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bNational Institute of Informatics, Japan

Abstract

In this paper, we study 3D rotations on grid points computed by using only
integers. For that purpose, we investigate the intersection between the 3D half-
grid and the rotation plane. From this intersection, we define 3D hinge angles
which determine a transit of a grid point from a voxel to its adjacent voxel
during the rotation. Then, we give a method to sort all 3D hinge angles with
integer computations. The study of 3D hinge angles allows us to design a 3D
discrete rotation and to estimate the rotation between a pair of digital images
in correspondence.

Keywords: 3D discrete rotation, half-grid, multi-grid, hinge angle, integer
computation.

1. Introduction

Rotations in the 3D space are required for computer imagery in image pro-
cessing [1], computer vision [2, 3] and computer graphics [4]. A rotation in the
3D Euclidean space can be in general represented in two typical ways. One is
to represent a rotation as the combination of three rotations around the three
axes of the coordinate system in concern [5]. The other is to represent a ro-
tation by a rotation axis together with an angle around the axis [2, 3]. Even
if the representations of a rotation are different, computed rotation results are
the same as far as the space is continuous. However, this is not the case for
the discrete space. Namely, depending on the rotation representation, the com-
puted rotation result can change in the discrete space [6]. As is the case of 2D
rotations, computing a 3D rotation once in the discrete space brings displace-
ment from that in the continuous space; computing 3D rotations many times
causes difficulty in analyzing inherited displacements during the computation.
Accordingly, representing a 3D rotation by a rotation axis together with an an-
gle around the axis is more preferable in the 3D discrete space. Besides, it is
known that such axis-angle representation is popular for 3D rotation estimation
from given images, which is one of important problems in computer vision [2, 3].
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This paper presents a study of the rotation in the 3D discrete space. Since
we admit only integer computation, we assume that our rotation center is a grid
point such as the origin, and that a rotation axis has integer coordinates. In
the 2D case, hinge angles are known to correspond to the discontinuity caused
by discretization1 of the rotation in the continuous plane [7, 8, 9]. Intuitively,
hinge angles determine a transit of a grid point from a pixel to its adjacent pixel
during the rotation. In other words, two rotations with nearby angles transform
the same grid point to two adjacent pixels because discrete rotations around a
given center are locally continuous with regard to the angle. Hinge angles are
their discontinuity angles. Computing hinge angles using integers alone allows
us to compute 2D discrete rotations without any approximation errors, which
designs the 2D discrete rotation. Extending these to the 3D case, we design a
3D discrete rotation. In the 3D case, however, depending on the rotational axis,
we have a variety of transitions of a grid point across voxels. How to capture
these transitions systematically is a big issue.

In this paper, we first define hinge angles for 3D rotations so that they
determine a transit of a grid point from a voxel to its adjacent voxel. To compute
the hinge angles for 3D rotations, we introduce a notion, called a "multi-grid",
that is given by the intersection between a plane normal to the rotation axis and
the half-grid, i.e., the boundary between adjacent voxels. The rational multi-
grids, which are a subset of multi-grids, allow computations of hinge angles
using only rational numbers. Using rational multi-grids, we show that, as in
2D, it is possible to use only integers during computation and to have an integer
representation of hinge angles. Then, we give a method to sort all the possible
hinge angles in concern to design a 3D discrete rotation. We also propose a
method to obtain from a pair of 3D digital images in correspondence, a set of
3D rotations each of which transforms the first digital image into the second
one. Note that in a discrete space, there exists a set of rotations that give the
same rotated image from a given digital image. In this paper, we fix a rotation
axis and look for all the possible rotation angles from a given pair of 3D digital
images. The set of all possible rotation angles is called the set of admissible
rotation angles and its upper and lower bounds are represented by hinge angles.
This method is the extension of the method proposed in [9] for the 2D cases
into 3D cases.

Differently from 2D discrete rotations [6, 8, 10], few attempts on 3D discrete
rotations have been reported [1, 4]. In particular, to our best knowledge, this
is the first work on 3D discrete rotations using integer computations without
digitization errors. This paper is an extended version of our previous paper
[11]. Sections 3 and 4 about multi-grids and hinge angles are re-organized as
more properties of multi-grids are added in this paper (see section 3.4 for the
properties). Besides, we newly add an incremental rotation algorithm using 3D
hinge angles in Section 5.4 as well as a study for finding a 3D discrete rotation
from a pair of 3D digital images in Section 6.

1The discretization is done by applying the rounding function to the result.
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Figure 1: All hinge angles in the first quadrant for the grid point p = (2, 1)⊤, such that
α1 ≈ −13.68◦, α2 ≈ 15.59◦, α3 ≈ 21.31◦, α4 ≈ 50.52◦. The hinge angle α5 is obtained by
symmetry such that α5 = π

2
− α1 ≈ 76.32◦

2. Hinge angles

Hinge angles for 2D rotations are defined to represent the discontinuities of
rotations in the discrete plane [8]. Hinge angles determine a transit of a grid
point from a pixel to its adjacent pixel during the rotation. To characterize
those hinge angles, the 2D half-grid plays an important role.

Definition 1. The 2D half-grid is the set of lines in the plane, each of which is
represented by one of x = i+ 1

2 and y = i+ 1
2 where i ∈ Z.

In other words, the 2D half-grid represents the border between two adjacent
pixels. From the definition of the 2D half-grid, we define the hinge angles in the
plane.

Definition 2. An angle α is called a hinge angle if at least one point in Z2

exists such that its image by the Euclidean rotation with α around the origin is
on the 2D half-grid.

Figure 1 illustrates all the hinge angles in the first quadrant for the grid
point (2, 1)⊤. Note that hinge angles in the other quadrants are obtained by
symmetry with respect to the x-axis and/or y-axis from those in Figure 1.

To extend the definition of hinge angles into the 3D case, we first define the
half-grid in the 3D space. Similarly to the 2D half-grid, the 3D half-grid defines
the limit between two adjacent voxels in the 3D discrete space.

Definition 3. The 3D half-grid is the set of planes in the 3D space, each of
which is represented by one of x = i+ 1

2 , y = i+ 1
2 and z = i+ 1

2 where i ∈ Z.

Introducing the definition of the 3D half-grid allows us to define hinge angles
in 3D as a natural extension of hinge angles in 2D. As mentioned in the intro-
duction, we only consider here 3D rotations whose rotation axes have directional
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vectors with integer coordinates and go through the origin. Hereafter, we call
such an axis an integer-axis.

Definition 4. An angle α is called a hinge angle if at least one point in Z3 exists
such that its image by the Euclidean rotation with α around an integer-axis is
on the half-grid.

Similarly to the 2D case, for a grid point p in 3D, an angle α is a hinge angle
if and only if the discretised point of the rotation result of p with angle α + ǫ

becomes different from that with angle α− ǫ for any ǫ > 0.
Differently from the case of 2D rotations, we need not only a rotation angle

but also a rotation axis in order to specify a 3D rotation. This requires inves-
tigation of the intersection between voxels and a plane determined by a given
rotation axis because a variety of transitions of a grid point across voxels exist
depending on the plane. To capture this variety, we introduce the multi-grid
in the next section, which allows us to study hinge angles in the 3D rotation
plane.

3. Multi-grids

In this section, we introduce a notion that is required to extend hinge angles
from 2D to 3D and thus required to perform discrete rotations in the 3D discrete
space. As explained in Section 2, hinge angles are strongly related to the half-
grid both in 2D and 3D. However, in the 3D case, rotations of a point are always
in its rotation plane that is normal to the rotation axis and goes through the
point. In fact, the 3D half-grid is not well adapted to describe rotations for
a grid point. We thus consider the intersection between a rotation plane and
the 3D half-grid, which is a planar grid consisting of three sets of parallel lines,
called a multi-grid instead of the half-grid.

In this section, we give a formal definition of multi-grids. Then we show
how to obtain the line equations of a multi-grid from a grid point and a rotation
axis. Then, we restrict multi-grids to the rational multi-grids that form a set of
multi-grids useful to perform discrete rotations in the 3D discrete space. Finally
we present some useful properties of rational multi-grids.

3.1. Definition of multi-grids

When a rotation plane in 3D is given, the intersection between the plane
and the half-grid in the 3D space is obtained as illustrated in Figure 2(a).
Figure 2(b) shows that, the intersection consists of three different sets of parallel
lines, except for cases where the normal of the rotation plane is parallel to one
of the axes defining the coordinate system of the 3D space. As such exceptional
cases provide only two different sets of parallel lines, which are identical with
those of the 2D half-grid, we here do not take into account those cases. In other
words, in such cases, 3D discrete rotations become identical with 2D discrete
rotations. We call the three different sets of parallel lines a multi-grid, which is
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(a) (b)

Figure 2: The 3D half-grid cut by a plane (a), and its multi-grid (b).

used for characterizing hinge angles for 3D discrete rotations instead of the 2D
half-grid for 2D discrete rotations.

In a multi-grid, the interval between parallel lines having the same directional
vector is regular. Normalizing the interval allows us to represent each set of
parallel lines having the same normal vector (ai, bi)

⊤ as

Li = {(x, y)⊤ ∈ R2|aix+ biy+ ci+ k = 0, a2i + b
2
i 6= 0, k ∈ Z, ai, bi, ci ∈ R} (1)

where i = 1, 2, 3. The integer parameter k denotes the index number of each
parallel line. Figure 3 gives a geometrical explanation of the parameters of Li.
For example, if a point (x, y)⊤ is on one of the parallel lines of Li, (x− k

ai
, y)⊤ is

on the k-th next line, providing that ai 6= 0. Now we can give a formal definition
of a multi-grid.

Definition 5. Let Li for i = 1, 2, 3 be each set of parallel lines induced from a
given rotation plane and the 3D half-grid. Then the multi-grid M is the union
of Li: M = ∪3

i=1Li.

Hereafter, we denote by LA,p
i for i = 1, 2, 3 the three sets of parallel lines

defined by a rotation plane with a normal vector A = (ax, ay, az)
⊤ going through

point p = (px, py, pz)
⊤. Using the same idea, we denote by MA,p the multi-grid

defined as the union of MA,p = ∪3
i=1LA,p

i .
The multi-grid in the rotation plane forms various closed convex polygons

surrounded by lines, which we call convexels. Depending on the rotation plane,
we have a variety of shapes of convexels in this paper. The convexel in a multi-
grid is the counterpart of the squared pixel defined in the 2D half-grid. The
shapes of convexels are investigated in [12] under the context of the intersection
of a voxel and a plane, and the number of vertices of a convexel can be 3, 4, 5 or
6 as illustrated in Figure 4. Note that another study on convexels is reported in

5



Figure 3: Parallel lines of a set Li and geometric interpretation of their parameters

Figure 4: The five different shapes of convexels, which are constructed as the intersections
between a rotation plane and voxels [12].

[13], to clarify the intersection of overlapping voxels for medical image fusion;
the required properties there are different for those in this paper.

Remark 6. On any MA,p , the convexel containing p always has a symmetric
shape, and p is at the center of the convexel. Moreover, the convexel that
contains p is necessarily of the type (b),(d) or (e) in Figure 4.

We remark that when the normal of the rotation plane is parallel with one of
the axes defining the coordinate system of the 3D space, the convexel coincides
with the pixel.

3.2. Multi-grid line equations

To simplify the derivation of line equations for each LA,p
i , we introduce a

new base Bi where lines in LA,p
i are parallel with the x-axis. In the following,

we derive the equations for LA,p
1 . Note that the same discussion can be applied

to LA,p
2 and LA,p

3 .
Let A = (ax, ay, az)

⊤ and p = (px, py, pz)
⊤ in the standard orthonormal

base B and the plane P with normal vector A that goes through p. Assuming
lines in LA,p

1 come from the intersection between P and the planes of the 3D
half-grid that are parallel to yz-plane, denoted by x = k where k ∈ Z, we obtain
the directional vector v1 of lines in LA,p

1 as v1 = A ∧ e1 where e1 = (1, 0, 0)⊤.
We set v2 = v1∧A

‖A‖ , which is orthogonal to v1. Note that both v1 and v2 are
orthogonal with respect to A.

We introduce a new base B1 in such a way that v1 and v2 respectively
become u1 = (1, 0)⊤ and u2 = (0, 1)⊤ in P. The transformation from B to B1

is realized by
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PBB1
=

(

0 az
a2y+a

2
z

−ay
a2y+a

2
z

−ψ ψaxay
a2y+a

2
z

ψaxaz
a2y+a

2
z

)

, (2)

where ψ = 1√
a2x+a

2
y+a

2
z

. We remark that A is transformed to (0, 0)⊤ by PBB1
:

the rotation center in P thus becomes the origin of B1.
We remark that if A is collinear with one of the axes defining the coordinate

system of the 3D space, PBBi
degenerates: the rank of MBBi becomes 1. In such

cases, 3D rotations become identical with 2D rotations. However, in Section 3.1,
we explained that we do not consider the cases where the vector A is collinear
with an axis defining the coordinate system in concern, so that lines in LA,p

i

are not orthogonal to those in LA,p
j where i 6= j. Thus, we do not take these

particular cases in consideration.
Applying PBB1

to the plane x = k for k ∈ Z induces a line in MA,p
1 whose

equation is
ψ(a2y + a2z)y + k −A.pψ2ax = 0. (3)

Changing the roles between LA,p
1 and LA,p

2 (resp. LA,p
3 ) and between e1 and

e2 = (0, 1, 0)⊤ (resp. e3 = (0, 0, 1)⊤), we obtain the transformation matrices
PBBi

for i = 2, 3 such that

PBB2
=

( −az
a2y+a

2
z

0 ax
a2y+a

2
z

ψaxay
a2y+a

2
z

−ψ ψayaz
a2y+a

2
z

)

, (4)

PBB3
=

( ay
a2y+a

2
z

−ax
a2y+a

2
z

0
ψaxaz
a2y+a

2
z

ψayaz
a2y+a

2
z

−ψ

)

, (5)

and the line equations for LA,p
2 and LA,p

3 such that:

ψ(a2x + a2z)y + k −A.pψ2ay = 0, (6)

ψ(a2x + a2y)y + k −A.pψ2az = 0, (7)

where k ∈ Z.
We note that (3), (6) and (7) correspond to the equation in (1) for i = 1, 2, 3

respectively. All ai in (1) for i = 1, 2, 3 are null since each Bi is set such that
the lines of LA,p

i are parallel to the x-axis. We also remark that every bi in (1)
depends only on A, but not on p. Indeed, ci is the only parameter depending on
A and p. This implies that all the multi-grids generated from the same normal
vector A with different point p are similar; more precisely, they are obtained
simply by translations as illustrated in Figure 5.

3.3. Rational multi-grids

In Section 3.2, we obtained (3), (6) and (7) for the lines in the multi-grid
MA,p . In general, parameters of these equations belong to R. In order to use
only integers during computation, we need these parameters to belong to Q.
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Figure 5: Two multi-grids generated by a rotation axis but with two different points p1,p2

one of which is obtained by a translation of ±(p1 − p2) from the other.

If all elements of PBBi
belong toQ, then all the parameters in (3),(6) and (7)

become rational as well. In order to obtain rational parameters in PBBi
we set

A to be a Pythagorean vector: a vector v = (i1, i2 . . . , in)
⊤, i1, i2, . . . , in ∈ Z, is

a Pythagorean vector if ‖v‖ = λ where λ ∈ Z. Note that a rotation axis whose
directional vector is such a Pythagorean vector is called a Pythagorean axis.
This assumption ensures that ψ becomes a rational value. We call a multi-grid
defined from a Pythagorean axis a rational multi-grid in the following.

The rational multi-grids presented in this section are in a subset of the multi-
grid. In addition to allowing us to use only integers during the computations,
rational multi-grids also offer some useful properties which are valid only for
rational multi-grids. Note that studies on more general multi-grids generated
by planes whose normal vectors are integer-axes can be found in [12, 13, 14].

3.4. Properties of rational multi-grids

In the case of multi-grids that are not rationals, there is an infinity of different
convexels. However, for rational multi-grids, the number of convexels is finite
and depending only on the coordinates of A that is the normal vector of rotation
planes. Here, we consider any grid point p for MA,p . A prime Pythagorean
axis is a Pythagorean axis A = (ax, ay, az)

⊤ such that gcd(ax, ay, az) = 1. We
define the arithmetical rest of a voxel v = (vx, vy, vz)

⊤ for a rotation plane P
such that axx+ ayy + azz +A.p = 0 as follows:

R(v) = axvx + ayvy + azvz +A.p. (8)

Theorem 7. Let MA,p be a rational multi-grid associated to the prime Pythagorean
vector A = (ax, ay, az)

⊤. The number of different convexels in MA,p for any p

is either |ax|+ |ay|+ |az| or |ax|+ |ay|+ |az|+ 1.

Proof. We know from [12] that the voxel around the grid point v = (vx, vy, vz)
⊤

is intersected by a plane P if and only if:

−|ax|+ |ay|+ |az|
2

≤ R(v) ≤ |ax|+ |ay|+ |az|
2

. (9)

Since all values in (8) are integers, we can deduce that for any v , R(v)
is an integer. Thus, if |ax| + |ay| + |az| is even, we can conclude that there
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Figure 6: A quadruple of grid points {q1 = q , q2 = (qx + Ax, qy + Ay , qz)⊤, q3 = (qx +
Ax, qy , qz − Az)⊤, q4 = (qx + 2Ax, qy + Ay , qz − Az)⊤} forms two types of triangles, α and
β tiled in a multigrid.

are |ax| + |ay| + |az| + 1 different values for the arithmetical rest R(v). If
|ax|+ |ay|+ |az| is odd then, (9) becomes

−|ax|+ |ay|+ |az|
2

< R(v) <
|ax|+ |ay|+ |az|

2
(10)

and the number of different values admissible for R(v) is |ax|+ |ay|+ |az|.
Note that, if A is a Pythagorean vector but not prime, the number of different

convexels will be either |ax|+|ay|+|az|
gcd(ax,ay,az)

or |ax|+|ay|+|az|
gcd(ax,ay,az)

+ 1.

Such a repetition of convexels in MA,p is shown in the next theorem, which
is easily derived from [15] given in the context of discrete planar surfaces.

Theorem 8. Let MA,p be a rational multi-grid associated to the prime Pythagorean
vector A = (ax, ay, az)

⊤ and a grid point p. There exist three integers such that
Ax = L

ax
, Ay = L

ay
, Az = L

az
where L = lcm(ax, ay, az) such that for any grid

point q = (qx, qy, qz)
⊤, we have a quadruple of grid points {q1 = q , q2 = (qx +

Ax, qy+Ay, qz)
⊤, q3 = (qx+Ax, qy, qz−Az)⊤, q4 = (qx+2Ax, qy+Ay, qz−Az)⊤}

satisfying R(q1) = R(q2) = R(q3) = R(q4).

This indicates that the triple of integers Ax, Ay, Az describes the frequency
of the repetition of convexels in a rational multi-grid MA,p . Let P be the
support plane of MA,p . For each grid point v = (vx, vy, vz) intersected by P,
the grid point v ′ obtained by translation of v by a linear combination of two
vectors (Ax, Ay, 0)

⊤ and (Ax, 0, Az)
⊤ has the same formed convexel as that of

v in P.
Another consequence of Theorem 8, illustrated in Figure 6, is the existence

of triangles that tile the multi-grid. Indeed, let q1 = (qx, qy, qz) be a grid
point and q2 = (qx + Ax, qy + Ay, qz), q3 = (qx + Ax, qy, qz − Az) and q4 =
(qx+2Ax, qy +Ay, qz −Az) be three points resulting of a translation of q . The
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two triangles of vertices {q1, q2, q3} and {q2, q3, q4} contain the same set of
convexels and are mirror images. If Ax, Ay, Az are chosen to be prime, they
describe the smallest triangle that tile MA,p .

4. Hinge angles characterized by a multi-grid

The goal of this section is to show the relation between multi-grids and hinge
angles and then to show how to obtain the unique representation of an integer
quintuplet for a 3D hinge angle, namely an injective map from hinge angles to
quintuplets. In 2D, any hinge angle can be uniquely represented by a triple of
integers [8, 9]. In order to ensure the uniqueness of the representation, some
properties on the multi-grid are required. For 3D hinge angles similar properties
on multi-grid are required. We first show them on the 3D half-grid, and then
represent 3D hinge angles using five integers and explain how to decode them
to obtain their hinge angles.

In Section 2, we defined the 3D hinge angles in the framework of the 3D half-
grid. As manipulation of 3D hinge angles is more convenient in the framework
of multi-grids and rational multi-grids, we propose an alternative definition of
3D hinge angles in the following.

Proposition 9. Let p be a grid point and p ′ be the result of the rotation of p

by an angle α around an integer-axis. α is a hinge angle if and only if p ′ is on
the multi-grid.

4.1. Hinge angles and rational multi-grids

In 2D, there exists a property on hinge angles ensuring that the locus of
rotation of a grid point cannot contain the intersection of two lines belonging
to the half-grid [8]. In this section, we show that a similar property for 3D
hinge angles in the rotation plane holds if the axis of rotation is an integer axis.
In multi-grids, the locus of rotation of a grid point in a rotation plane cannot
contain the intersection of two or three lines of the multi-grid as illustrated in
Figure 7(a) or (b), presented as Lemma 10 in the following.

Lemma 10. Let MA,p be a multi-grid where A ∈ Z3 and p ∈ Z3. Then, the
locus of the rotation of p on the rotation plane P does not go through any vertex
of the convexels on MA,p .

Proof. The equation of the rotation plane P of MA,p is axx+ ayy+ azz−
A.p = 0. Let p ′ = (p′x, p

′
y, p

′
z)

⊤ be a point which belongs to the locus of the
rotation of p in P. Let us assume that p ′ is also a vertex of a convexel of
MA,p , so that it belongs to two planes of the 3D half-grid. Thus we can set,
without loss of generality, that p′x = kx +

1
2 and p′y = ky +

1
2 where kx, ky ∈ Z,

and then p ′ = (kx +
1
2 , ky +

1
2 , p

′
z)

⊤.
The locus of the rotation of p is the intersection between P and the sphere

S: x2 + y2 + z2 − (p2x + p2y + p2z) = 0. Thus, by the assumption that p ′ belongs
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Figure 7: the two impossible cases of intersection between a circle centered on a grid point
and a rational multi-grid.

to P and S, we have

ax
(

kx +
1

2

)

+ ay
(

ky +
1

2

)

+ azp
′
z −A.p = 0, (11)

(

kx +
1

2

)2
+
(

ky +
1

2

)2
+ p′2z − (p2x + p2y + p2z) = 0. (12)

From (11) we see that p′z must be a rational number, so that there exists a pair
of integers λ1, λ2 such that p′z =

λ1

λ2

and gcd(λ1, λ2) = 1. From (12) we see that

p′2z + 1
2 must be an integer. Thus we have

p′2z =
λ21
λ22

= k +
1

2
, (13)

where k, λ1, λ2 ∈ Z. Since gcd(λ1, λ2) = 1 and 2λ21 = (2k + 1)λ22, λ2 must
be even. Setting λ2 = 2λ′2 where λ′2 ∈ Z, we then obtain 2λ21 = 4(2k + 1)λ′22
and deduce that λ1 must be also even, which contradicts the assumption that
gcd(λ1, λ2) = 1. Therefore we can conclude that there is not such a point p ′.

This lemma shows that two adjacent convexels, between which the transition
of p during its rotation is done, always share a convexel edge. In other words, the
rotation locus of p passes through a sequence of voxels such that any successive
voxels are connected by their common face. Thus Lemma 10 shows that cases
(a) and (b) illustrated in Figure 7 cannot happen in a rational multi-grid. Note
that the above proof need only the assumption that A has integer coordinates.

In 2D there also exists another property on hinge angles ensuring that the
locus of rotation of a grid point cannot intersects twice the same line of the
half-grid without intersecting another line of the half-grid between the two in-
tersections. In 3D this property does not hold with rational multi-grids. The
more details will be discussed in Section 6.2.
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Figure 8: A hinge angle α for a point p in a rational multi-grid.

4.2. Quintuplet integer representation of hinge angles

A hinge angle in a given rotation plane is represented by a quintuplet of
integers (px, py, pz, i, k). The first three integers px, py, pz represent, in the 3D
basis B, the coordinates of p. The fourth integer i indicates the index number
for the set LA,p

i , i = 1, 2, 3, where the hinge angle α is defined. The last integer
k represents the index number of the line in LA,p

i . Therefore, a quintuplet of
integers keeps the coordinates of p and the information required for obtaining
the coordinates of the arriving point q after the rotation of p by α.

From these five integers, we can obtain the coordinates (Px, Py)⊤ and (Qx, Qy)
⊤

corresponding to p and q in the basis Bi, as represented in Figure 8. Note that
the projection matrix PBBi

from B to Bi is given by (2), (4) and (5). The coor-
dinates Px and Py, of p in Bi, are obtained by applying PBBi

to the coordinates
of p in B. Note that Px and Py are rational. The coordinate Qy is obtained
from one of (3), (6) and (7) depending on the values of i and k. All the values
in (3), (6) and (7) are rationals, and thus Qy is also rational. Since q belongs
to the locus of the rotation of p, we have Q2

x +Q2
y = P 2

x + P 2
y . We then notice

that Qx is not a rational number. However, since Px, Py and Qy are rational,
all computations involving Qx can be done using only integer computations.

In general, Qx can take two values which define two points. To discriminate
two different hinge angles corresponding to these two points by the integer
quintuplets, we add the positive sign to the fourth integer for the greater Qx
and the negative sign for another value of Qx. If Qx = 0, then the two points
merge into one. This particular case where the locus of the rotation of p is
tangent with the k-th line of MA,p

i defines no hinge angle since there is no
transition of convexels. Hereafter, the representation of hinge angles by integer
quintuplets will be denoted by α(px, py, pz,±i, k)

Note that according to Lemma 10 we know that any hinge angle cannot
rotate a grid point to the intersection of more than one lines of a multi-grid.
Therefore we have the following theorem:

Theorem 11. Let αp(px, py, pz, ip, kp) and αq(qx, qy, qz, iq, kq) be two hinge an-
gles with their integer quintuplet representations. Then αp = αq if and only if
px = qx, py = qy, pz = qz, ip = iq and kp = kq.

12



Theorem 11 is rephrased as: two different integer quintuplets cannot repre-
sent the same hinge angle.

We remark that in [8], hinge angles for 2D discrete rotations are represented
with a triple of integers that represents the 2D coordinates of the point and the
index number of the line that is intersected by the locus of rotation of the point.
This indicates that there is no integer that decides whether the intersected line
is parallel to the x-axis or the y-axis. To differentiate the cases, the last integer
of the triple is set to be positive if the line is parallel to the x-axis; otherwise,
it is set to be negative.

5. 3D discrete rotations around a Pythagorean axis

In this section, we develop a 3D discrete rotation based on hinge angles. This
rotation is the extension to the 3D space of the 2D discrete rotation given in
[9]. In order to obtain the complexity of the algorithm described in this section,
we need to enumerate all the hinge angles existing for an image to rotate. In
the case of 2D hinge angles, the upper bound of the number of different hinge
angles for an image is O(m3) where m is the largest side of the image [7, 8];
we will use a similar method for obtaining the upper bound of hinge angles for
a 3D image. Our algorithm, to be efficient, needs to compare a pair of hinge
angles, which can be made in constant time. Besides, in order to keep integer
computations, we need that the comparison is done using only integers. Note
that the hinge angle comparison in constant time is not indeed trivial due to
our integer computation constraint. After showing how to compare a pair of
hinge angles in constant time with integer computation, we will give the upper
bound of the number of hinge angles for a 3D digital image and then present a
3D discrete rotation algorithm for such a given image.

In Section 5 we assume that A is a given prime Pythagorean vector.

5.1. Comparing hinge angles with integer computations

From the integer representation of hinge angles we can obtain the sine and
cosine of a hinge angle α(px, py, pz, i, k) characterized in the base Bi by the
points p that have the coordinates (px, py, pz)⊤ in B and (Px, Py)

⊤ in Bi and q

that have the coordinates (Qx, Qy)
⊤ in Bi. Px, Py, Qx and Qy can be obtained

from (px, py, pz, i, k) as explained in Section 4.2. The following equations are
then derived from Figure 8:

cosα =
PxQx + PyQy

P 2
x + P 2

y

, (14)

sinα =
PxQy − PyQx

P 2
x + P 2

y

. (15)

We remark that if the multi-grid is a rational multi-grid, Px, Py, Qy and Q2
x are

rational. Thus it is possible to compare the sines or cosines of two hinge angles
using only integer computations as follows.
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Proposition 12. Let α1 and α2 be two hinge angles defined for A. Then it is
possible to decide if α1 > α2 using only integer computations.

Proof. Let α1 = α(p1x, p1y, p1z, i1, k1) and α2 = α(p2x, p2y, p2z, i2, k2).
Comparing α1 and α2 is equivalent to comparing their sines or cosines which
are given in (14) and (15). First we verify the signs of both of the sines and
cosines of α1 and α2. If the sines and cosines of both angles have different
signs, then we can conclude whether α1 > α2 without additional computation.
Otherwise, without loss of generality, we can assume that both α1 and α2 belong
to [0, π2 ], so that cosαi ≥ 0 and sinαi ≥ 0 for both i = 1, 2. As the method for
comparing two sines is similar to the one for comparing two cosines, we will
only show the later one.

If α1 is greater than α2, cosα2 − cosα1 > 0. Thus we have, from (14),

(P 2
1x + P 2

1y)(P2xQ2x + P2yQ2y) > (P 2
2x + P 2

2y)(P1xQ1x + P1yQ1y). (16)

For simplicity, let A1 = (P 2
1x + P 2

1y)P2xQ2x, B1 = (P 2
1x + P 2

1y)P2yQ2y, A2 =
(P 2

2x+P
2
2y)P1xQ1x and B2 = (P 2

2x+P
2
2y)P1yQ1y. Note that A2

1, B1, A
2
2, B2 ∈ Q.

Now (16) is rewritten as
A1 +B1 > A2 +B2. (17)

Squaring both sides of (17) since they are not negative, and moving rational
values to the left-hand side and the rests to the right-hand side, we obtain

A2
1 +B2

1 −A2
2 −B2

2 > 2A2B2 − 2A1B1. (18)

If the left-hand side and the right-hand side of (18) do not have the same sign,
then we can conclude whether α1 > α2 or α2 > α1. We can check the sign
of both sides of (18) with integer computations since the left-hand side contains
only rational numbers and the sign of the right-side is the same as A2

2B
2
2−A2

1B
2
1

which also contains only rational numbers. If signs of both sides are the same,
assuming that they are positives, we square both sides of (18) to obtain

(A2
1 +B2

1 −A2
2 −B2

2)
2 − 4A2

1B
2
1 − 4A2

2B
2
2 > −8A1B1A2B2. (19)

If the sign of the left-hand side of (19) is positive, we can deduce that α2 > α1.
Otherwise, taking the square of each side gives us

[

(A2
1 +B2

1 −A2
2 −B2

2)
2 − 4A2

1B
2
1 − 4A2

2B
2
2

]2
< 64A2

1B
2
1A

2
2B

2
2 . (20)

We note that we can easily verify whether (20) is satisfied with integer compu-
tation alone. If (20) is true, α1 < α2; otherwise α2 < α1. The same logic can
be applied to the case where the signs of the both sides of (18) are negative.

Thanks to Theorem 11, a hinge angle cannot have two quintuplet integer
representations. Thus we can conclude that the comparison of a pair of hinge
angles α1, α2 is always possible with integer computation if they have different
quintuplets.

Note that, if the comparison of two hinge angles is done using floating num-
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bers, only one comparison is required. However, if we want to keep integer
computations, then in the worst case we have to check (18), (19) and (20).
From Proposition 12, we now have a guarantee of a constant number for each
comparison. Then we conclude that the comparison of a pair of hinge angles is
done in constant time.

The following proposition is required for our algorithm of 3D discrete rota-
tion. In the 2D case, is it known that the comparison between a hinge angle
and a Pythagorean angle can be also done using only integers during its com-
putation and in constant time. An angle is a Pythagorean angle if its sine and
cosine belong to Q [8]. In the 3D case, a similar proposition will be still valid.

Note that the proof of Proposition 13 is similar to that of Proposition 12
and the one for comparison between a hinge angle and a Pythagorean angle in
the plane presented in [9].

Proposition 13. Let θ be a Pythagorean angle and α be a hinge angle defined
for A. Then it is possible to decide if α > θ in constant time with integer
computations.

Proof. Let α = α(px, py, pz, i, k) be a hinge angle and θ be a Pythagorean
angle associated to the Pythagorean triple (i1, i2, λ) such that cos θ = i1

λ
and

sin θ = i2
λ

where i1, i2, λ ∈ Z.
If α is greater than θ, namely cos θ − cosα > 0, then we have from (14)

i1(P
2
x + P 2

y ) > λ(PxQx + PyQy). (21)

Using similar methods to those used for the proof of Proposition 12, we obtain
the equation:

(i1(P
2
x + P 2

y )− λPyQy)
2 > λ2P 2

xQ
2
x. (22)

We note that we can easily verify whether (22) is satisfied with integer compu-
tation alone. If (22) is true, θ < α; otherwise α < θ.

5.2. Upper bound of the number of 3D hinge angles

In the 2D case, the upper bound of the number of hinge angles for a given
image of size m×m is known to be O(m3) [8]. This is obtained by computing the
bound for the furthest point from the origin in the image which is the rotation
center and multiplying this bound by the number of points in the image. To
compute the number of hinge angles in the 3D case, we will use a similar method.

In the 3D case, we assume that an image of size m ×m ×m is given. The
number of hinge angles for a given point p depends on the distance between p

and the axis of rotation A. Therefore, we define the distance function d(p) that
is the Euclidean distance between A and p. Then, the rotation of p around A

intersects at most 3⌊d(p)⌋ planes of the half-grid and defines at most 6⌊d(p)⌋
different hinge angles. Because d(p) ≤

√
3m, the upper bound of the number of

hinge angles for any point in the image is 6
√
3m. Accordingly, we can conclude

that the upper bound of the number of hinge angles for a given image of size
m×m×m is 6

√
3m4; thus O(m4).
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Algorithm 1 Rotation of a 3D image around a Pythagorean axis whose direc-
tion is A by a Pythagorean angle θ.
Input: An image I, a Pythagorean vector A, a Pythagorean angle θ
Output: A rotated image I ′

1: for all points p in I do

2: Set T to be an empty list;
3: Compute the three generic equations (3), (6) and (7) for each MA,p

i , i =
1, 2, 3;

4: for all lines in MA,p
i , i = 1, 2, 3 do

5: Compute all hinge angles corresponding to p and the current line,
6: and add α(px, py, pz,±i, k) to the list T ;
7: end for

8: Sort all the hinge angles corresponding to p in T ;
9: Search in T the greatest hinge angle α which is smaller than θ;

10: Copy the voxel color from p in I to the rotated point q with α in I ′

11: end for

12: return I ′;

5.3. 3D discrete rotations induced by hinge angles

In this section, we explain how to design a discrete rotation of a 3D digital
image using hinge angles for a given Pythagorean axis of rotation. This method
is the 3D extension of the 2D discrete rotation described in [9]. As input of
such discrete rotation, we have a digital image I of size m ×m ×m, a vector
A, supposed to be a prime Pythagorean vector, and an angle θ supposed to be
Pythagorean. The assumption that the rotation axis is a Pythagorean axis and
the angle is a Pythagorean angle does not restrict the field of possible rotations.
Indeed, it is proved in [16] that the Pythagorean vectors are dense on the 3D
unit sphere and it is proved in [17] that any angle can be approximated with a
small difference ǫ > 0 by a Pythagorean angle. The output of our algorithm is
a rotated digital image I ′.

The rotation algorithm is described in Algorithm 1. For each point p =
(px, py, pz)

⊤ in the image I, the algorithm computes the corresponding multi-
grid MA,p and search for each line k-th in MA,p

i , i = 1, 2, 3, a pair of hinge
angles α(px, py, pz,±i, k). Then we stock and sort all hinge angles corresponding
to p using Proposition 12. The algorithm searches in the sorted list L the
greatest hinge angle α which is smaller than θ using Proposition 13. This
operation can be done using only integer computations thanks to our assumption
that our input angle θ is a Pythagorean angle. Finally the new point after the
rotation of p by α is generated in I ′.

The time complexity of this algorithm is O(m4 logm). The computation
and the sorting of all hinge angles for each point is done in O(m logm) oper-
ations because the comparison between two hinge angles is done in constant
time according to Proposition 12. Searching the largest hinge angle α smaller
than θ is done in O(logm) operations because the comparison between a hinge
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angle and a Pythagorean angle can be performed in constant time according to
Proposition 13. Therefore, the time complexity of this algorithm is O(m4 logm)
because we repeat m3 times the previous operations.

5.4. 3D incremental discrete rotation

In this section, we present an incremental algorithm that performs a 3D
discrete rotation. In [8], a 2D incremental rotation is presented that allows
obtaining all possible configurations of 2D discrete rotations for a given im-
age. Similarly, 3D hinge angles on rotation planes also allow us to design a
3D incremental discrete rotation. This algorithm may help us to understand
the configurations of 3D discrete rotations even though we do not see yet its
practical uses.

For the incremental rotation algorithm, we consider the input data to be a
digital image I of size m×m×m and a given rotation axis.

The incremental algorithm consists in four main steps. The first step gener-
ates a table of m×m×m pointers that refers to every voxel of I. Then, for each
point in I it computes and sorts all hinge angles associated to this point, and
stores them into a list. The second step merges the lists of all points into the
final list and then sorts all the hinge angles in the list. The final step browses in
ascending order the list containing all the hinge angles and displaces the voxel
corresponding to the current hinge angle to its neighborhood.

Firstly, the algorithm initializes a table T of m×m×m pointers, such that
each pointer (i, j, k), where i, j, k ∈ [0,m], refers to the grid point (i, j, k). T
is used to track the voxel location during the incremental rotation. Then for
each point p = (px, py, pz)

⊤ in I, the algorithm computes and stores in the list
Tp all hinge angles α(px, py, pz, i, k) for i = 1, 2, 3 and k = −l,−l + 1, . . . , l −
1, l where l = ⌊

√

p2x + p2y + p2z⌋. Hinge angles are stored using their integer

representations. Then each list Tp is made in ascending order of hinge angles.
The second step merges all the lists Tp into a unique list. In order to avoid
the sorting of the final list T this operation should be done using the merge
sort algorithm [18]. The last step of the algorithm performs the incremental
rotation. Reading every hinge angle α(px, py, pz, i, k) in T , we displace the grid
point referred by T (px, py, pz) to one of its 6-connected voxel according to i and
k. The pointer in T (px, py, pz) is updated to the new position so that the actual
position of p will be known using T (px, py, pz). We repeat this operation while
hinge angles are remaining in T . When all the hinge angles in T have been
processed, every point has described its full rotation locus around a given axis
of rotation. Then all the possible configurations of rotations of I around the
rotation axis have been reached.

The time complexity for the first step is O(m4 logm) since there is m3 points
to consider and for each point, there are at most O(m) hinge angles. Thus the
sorting of each list is done in O(m logm). The second step requires the same
time complexity as the first step. Note that if the merging is realized without
using the method presented in [18], the time complexity remains the same, but
practically it will increase the computation time. The last step browses the
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list T that contain at most O(m4) hinge angles. Each displacement is done in
constant time and thus it requires O(m4) operations. We conclude that the
time complexity for the incremental rotation algorithm is O(m4 logm).

6. Finding a 3D discrete rotation from a pair of digital images

In this section, we present a method to find a discrete rotation between a pair
of 3D digital images that represents the same object from two different points
of view. Suppose that we have a set of n grid points A = (a1,a2, . . . ,an) in the
first image and its corresponding set B = (b1, b2, . . . , bn) in the second image.
Each pair of points (a i, bi) corresponds to the same point of the object. We say
that such a pair of grid point sets, A and B, are in correspondence.

In 2D, finding a discrete rotation between such a pair of A and B mainly
consists in identifying a set of angles that give the same rotated image [9].
In Euclidean space such a rotation is unique. However, this is not the case
in the discrete space where either of two slightly different angles α1, α2 may
transform A into B. Moreover, for such a pair (α1, α2), every angle α3 such
that α1 ≤ α3 ≤ α2 also rotates A into B. Thus, we define the admissible
rotation angle, abbreviated by ARA, that is the set of all angles that give the
same rotated digital image. It is bounded by the pair of hinge angles αinf and
αsup. In 3D, it is necessary to find not only a set of admissible rotation angles
but also an admissible rotation axis. However, the later problem is not treated
in this paper, and is set to be our future work.

In this section, we identify a set of admissible rotation angles but only one
admissible rotation axis. Indeed, if we consider two rotation axis, the two multi-
grids associated to these axes and a point will provide two distinct sets of hinge
angles. In order to avoid such a situation, we set a unique rotation axis.

6.1. Approximation the rotation axis by a 3D Pythagorean vector

The determination of an admissible rotation axis from a pair of digital images
in correspondence requires two steps. The first step is to obtain an axis of
rotation that is consistent with all pairs of points in correspondence. The second
step is to approximate the axis obtained through the first step by a Pythagorean
axis in order to obtain rational multi-grids.

6.1.1. First step

Given a pair of Euclidean points in correspondence, it is known that any
rotation axis such that the first point is transformed into the second one belongs
to the bisection plane of these two points. If we consider two pairs of Euclidean
points in correspondence, their rotation axis is the intersection between their two
bisection planes. If we add a third pair of Euclidean points in correspondence,
the intersection between the three bisection plane still gives the same rotation
axis. However if we consider three pairs of grid points in correspondence instead
of Euclidean points, the intersection between the three bisection planes may not
meet at a 3D line. This is because grid points approximate Euclidean points.
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Therefore, in order to obtain an appropriate rotation axis, we consider the
rotation axis that is the average of the three lines, namely the intersections of
all pairs of the three bisection planes.

Now, we consider voxels instead of Euclidean or grid points. For a given pair
of voxels in correspondence, the bisection plane is not unique. Indeed, each pair
of Euclidean points, each of which belongs to each voxel of the pair, defines a
bisection plane. Therefore there is an infinity of admissible bisection planes for
a pair of voxels. Computing the bounds of all the bisection planes for a pair of
voxels in correspondence is a big issue. If n pairs of voxels in correspondence are
given to define an admissible rotation axis, we have to compute the intersections
between all the obtained bounds of admissible bisection planes. In 2D, a study
on the intersections between all the bounds of bisections for n pairs of pixels
have been proposed [19], and its extension to the 3D discrete space is still in a
future work. Therefore, as an alternative, in order to obtain a rotation axis for
n pairs of voxels, we consider the n pairs of grid points, which are the centers
of voxels. We compute for each pair the bisection plane, and obtain ⌊n+1

2 ⌋
axes from the n obtained bisection planes. The rotation axis is the average
of the ⌊n+1

2 ⌋ obtained axes. We expect that this method gives a rotation axis
that belongs to the intersections between all the bounds of admissible bisection
planes. The verification will be one of our future work; even though no formal
proof will be found, empirical evidence will be given.

6.1.2. Second step

In this section, we show a method to approximate the rotation axis obtained
in the previous section by a Pythagorean axis that is required to compute a
rational multi-grid. Based on the method presented in [17], we can derive a naive
method to approximate any 3D vector by a 3D Pythagorean vector; its main idea
is to construct two 2D Pythagorean vectors to approximate a 3D Pythagorean
vector. For this naive method, some simple definitions are required. We call
a Pythagorean triple a set of three integers (i1, i2, λ) such that i21 + i22 = λ2.
Each Pythagorean triple is associated with the Pythagorean vector (i1, i2)⊤ and
a Pythagorean angle θ such that cos θ = i1

λ
. Pythagorean quadruples are the

sets of four integers (i1, i2, i3, λ) such that i21 + i22 + i23 = λ2. Each Pythagorean
quadruple is associated with the Pythagorean vector (i1, i2, i3)

⊤.
The method presented by Anglin in [17] allows to approximate any angle α

with a Pythagorean angle θ such that |α − θ| < ǫ for any ǫ > 0. It uses the
theorem, given in [20], that for each Pythagorean triple (i1, i2, λ), there exists a
pair of integers (u, v) such that v < u, i1 = 2uv, i2 = u2 − v2 and λ = u2 + v2.
Setting X = tan(α − ǫ) + sec(α − ǫ) and Y = tan(α + ǫ) + sec(α + ǫ), Anglin
proved that for every pair of integers (u, v) such that X < u

v
< Y , the angle θ

associated with the Pythagorean triple generated by (u, v) approximates α in
such that α− ǫ < θ < α+ ǫ.

Let r = (r1, r2, r3)
⊤ be a 3D real vector to be approximated by a Pythagorean

vector such that the angle between the two vectors is smaller than ǫ. Such a
pair of vectors is said ǫ-close. From r , we define two 2D vectors r2, r3 such that
r2 = (r1, r2)

⊤, r3 = (
√

r21 + r22, r3)
⊤. Each vector r i = (xi, yi)

⊤ is associated

19



(a) (b) (c)

Figure 9: Example of the approximation of a 3D vector using our method. (a) and (b)
represent the projections of r into r2 and r3 in 2D planes respectively. Each 2D convex cone
in (a) and (b) is the admissible approximation for r2 and r3 regarding to ǫ. (c) represents the
square pyramid constructed from the two 2D convex cones that contains the set of admissible
approximations for r .

with an angle αi satisfying cosαi =
xi

|ri| . Using the algorithm presented in [17]
for these two angles αi with a precision ǫ, we obtain two Pythagorean angles
associated with the two Pythagorean triples (i2, j2, λ2), (i3, j3, λ3). Now, we
consider the Pythagorean vectors associated with the two Pythagorean triples.
We remark that if (i2, j2, λ2) is a Pythagorean triple, then (ki2, kj2, kλ2) is also
a Pythagorean triple for any k ∈ Z∗. Note that, these two Pythagorean triples
are associated with the same Pythagorean angle. This remark allows us to gen-
erate from the two Pythagorean triples, (i2, j2, λ2), (i3, j3, λ3), a Pythagorean
quadruple (ki2, kj2, lj3, lλ3) with two integers k, l such that k(i2 + j2) = li3.
The 3D vector r ′ associated with this Pythagorean quadruple (ki2, kj2, lj3, lλ3)
is our approximation result of r .

In [17], the author introduced ǫ that corresponds to the maximum angle
between the original vector and the Pythagorean vector that approximates it.
With the above method, to construct a 3D Pythagorean vector that approxi-
mates a given vector by ǫ, we apply twice Anglin’s method. An example of the
method that approximates a 3D vector is given in Figure 9. First we decompose
the 3D vector r to approximate into the two 2D vectors r2 and r3. r2 and
r3 can be approximated by Anglin’s method with a precision of ǫ by two 2D
Pythagorean vectors r ′

2 and r ′
3 that belong to the two 2D convex cones illus-

trated in Figure 9 (a) and (b), respectively. We generate r ′ from r ′
2 and r ′

3,
which is the approximation of r , such that it belongs to the 3D convex cone
represented in Figure 9 (c) forming a square pyramid. The minimum circular
cone including the square pyramid has the solid angle 2

√
2ǫ. Therefore, we can

deduce that to reach a precision of ǫ′ while approximating a 3D vector, we need
to give to Anglin’s method a precision of ǫ ≤ ǫ′√

2
.

The algorithm given in this section is fast because, according to Anglin, the
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computation of a Pythagorean triple is done in constant time. Accordingly,
we can give the approximation of any 3D vector in O(1) operations. However,
we cannot give any bounds on the size of integers that belong to the final
Pythagorean quadruple.

6.2. Approximation of the rotation angle using rational multi-grids

After obtaining an admissible rotation axis, the next step is to obtain the
admissible rotation angles. For the 2D case, we have developed a method to
obtain from n pairs of grid points the admissible rotation angles where n ≥ 1
in time complexity O(n) [9]. This method is designed to work in the 2D half-
grid. With minor modifications, this method can be also applied on rational
multi-grids and keep the same complexity.

Firstly, we remind the definition of admissible rotation angles abbreviated by
ARA introduced in [9]. TheARA for the two sets of n pointsA = (a1,a2, . . . ,an)
and B = (b1, b2, . . . , bn) in correspondence is the set of angles defined by upper
and lower bounds such that any angle between them gives the same discrete
rotation from A to B. We denote by ARA(a i, bi) = (αinf

i , α
sup
i ) the pair of

hinge angles that gives the lower and the upper bounds of ARA for a pair of
points (a i, bi).

For a given pair of points (a i, bi) in correspondence, we first compute the
rational multi-grid MA,ai . Then we search for the convexel c containing bi and
compute the two hinge angles between c and the circle centered at the origin of
the rational multi-grid and going through a i. These two intersections define the
ARA for this pair of points. We note that each operation is done in constant
time.

Generally, a given input contains n pairs of points instead of one pair of
points. We then incrementally compute the upper and lower bounds of the ARA
for these n pairs of points. We first compute the ARA corresponding to the two
first pair of points (a1, b1) and (a2, b2). We compare the two pairs of hinge
angles (αinf1 , α

sup
1 ) and (αinf2 , α

sup
2 ) obtained and keep the two most restrictive

such that we have the new pair of hinge angles (max(αinf1 , α
inf
2 ),min(αsup1 α

sup
2 )).

We incrementally repeat this operation for the n − 2 remaining pairs of points
and obtain ARA(A,B) = ∩iARA(a i, bi) for the n pairs of points. Since the
comparison of a pair of hinge angles is done in constant time, the time complex-
ity of the incremental algorithm is O(n).

In the above algorithm, we assumed that there are always two intersections
between a convexel and the locus of the rotation of a i. Practically, it may
be possible that the locus of rotation of a i intersects twice a line of MA,ai

without intersecting any other line of MA,ai as illustrated in Figure 10. In
other words, there may exist four intersections between a convexel and the
locus of rotation. We perform experiments in order to evaluate the frequency of
such a case. We randomly generated ten thousands Pythagorean axes and for
each axis we randomly generated ten thousands grid points. For each grid point
p, we compute all intersections between MA,p and the locus of rotation of p

and search if four of these intersections belong to the same convexel. About
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Figure 10: In a rational multi-grid MA,ai a convexel can have four intersections with the
locus of rotation of p.

3% of generated points have such particular convexels and the probability that
a convexel intersected by the locus of rotation of p has four intersections is

1
62500 . Since this particular case does not often occur, we choose to not take it
in consideration in our algorithm. Note that in 2D such a case does not happen
and the proof can be found in [21].

7. Conclusion and future works

In this paper, we extended the notion of hinge angles, introduced for 2D
discrete rotation in [8, 9] to the 3D. Extension of hinge angles from the 2D to
3D space involves many problems because most of properties of 2D hinge angles
are not valid for 3D hinge angles. In order to regard hinge angles in the 3D space
similarly to the 2D ones, we introduced the multi-grid that is the intersection
of the 3D half-grid and a rotation plane. By redefining the hinge angles on the
rotation plane, which are the extension of hinge angles for the rotation in 2D,
we showed a subset of the multi-grids where all parameters are rational, called
rational multi-grids. This rational multi-grid allows us to compare two hinge
angles on rotation planes in constant time by using integer computations. It
also allows us to design a 3D discrete rotation and to extend the search of a 3D
rotation from pairs of discrete points introduced for 2D in [9].

In Section 6, we introduced the admissible rotation axis that is the set of all
possible rotation axes for a pair of digital images. The shape of such a set is
not yet studied, however in [19] the authors studied in discrete plane the shape
of admissible centers of rotations for n pairs of points. Thus one of our future
work will be to extend it in 3D and then in nD. Since the extension of [19] is not
done yet, we have proposed an empirical method to find an admissible rotation
axis. This method may not offer any formal proof, and we will show that this
method is reliable in future.

The multi-grids introduced in this paper can be extended in any dimension
to perform discrete rotations. Roughly speaking, a rotation in nD requires
⌊n2 ⌋ angles and rotation planes. However, rotations in nD are not well; for
example, in Euclidean space we do not know yet if a given nD rotation can be
uniquely decomposed into ⌊n2 ⌋ planar rotations [22]. Indeed, a study of such

22



decomposition of an nD discrete rotation is required for the extension of the
work presented in this paper to nD discrete rotations.
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