAMs,

one for each bit of the word. But 13 BRAMs provide up to 36,864 addresses, so

the image width can go as high as 36,864/31=1,189 with no increase of BRAM

occupation.

At this moment, let us proceed to the parallel version of the rectangular dilation

unit, which was presented in Section 5.2.1. Table 6.3 presents the most important

measure, the influence of intra-operator parallelism degree PD . The increasing PD

has beneficial implications on the pixel rate, the value of which is merely a fraction

(divided by PD) of the non-parallel values. The latency remains the same by

112 6. Implementation Results

Table 6.1: Rectangle unit: timing and area w.r.t. SE size, SVGA

image size.

Size of SE (square) 3x3 11x11 21x21 31x31 41x41

Latency [image line] 1 5 10 15 20

PRexperimental [clk/px] 2.344 2.379 2.409 2.440 2.470

PRcompensated [clk/px] 2.338 2.350 2.350 2.352 2.353

Registers 212 232 242 242 252

LUTs 584 761 859 859 953

Block RAMs 2 6 13 13 28

Table 6.2: Rectangle unit: timing and area w.r.t. image, SE = 31x31

square.

Size of image CIF VGA SVGA XGA 1080p

Latency [image line] 15 15 15 15 15

PRexperimental [clk/px] 2.569 2.484 2.440 2.404 2.391

PRcompensated [clk/px] 2.381 2.375 2.352 2.339 2.348

FPS [frame/s] 384 130 85 51 20.5

Registers 231 237 242 242 253

LUTs 761 853 859 859 1057

Block RAMs 7 13 13 13 26

means of pixel-delay between the input and output streams. The obtained speed-

up suggests that the proposed parallelization method has a small overhead, e.g.,

for PD =6 the obtained experimental speed-up is equal to 5.532 out of possible

6. This overhead is caused by the synchronization of image partitions when the

partition edge is encountered. By other words, if one partition takes a longer time

to complete due to more complex contents, this partition may stall computation of

other partitions slowing down the computation in average. Naturally, the higher

the PD , the more partitions are to be synchronized and the greater overhead will

degrade performance.

The FPGA area results in Table 6.4 are separated into 2 groups: the operator

part (horizontal plus vertical part) and I/O buffers. The area of operator units in

terms of registers and LUTs is proportional to PD as well because PD independent

units are instantiated in a parallel manner. Although the overall vertical memory

requirements (5-8) remain unaffected by PD, the number of occupied RAM blocks

slightly increases in practice. That is caused by fixed BRAM memory geometry. It

is apparent from the tables that high performance comes at not negligible resources

cost. The area of input and output buffers is linear w.r.t. both N and PD since

their essential components are line buffers (FIFO memories of N elements). Each

one out of PD channels uses its own buffer.

The ultimate timing results (PD=6) versus the image size are listed in Table 6.5.

6.1. Rectangle Dilation Unit 113

Table 6.3: Parallel rectangle: timing w.r.t. PD. SVGA image, SE =

31x31 square.

Parallelism degree PD 1 2 3 4 5 6

Latency [image line] 15 15 15 15 15 15

PRexperimental [clk/px] 2.440 1.264 0.824 0.625 0.505 0.426

Experimental speed-up [-] 1 1.930 2.858 3.770 4.663 5.532

Table 6.4: Parallel rectangle: area w.r.t. PD. SVGA image, SE =

31x31 square.

Parallelism degree PD 1 2 3 4 5 6

Regs operator 242 650 978 1,280 1,605 1,938

LUTs operator 853 2,138 3,227 3,862 4,875 6,054

Block RAMs 13 13 14 14 18 21

Regs I/O buffers 0 661 969 1,279 1,587 1,896

LUTs I/O buffers 0 1,408 2,086 2,776 3,459 4,135

Table 6.5: Parallel rectangle: timing w.r.t. image size, PD = 6, SE

= 31x31 square

Size of image CIF VGA SVGA XGA SXGA 1080p

Latency [image line] 15 15 15 15 15 15

PRexperimental [clk/px] 0.443 0.431 0.426 0.426 0.427 0.418

FPS [frame/s] 2075 724 472 290 174 113

Worst-case FPS [frame/s] 1915 640 411 246 151 96

It illustrates the high-end performance of the architecture allowing at least 96 fps

with 1080p image size in the worst case. The worst-case performance is measured

on an artificial saw-shaped image, which is the most unpleasant for the dequeuing

step of the algorithm. Data dependency of the algorithm has been discussed in

depth in Section 5.1.3. These frame rates remain constant for any morphological

serial filter (such as ASF).

In conclusion, the tested rectangle dilation unit is a computation block that can

be scaled by means of the image size, SE size, and parallelism degree in order to

match the application requirements on the performance and FPGA device. The

experimentally obtained results go from 384 fps on CIF images with small FPGA

occupation up to 113 fps using 1080p resolution and a lot of FPGA resources (at

100 MHz system clock frequency).

114 6. Implementation Results

6.2 Polygon Dilation Unit

Essential timing benchmarks of polygon unit PU and parallel polygon unit PPU

with respect to the image size and the size of the SE are collected in Table 6.6 and

6.7. The PRexperimental represents the measure of complexity Oimage((N +W)(M +

H)) (recall that W , H are the projected width and height of Lα
l) and its value

varies with (H+W)/(N+M) fraction. In the case of polygons, the influence of the

SE size is greater than in rectangles since the SE does not only imply the operator

latency, but also the size of padding, which both slow down the computation. These

effects are reflected in the FPS measure as well.

The speed-up of PPU against PU represents the acceleration obtained from

the parallelization. The difference from the ideal upper limit (speed-up=PD) has

two reasons: (i) the overlap of neighboring image partitions, which causes some

redundant computation, and (ii) stream switching that needs inter-stream synchro-

nization, which may introduce wait cycles in some partitions. The thickness of the

overlap is equal to W (or 2BH), so the effect of overlap is proportional to W/N

fraction. With increasing image size the acceleration converges towards 6 as the

SE size (and consequently the overlap) becomes less significant with regard to the

image size.

Table 6.6: Polygons: timing w.r.t. SE size (SVGA image)

SE size [px] 21 31 41 51 61

PRexperimental [clk/px] 2.42 2.46 2.49 2.53 2.58

FPS [frame/s] 85 84 83 82 81

Latency [image line] 10 15 20 25 30

Table 6.7: Polygons: timing w.r.t. image size, SE size = 51 px, PD

=6).

Image Size VGA SVGA XGA 1080p

PRexperimental (PU) [clk/px] 2.61 2.53 2.53 2.44

Latency [image line] 25 25 25 25

FPS (PU) [frame/s] 125 82 50 19

FPS (PPU) [frame/s] 599 406 257 105

Experimental speed-up [-] 4.79 4.94 5.1 5.34

Table 6.8 outlines the efficiency of the scalability (that is the parallelism degree

PD) in terms of the FPS and speed-up. Not surprisingly, the observed speed-up

is somewhat lower than PD . The difference is due to two factors: (i) the overlap,

which demands redundant computation, and (ii) the stream switching that needs

inter-stream synchronization which may introduce wait cycles.

Table 6.9 reveals the cost of parallelization on FPGA resources in terms of

registers, LUTs, and BRAMs of the computational units PPU/PU and the pair of

input and output buffers. The claim that the high performance comes at raised

6.3. 1-D Synchronous Dilation Unit 115

Table 6.8: Polygons: speed-up w.r.t. PD, SVGA image, SE size = 31

px.

Parallelism degree PD 2 3 4 5 6

FPS [frame/s] 162 234 306 376 441

Experimental speed-up [-] 1.92 2.77 3.62 4.44 5.22

Table 6.9: Polygons: area w.r.t. PD, SVGA image, SE size = 91 px.

Parallelism degree PD 1 2 3 4 5 6

Registers (P)PU 787 1,644 2,469 3,215 4,019 4,850

LUTs (P)PU 2,656 4,831 7,330 9,301 11,540 14,221

Block RAM (P)PU 39 39 59 42 53 63

Registers I/O buffers 0 251 355 466 590 671

LUTs I/O buffers 0 1,296 1,929 2,545 3,158 3,748

resources cost holds true for polygons as well.

In conclusion, the tested polygon dilation unit is a computation block that can

be scaled by means of the image size, SE size, and parallelism degree in order

to match the performance and FPGA requirements. The experimentally obtained

results go from low-end 125 fps on VGA images with small FPGA occupation up

to 105 fps using 1080p resolution and a lot of FPGA resources (at 100 MHz system

clock frequency).

6.3 1-D Synchronous Dilation Unit

The timing and FPGA resources benchmarks for the synchronous implementation

of the 1-D oriented dilation are outlined in Tables 6.10 and 6.11. The size of the SE

does not affect PRexperimental much (there are minor boundary effects according to

Oimage((N+ lright)(M+ ldown))), as all the comparisons necessary for a given SE are

computed by parallel comparators. Thus, the FPGA resources in terms of registers,

LUTs, and BRAMs are proportional to the size of the SE. Also the FPGA resources

occupation is quite large in number, it is more than twice as large as occupation of

the 2-D rectangular above. Furthermore, two 1-D synchronous units must be used

to constitute a rectangle, so the difference is even larger in the 2-D case.

The influence of the image size to benchmarks is the following. The

PRexperimental slightly varies as the boundary effects fraction (lright+ldown)/(M+N)

changes, the FPS decreases proportionally to the image size. The FPGA resources

increase mainly in BRAM memory occupation since longer delay lines are needed

for larger images, and the number of comparators is not affected by the image size.

The tested 1-D synchronous dilation unit can be scaled by means of the image

and SE size in order to match the performance and FPGA requirements of an

application. The performance spans from 920 fps on CIF images up to 47.5 fps

116 6. Implementation Results

Table 6.10: Oriented dilation unit: timing and area w.r.t. SE length

l, α = 45◦, SVGA image size.

Length of SE 11 21 31 41 51

Latency [image line] 4 8 11 15 18

PRexperimental [clk/px] 1.012 1.021 1.033 1.042 1.054

Registers 518 791 1059 1327 1592

LUTs 1651 1929 2266 2515 2816

Block RAMs 3 5 7 10 12

Table 6.11: Oriented dilation unit: timing and area w.r.t. image, SE

l=31, α = 45◦

Size of image CIF VGA SVGA XGA 1080p

Latency [image line] 11 11 11 11 11

PRexperimental [clk/px] 1.071 1.041 1.032 1.025 1.016

FPS [frame/s] 920 312 201 124 47.5

Registers 1045 1058 1059 1059 1071

LUTs 1993 2283 2266 2266 2843

Block RAMs 4 7 7 7 14

using 1080p resolution.

6.4 Opening and Spectrum Unit

In the following paragraphs we will focus on experimental results of the proposed

opening and pattern spectrum unit implementing the streaming peak elimination

algorithm. Table 6.12 contains timing and FPGA occupation figures for a diagonal

SE (α = 45◦). As we already know, the latency measure is equal to operator

latency, that is to the vertical projection of the SE times the width of the image.

The pixel rate PRexperimental follows the complexity Oimage((N +W)(M +H)) with

H,W be the projected lengths of the SE W = l cosα,H = l sinα. The constant

complexity is degraded by a factor of (W + H)/(N +M). The deviation of the

pixel rate may seem to be larger in value than in the case of the Dokládal algorithm

for dilation. That is caused by longer lengths of the SE chosen for the opening

benchmark. The effect of 255 px SE to 800×600 image is evident. The computed

PRcompensated eliminates the empty iterations inferred by latency and verifies O(1).
We used formula (6-6) and slightly modified it to

PRcompensated =
Tproc − 2(WM +HN +WH)

M N
[clk/px]. (6-6)

The FPGA area occupation scales logarithmically with the SE size as expected in

terms of both logic and block RAMs.

6.5. Comparison of the Proposed Implementations 117

Table 6.12: Opening: timing and area w.r.t. SE, SVGA image, α = 45◦.

Length of SE 15 31 63 127 255

Latency [image lines] 10 21 44 89 180

PRexperimental [clk/px] 2.350 2.453 2.602 2.900 3.485

PRcompensated [clk/px] 2.287 2.323 2.334 2.343 2.298

FPS [frame/s] 88 85 80 72 60

Registers 321 350 395 473 473

LUTs 1612 1643 1734 1840 2052

Block RAM 6 13 28 60 128

Table 6.13: Opening: timing w.r.t. α, SVGA image, l = 63 px.

Orientation α [◦] 0 15 30 45 60 75 90

FPS [frame/s] 84.6 81.7 80.2 79.4 79.35 79.8 81.2

Latency [image lines] 0 16 31 44 54 60 62

The last benchmark captured in Table 6.13 and in Fig. 6.1 concerns the relation

of the FPS and the orientation of the SE α. The variation of FPS for different

angles stems from the complexity Oimage((N +W)(M +H)) whence values of W =

l cosα,H = l sinα highly depend on α. The FPS deviation is also proportional to

the length of the SE l, so the variance of FPS for l = 31 px is ∆FPS(l = 31) = 3.9

frame/s and for l = 63 px ∆FPS(l = 63) = 5.4 frame/s. The mean value of FPS

drops down with l as the borders introduces more empty cycles, the number of

which is NH +MW +HW = Nl sinα+Ml cosα+ l2 sinα cosα.

6.5 Comparison of the Proposed Implementations

At this section we will compare the proposed architectures. The comparison of

architectures scaled for the SVGA image and the SE that fits 31×31 bounding box

are outlined in Table 6.14. This comparison is intended to collect the performance

and FPGA area measures of all architectures with the same parameters that may

better show their characteristics and the prospective use. However, we are aware

of the fact that each architecture uses a different SE and it addresses another

application field.

When considering rectangle and polygon units, we can see in Table 6.14 that

they both achieve almost the same performance of 84–85 fps. Their LUTs and reg-

isters is however quite distinct, the polygon unit consumes almost three times more

logic than rectangle. The reason is that the polygon unit contains 4 computation

units instead of only 2 and dedicated blocks for the padding. In the case of par-

allel architectures with PD = 6, the FPGA resources consumption of the parallel

polygon unit is twice as large for the same reasons. The performance of the paral-

lel polygon unit (441 fps) is a little bit smaller than for parallel rectangle unit (472

118 6. Implementation Results

0 45 90 135 180

77.5

80

82.5

85

87.5

90

→ Orientation α of line SE [°]

→
 E

x
p

e
ri
m

e
n

ta
l
F

P
S

 [
fr

a
m

e
/s

]

Opening γ
31

α

Opening γ
63

α

Figure 6.1: Performance of FPGA opening and PS block w.r.t. α, SVGA image.

Table 6.14: Comparison of the proposed architectures

FPS PRexper. LUTs Registers BRAMs

[frame/s] [clk/px]

Rectangle 85 2.44 859 242 13

Polygon 84 2.460 2,507 773 18

Parallel rectangle 472 0.426 6,054 1,938 21

Parallel polygon 441 0.474 13,070 4,402 27

1-D Synchronous 201 1.033 2,266 1,059 7

1-D Opening and PS 85 2.453 1,643 350 13

fps) that suggests that parallelization causes greater overhead for polygons. It has

been expected since polygons need the padding and overlap issue to be handled.

The 1-D synchronous architecture may be compared with the rectangular unit

(its results are mainly given by the vertical unit). The main advantage of the syn-

chronous architecture is it higher performance 200 fps derived from PRexper. ≈ 1

whereas architectures using Dokládal algorithm have PRexper. ≈ 2.45. Also the

memory requirements are in favor of the synchronous unit. Even though the de-

pendence of the dilation on input pixels tells both architectures to store the same

amount of pixels (HN in the horizontal scan, H is the projected height of the

SE), the Dokládal algorithm needs more memory space to store one pixel because

it stores the position of the pixel as well. On the other hand, the synchronous ar-

chitecture consumes much more FPGA logic due to l−1 comparators are necessary

for the l-pixel SE. The logic occupation issue becomes significant with large SEs.

The performance of the 1-D opening and pattern spectrum unit is equiva-

lent to the rectangle and polygon units (non-parallel). The reason is similarity

of both Dokládal and streaming peak elimination algorithms and their implementa-

tions based on the FSM and Array of queues. The comparison of BRAMs between

6.6. Comparison with Existing Implementations 119

opening and rectangle units shows that opening can be computed within the same

memory space of 13 BRAMs as dilation (in the rectangle dilation only the 1-D

vertical dilation needs BRAMs).

Bearing in mind that opening can be computed as a concatenation of erosion and

dilation, two 1-D synchronous units may replace the opening unit. Two synchronous

units would be faster, 201 fps instead of 85 fps, but their FPGA requirements

would be much greater. Also the direct pattern spectrum computation would not

be possible.

6.6 Comparison with Existing Implementations

At this point, we are interested in comparing the proposed architectures with other

recently published hardware implementations of mathematical morphology. We in-

clude in the comparison the following architectures labeled hereafter by the name

of the first author: [Clienti 2008a], [Chien 2005], [Déforges 2010]. We summarize

a description of these solutions below; for more details see Chapter 3 or respec-

tive publications. This comparison presented here has a rather illustrative purpose

because the respective designs are not entirely equivalent; they used different tech-

nologies and FPGAs. Unfortunately, we can only compare the figures communi-

cated in the literature as the source codes are intellectual properties of the authors

or laboratories.

Clienti proposed to use many neighborhood processors optimized for an ar-

bitrary SE within a small bounding box 3×3 px, which are interconnected in a

partially reconfigurable pipeline of 16 processors. Chien developed an ASIC chip

for 5×5 disc SE providing good performance for this fixed SE. Both previous ap-

proaches utilize the homothecy to obtain larger SEs, which, however, limits the

choice of resulting shapes of the SE and performance. On the other hand, one

Déforges’s unit supports various 8-convex SEs in one scan. As mentioned in the

state of the art, the programmability of the modules, namely the possibility to con-

trol the SE shape after the synthesis and the FPGA occupation figures were not

communicated, so we will have to adopt some assumptions on these issues in the

later part.

Table 6.15 outlines the comparison of architectures chiefly in terms of the degree

of parallelism, supported shape of the SE, computational performance, and process-

ing rate. Looking at the performance column, we can observe that Clienti achieved

the best throughput of 400 Mpx/s followed by our rectangular dilation, polygonal

dilation, Chien, and Déforges. However, such a straightforward comparison may

be misleading since both Clienti and Chien used only very small, elementary SEs

in contrast to Déforges and us whose implementations support SEs of significantly

larger sizes. Recall that the former implementations obtain large SEs from small

SEs by homothecy, that is by multiple application of the given operation.

As for the 1-D opening and synchronous architectures, there is no implementa-

120 6. Implementation Results

Table 6.15: Comparison of architectures for mathematical morphol-

ogy

Morpho. Parallel Supported Perf. fmax PR

operator degree SE [Mpx/s] [MHz] [clk/px]

Clienti δ,ε 4 arbitrary 3×3 400 100 0.25

Chien δ,ε 1 disk 5×5 190 200 1.052

Déforges δ,ε 1 arbitrary 8-convex 50 50 1

Parallel rectangle δ,ε 6 rectangle 234 100 0.426

Parallel polygon δ,ε 6 polygon 218 100 0.467

1-D synchronous δ,ε 1 oriented line 193 200 1.033

1-D opening γ,ϕ,PS 1 oriented line 38.4 100 2.453

tion supporting the arbitrary-oriented line SE to our knowledge. Notice that none

of the three aforementioned architectures is capable of attaining the oriented line

SE. They only provide diverse non-rectangular, 8-convex shapes (convex according

to the used 8-connectivity); but the oriented discrete line is not in general a convex

shape and can not be obtained by composition from some elementary SEs using

homothecy. However, we believe that the Déforges architecture can be modified in

order to support oriented line SEs. By simple reconnecting the top-level entities

Memory module and Max extraction (see [Déforges 2010]), we can move from the

originally used 8-convex SE decomposition to naive implementation of line SEs at

zero additional cost. This hypothetical architecture computes the 1-D oriented line

dilation at the same pixel rate 1 clk/px like our 1-D synchronous architecture (the

difference in the system frequency is probably given by used FPGAs).

The modified Déforges for line SEs can also compute the 1-D arbitrary-oriented

opening by composition γB = δ
B̂
εB. This opening remains invariant to the trans-

lation, but on the other hand it does not behave correctly near image boundaries

(see Fig. 4.14). The performance of such opening is obviously a half of the dilation

performance because architecture must be used twice. So, comparing both feasible

architectures, our design computes γαL with moderate 1.14–1.7 speed-up depending

on the length of the SE. For the sake of simplicity, we considered the performance

of Déforges to be fixed at 25 Mpx/s, even thought it shall decrease due to the image

boundaries as well. The comparison is much more favorable for us in the pattern

spectrum case. Using the conventional way (2-30) that sums up a residue of two

openings for each element of the PS , as much as lmax openings are needed to ob-

tain the entire PS . As our architecture provides PS in a single image pass in the

exactly same time, the speed-up is further multiplied by lmax× factor. So, for in-

stance, the speed-up for PS(α, :), lmax=15 is equal to 27.2×, and for lmax=255 the

speed-up reaches 294×.

6.6. Comparison with Existing Implementations 121

6.6.1 Comparison Using Alternating Sequential Filters

In the following paragraphs, we will compare the morphological implementations on

alternating sequential filters (ASF). We have learned recently that Clienti and Chien

proposals are especially optimized for small SEs and they use homothecy for large

ones. As we and Déforges provide large SEs directly, it may be worth to compare

the implementations using an application that involves both small and large SEs.

Such an example of a widely used, but simple at the same time, application is an

ASF.

From the introduction we know that a λ-order ASF (referred to as ASFλ) is

composed of the sequence of λ closings and λ openings with the increasing SE size,

such as the sth stage (s ∈ N; s ≤ λ) uses the SE of width 2s+ 1.

ASFλ = γλϕλγλ−1ϕλ−1 . . . γ1ϕ1

= δ
B̂λ
εBλ

ε
B̂λ
δBλ

δ
B̂λ−1

εBλ−1
. . . ε

B̂1
δB1

The initial number of morphological operators 4λ can be reduced using the as-

sociativity property of dilation and erosion. Hence, every two consecutive dilations

or erosions may be merged into one to obtain only 2λ+ 1 operators, such as

ASFλ = δ
B̂λ
ε
Bλ⊕B̂λ

δ
Bλ⊕B̂λ−1

. . . ε
B1⊕B̂1

δB1
. (6-7)

Hereafter, we consider as example an ASF of 6-th order, such as ASF6 =

δ13×13ε25×25 . . . ε5×5δ3×3. This filter consists of 13 morphology operations in the

reduced form.

Now let us focus again on the architectures in question and properties of the

hardware systems they were proposed to comprise. The properties as well as the

estimated performance are gathered in Table 6.16. In [Clienti 2008b] the authors

published a hardware system containing 16 elementary 3×3 processors in a single

FPGA. It can be simply computed that it will require 6 image scans to apply the

entire ASF6. [Chien 2005] described an ASIC chip containing one computation core

leveraging the PRR principle, therefore, as much as 45 scans are to be performed.

In the case of [Déforges 2010] where the proposed principle of SE decomposition

was implemented as a computation unit, neither the FPGA occupation nor the

possibility of using multiple instances in a single chip was communicated. Therefore,

we consider two boundary cases: (a) only one unit fits the FPGA, so 13 image

scans are needed; and (b) the entire ASF6, i.e., 13 processing units, fits the FPGA,

and a single image scan is sufficient. Our architecture using either rectangular or

polygonal SEs with PD = 6 allows fitting of the entire ASF6 resulting in one image

scan as well.

From the estimated performance results for the ASF6 in Table 6.16 we observe

that the high use of homothecy tends to increase the number of necessary image

scans. Indeed, all Clienti, Chien, and Déforges (a) whose solutions are efficient for

122 6. Implementation Results

Table 6.16: Comparison of hardware systems on ASF

Hardware System Application Example ASF6

Number of Supported Image Perf. Latency

units image scans [Mpx/s] [im. lines]

Clienti 16 1024×1024 6 66.7 5M + 84

Chien 1 720×480 45 4.22 44M + 84

Déforges (a) 1 512×512 13 3.8 12M + 84

Déforges (b) 13 512×512 1 50 84

Parallel rectangle 13 1024×1024 1 213 84

Parallel polygon 13 1024×1024 1 185 84

small SE sizes and short concatenations become more or less penalized for longer

concatenations; their performances drop down with the higher numbers of necessary

image scans. On the other hand, Déforges (b) and our work, which does not need

more than one image scan, attain the high performance for ASF6 comparable to

the performance of a single computation unit.

In addition, a large number of image scans has negative influence on latency and

the design of the hardware system in general. Between two consecutive scans the

data are read/written from/into the memory that significantly increases latency by

the entire frame with each additional image scan. The image storage also involves

a hard requirement on the hardware system design because some off-chip memory

is to be used to accommodate the intermediate result image. The dense memory

traffic to/from the off-chip memory might presents a complication in course of the

design of an application platform.

6.7 Conclusions

This chapter dealt with the FPGA prototype results of the proposed architectures.

We reported the timing measures, such as latency, experimental and compensated

pixel rate, FPS throughput, etc., and the FPGA resources measures in terms of

LUT, register, and BRAM consumption. This set of measures was performed for

each architecture with different values of the programmable parameters. So we

have observed the scalability of the architectures with respect to the varying size

of the image and the SE. In the case of FPGA resources measures, the current

value of the programmable parameters was considered to be the upper bound that

scales the FPGA implementation (obviously changing a programmable parameter

of a processing unit has no effects on implementation results).

We can see from the benchmarks that all the proposed architectures have some

common properties. First of all, the pixel rate is almost independent of the size

of the SE that is very beneficial for both serial and parallel interconnection of the

units. For instance, when we use a pipe of many operators with different SE sizes,

6.7. Conclusions 123

they are all computed at the same high pixel rate. The operator with a large SE

does not slow down (or even stall) the operator with a small SE. Also the minimal

latency mainly given by operator latency eases attaining the high performance of

the whole application.

The ASF6 comparison suggests that for long concatenations and large SEs our

architectures achieve better throughput than any other hardware architecture to

date. It is caused by avoiding the use of homothecy to obtain large SEs, so a large

SE does not inevitably degrade the speed via many image scans, and thanks to the

efficient O(1) algorithm the small FPGA occupation allows instantiation of many

computation units in an FPGA. We have implemented a set of programmable IP

blocks usable in a large scale of industrial systems running under severe timing

constraints satisfying up to 100 MHz 1080p FullHD requirements.

7 Applications

Contents

7.1 FREIA Platform . 125

7.1.1 Top-level Platform Description 126

7.1.2 Bart proc Peripherals . 128

7.1.3 Bart proc Pipeline . 129

7.1.4 FREIA Interface . 130

7.1.5 FREIA Performance Evaluation 131

7.2 Classification of Particles Recorded by the Timepix Detector133

7.2.1 Classification Using Morphological Characteristics 133

7.2.2 Method Description . 134

7.2.3 Hardware Architecture . 138

7.3 Conclusions . 141

In this chapter we present two applications of the proposed processing units.

The main purposes are to provide examples of applications that beneficially take

advantage of implementation in dedicated hardware, and also to prove that the

proposed processing units are useful in applications of different context and com-

plexity.

The first application deals with integration of the processing units into the

multi-purpose platform called FREIA (FRamework for Embedded Image Applica-

tions [FREIA 2011]). The goal of the FREIA platform addresses the most compu-

tation performance demanding applications by proposing a platform that leverages

multiple architectures of image processing.

The second application ([Bartovsky 2011c]) comes from the other group of ap-

plications suitable for dedicated hardware—low-power embedded application. In

this case, we propose a low-complexity architecture for the three-class classification

of particles recorded by the Timepix detector based on the shape of particle traces.

7.1 FREIA Platform

The FREIA project intends to improve different image processing accelerator ar-

chitectures so as to address a larger set of applications and to support application

portability to future accelerators. The expected results of the FREIA project are a

new image processing platform based on a common interface for the improved im-

age processing accelerator architectures, implemented in an FPGA, to reduce the

application development cost by hiding the target architecture without sacrificing

performance. The implemented architectures share common accelerator interfaces

126 7. Applications

to make application portable and to make partial dynamic reconfiguration of the ac-

celerator possible. The second goal of the FREIA project is to deliver optimization

tools that cope with these architectures.

The main objective of this application is to integrate the processing units pro-

posed in the manuscript into the generic FREIA platform, which already contains

two accelerators, namely TER@PIX ([Bonnot 2008]) and SPoC ([Clienti 2008a]).

The TER@PIX SIMD accelerator contains a large number of processing elements,

each of which access a small window, and therefore, it is considered to be the

middle-grained architecture. The SPoC pipeline of elementary neighborhood pro-

cessors applies the given operator on the whole image, hence it is the coarse-grained

architecture. Pixel level architectures would be fine grained in the FREIA termi-

nology. Our proposed processing units are also coarse-grained, but provides mor-

phological operations by large neighborhoods that brings a significant performance

gain for the applications using large neighborhoods over the other technologies of

FREIA.

7.1.1 Top-level Platform Description

From the top-level viewpoint, two slightly different platforms have been designed

for FREIA. The main difference between them is the way how image data are trans-

ferred between processing units and the DDR memory that serves as an image stor-

age. The first platform uses central DMA peripheral that issues DMA transfers via

the main PLB (Peripheral Local Bus). The second platform uses dedicated VFBC

(Video Frame Buffer Controller) channel. Since the latter achieved faster image

transfers by order of magnitude, we will focus only on the VFBC case hereafter.

TEMAC
PC

GPIOInterruptTimer

MPMC

Micro-

Blaze

DDR3

memory

internet
Bart_proc pipeline

Bart_proc

Configuration

registers
Output

buffer

Input

buffer

(ethernet)

vfbc1

plb

vfbc2

sdma

xclPLB interface

User logic port

Figure 7.1: Top-level platform architecture. Black lines denote image data trans-

fers, gray lines denote configuration and control.

The top-level platform architecture is displayed in Fig. 7.1. The platform con-

sists of two main parts: (i) peripheral containing a couple of the proposed process-

ing units called Bart proc (highlighted by a grey rectangle and further described in

Section 7.1.2 below), and (ii) the embedded MicroBlaze processor environment, the

7.1. FREIA Platform 127

purpose of which is to provide the Bart proc peripheral with proper configuration

and image data. The MicroBlaze environment is composed of the following units:

• MicroBlaze processor: is an embedded processor soft core reduced instruction

set computer (RISC) optimized for implementation in Xilinx FPGAs. It

executes the application code which is stored in the DDR memory (access via

MPMC by XCL dedicated bus). It handles TEMAC ethernet data transfers,

sets up and controls Timer, Interrupt controller, GPIO, DMA, as well as it

writes configuration of Bart proc into Configuration registers and controls its

behavior. It does neither access nor change image data.

• MPMC (Multi-port Memory Controller): provides various means of access to

the off-chip DDR memory, such as XCL for MicroBlaze, PLB for peripherals,

SDMA for TEMAC, or VFBC for Bart proc.

• TEMAC (Tri-Mode Ethernet Media Access Controller): provides a control

interface and registers for a hard silicon Ethernet MAC core. The inter-

nal control registers are accessible via PLB bus, whereas the received/sent

data are transferred by LocalLink bus to the SDMA port of the MPMC. Its

functionality is managed by lightweight TCP/IP protocol stack running on

MicroBlaze.

• GPIO (General-purpose Input/output): provides a simple visual aid feature

via LEDs.

• Interrupt controller: handles interrupt requests from Timer and TEMAC.

• Timer: provides real-time measuring feature and defines timing for TEMAC.

For any image processing platform, managing and transferring image data is

an usual challenge due to an image contains a large amount of data. Let us see

how the FREIA platform handles images. Paths used for image data transfers are

shown as black lines in Fig. 7.1. Prior to any computation, an image to process is

transferred from a personal computer (PC) to the FPGA via the internet (TCP/IP

protocol using TEMAC core and lightweight TCP/IP stack). The received image

is stored in the DDR.

Then the image is transferred from the DDR memory into the Bart proc and

backward via a pair of dedicated VFBC channels. VFBC is a feature of the MPMC,

which allows us to read and/or write image data (in general any sequential data) to

the DDR at very high speed. The VFBC standard provides the FIFO-like dataflow

control (full, almost full, empty, almost empty flags), so the data stream can be

stalled by either endpoint if necessary. On the side of Bart proc the image is buffered

by a pair of buffers. Their main purpose is to balance the unlike throughput and

data bus widths of both units (Bart proc uses 1-pixel data bus, i.e., chiefly 8-bit,

whereas VFBC uses data bus 32 bits wide), and to allow the MPMC to transfer

data in bursts. Burst transfers are more favorable for avoiding congestion of the

DDR memory.

128 7. Applications

7.1.2 Bart proc Peripherals

From the MicroBlaze viewpoint, the Bart proc is a peripheral connected to the PLB

bus. In order to comply with PLB requirements and constraints, the Bart proc is

interfaced via the standard PLB interface IP block provided by Xilinx, which trans-

lates read/write PLB transaction (or DMA bursts) to user-logic register or memory

accesses. Then Configuration registers are accessible on respective addresses for

PLB masters (MicroBlaze and DMA if used). As mentioned before, the configura-

tion is written/read by MicroBlaze and image data via VFBC channels. The image

transmission is full-duplex as we use two half-duplex VFBC channels.

MPMC

Output

FIFO buffer

VFBC write control

VFBC read control

Input

FIFO buffer
vfbc_rd

PLB

VFBC1

VFBC2

vfbc_wr

vfbc_cmd

vfbc_cmdPLB interface

C
o
n
�
g
u
ra
ti
o
n

re
g
is
te
rs

P
ip

el
in

e

Bart_vfbc

DIL/

ERO
ALU

REG 1

REG 2

REG n

DIL/

ERO
ALU

DIL/

ERO
ALU

REG 1

REG 2

REG n

REG 1

REG 2

REG n

Start

Stage 1 Stage 2 Stage n

Reset

Ready

State

...

...

...

Figure 7.2: Detailed view of Bart proc architecture. Black lines denote an image

data bus, gray lines denote configuration and control.

The Bart proc contains three parts: (i) configuration registers, data buffers,

and a processing pipeline. The configuration registers is a set of registers that store

the necessary configuration for all the processing units and for the control purpose.

Notice that there is one bank of registers for each stage of the processing pipeline

and that the values of registers are directly connected to the processing pipeline.

So programming configuration registers takes effect immediately. In order to facili-

tate the process of programming the registers, incoming values can be broadcasted

among all banks. The values of control registers, such as Start, Reset, etc., are

distributed among all units.

The processing pipeline is a sequence of elementary stages each of which pos-

sesses one DIL/ERO unit and ALU. For further information about the particular

interconnection and implementation see Section 7.1.3 below. The pipeline accepts

one data stream (8-bit data bus, 1-bit acknowledge, 1-bit FIFO full) at the input

port, applies a sequence of morphological operations according to the content of the

configuration registers, and provides one data stream (of the same data-width) at

7.1. FREIA Platform 129

the output port.

The image data are transferred to and from memory via a pair of VFBC chan-

nels. One VFBC channel consists of three FIFO-like (hence simplex) buses, read,

write, and command. The command bus is used to set up the VFBC channel, i.e.,

the desired direction, the address and size of the image, etc. Once the channel

is configured, the MPMC manages the image transfer using either bus, thus in a

half-duplex way. For this reason, two parallel VFBC channels are used to achieve

the full-duplex communication. The VFBC read control and VFBC write control

blocks write the configuration to respective VFBC channels.

The following Bart proc peripherals were implemented. They differ only in used

architecture for DIL/ERO processing units:

• Rectangular dilation architecture, see Section 5.2.

• Rectangular parallel dilation architecture, see Section 5.2.1.

• Polygonal dilation architecture, see Section 5.3.

• Polygonal parallel dilation architecture, see Section 5.3.3.

• 1-D naive dilation architecture, see Section 5.4.

Hereafter, we restrict our description on the rectangular parallel architecture

only.

7.1.3 Bart proc Pipeline

The Bart proc pipeline (see Fig. 7.3) is a core part that performs the given morpho-

logical computation. It consists of several equal processing stages connected one

after each other into a pipeline. The heart of each stage is the DIL/ERO morpho-

logical unit that computes dilation or erosion by a given SE. The input data to this

unit are selected by MUX IN (input multiplexer) from either input image or output

of the preceding stage. The output of DIL/ERO unit is connected to ALU, MUX

OUT (output multiplexer) and MUX GL (global output multiplexer). The MUX

OUT selects the proper output of a stage among DIL/ERO and ALU. ALU’s sec-

ond operand is the output of previous DIL/ERO unit. ALU also measures a sum

of the entire image that can be useful for granulometry. The select configuration

for all the multiplexers is stored in the configuration registers. Note that each in-

terconnection link is composed of 8-bit data bus, 1-bit data acknowledgement, and

the backward 1-bit FIFO full flag, which ensures no data loss when any FIFO is

full.

DIL/ERO performs morphological dilation or erosion by flat SE of pro-

grammable size (maximum size depends on used architecture) and position of the

origin. The DIL/ERO contains balancing FIFO at the input and controls data-flow

via fifo full signal, so data streams may be stalled if necessary. The dilation/erosion

computation can be turned off by bypass feature. Then the computation memory

changes into a large FIFO that can be used to balance dataflows in certain opera-

tions, such as top-hat, gradient, and so forth.

130 7. Applications

DIL/

ERO
ALU

FIFO
MUX IN

MUX.In_mux Operator, SE, SKIP ALU

Measure

MUX.Out_mux Global_mux

OUTPUT

2

1

2*

1*

INPUT

DIL/

ERO

ALU

FIFO

MUX IN

MUX OUT

Processing stage n

MUX OUT

Processing stage 1

8-bit Data

1-bit Acknowledge

1-bit Fifo full flag

Figure 7.3: Bart proc pipeline architecture.

ALU (Arithmetic Logic Unit) performs simple arithmetic operations of two

operands, each of which can be configured as either ALU input signals or con-

stant. The supported operations are as follows: no operation; bit-wise logic NOT,

AND, OR, XOR; saturated addition and subtraction; maximum and minimum.

The operand select, operation code, and the value of constant are stored in the con-

figuration registers. The ALU contains balancing FIFO at each input and controls

dataflow via fifo full flag in the same manner like DIL/ERO that ensures no data

loss in the pipelined communication.

7.1.4 FREIA Interface

The FREIA platform on the FPGA board is connected with the PC via 100-Mbit

ethernet to transfer the image data and configuration. The FREIA can work as

either a server or a client. The main difference is which part decides what application

is to be done, and consequently defines the configuration.

In the client mode, the FREIA platform itself runs the application that has

to coded as a function called by the MicroBlaze processor. The images are read

from the pc-side image server (PC-IS) and the result image is sent back to the

PC-IS. The PC-IS is a simple C-code server that only listens to image send or

receive requests and handles image transfers. Since the application is completely

managed by the Microblaze, the configuration is incorporated in its code that has to

be reprogrammed every time any modification to the application is to be applied.

By other words, the FREIA computation is not controllable until it is stopped,

reprogrammed, and started again.

In the server mode, the FREIA platform works as a server. This server listens

to the incoming connections. When some PC-side client connects to the server, the

client determines what action is to be done and sends a proper instruction. The

most commonly used instructions are: write an input image, read an output image,

write the Bart proc configuration registers and initiate processing. Then the whole

application to run (operation, size of the SE, images) is programmed in the pc-side

client, the FREIA server only passes the configuration created in the client to the

Bart proc peripheral, and reads and writes images to the DDR memory.

The pc-side client is a counterpart to the FREIA server. The pc-client defines

7.1. FREIA Platform 131

the whole application and image transfers. The pc-client application may proceed

in the following fashion:

• Send an input image from the PC to the FREIA platform.

put image (SOCKET, InputImage) ;

• Set the morphological function. Now we configure stages of the processing

pipeline by the desired morphological operation and the size of the SE. In the ex-

ample below, we set the first stage to dilation, and the second stage to erosion,

both by predefined SE1 size of the SE.

d i l a t i o n (&HW, CONFIGURATION, 1 , SE1) ;

e r o s i on (&HW, CONFIGURATION, 2 , SE1) ;

• Send the configuration and initiate the computation.

s end con f i gu r a t i on (SOCKET, CONFIGURATION, &HW) ;

• Receive the output image from the FREIA platform.

get image (SOCKET, OutputImage) ;

In such a way, the whole application to be executed in the FREIA platform is

created using a simple C-code library on the PC side. This really simplifies the

usage of the FREIA hardware accelerator for application engineers since it hides

the complex hardware concerns behind a couple of library calls.

7.1.5 FREIA Performance Evaluation

In this section the performance results of the Bart proc integrated in FREIA plat-

form are evaluated. Tables 7.1 and 7.2 overview the most important parameters and

performance results of the respective benchmarks for both server and client modes.

We used different image sizes and degrees of parallelism (PD, see Section 5.2.1)

and measured the time needed for an image transfer from PC to DDR memory via

ethernet and the time consumed by processing the image, which is read from the

DDR, and the result is stored in the DDR, too. The operations used in bench-

marks are erosion and dilation by SE up to 61×61, closing and opening by the SE

up to 31×31, and gradient by the SE up to 31×31. According to constant com-

plexity of the algorithm and its implementation, the performance does not change

with respect to the size of the SE, but slightly, randomly varies due to DDR mem-

ory accesses. The platform has been targeted to Virtex-5 XC5VSX95T-2 FPGA at

clock frequency 125 MHz.

In the case of using DMA instead of VFBC, the description of which we have

omitted, the processing throughput is saturated at 16.7 Mpx due to the DMA trans-

fers take place on the shared PLB peripheral bus. The performance of this platform

132 7. Applications

Table 7.1: Performance benchmarks of client mode

SE Type of Supported Parallel Time for tr. Time for Processing

platform Image degree PC->DDR processing throughput

Rectangle DMA 512×512 1 176 ms 15 ms 16.7 Mpx/s

Rectangle DMA 512×512 2 176 ms 15 ms 16.7 Mpx/s

Rectangle VBFC 1024×768 1 301 ms 15.3 ms 51.4 Mpx/s

Rectangle VBFC 512×512 2 176 ms 2.7 ms 92.6 Mpx/s

Rectangle VBFC 1920×1080 6 1060 ms 7.5 ms 276 Mpx/s

Table 7.2: Performance benchmarks of server mode (all VFBC)

SE Supported Parallel Time for tr. Time for Processing

Image degree PC->DDR processing throughput

Rectangle 1024×768 1 324 ms 17 ms 46.2 Mpx/s

Rectangle 1920×1080 6 981 ms 8.5 ms 244 Mpx/s

1-D orient. 896×672 1 318 ms 6.8 ms 88.5 Mpx/s

Table 7.3: Comparison with other FREIA architectures

Architecture Frequency Gradient perf. Pixel rate

SPoC 300 MHz 291 Mpx/s 1.03 clk/px

TER@PIX 150 MHz 257 Mpx/s 0.78 clk/px

Bart proc 125 MHz 276 Mpx/s 0.45 clk/px

is below a half of performance of a stand-alone processing unit and obviously are

not affected by the parallel degree.

The platform using VFBC is capable of exploiting the whole computational

power of the Bart proc. The ultimate benchmark for parallel degree 6 achieves 276

Mpx/s in the client mode and 244 Mpx/s in the server mode that conforms to 133

(117) FullHD frames per second. However, high performance of the Bart proc is

deteriorated by a slow ethernet image transfer.

As it can be seen from the table, the time for an image transfer is in orders of

magnitude greater then the time consumed by processing, and is therefore the main

bottleneck of these platforms. It is caused by the relatively slow lightweight software

TCP/IP stack, which runs on MicroBlaze. In the future work, this TCP/IP stack

shall be replaced by other means of suitable communication standard, e.g., ad-hoc

UDP hardware stack, or PCI-Express bus.

Table 7.3 outlines the comparison of the proposed Bart proc accelerator

against the two other architectures already implemented for the FREIA platform:

TER@PIX ([Bonnot 2008]) and SPoC ([Clienti 2008a]). Both these architectures

supports also convolution, correlation, geodesic reconstruction along with mathe-

matical morphology. We used the gradient operator by 3×3 SE for the comparison

since it is supported by all three architectures without performance deterioration

due to multiple image scans. The result shows that all three architectures achieves

comparable performance, however, our Bart proc needs lower frequency, which is

7.2. Classification of Particles Recorded by the Timepix Detector 133

beneficial in the context of low-power embedded devices.

7.2 Classification of Particles Recorded by the Timepix

Detector

In this application (published in [Bartovsky 2011c]) we proposed an image pro-

cessing approach to the classification of particles recorded by Timepix based on

the shape of traces, using only a few basic morphological operations. This method

implemented in an FPGA achieves performance and latency allowing for high acqui-

sition rate. When embedded with Timepix, it can beneficially analyze radioactive

fluxes of unknown sources and spectra.

The Timepix device [Llopart 2007] is a new generation of CMOS pixel detectors

usable in a large scale of applications; from astronomical observations, X-ray flu-

orescence imaging to event reconstruction in physical numerous experiments (i.e.,

analyze radioactive fluxes from unknown radioactive sources) [Jakubek 2011].

The particles recognition requires to identify and analyze the trace, represent-

ing the particle’s “signature”, left by the particle whenever it strikes the Timepix

detector. The different particles leave differently shaped traces in dependence on

the type of the particle, its energy and incidence angle. Consequently, the shape

and the energy deposited alongside every track can be used for identification of the

particle [Bouchami 2011]. The goal of this application is to propose a classification

method for automated event observations. Clearly, such a method should be scal-

able with respect to particle classes as well as its implementation should be very

fast.

7.2.1 Classification Using Morphological Characteristics

The Timepix device records a sequence of gray-valued images I: D × t → V . The

support D ⊂ Z2 is a rectangular 256×256 raster. The images are scalar-valued with

the set of values V coded in 14 bits with positive integer values from [0, 16383].

In the following, one cluster denotes a connected component of non-zero pixels.

One cluster corresponds to the trace left by one particle (or more particles, if they

overlap). In this work, though, we suppose that one cluster is left by only one

particle.

The set of all traces observed at time t is defined as CC{(x, y) | I(x, y, t) > 0},
where CC denotes the connected components in a set obtained with 8-connectivity.

Each connected component can be associated with descriptors allowing to classify

the particles into different classes. Examples of such descriptors are the area, the

projected and unrolled length, the skeleton, the geodesic diameter, the circularity,

the tortuosity, etc., see [Soille 2003].

The descriptor-based classification methods are very precise; their drawback

though is the computing complexity. They require the computation of connected

134 7. Applications

components, labeling, skeletonization and reconstruction, even before the descrip-

tors can be computed. Even if optimized [Matas 2008], the skeletonization and

reconstruction are iterative, with data-dependent computational intensity. Such

properties infer high memory requirements, undefined latency, and slow computa-

tion inapplicable in high-frame-rate applications.

It is clear that the efficiency of the image processing bounds the sampling fre-

quency of the image acquisition. At the same time, a high sampling frequency

limits the probability of overlapping traces. Therefore, we present a fast classifica-

tion method based only on two descriptors: thickness and projected length. These

descriptors are composed of the morphological dilation, erosion, and simple arith-

metic operators, thereby avoiding all iterative, costly algorithms. We propose a

modular and programmable hardware implementation, too.

7.2.2 Method Description

In this study, we consider three main classes of traces called blobs, dots and tracks,

see Fig. 7.4. These names correspond to the nuclear physics terminology used in

[Bouchami 2011] and [Jakubek 2011]. The dots are generated by, e.g., low-energy

electrons or photons. The blobs are left by α or heavy ions. And the linear or curly

tracks are produced by minimum ionizing particles or electrons.

(a) dots (b) blobs (c) tracks

Figure 7.4: Examples of traces deposited by different particles.

7.2.2.1 Residual Approach to Particle Classification

Consider a family of shapes Ξ and an image IΞ containing objects from Ξ. The

shape ξi ∈ Ξ can be extracted from IΞ by opening γξi

IΞ
′

= γξiI
Ξ (7-1)

where Ξ′ = Ξ \ {ξi}, and IΞ′
= IΞ − Iξi .

This type of opening is commonly considered as algebraic opening. If Ξ is

ordered, the shapes {ξi} can be extracted one by one. This approach proceeds in a

few steps each of which recognizes and extracts one type of particles retaining the

other particles intact in the residual image. The following step extracts another

type of particles and so on.

7.2. Classification of Particles Recorded by the Timepix Detector 135

The algebraic opening γξi from (7-1) can be constructed by morphological open-

ing by reconstruction using the following steps:

1. Marker selection. It selects particles according to some criterion. A marker

image m : Z2 → R is commonly an image containing non-zero values inter-

secting the marked objects, and zero elsewhere. In the following, mξi will be

used to mark objects of the shape ξi.

2. Object reconstruction recovers from the marker m the original values and

shape from f . It is based, in general, on the geodesic dilation of m under f ,

m < f ,

δf (m) = δ(m) ∧ f (7-2)

hence from, by iteration

(δf)n(.) = δf [(δf)n−1(.)] (7-3)

we obtain the reconstruction

Rf (m) = lim
n→∞

(δf)n(m) (7-4)

Here we have a family of shapes Ξ = {α, γ, ε}. The process of separation based

on a cascade of openings is a binary decision tree classifier, see Fig. 7.5. First, we

extract the thick dots (alpha particles, referred to as A), second, the thin tracks

(electrons, referred to as E). Finally, the last residual image will contain the dots

(gamma particles, referred to as G) only.

I {A, E, G}

I A - blobs I E - tracks I G - dots

thickness > R

length > L

+ -

+ -

Figure 7.5: Flowchart of residual approach. I{A,E,G} denotes the input image,

and IA, IE and IG the result images.

The reconstruction is an iterative process based on the geodesic dilation (7-

2) with unitary geodesic ball as structuring element. We will show that these

stages can be approximated by a concatenation of basic morphological operators,

erosion/dilation, and simple arithmetical operations. It can be computed only in

one scan of the input image and “on the fly” without intermediate memory.

136 7. Applications

7.2.2.2 Method Implementation

As indicated above, the extraction of a shape ξi is done by algebraic opening γξi ,

constructed by morphological opening by reconstruction. Recall that the recon-

struction is iterative process, iterated until idempotence. Given the restricted and

known family of shapes, we can approximate the reconstruction by only one geodesic

dilation. Hence, the stages consist of the following steps.

1. Extraction of the marker of shape ξ by a morphological opening

mA = γBAI (7-5)

2. Geodesic dilation (approximating the reconstruction) of the marker under the

image I

m′ = δIB(m
ξ) (7-6)

3. Extraction of the image Iξ containing the ξ-shaped objects

Iξ =

{
I if m′ > 0

0 elsewhere
(7-7)

Based on this scheme, the particle classification is done in the following order.

Refer to Table 7.4 for parameters of the structuring elements. The reconstruction

step uses alike structuring element B for both shapes α and ε.

1. Blobs - First we obtain IA from the initial image I{A,E,G}. The residual image

is I{E,G} = I{A,E,G} − IA.

2. Tracks - Second, we obtain IE . The usual morphological approach to detect

curvilinear objects is to use the supremum of openings γBϕ by a rotating linear

segment Bϕ, oriented in ϕ. It is well known that a supremum of openings is

also an opening.

γ =
∨

ϕ∈Φ

γBϕ (7-8)

The tracks are thin, curvilinear, oriented in arbitrary angle. This requires a

fine angular sampling of Φ resulting in a high computational cost.

Here, to limit the number of discrete angles ϕ ∈ Φ, we thicken the tracks by

a dilation perpendicular to the opening. This allows to obtain satisfactory

results with only two discrete angles, horizontal and vertical Φ = {H,V } (see
Fig. 7.6 for illustration). Hence, using (7-8) for γBξ in (7-5), with ξ = E, we

obtain

mE =
∨

ϕ=H,V

εBE
ϕ
δB′

ϕ
I{E,G} (7-9)

where BV = rot(BH), the copy of H rotated by 90o, for both BE and B′.

3. Dots - Finally, the residuum image IG = I{E,G} − IE contains the dots, i.e.,

the gamma particles.

7.2. Classification of Particles Recorded by the Timepix Detector 137

(a) I
Ξ−A (b) Vertical thickening (c) Horizontal opening

(d) Horizontal thickening (e) Vertical opening (f) m
E

Figure 7.6: Illustration of curvilinear objects detection in IΞ−α.

7.2.2.3 Experimental Results

To evaluate the proposed classification method, we have performed a statistical

measuring of the traces’ dimensions on randomly selected images of the Timepix

database. The results suggest that the diameter of blob traces is at least 4 px.

Therefore, the thickness criterion R equal to 4 (accords to Bα=[4, 4]) identifies the

blobs.

On the other hand, the dot traces fit inside 2×2 bounding box. So the length

parameter L equal to 3 (see BH=[1, 3]) separates tracks from dots. The approx-

Table 7.4: Structuring element parameters.

Class Blobs Tracks

A E

Marker selection BA BE
H B′

H

[4,4] [1,3] [2,1]

Approximation of reconstruction B

[3,3]

[H,W] denote the height and the width of a rectangular structuring element.

138 7. Applications

imated reconstruction uses in both cases the SE of the marker’s erosion plus one

pixel in all directions. Such a SE has the minimal surface necessary for the proper

recovery of the original shape (cf. Table 7.4).

The computed confusion matrix, see Table 7.5, allows to appreciate the per-

formance. The resulting errors are mainly due to: i) the border effects: particles

touching the image border are sometimes misclassified, ii) the limit cases: the pro-

posed method only approximates (with rectangular SE) the measurements of the

particle trace thickness and projected length. The result misclassification of the

method is below 7% of particles (each type of particles considered separately). No-

tice that this error remains within the error interval of much more sophisticated

methods implemented in [Holy 2006], [Bouchami 2011] and optimized for Medip-

ix/Timepix data.

Table 7.5: Confusion matrix computed for 100 images randomly se-

lected from the database.

Input class Blobs Tracks Dots

Number of particles 418 4627 12906

431 blobs classified as 418 13 0

4920 tracks classified as 0 4614 306

12600 dots classified as 0 0 12600

Notice that the proposed method can be used to further analyze the three main

classes by splitting them into sub-classes. The sub-classes are defined by the purpose

of the particular physical measurement. We can illustrate this idea on the example

of sorting the blobs with respect to their thickness. It requires to apply several

consecutive blobs classification procedure with varying R. Another example could

be rough sorting of the track impact angles. The principle is to refine the angular

sampling of Φ in (7-8).

7.2.3 Hardware Architecture

The overall architecture of the proposed particle classification is displayed in

Fig. 7.7. It consists of a several Recognition Units (RU), Control Unit, and op-

tional Visualization Memory if results are to be displayed. The classification of a

given type of particles is carried out in one RU block. The RU performs three tasks

as described in the previous section: (i) the marker creation, (ii) the reconstruction,

and (iii) the residual image. The RU outputs two images, Iξ containing classified

particles, and the residual image IΞ
′

containing other particles.

In applications that need more types of particles to be recognized multiple RUs

are instantiated in a pipeline (Fig. 7.7). It allows us to classify all types of parti-

cles concurrently on time-shifted data, thus using inter-operator parallelism. The

residual image of an RU is taken as an input by the following RU.

The control unit provides both controls and programmable parameters for each

7.2. Classification of Particles Recorded by the Timepix Detector 139

RU. The classified particles Iξi of any RU can be either read by a further block (RU,

output, image compression, etc.) or stored in the global visualization memory.

I Ξ‘

I ξn-1

I ξ2
I ξ1

RU 1 RU 2

Control Unit

Visualization RAM

RU nI Ξ

Figure 7.7: Overview of the proposed hardware implementation.

Recognition Unit

The internal structure of the RU is shown in Fig. 7.8. First of all, the marker image

mξ is to be created. It is done by processing the image according to (7-5). Both ϕ

= H and V in the supremum
∨

in (7-9) are independent and therefore separated

in two parallel branches. Each branch computes one erosion and one dilation using

two Mathematical Morphology Blocks (MMB1-4). The marker is completed from

the parallel branches in Arithmetic Logic Block 1 (ALB1) that performs the
∨
.

In the second step, the marker mξ is used in the approximated particle recon-

struction. It consists of the marker dilation (MMB5) followed by threshold oper-

ation defined in (7-7) with the input image. The result image Iξ containing only

the desired particles is obtained through comparison with the RU input image, see

(7-7). Both previous operations are evaluated in ALB2.

Finally, the RU input image is split into two output images; Iξ with classified

particles, and the residual image IΞ
′

. This step is carried out in ALB2 as well.

The FIFO memory connected between the input image and ALB2 must be sized

properly to compensate the delay of the branch containing MMB{1:5}. For instance,
let us consider that MMB{1:5} infer total delay of 5 image lines due to δ, ε intrinsic

latency. The intrinsic latency is unavoidable and defined by dimensions of B. Hence,

the FIFO must be capable of storing at least 5 image lines as well.

The MMB performs either morphological dilation or erosion on an input im-

age by the structuring element B. It implements the rectangular dilation unit from

Section 5.2. The ALB is intended to perform several arithmetic operations. Be-

sides the reconstruction and the residue process described above, basic arithmetic

operations as min(), max(), <, >, >0, <0, addition, or subtraction can be selected.

140 7. Applications

I Ξ‘NC

I ξ
DIL/

ERO

MMB 1 MMB 2 MMB 5

MMB 3 MMB 4 ALB 1 ALB 2

DIL/

ERO

DIL/

ERO

DIL/

ERO

A
ri
th
m
et
ic

DIL/

ERO

A
ri
th
m
et
ic

I Ξ

Figure 7.8: Internal structure of the RU. Iξ contains classified particles, IΞ
′

is

the residual image.

Demonstration

The demonstration of particle traces classification into three types was implemented,

see Fig. 7.9. It instantiates two RUs; the first IA classifies blobs using themA marker

image outputting dots and tracks in the residual image. The residual image from

RU1 is read by the second RU2 that uses the marker mE to classify tracks IE .

Hence, the residual image of RU2 IΞ
′

= IG contains dots only. All three outputs

are stored in on-chip Visualization Memory and displayed on a screen.

I A

I E

I G

RU 1 RU 2

Control Unit
Measures

Visualization RAMInput image Result

I Ξ

Figure 7.9: Overview of application that classifies dot, blob, and track particle

traces.

7.2.3.1 Implementation Results

The proposed demonstration has been targeted to the Xilinx Virtex-5 FPGA

(XC5VLX50T-1). The design (without the optional visualization) occupies the fol-

lowing hardware resources: 1405 registers, 4495 LUTs, and 9 36-kbit on-chip block

RAMs.

The time benchmarks of the proposed design were performed on a set of Timepix

images, each containing a mixture of all three kinds of particles. The results are

7.3. Conclusions 141

Table 7.6: Timing results of the classification.

Image type Time [ms] Latency [µs] Rate [fps]

Best case 1.352 31.54 739

Worst case 1.678 39.4 594

Average Timepix 1.356 31.6 738

outlined in Table 7.6. All Timepix images were processed in almost the same time

with minimal differences, so we use the average value. The worst case presents

the lowest granted stream performance obtained on the most unpleasant gray-level

image (artificial image containing monotonous gradient) whereas the best case con-

forms to the constant image. One can see that processing of Timepix image is very

close to the best case since the Timepix image contains many zero-valued areas.

The classification of a typical Timepix image is shown in Fig. 7.10. The input im-

age in Fig. 7.10 (a) contains particles of all three kinds. The contrast of the input

image was enhanced to make all the particles visible; the energy of blobs is few

times greater then the energy of other particles. The images containing each kind

of particles can be seen in Fig. 7.10 (b–d).

This application illustrates usability of the proposed processing units for clas-

sification of particles in dedicated hardware, which can be considered as a typical

embedded application. It processes the input image in a stream inferring minimal

latency. We achieved very high performance rate of 738 frames per second thanks

to the streaming pipeline structure. The high frame rate allows the Timepix detec-

tor to acquire images with a high sampling frequency, reducing thus the appearance

of overlapping particles that can not be classified.

7.3 Conclusions

In this chapter we have illustrated usability of the proposed processing units in two

applications of diverse purposes.

First, we have integrated all the proposed processing units into the FREIA

platform. As the FREIA platform is build around a MicroBlaze processor, the

new accelerator is designed as a peripheral connected to the processor and the

memory by separated buses to attain a high image data throughput. For the most

parallelized unit dilation by the square SE 61 × 61 is computed at performance of

276 Mpx/s, even for high-definition 1080p images.

In the second part, we presented the method of particle traces classification using

the filter-based morphological markers instead of descriptors based on connected

components, which are very computation intensive. Implemented in hardware, the

classification recognizes three main types of traces: dots, blobs, and tracks; and

can be naturally extended. The proposed architecture achieves very good, real-

time performance 738 fps exceeding the current read-out capability of the Timepix

measure device (90 fps).

142 7. Applications

(a) Input image (b) Blobs

(c) Tracks (d) Dots

Figure 7.10: Example of obtained results: a) experimental input image (with

enhanced contrast), b) classified as blobs, c) classified as tracks, d) classified as

dots

8 General Conclusions and

Perspectives

Contents

8.1 Perspectives . 145

In this thesis, we discussed implementation of fundamental morphological filters

with large structuring elements in the dedicated hardware. The major contributions

of the thesis can be divided into three parts: algorithms, hardware implementation,

and applications.

Algorithms

At first, we have reviewed the literature of existing algorithms usable for mor-

phological filters. We have discussed that the queue-based algorithms seem to be

suitable for hardware implementation thanks to the sequential access to data, min-

imal latency, and small memory requirements. These three properties combined

allow for a simple and efficient concatenation of operators, which is necessary in

order to obtain more complex operators. From the existing algorithms we have cho-

sen the Dokládal algorithm ([Dokládal 2011]) due to its support of non-causal SEs

for erosion and dilation over the algorithm by [Lemire 2006]. We have described

this algorithm in detail in Chapter. 4 and enriched the family of supported SEs by

inclined lines, which can form regular polygons. The computation of dilation by in-

clined line SEs is done along inclined discrete lines determined by the Bresenham

line algorithm [Bresenham 1965]. The same approach was used in algorithms by

[Soille 1996] or [Morard 2011] with the difference that we preserve sequential access

to data, a crucial property for hardware implementation.

As the first main contribution of the thesis, we have proposed an original algo-

rithm for arbitrary-oriented 1-D opening and pattern spectrum. This queue-based

algorithm has constant complexity (i.e., the computation time is independent of the

SE size), sequential access to input and output data, minimal latency, and small

memory requirements. Such properties suggest that this opening algorithm should

also allow for efficient and powerful hardware implementation like the Dokládal algo-

rithm. Although 2-D opening is almost exclusively computed as a concatenation of

erosion and dilation, using a dedicated algorithm for 1-D opening is justifiable. The

proposed one-scan algorithm computes the opening with lower latency and smaller

memory requirements than an erosion-dilation concatenation. Moreover, our algo-

144 8. General Conclusions and Perspectives

rithm computes the pattern spectrum in a single image scan, which is traditionally

obtained iteratively as a residue of openings.

Despite the fact that our algorithm is tailored for the dedicated hardware, we

have evaluated performance benchmarks on the GPP and GPU platforms in order

to draw a comparison between the algorithms. The results have shown that two

algorithms with fewer comparisons per pixel (but with less regular access to data

and large memory requirements) performs better than our solution on the GPP.

However, the GPU benchmarks have indicated that our algorithm outperforms

any other 1-D opening algorithm on the GPU. This is not surprising as we know

that regular access to data and small memory requirements help to ameliorate the

parallelism (and hence the speed-up) of the GPU computation.

Hardware Implementation

Chapter 5 has described the hardware implementation of the selected efficient algo-

rithms for dilation and opening, the fundamental operators of morphological filter-

ing. The operations by different structuring elements has been implemented in the

form of the following programmable processing units: rectangle unit, polygon unit,

and 1-D opening and pattern spectrum unit. These processing units have some

common properties:

• The processing time is linear with respect to the image size and independent

of the SE size.

• The latency is mostly equal to the operator latency inferred by the size of the

used SE. The memory requirements are small and proportional to the size of

the used SE.

• The processing unit uses strictly sequential access to data at all algorithm

levels. This property enables the application to eliminate any intermediate

data storage in order to form compound operators; the processing units can

be simply concatenated one after each other.

• Two levels of parallelism: (i) inter-operator parallelism in serial concatena-

tions ζ = δε . . . δε, allowing to run all these atomic δ and ε operators simulta-

neously, and (ii) intra-operator parallelism in every atomic dilation/erosion.

The intra-operator parallelism uses the principle of fast stream decomposi-

tion into several slower streams processed by multiple units in parallel without

altering the sequential access property.

• The operation-specific parameters, i.e., the image size, the SE features, ero-

sion/dilation select, are run-time programmable up to some specified upper

bound at the beginning of processing each frame.

The proposed architectures serve as basic building blocks to be used for the con-

struction of more complex operators such as ASF, granulometries, etc., with the

same properties and performance. From the application point of view, a simple

8.1. Perspectives 145

dilation or erosion does not really represent computing difficulties to either exist-

ing implementation mentioned in the state of the art. Neither large SEs represent

an impassable obstacle; one can devise a pipe of processing elements (e.g., neigh-

borhood processors) long enough to do the computation. However, the complex

operators will eventually require intermediate image storage, and consequently loss

of performances, or need an excessively long pipe, which will fit only the targeted

application. It will lack the flexibility needed for hardware accelerators with a pri-

ori unknown specifications of applications. In our proposition, the main advantage

against the existing architectures reside in the combination of ability to implement

large SE without decomposition, programmable SE size and shape, and reduced

length of the pipe. These advantages come naturally out in more challenging ap-

plications, such as ASF, as we have shown in the comparison using ASF filters.

The performance obtained on an FPGA are approaching the 100 fps on HDTV

1080p standard for dilation and 80 fps using SVGA image resolution for 1-D open-

ing. These performances allied to the programmability are extremely interesting.

They open the accessibility of advanced morphological operators in industrial sys-

tems running under severe time constraints, such as on-line production control,

aging material defectoscopy, etc.

Applications

In Chapter 7, we have utilized the proposed processing units in two applications of

different context and complexity. At first, we have integrated our proposition into

the FREIA platform, which had already contained SPoC and TER@PIX architec-

tures, to address the most performance-demanding applications. Our contribution

enriched the capability of the FREIA platform by computing large SEs in a single

scan, so with better efficiency and performance.

The second application using our proposed units was from the context of low-

power embedded systems. Its main purpose was to classify the particles recorded

by the Timepix particle detector based on the shape of traces using only few basic

morphological operators to fit low-power FPGA devices. The classification has ex-

ploited the scalability of the processing units, which keeps hardware implementation

resource-efficient even for small sizes of images and SEs, so the whole classification

could run in parallel achieving high frame rate of 738 fps that allows for analysis of

radioactive fluxes of unknown sources and spectra.

8.1 Perspectives

The issues discussed in the thesis present many avenues of research for the future

work. We will deal with the perspectives of algorithms and dedicated hardware

implementation below.

146 8. General Conclusions and Perspectives

Algorithms

Concerning our contribution to the field of algorithms for mathematical morphology,

i.e., the original algorithm for 1-D arbitrary-oriented opening and pattern spectrum,

there is a wide perspective of investigation the feasibility of the pattern spectrum

operator on further applications, such as material characterization or crack detec-

tion [Obara 2007]. Another interesting aspect of the pattern spectrum algorithm

may be the computation of local granulometries [Vincent 2000]. The local granu-

lometries is useful for statistical methods to classify or to segment textures.

The proposed arbitrary-oriented opening algorithm has been implemented on a

GPU [Karas 2012b] with a significant speed-up up to 50× over the GPP platform.

We expect that the pattern spectrum extension of the algorithm should bring the

comparable speed-up and allow for the real-time computation of the whole pattern

spectrum with 180 directions.

Hardware Implementation

The rectangle and polygon dilation processing units proved to be useful for the

vision applications in Chapter 7. However, these applications take advantage of

simple interconnection, which may not be sufficient for general-purpose morphol-

ogy computing platforms. Then some higher-level adaptable interconnection should

be used, for instance an adaptable ring architecture [Ngan 2011]. Such a comput-

ing system would combine the high performance of the proposed units with high

polyvalence of the adaptable ring.

The 1-D synchronous arbitrary-oriented dilation can be modified in two different

ways. First, we can obtain a unit that does not compute only one dilation by l-pixel

SE, but computes a vector of dilations by all possible SEs of lengths from 1 to l

pixels at the same time. Such a vector may be very useful as a vector of features for

statistical learning methods, see for example [Cord 2007]. The second branch of the

prospective development of the synchronous architecture aims at arbitrary-shaped

SEs using the SE decomposition into vertical cords similar to the [Urbach 2008]

algorithm. As the synchronous architecture is capable of computing dilations by

SEs of different lengths concurrently, it can be used to compute a vector of vertical

line dilations for each column. Then in the second stage, the partial results of

vertical dilations are combined together to form the arbitrary-shaped SE.

The 1-D arbitrary-oriented opening and pattern spectrum unit uses only inter-

operator parallelism to achieve high performance arguing that this parallelism is

able to exploit the full capabilities of dedicated hardware via instantiating many

units in parallel, which is common in many applications, e.g., χl opening and pattern

spectrum. However, in the cases where a small number of units (or even only

one unit) are necessary, the overall application performance may be unsatisfactory.

Then the performance of the opening unit can be ameliorated by intra-operator

parallelism by partitioning the image into vertical stripes in the same manner like in

the case of inclined line dilation units of parallel polygons, discussed in Section 5.3.3.

Publications

1. J. Bartovsky, P. Dokladal, E. Dokladalova, and V. Georgiev. Parallel imple-

mentation of sequential morphological filters. Journal of Real-Time Image

Processing. 2011 (accepted, available online, doi:10.1007/s11554-011-0226-5).

2. P. Karas, V. Morard, J. Bartovsky, T. Grandpierre, E. Dokladalova, P. Mat-

ula, and P. Dokladal. GPU implementation of linear morphological openings

with arbitrary angle. Journal of Real-Time Image Processing. 2012 (accepted,

available online, doi:10.1007/s11554-012-0248-7).

3. J. Bartovsky, P. Dokladal, E. Dokladalova, M. Akil, and M. Bilodeau. Real-

time streaming implementation of morphological filters with polygonal SE.

Journal of Real-Time Image Processing. (accepted on June 2012, to appear).

4. J. Bartovsky, P. Dokladal, E. Dokladalova, and M. Bilodeau. One-scan al-

gorithm for arbitrarily oriented 1-D morphological opening and slope pattern

spectrum. In ICIP 2012, USA, October 2012.

5. J. Bartovsky, E. Dokladalova, P. Dokladal, and M. Akil. Efficient FPGA

architecture for oriented 1-D opening and pattern spectrum. In ICIP 2012,

USA, October 2012.

6. J. Bartovsky, D. Schneider, E. Dokladalova, P. Dokladal, V. Georgiev, and

M. Akil. Morphological classification of particles recorded by the Timepix

detector. In ISPA 2011, Croatia, September 2011.

7. J. Bartovsky, P. Dokladal, E. Dokladalova, and M. Bilodeau. Fast sequential

algorithm for 1-D morphological opening and closing. In ISMM 2011, Italy,

July 2011.

8. J. Bartovsky, P. Dokladal, E. Dokladalova, and V. Georgiev. Stream im-

plementation of serial morphological filters with approximated polygons. In

ICECS 2010, Greece, December 2010.

9. V. Kraus, M. Holik, J. Bartovsky, V. Georgiev, J. Jakubek, and D. Schneider.

Space weather monitor based on the Timepix single particle pixel detector.

In TELFOR 2010, Serbia, November 2010.

10. J. Bartovsky, E. Dokladalova, P. Dokladal, and V. Georgiev. Pipeline archi-

tecture for compound morphological operators. In ICIP 2010, Hong Kong,

September 2010.

http://dx.doi.org/10.1007/s11554-011-0226-5
http://dx.doi.org/10.1007/s11554-012-0248-7

Bibliography

[Adams 1993] R. Adams. Radial decomposition of discs and spheres. CVGIP

Graphical models and image processing, vol. 55, no. 5, pages 325–332, 1993.

(Cited on page 53)

[Bagdanov 2002] A. D. Bagdanov, and M. Worring. Granulometric analysis of

document images. In International Conference on Pattern Recognition, pages

468–471, 2002. (Cited on page 2)

[Bartovský 2010] J. Bartovský, E. Dokládalová, P. Dokládal, and V. Georgiev.

Pipeline architecture for compound morphological operators. In International

Conference on Image Processing, pages 3765–3768, Sept. 2010. (Cited on

page 77)

[Bartovský 2011a] J. Bartovský, P. Dokládal, E. Dokládalová, and M. Bilodeau.

Fast streaming algorithm for 1-D morphological opening and closing on 2-D

support. In ISMM 2011, volume 6671 of LNCS, pages 296–305. Springer,

July 2011. (Cited on pages 27, 29, 31, and 41)

[Bartovský 2011b] J. Bartovský, P. Dokládal, E. Dokládalová, and V. Georgiev.

Parallel implementation of sequential morphological filters. Journal of Real-

Time Image Processing, pages 1–13, 2011. (Cited on page 77)

[Bartovsky 2011c] J. Bartovsky, D. Schneider, E. Dokladalova, P. Dokladal,

V. Georgiev, and M. Akil. Morphological classification of particles recorded

by the timepix detector. In 7th ISPA 2011, pages 343 –348, sept. 2011. (Cited

on pages 125 and 133)

[Bartovský 2012a] J. Bartovský, P. Dokládal, E. Dokládalová, and M. Bilodeau.

One-scan algorithm for arbitrarily oriented 1-D morphological opening and

slope pattern spectrum. In International Conference on Image Processing,

Sept. 2012. (Cited on page 41)

[Bartovský 2012b] J. Bartovský, P. Dokládal, E. Dokládalová, M. Bilodeau, and

M. Akil. Real-time implementation of morphological filters with polygonal

structuring elements. Journal of Real-Time Image Processing, 2012. (Cited

on page 78)

[Bartovský 2012c] J. Bartovský, E. Dokládalová, P. Dokládal, and M. Akil. Ef-

ficient FPGA architecture for oriented 1-D opening and pattern spectrum.

In International Conference on Image Processing, Sept. 2012. (Cited on

page 78)

150 Bibliography

[Beucher 1992] S. Beucher, and F Meyer. The morphological approach of segmenta-

tion: the watershed transformation. In Dougherty E. (Editor), Mathematical

Morphology in Image Processing, pages 433–481, 1992. (Cited on page 2)

[Beucher 1995] S. Beucher, R. Peyrard, M. Bilodeau, and M. Gauthier. Road mon-

itoring and obstacle detection system by image analysis and mathematical

morphology. In European Automobile Engineers Cooperation Conference,

pages 1–12, 1995. (Cited on page 3)

[Bonnot 2008] P. Bonnot, F. Lemonnier, G. Edelin, G. Gaillat, O. Ruch, and

P. Gauget. Definition and simd implementation of a multi-processing ar-

chitecture approach on fpga. In Design, automation and test in Europe,

pages 610–615. ACM, 2008. (Cited on pages 126 and 132)

[Bouchami 2011] J. Bouchami, and et al. Measurement of pattern recognition effi-

ciency of tracks generated by ionizing radiation in a medipix2 device. Nucl.

Instrum. Meth. A, vol. 633, Supplement 1, no. 0, pages S187 – S189, 2011.

(Cited on pages 133, 134, and 138)

[Brambor 2006] J. Brambor. Algorithmes de la morphologie mathématique pour les

architectures orientées flux. PhD thesis, School of Mines Paris, Centre de

Morphologie Mathématique, Sept. 2006. ID:5758. (Cited on page 29)

[Bresenham 1965] J. E. Bresenham. Algorithm for computer control of a digital

plotter. IBM Systems Journal, vol. 4, no. 1, pages 25–30, 1965. (Cited on

pages 5 and 143)

[Chien 2005] S.-Y. Chien, S.-Y. Ma, and L.-G. Chen. Partial-result-reuse architec-

ture and its design technique for morphological operations with flat structur-

ing elements. Circuits and Systems for Video Technology, IEEE Transactions

on, vol. 15, no. 9, pages 1156 – 1169, sept. 2005. (Cited on pages 33, 34,

119, and 121)

[Clienti 2008a] Ch. Clienti, S. Beucher, and M. Bilodeau. A system on chip dedi-

cated to pipeline neighborhood processing for mathematical morphology. In

EURASIP, editeur, EUSIPCO 2008, Lausanne, August 2008. (Cited on

pages 32, 119, 126, and 132)

[Clienti 2008b] Ch. Clienti, M. Bilodeau, and S. Beucher. An efficient hardware

architecture without line memories for morphological image processing. In

ACIVS ’08, pages 147–156, Berlin, Heidelberg, 2008. Springer-Verlag. (Cited

on pages 36 and 121)

[Clienti 2009] Ch. Clienti. Architectures flot de données dédiées au traitement

d’images par Morphologie Mathématique. PhD thesis, School of Mines Paris,

Centre de Morphologie Mathematique, Sept. 2009. ID:5758. (Cited on

pages 29 and 30)

Bibliography 151

[Coltuc 1997] D. Coltuc, and I. Pitas. On fast running max-min filtering. IEEE

Transactions on Circuits and Systems II, vol. 44, no. 8, pages 660 –663, aug

1997. (Cited on page 34)

[Cord 2007] A. Cord, D. Jeulin, and F. Bach. Segmentation of random textures by

morphological and linear operators. In 8th ISMM, pages 387–398, Oct. 2007.

(Cited on pages 2 and 146)

[CUDA 2012] CUDA. nVidia cuda documentation. http://www.nvidia.com/

object/cuda_home_new.html, 2012. (Cited on page 30)

[Déforges 2010] O. Déforges, N. Normand, and M. Babel. Fast recursive grayscale

morphology operators: from the algorithm to the pipeline architecture. Jour-

nal of Real-Time Image Processing, pages 1–10, 2010. 10.1007/s11554-010-

0171-8. (Cited on pages 34, 119, 120, and 121)

[Diamantaras 1997] K. I. Diamantaras, and S. Y. Kung. A linear systolic array

for real-time morphological image processing. J. VLSI Signal Process. Syst.,

vol. 17, no. 1, pages 43–55, 1997. (Cited on page 37)

[Dokládal 2011] P. Dokládal, and E. Dokládalová. Computationally efficient, one-

pass algorithm for morphological filters. Journal of Visual Communication

and Image Representation, vol. 22, no. 5, pages 411–420, 2011. (Cited on

pages 5, 24, 29, 41, and 143)

[FREIA 2011] FREIA. Framework for embedded image applications. http://

freia.enstb.org, 2008–2011. (Cited on pages 6 and 125)

[Fulguro 2010] Fulguro. Fulguro documentation. http://fulguro.sourceforge.

net, 2010. (Cited on page 29)

[Gil 1993] J. Gil, and M. Werman. Computing 2-d min, median, and max filters.

IEEE Trans. Pattern Anal. Mach. Intell., vol. 15, no. 5, pages 504–507, 1993.

(Cited on page 22)

[Gil 2002] J. Gil, and R. Kimmel. Efficient dilation, erosion, opening, and closing

algorithms. IEEE Trans. PAMI, vol. 24, no. 12, pages 1606–1617, 2002.

(Cited on page 23)

[Gokhale 2010] M. B. Gokhale, and P. S. Graham. Reconfigurable computing: Ac-

celerating computation with field-programmable gate arrays. Springer Pub-

lishing Company, Incorporated, 1st édition, 2010. (Cited on page 4)

[Gorpas 2009] D. Gorpas, and D. Yova. Image segmentation for biomedical applica-

tions based on alternating sequential filtering and watershed transformation.

In Proc. SPIE, volume 7370, 2009. (Cited on page 2)

http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://freia.enstb.org
http://freia.enstb.org
http://fulguro.sourceforge.net
http://fulguro.sourceforge.net

152 Bibliography

[Hauck 2007] S. Hauck, and A. DeHon. Reconfigurable computing: The theory and

practice of fpga-based computation. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 2007. (Cited on page 4)

[Hedberg 2009] H. Hedberg, P. Dokládal, and V. Öwall. Binary morphology with

spatially variant structuring elements: Algorithm and architecture. IEEE

Transactions on Image Processing, vol. 18, no. 3, pages 562–572, 2009. (Cited

on page 38)

[Heijmans 1997] H.J.A.M. Heijmans. Composing morphological filters. IEEE Trans.

Image Processing, vol. 6, no. 5, pages 713 –723, may. 1997. (Cited on page 2)

[Holy 2006] T. Holy, J. Jakubek, S. Pospisil, J. Uher, D. Vavrik, and Z. Vykydal.

Data acquisition and prococessing software package for medipix2. Nuclear

Instruments and Methods in Physics Research, vol. 563, pages 254–258,

2006. (Cited on page 138)

[Ikenaga 2000] T. Ikenaga, and T. Ogura. Real-time morphology processing using

highly parallel 2-D cellular automata CAM2. Image Processing, IEEE Trans-

actions on, vol. 9, no. 12, pages 2018 – 2026, dec 2000. (Cited on page 38)

[ITU-R 2012] ITU-R. Parameter values for ultra-high definition television systems

for production and international programme exchange. http://www.itu.

int/rec/R-REC-BT.2020-0-201208-I/en, 2012. (Cited on page 1)

[Jakubek 2011] J. Jakubek. Precise energy calibration of pixel detector working in

time-over-threshold mode. Nucl. Instrum. Meth. A, vol. 633, Supplement 1,

no. 0, pages S262 – S266, 2011. (Cited on pages 133 and 134)

[Karas 2010] P. Karas. Efficient computation of morphological greyscale reconstruc-

tion. In MEMICS’10 – Selected Papers, volume 16 of OpenAccess Series in

Informatics (OASIcs), pages 54–61, Dagstuhl, Germany, 2010. (Cited on

page 30)

[Karas 2012a] P. Karas, and J. Bartovsky. CUDA-based linear openings. http:

//sourceforge.net/p/linearopenings, Jan. 2012. (Cited on pages 67

and 73)

[Karas 2012b] P. Karas, V. Morard, J. Bartovský, T. Grandpierre, E. Dokládalová,

P. Matula, and P. Dokládal. GPU implementation of linear morphological

openings with arbitrary angle. Journal of Real-Time Image Processing, 2012.

(Cited on pages 2, 31, 72, 73, and 146)

[Klein 1972] J.-C. Klein, and J. Serra. The texture analyser. J. of Microscopy,

vol. 95, pages 349–356, 1972. (Cited on page 32)

[Klein 1989] J.C. Klein, and R. Peyrard. Pimm1, an image processing ASIC based

on mathematical morphology. In ASIC Seminar and Exhibit, pages P7 –

1/1–4, sep 1989. (Cited on page 32)

http://www.itu.int/rec/R-REC-BT.2020-0-201208-I/en
http://www.itu.int/rec/R-REC-BT.2020-0-201208-I/en
http://sourceforge.net/p/linearopenings
http://sourceforge.net/p/linearopenings

Bibliography 153

[Knuth 1976] D. E. Knuth. Big omicron and big omega and big theta. SIGACT

News, vol. 8, no. 2, pages 18–24, April 1976. (Cited on page 21)

[Knuth 1997] D. E. Knuth. The art of computer programming, volume 1 (3rd ed.):

fundamental algorithms. Addison Wesley Longman Publishing Co., Inc.,

Redwood City, CA, USA, 1997. (Cited on page 21)

[Leiss 2007] E. L. Leiss. A programmer’s companion to algorithm analysis. Taylor

& Francis Group, LLC, Boca Raton, FL, USA, 2007. (Cited on page 21)

[Lemire 2006] D. Lemire. Streaming maximum-minimum filter using no more than

three comparisons per element. CoRR, vol. abs/cs/0610046, 2006. (Cited on

pages 24, 29, 49, and 143)

[Lemonnier 1995] F. Lemonnier, and J.-C. Klein. Fast dilation by large 1D struc-

turing elements. In Proc. Int. Workshop Nonlinear Signal and Img. Proc.,

pages 479–482, Greece, Jun. 1995. (Cited on page 23)

[Llopart 2007] X. Llopart, R. Ballabriga, M. Campbell, L. Tlustos, and W. Wong.

Timepix, a 65k programmable pixel readout chip for arrival time, energy

and/or photon counting measurements. Nucl. Instrum. Meth. A, vol. 581,

no. 1-2, pages 485 – 494, 2007. (Cited on page 133)

[Malamas 2000] E. N. Malamas, A. G. Malamos, and T. A. Varvarigou. Fast imple-

mentation of binary morphological operations on hardware-efficient systolic

architectures. J. VLSI Signal Process. Syst., vol. 25, no. 1, pages 79–93,

2000. (Cited on page 37)

[Mamba 2012] Mamba. Mamba documentation. http://cmm.ensmp.fr/

Micromorph, 2012. (Cited on page 29)

[Maragos 1989] P. Maragos. Pattern spectrum and multiscale shape representation.

IEEE Trans. Pattern Anal. Mach. Intell., vol. 11, no. 7, pages 701–716, 1989.

(Cited on pages 2 and 16)

[Maragos 2005] P Maragos. Morphological filtering for image enhancement and

feature detection. Image & Video Processing Book (2nd ed.), pages 135–156,

2005. (Cited on page 2)

[Marion 2004] V. Marion, O. Lecointe, C. Lewandowski, J-C. Morillon, R. Aufrere,

B. Mercotegui, R. Chapuis, and S. Beucher. Robust perception algorithm for

road and track autonomous following. In Unmanned ground vehicle technol-

ogy Conference, pages 55–66, 2004. (Cited on page 3)

[Matas 2008] P. Matas, E. Dokládalová, M. Akil, T. Grandpierre, L. Najman,

M. Poupa, and V. Georgiev. Parallel algorithm for concurrent computation

of connected component tree. In ACIVS 2008, volume LNCS 5259, pages

230–241, 2008. (Cited on pages 26 and 134)

http://cmm.ensmp.fr/Micromorph
http://cmm.ensmp.fr/Micromorph

154 Bibliography

[Matheron 1975] G. Matheron. Random sets and integral geometry. Wiley New

York, 1975. (Cited on pages 1, 2, 10, and 16)

[MATLAB 2012] MATLAB. Matlab documentation. http://www.mathworks.com/

products/matlab, 2012. (Cited on page 29)

[Mealy 1955] G. H. Mealy. A method for synthesizing sequential circuits. Bell

Systems Technical Journal, vol. 34, pages 1045–1079, sept. 1955. (Cited on

page 78)

[Menotti 2007] D. Menotti, L. Najman, and de Albuquerque A. 1D Component

tree in linear time and space and its application to gray-level image multi-

thresholding. In Proceedings of 8th ISMM, volume 1, pages 437–448. INPE,

2007. (Cited on page 26)

[Moore 2007] J. A. Moore, K. A. Pimbblet, and M. J. Drinkwater. Mathematical

morphology: Star/galaxy differentiation & galaxy morphology classification.

Publications of the Astronomical Society of Australia, vol. 23, no. 4, pages

135–146, 2007. (Cited on page 2)

[Morard 2011] V. Morard, P. Dokladal, and E. Decenciere. Linear openings in

arbitrary orientation in O(1) per pixel. In Acoustics, Speech and Signal

Processing (ICASSP), pages 1457–1460, may 2011. (Cited on pages 5, 27,

31, 69, and 143)

[Morph-M 2012] Morph-M. Morph-M documentation. http://cmm.ensmp.fr/

Morph-M, 2012. (Cited on page 29)

[Ngan 2011] N. Ngan. Etude et conception d’un reseau sur puce dynamiquement

adaptable pour la vision embarquee. PhD thesis, Paris-Est, ESIEE Paris,

Dec. 2011. (Cited on page 146)

[Normand 2003] N. Normand. Convex structuring element decomposition for single

scan binary mathematical morphology. In Discrete Geometry for Computer

Imagery, volume 2886 of LNCS, pages 154–163. Springer Berlin, Heidelberg,

2003. (Cited on pages 13 and 35)

[nVidia 2012] nVidia. nVidia GPU programming guide. http://developer.

nvidia.com/nvidia-gpu-programming-guide, 2012. (Cited on pages 30

and 73)

[Obara 2007] B. Obara. Identification of transcrystalline microcracks observed in

microscope images of a dolomite structure using image analysis methods

based on linear structuring element processing. Computers and Geosciences,

vol. 33, pages 151–158, 2007. (Cited on page 146)

[Octave 2012] Octave. Gnu octave documentation. http://www.gnu.org/

software/octave, 2012. (Cited on page 29)

http://www.mathworks.com/products/matlab
http://www.mathworks.com/products/matlab
http://cmm.ensmp.fr/Morph-M
http://cmm.ensmp.fr/Morph-M
http://developer.nvidia.com/nvidia-gpu-programming-guide
http://developer.nvidia.com/nvidia-gpu-programming-guide
http://www.gnu.org/software/octave
http://www.gnu.org/software/octave

Bibliography 155

[OpenCL 2012] OpenCL. OpenCL documentation. http://www.khronos.org/

opencl, 2012. (Cited on page 30)

[OpenCV 2012] OpenCV. OpenCV documentation. http://opencv.

willowgarage.com, 2012. (Cited on pages 29, 30, and 49)

[Pecht 1985] J Pecht. Speeding-up successive minkowski operations with bit-plane

computers. Pattern Recognition Letters, vol. 3, no. 2, pages 113 – 117, 1985.

(Cited on page 22)

[Pitas 1989] I. Pitas. Fast algorithms for running ordering and max/min calcula-

tion. Circuits and Systems, IEEE Transactions on, vol. 36, no. 6, pages 795

–804, June 1989. (Cited on page 34)

[Salembier 1998] P. Salembier, A. Oliveras, and L. Garrido. Anti-extensive con-

nected operators for image and sequence processing. IEEE Trans. on Image

Proc, vol. 7, no. 4, pages 555–570, 1998. (Cited on page 26)

[Serra 1982] J. Serra. Image analysis and mathematical morphology, volume 1.

Academic Press, New York, 1982. (Cited on page 10)

[Serra 1988] J. Serra. Image analysis and mathematical morphology, volume 2,

theoretical advances. Academic Press, London, 1988. (Cited on pages 1, 14,

and 16)

[Serra 1989] J. Serra. Toggle mappings. From pixels to features, pages 61–72, 1989.

(Cited on page 2)

[Serra 1992] J. Serra, and L. Vincent. An overview of morphological filtering. Cir-

cuits Syst. Signal Process., vol. 11, no. 1, pages 47–108, 1992. (Cited on

pages 1 and 2)

[Soille 1996] P. Soille, E. J. Breen, and R. Jones. Recursive implementation of

erosions and dilations along discrete lines at arbitrary angles. IEEE Trans.

Pattern Anal. Mach. Intell., vol. 18, no. 5, pages 562–567, 1996. (Cited on

pages 5, 24, 49, 57, 69, and 143)

[Soille 2003] P. Soille. Morphological image analysis: Principles and applications.

Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2003. (Cited on

pages 10, 12, and 133)

[Sternberg 1986] S. Sternberg. Grayscale morphology. Comput. Vision Graph. Im-

age Process., vol. 35, no. 3, pages 333–355, 1986. (Cited on page 14)

[T. Randen 2012] T. Randen. Brodatz Textures. http://www.ux.uis.no/

~tranden/brodatz.html, 2012. (Cited on page 74)

[Urbach 2004] E. R. Urbach, J. B. T. M. Roerdink, and M. H. F. Wilkinson. Con-

nected rotation-invariant size-shape granulometries. In International Con-

ference on Pattern Recognition, pages 688–691, 2004. (Cited on page 2)

http://www.khronos.org/opencl
http://www.khronos.org/opencl
http://opencv.willowgarage.com
http://opencv.willowgarage.com
http://www.ux.uis.no/~tranden/brodatz.html
http://www.ux.uis.no/~tranden/brodatz.html

156 Bibliography

[Urbach 2008] E. R. Urbach, and M. H. F. Wilkinson. Efficient 2-D grayscale

morphological transformations with arbitrary flat structuring elements. IEEE

Trans. Image Processing, vol. 17, no. 1, pages 1 –8, jan. 2008. (Cited on

pages 25, 49, 69, and 146)

[Van Droogenbroeck 1996] M. Van Droogenbroeck, and H. Talbot. Fast computa-

tion of morphological operations with arbitrary structuring elements. Pattern

Recogn. Lett., vol. 17, no. 14, pages 1451–1460, 1996. (Cited on page 25)

[Van Droogenbroeck 2005] M. Van Droogenbroeck, and M. J. Buckley. Morpho-

logical erosions and openings: Fast algorithms based on anchors. J. Math.

Imaging Vis., vol. 22, no. 2-3, pages 121–142, 2005. (Cited on pages 27, 49,

50, and 69)

[van Herk 1992] M. van Herk. A fast algorithm for local minimum and maximum

filters on rectangular and octagonal kernels. Pattern Recogn. Lett., vol. 13,

no. 7, pages 517–521, 1992. (Cited on page 22)

[Vapnik 1995] V. N. Vapnik. The nature of statistical learning theory. Springer-

Verlag New York, Inc., New York, NY, USA, 1995. (Cited on page 2)

[Velten 2004] J. Velten, and A. Kummert. Implementation of a high-performance

hardware architecture for binary morphological image processing operations.

In Circuits and Systems, 2004. MWSCAS ’04. The 2004 47th Midwest Sym-

posium on, volume 2, pages II–241 – II–244 vol.2, 25-28 2004. (Cited on

page 32)

[Vincent 2000] L. Vincent. Granulometries and opening trees. Fundam. Inform.,

vol. 41, no. 1-2, pages 57–90, 2000. (Cited on page 146)

[Wei 2007] Z. Wei, Y. Hua, S. Hui-sheng, and F. Hong-qi. X-ray image enhance-

ment based on multiscale morphology. In Bioinformatics and Biomedical

Engineering, pages 702–705, july 2007. (Cited on page 2)

[Wilkinson 2008] M.H.F. Wilkinson, Hui G., W.H. Hesselink, J.-E. Jonker, and

A. Meijster. Concurrent computation of attribute filters on shared memory

parallel machines. IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 10,

pages 1800 –1813, oct. 2008. (Cited on page 26)

[Xilinx 2009] Xilinx. Virtex-5 family documentation. http://www.xilinx.com/

support/documentation/virtex-5.htm, 2009. (Cited on page 111)

[Xu 1991] J. Xu. Decomposition of convex polygonal morphological structuring ele-

ments into neighborhood subsets. IEEE Trans. Pattern Anal. Mach. Intell.,

vol. 13, no. 2, pages 153–162, 1991. (Cited on pages 13 and 53)

[Zhang 2011] X. W. Zhang, G. Thibault, and E. Decenciére. Application of the

morphological ultimate opening to the detection of microaneurysms on eye

http://www.xilinx.com/support/documentation/virtex-5.htm
http://www.xilinx.com/support/documentation/virtex-5.htm

Bibliography 157

fundus images from a clinical database. In International Congress for Stere-

ology, Beijing, China, October 2011. (Cited on page 2)

[Zhuang 1986] X Zhuang, and R. M. Haralick. Morphological structuring element

decomposition. Computer Vision, Graphics, and Image Processing, vol. 35,

no. 3, pages 370–382, 1986. (Cited on page 13)

	Introduction
	Applications of Mathematical Morphology
	Vision Application Constraints

	Roles of Dedicated Hardware for Vision Applications
	Contributions of the Thesis
	Outline

	Fundamental Operators of Mathematical Morphology
	Erosion and Dilation
	Composition of Structuring Elements

	Opening and Closing
	Alternating Sequential Filters
	Granulometry and Pattern Spectrum

	State of the Art
	Advances of Basic Morphology Algorithms
	1-D Dilation Algorithms
	2-D Dilation Algorithms
	1-D Opening Algorithms
	2-D Opening Algorithms
	Choice of Algorithm for Hardware Implementation

	Advances in Morphology Implementation
	General-purpose Processors
	Graphics Processing Units
	Dedicated Hardware

	Conclusions

	Algorithm Description
	1-D Dilation Algorithm
	Illustration of Dokládal Algorithm Run

	2-D Dilation by Rectangular SE
	1-D Vertical Dilation
	2-D Algorithm for Rectangles
	GPP Experimental Results of Dokládal Algorithm

	Polygonal SE
	Oblique 1-D Structuring Element
	Translation-Variant SEs on 8-connected Grid

	1-D Opening Algorithm
	Illustration of Streaming Peak Elimination Algorithm Run
	Pattern Spectrum from Opening
	Arbitrary SE Orientation
	Experimental Results of Streaming Peak Elimination Algorithm

	Conclusions

	Hardware Implementation
	1-D Dilation Architecture
	Horizontal Architecture
	Vertical Architecture
	Reducing the Impact of Data Dependency

	2-D Rectangular Dilation Architecture
	Parallel Rectangle Architecture
	Conclusions

	2-D Polygonal Dilation Architecture
	1-D Line Unit Architecture
	Polygon Unit Architecture
	Parallel Polygon Architecture
	Conclusions

	1-D Synchronous Dilation Architecture
	Conclusions

	1-D Opening and Spectrum Architecture
	Arbitrary Orientation
	Conclusions

	Conclusions

	Implementation Results
	Rectangle Dilation Unit
	Polygon Dilation Unit
	1-D Synchronous Dilation Unit
	Opening and Spectrum Unit
	Comparison of the Proposed Implementations
	Comparison with Existing Implementations
	Comparison Using Alternating Sequential Filters

	Conclusions

	Applications
	FREIA Platform
	Top-level Platform Description
	Bart_proc Peripherals
	Bart_proc Pipeline
	FREIA Interface
	FREIA Performance Evaluation

	Classification of Particles Recorded by the Timepix Detector
	Classification Using Morphological Characteristics
	Method Description
	Hardware Architecture

	Conclusions

	General Conclusions and Perspectives
	Perspectives

	Publications
	Bibliography

