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Research Article

Regular Language Constrained Sequence

Alignment Revisited

GREGORY KUCHEROV,1 TAMAR PINHAS,2 and MICHAL ZIV-UKELSON 2

ABSTRACT

Imposing constraints in the form of a finite automaton or a regular expression is an effective

way to incorporate additional a priori knowledge into sequence alignment procedures. With

this motivation, the Regular Expression Constrained Sequence Alignment Problem was

introduced, which proposed an O(n2t4) time and O(n2t2) space algorithm for solving it, where

n is the length of the input strings and t is the number of states in the input non-deterministic

automaton. A faster O(n2t3) time algorithm for the same problem was subsequently pro-

posed. In this article, we further speed up the algorithms for Regular Language Constrained

Sequence Alignment by reducing their worst case time complexity bound to O(n2t3/log t).

This is done by establishing an optimal bound on the size of Straight-Line Programs solving

the maxima computation subproblem of the basic dynamic programming algorithm. We

also study another solution based on a Steiner Tree computation. While it does not improve

the worst case, our simulations show that both approaches are efficient in practice, espe-

cially when the input automata are dense.

Key words: dynamic programming, finite automaton, regular expression, sequence alignment,

Steiner minimal trees, straight-line programs.

1. INTRODUCTION

Sequence alignment algorithms use a position-independent scoring matrix, but when biologists

make an alignment they favor some similarities, depending on their knowledge of the structure and/or the

function of the sequences. Various extensions of the Smith-Waterman algorithm (Smith and Waterman,

1981) modify the alignment considerations according to a priori knowledge (Arslan and Egecioglu, 2005;

Chen and Chao, 2009; Iliopoulos and Rahman, 2008; Peng and Ting, 2005; Tsai, 2003; Sunyaev et al., 2004;

Gotthilf et al., 2008). One kind of a priori knowledge is about shared properties (patterns), which are expected

to be preserved by the alignment. Specifically, in protein sequence alignment, it is natural to expect that

functional sites be aligned together. Several studies suggested taking into account the patterns, specified by

regular expressions, from the PROSITE database (Bairoch, 1993) to guide and constrain protein alignments

(Arslan, 2007; Tang et al., 2003), because such patterns may serve as good descriptors of protein families.

Arslan (2007) introduced the Regular Expression Constrained Sequence Alignment Problem. Here, the

constraint is given in the form of a non-deterministic finite automaton (NFA). An alignment satisfies the
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constraint if a segment of it is accepted by the NFA in each aligned sequence ( b F1Fig. 1). Arslan’s dynamic

programming algorithm is based on applying an NFA, with scores assigned to its states, to guide the

sequence alignment. This NFA accepts all alignments of the two input strings containing a segment that fits

the input regular language. The algorithm yields O(n2t4) time and O(n2t2) space complexities, where n is

the sequence length and t is the number of states in the NFA expressing the constraint. The algorithm

simulates copies of this automaton on alignments, updating state scores, as dictated by the underlying

scoring scheme. Chung et al. (2007b) proposed an improvement to the above algorithm, yielding O(n2t3)

time and O(n2t2) space complexities, in the general case, by splitting the computation into two steps. This

algorithm is described in detail in Section 1.3.

1.1. Our contribution

In this article, we further speed up the algorithms for Regular Language Constrained Sequence Align-

ment by reducing their worst case time complexity bound to O(n2t3/ log t). This is done by establishing an

optimal bound on the size of Straight-Line Programs (SLP) solving the maxima computation subproblem of

the basic dynamic programming algorithm. We also study another solution based on a Steiner Tree

computation. While it does not improve the worst case, our simulations show that both approaches are

efficient in practice, especially when the input automata are dense.

Roadmap: The rest of this article proceeds as follows: In this section, we define the Regular Language

Constrained Sequence Alignment Problem and give an overview of previous algorithms for the problem. In

Section 2, we describe and analyze two new algorithms based on Steiner Trees and SLPs. Experimental

results appear in Section 3.

1.2. Preliminaries and definitions

Let S be a finite alphabet. Let a, b 2 R� two strings over the alphabet S. We denote ai,j the substring of a

from index i to index j (inclusive) and ai denotes the ith letter in a. Let S0 ¼S[ {� } be an extended

alphabet, where � 62 R. Let X,Y 2 R0�. We denote X�, the string result of the removal of� letters from X.

Let s : R
0
·R

0nf� , �g ! <þ be a scoring function over edit operations (i.e., replace, insert, and delete).

(X, Y) is an alignment of a and b if jXj ¼ jYj, X�¼ a and Y�¼ b. The score of an alignment (X, Y) is

s((X,Y))¼
P

jXj

i¼ 1

s(Xi,Yi).

Let LR be a regular language and let A¼ (Q, S, d, q0, FA) be an NFA with t states, such that L(A)¼ LR.

We use a fixed numbering of the states in Q, q0, q1, . . . , qt� 1. We assume, without loss of generality, that

e-transitions were removed from A and that the empty word e is not in L(A).We denote the number of

transitions in d as jdj. We use two notations for transitions, as follows. First, we denote by q!
c
p a transition

in d from state q to state p by letter c. Second, we add a notation for sets of transitions with a specific letter

( b F2Fig. 2a). Let predc(q) be the set of states with outgoing transitions labeled by letter c and leading to state q.

predc(q)¼fpjp!
c
qg (1)

Definition 1 (Regular Language Constrained Sequence Alignment). Given two strings a and b, over a

fixed alphabet S, a scoring function s and an NFA A. Find an alignment (X, Y) of a and b such that it is the

alignment with the maximal score under s which satisfies the following condition: indices i and j exist such

that X�
i, j ,Y

�
i, j 2 L(A).

FIG. 1. Examples of a sequence

alignment and a regular language

constrained sequence alignment.

Sequence alignment and a regular

language constrained sequence

alignment on the two strings CAC-

GAG and CAGCGCGA, with a

scoring matrix (�1 for mismatch/insert/delete, 1 for match). (a) The maximal score of the global alignment is 2. (b) Let

R be A(GþC)*GA, the constrained problem’s score is 1.

2 KUCHEROV ET AL.
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1.3. An overview of previous work

Arslan’s algorithm defines an NFA M, such that the states of M are the ordered pairs of states of A,

therefore, it has O(t2) reachable states. M is defined over the alphabet S0
·S

0. For every two transitions

q1!
c1
p1 and q2!

c2
p2 in A, the transitions (q1, q2) �!

(c1, c2)
(p1, p2), (q1, q2) �!

(c1, � )
(p1, q2) and (q1, q2) �!

(� , c2)
(q1, p2)

exist in M. For any two final (accepting) states qf1 , qf2 2 FA and for any letters c1, c2 the transitions

(qf1 , qf2) �!
(c1, c2)

(qf1 , qf2), (qf1 , qf2) �!
(c1, � )

(qf1 , qf2 ) and (qf1 , qf2 ) �!
(� , c2)

(qf1 , qf2) exist in M. The same addition is done

for the initial state. A sequence alignment table T of size (jaj þ 1) · (jbj þ 1) is calculated. Each cell, Ti,j
contains a table of scores, one for every state in M (that is, a pair of states in A). Ti,j( p, q) is the maximal

score of an alignment of a1,i and b1,j, such that reading it in M ends at ( p, q). The table size is clearly

O(n2t2), since each cell holds t2 scores.

In the following recurrence formula for Ti,j, we move from the notion of the alignment automaton M in

Arslan to a simpler formulation. As a first step, we add to A transitions q!
c
q where c is any letter and q is

either an initial or final state in A. The score of Ti,j for a given state ( p, q) is computed as follows.

Ti, j(q, p)¼ max

maxfTi� 1, j(q
0, p)jq0 2 predai(q)gþ s(ai, � ),

maxfTi, j� 1(q, p
0)jp0 2 predbj(p)gþ s(� , bj),

maxfTi� 1, j� 1(q
0, p0)j

q0 2 predai (q), p
0 2 predbj (p)gþ s(ai, bj)( � )

8

>

>

<

>

>

:

(2)

The initialization consists of assigning 0 to T0,0(q0, q0) and�? elsewhere. We define max ;¼�?.

The optimal alignment score is maxfTjaj, jbj(q, p)jq, p 2 FAg. There are a total of O(n
2t2) scores to calculate.

According to Eq. 2, each score calculation (for a given i, j, q and p) involves O(t2) values, as apparent in the

third term marked (*), because in an NFA there are at most t transitions q0!
ai
q for a single letter ai and,

independently, there are at most t transitions p0!
bj
q for bj (Fig. 2b). The term (*) is the bottleneck of the

algorithm. Since A is non-deterministic, it may contain O(t2) transitions by any letter c.

The algorithm of Chung et al. (2007b) exploits the following redundancy: Given that M is an NFA with

jdj ¼O(t2) states, and assuming no additional knowledge of M, it can be concluded that M can potentially

have O(t4) transitions. Thus, Arslan’s algorithm iterates over all possibilities of two states of M in each Ti,j
calculation. However, it is known, according to the way M was built, that each transition in M originates

from at most two transitions in A. The iteration over the two possible transitions can be done independently

of each other.

a

b

FIG. 2. (a) An example of an NFA.

Its transitions yield the following

pred sets: predA(q0)¼;, predA(q1)¼
fq0, q1, q2g, predA(q2)¼
predC(q1)¼fq0g, predC(q0)¼fq2g,
predC(q2)¼fq0, q2g. (b) Score cal-

culations performed by Arslan’s al-

gorithm. The green scores in Ti�1,j�1,

corresponding to rows predai (q) and

columns predbj (p), are used in the

calculation of Ti,,j for the state pair

(q, p).
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Chung et al. (2007b) improved the time complexity of Arslan’s algorithm by removing redundant com-

putations which were due to the fact that the computed value is based on two independent optimum calcu-

lations, one for each of the compared strings. We next describe Chung et al.’s algorithm using our own notation,

in Eq. 3 and Eq. 4. The calculation of (*) is split into two steps using an intermediate table L ( b F3Fig. 3).

Li, j(q, p
0)¼ maxfTi� 1, j� 1(q

0, p0)jq0 2 predai(q)g ð3Þ

Ti, j(q, p)¼ maxfLi, j(q, p
0)jp0 2 predbj(p)gþ s(ai, bj) ð4Þ

In the first step (Eq. 3), the size of the set, over which the maximum is calculated for every pair of states

(q, p0), depends on the existing transitions with the letter ai. Since the size of the set is bounded (i.e.,

jpredai(q)j � t), this step takes O(t3) time. The same argument holds for the second step (Eq. 4). In

summary, their algorithm improved the time complexity to O(n2tjdj)¼O(n2t3), while maintaining the same

space complexity.

2. A FASTER ALGORITHM

2.1. Eliminating duplicate computations

It is apparent from Eq. (3) and Eq. (4) that the calculation of Li,j, for a specific value of p
0 and ranging over q,

computes the maximum for subsets of indices of column p0 of Ti�1,j�1, while the calculation of Ti,j, for a

specific value of q and ranging over p, computes the maximum for subsets of indices of the qth row of Li,j (Fig.

3). The structure of the NFA transition table, namely the relations between the predc sets, can be used to reduce

the number of components required in consecutive subset maxima calculations. For instance, let us assume that

a state q0 is included both in predc(q1) and predc(q2) for q1= q2. Then, for a given state p, the score Ti�1,j�1(q
0,

p) is taken into account in calculations of both Li,j(q1, p) and Li,j(q2, p) ( b F4Fig. 4). By minimizing the repetition of

score usage, the efficiency of the calculation of Eq. (3) and Eq. (4) can be improved.

Following this observation, the goal of speeding up the calculation of Eq. (3) and Eq. (4) can be

formulated as a question: What is the most efficient way to calculate maximum values over given, possibly

overlapping, sets of scores? Thus, the general subproblem underlying the speed up of these algorithms can

be formulated as follows.

Definition 2 (Subsets Maxima Problem). Let W be a set of scores, with jWj ¼ t and let

V ¼hv0, . . . , vt� 1i be t subsets of W (vk�W). Calculate max vk for each vk 2 V .

For Eq. 3, having fixed values of i, j and p0, the set of scores W consists of t scores in Ti�1, j�1 and V

consists of scores which correspond to all possible predai
subsets. More formally:

W ¼fTi� 1, j� 1(q
0, p0)jq0 2 Qg

V ¼hv0, . . . , vt� 1i, vk ¼fTi� 1, j� 1(q
0, p0)jq0 2 predai(qk)g

(5)

The values of W and V are similarly established for Eq. 4.

We represent each subset vk in V by a Boolean vector, where the lth bit reflects the membership of the lth

score in the subset predai
(qk). Thus, V is represented by a tuple of Boolean vectors, denoted S. In the

following sections, we discuss two alternative ways of solving the Subsets Maxima Problem: one based on

Steiner trees (Section 2.2) and the other based on SLPs (Section 2.3).

FIG. 3. Score calculation performed

by Chung et al.’s algorithm. (a) Cal-

culation of Li,,j. (b) Calculation of Ti,,j.

a b
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2.2. An algorithm based on a Steiner minimal directed tree

In this section, we explore the possibility of employing Steiner minimal directed trees to solve the

Subsets Maxima Problem. We show that the size of a Steiner minimal directed tree for a tuple of Boolean

vectors S, as described above, is not greater than the number of transitions of the NFA. Thus, using a

heuristic algorithm for Steiner minimal directed trees improves the run-time of our solution to Regular

Language Constrained Alignment in practice, as demonstrated by our simulations (see Section 3). But first,

we give a formal definition of Steiner minimal directed trees and review related work.

There are several Steiner tree problems studied in the literature. The general Steiner tree problem is the

problem of spanning a subset of vertices of a (directed or undirected) graph, while including a minimal

number of additional nodes. The problem is NP-hard (Bern and Plassmann, 1989; Shi and Su, 2006). Here,

we are interested in the Steiner minimal directed tree problem in a specific graph, namely the Hamming

hypercube. In the Hamming hypercube, the Hamming distance between any two adjacent nodes of the tree,

v and u, is 1. That is, either u has exactly one 1-valued bit which is 0-valued in v or vice versa. This version

of the Steiner minimal tree problem is also NP-hard (Foulds and Graham, 1982). There are several heuristic

solutions for these problems ( Jia et al., 2004; Lin and Ni, 1993; Sheu and Yang, 2001).

Definition 3 (The Steiner Minimal Directed Tree Problem for Hamming Hypercubes). Given a set S

of k d-dimensional points, find a rooted tree in the Hd Hamming hypercube that spans S, has the minimal

possible size N and all edges are directed away from the root (For all v and u such that v is the parent of u

in the tree, u has exactly one 1-valued bit which is 0-valued in v.)

Given a Steiner minimal directed tree for a tuple of Boolean vectors, S, the subsets maxima of the

corresponding weight-subsets tuple, V, can be calculated by traversing the tree in a top-down fashion. The

reader is referred to b F5Figure 5a,b for an example of the construction of Steiner trees for a specific NFA.

Theorem 1 (upper bound of jdj for the size of the Steiner Minimal Directed Tree). Let A¼ (Q, S, d, q0,

FA) be an NFA and let Sc, for c 2 R, be sets of Boolean vectors corresponding to d, as described in

Subsection 2.1. There exist Steiner directed trees for sets Sc, such that the sum of their sizes is not greater

than jdj þ t.

Proof. Sc, for a specific c, is a set of Boolean vectors representing predc(A). Thus, the total number of 1-

valued bits in all Sc sets equals jdj. For each set Sc, we build a Steiner directed tree, as follows. Let X be a

Boolean vector in Sc, such that bits x1, x2 . . . , xk in X are 1-valued (i.e., X has k 1’s). Starting from the zero

vector, 0t, as the root, we add a chain of nodes in the Steiner tree until X is reached. The first node connected

to 0t is the elementary vector with the x1 bit 1-valued. Similarly, the ith node is a vector that has all bits

equal to its parent node, except for the xi bit, which is 1-valued in that vector, but 0-valued in the parent

vector. This path reaches vector X by adding at most k nodes (not including the zero vector). The total

length of the tree Sc is not greater than the total number of 1-valued bits in Sc plus 1 (for the zero vector).

Thus, such Steiner directed trees, for sets Sc, have the sum of their lengths not greater that jdj þ t. &

Theorem 2 (lower bound). The size of the minimal Steiner tree for a set S of size t is N¼O(t2).

Proof. For every natural t, we show the existence of a t-sized set S such that N is in the order of t2. Let us

assume that t¼ 2k for a natural number k. We select S to be any t Boolean vectors from the k-dimensional

a b
FIG. 4. Similar and duplicate score

calculations in Chung et al.’s algo-

rithm can be reused. (a) The calcula-

tion of a single score in Li,,j depends

on several scores in Ti�1,j�1. (b) The

calculation of another score in Li,,j (in

this example, for row qþ 1) can be

done according to the previously cal-

culated score of q and some additional

scores from Ti�1,j�1, marked in bold.
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Hadamard code (Dinur and Safra, 2005; Sylvester, 1867; Seberry and Yamada, 1992). The Hadamard code

contains 2t¼ 2kþ1 vectors, each of length t¼ 2k, such that each two vectors have a Hamming distance of at

least t
2
¼ 2k� 1. The Hamming distance within S is at least t

2
(the ( t

4
� 1)-radius ball surrounding each vector

in S does not contain any other vector in S). Moreover, t
4
� 1-radius balls, surrounding different vectors in

S, are disjoint. Thus, a tree that spans S requires at least t( t
4
� 1) Steiner nodes. &

From theorems 1 and 2, it follows that the size of the Steiner minimal tree is N¼Y(t2) in the worst case.

Thus, our Steiner-based algorithm, in the framework of Chung et al., runs in O(n2t3) time. In Section 3, we

compare the sizes of heuristic Steiner directed trees with the sizes of the corresponding transition tables for

simulated NFAs. Our simulations show that, even though the Steiner-based algorithm does not yield the

theoretical bounds obtained for SLPs, in practice it performs very well.

2.3. A solution to subsets maxima via SLPs

We start by introducing the notion of a Straight-Line Program with Boolean operations.

Definition 4 (SLP with Boolean operations). We are given a tuple of t Boolean vectors S¼hx1, . . . , xti,
xi 2 f0, 1gm. An SLP is a sequence of instructions P, of two types:

� bi : ¼ (0, . . . , 0, 1, 0, . . . , 0) (elementary vector),
� bi :¼ bj� bl, with j, l< i (disjunction).

An SLP computes the left-hand side vectors of its instructions hb1, . . . ,bNi, bi 2 f0, 1gm. An SLP P

computes S if hbN� tþ 1, . . . ,bNi¼ S.

The Subsets Maxima Problem can be reduced to the problem of finding the shortest possible SLP with

Boolean operations. In order to use SLPs for the task of subsets maxima calculation, we represent V as a

FIG. 5. (a) An example of Steiner tree construction for

pred_A. (b) An example of Steiner tree construction for

pred_C. (c) An example of Four Russians based SLP

construction for pred_A. (d) An example for Four

Russians based SLP construction for pred_C.

c d

a b

6 KUCHEROV ET AL.

CMB-2010-0291-Kucherov_1P.3d 02/28/11 1:50pm Page 6



tuple of Boolean vectors, S, as described in Subsection 2.1. Given an SLP for S, the subsets maxima can be

calculated by following the SLP in linear order: if bh is an elementary vector, having the ith bit equal to 1,

the vector is assigned the value of the ith score and if bh is a binary disjunction of bj and bk, then it is

assigned the value of the maximum of their assigned scores. If bh represents a subset from V, its score is

reported.

The reader is referred to Figure 5c,d for an example of the constructions of SLPs for a specific NFA.

These constructions take as input the example NFA appearing in Figure 2a. SLP operation types ‘‘ele-

mentary vector’’ and ‘‘disjunction’’ are abbreviated.

For the purpose of utilizing SLPs for the Subsets Maxima Problem, in the rest of this section we address

the following goal: given a tuple S of t Boolean vectors of length t, construct an SLP for S of minimal

length. This goal is achieved via the following two theorems.

Theorem 3 (upper bound). An SLP for S can be generated such that: (1) N � 2t2

log t
, where N denotes the

size of the SLP, and (2) the time required to construct it is O( t2

log t
).

Proof. We will use the Four-Russians technique. A similar argument is applied in Savage (1974).

Split each vector of S into b¼ t/ log t blocks of length log t. Each block has 2log t¼ t possible values. For

each i¼ 1..b, consider the set of all block vectors, denotedWi, such that block i takes all possible values and

the other blocks are all 0-valued bits. All vectors of Wi can be generated incrementally with t operations (in

a bottom-up fashion): First all vectors in Wi which have a single 1-valued bit are generated, then all vectors

in Wi which have two 1-valued bits are generated by the disjunction of two vectors in Wi with a single

1-valued bit. In general, all vectors inWi which have jþ 1 1-valued bits are generated by adding disjunction

operations between vectors in Wi which have j 1-valued bits and vectors in Wi with one 1-valued bit.

Therefore, there are a total of bt¼ t2

log t
block vectors and it takes O( t2

log t
) time to create all the block vectors.

Each vector of S can then be generated in b� 1 disjunction operations from pre-computed block vectors

and there are t vectors in S. All the vectors of S are, therefore, computed by adding t(b� 1)� t2/log t

operations to the SLP.

The length of the underlying SLP constructed here, equals the number of disjunction and elementary

operations, summed over both stages (block vector creation plus computing S from the block vectors),

which is at most 2t2

log t
. The time required for the construction of the SLP is O( t2

log t
). &

Remark. Note that the bound in Theorem 3 can be improved by a factor of two by taking blocks of size

log t� log log t.

The above bound is very close to the information-theoretic lower bound, as shown below.

Theorem 4 (lower bound). An SLP for S requires X( t2

log t
) operations.

Proof. We use the standard counting argument. Again, a similar proof can be found in Savage (1974).

There are t distinct elementary vector type instructions and, in the minimal SLP, each of them occurs at

most once. Without loss of generality, we assume that the initialization instructions form the t first

instructions in the SLP in any fixed order.

Let q be the number of disjunction instructions, i.e., N¼ tþ q. There are at most N2 possibilities for

each disjunction instruction and, therefore, there are at most (N2)q¼N2q different SLPs of length N. On

the other hand, there are (2t)t¼ 2t2 different tuples S. We then should have N2q � 2t
2

, i.e., 2q

log(tþ q)� t2.

Resolving the above inequality with respect to q gives a lower bound, matching that of Theorem 3 up to a

constant factor. Specifically, this implies that, for any e> 0 and for almost any tuple S, the size of the

minimal SLP for S is at least t2

(2þ e) log t
. &

Finally, we conclude that Theorems 3 and 4 improve the worst case bounds of Regular Language

Constrained Alignment by a logarithmic factor.

Theorem 5. Regular Language Constrained Alignment can be computed in O( n
2t3

log t
) time and O (n2t2)

space.

RLCSA REVISITED 7
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Proof. The computation of Eq. 3 and Eq. 4 involves the calculation of Li,j for every p0 2 Q, and then

the calculation of Ti,j for every q0 2 Q, using a precomputed SLP, as described above. This takes

O(n2 � t �N), where N denotes the maximal length of an SLP for the sets V corresponding to the given NFA.

By Theorems 3 and 4, the length of such an SLP is N¼H( t2

log t
). &

To summarize our algorithm: SLPs are constructed according to the NFA graph structure for each letter

in the alphabet. These SLPs facilitate a faster solution to the Subset Maxima Problem of specific score

subsets, during each dynamic programming step.

In Figure 5, we give an example of the construction of Steiner trees and SLPs for a specific NFA. These

constructions take as input the example NFA appearing in Figure 2a. For this NFA, predA sets are ;, {q0, q1,
q2}, and {q0}, represented by the Boolean vectors 000, 111, and 100, respectively, and predC sets are {q0},

{q2}, and {q0, q2}, represented by 100, 001, and 101 (vector indices are displayed from left to right).

Comparing the sizes of the various data structures we have: For predA, there are four transitions in the NFA

with letter A, the SLP has five lines, while the Steiner tree size is 3. For predC, there are four transitions in

the NFA, the Steiner tree size is 3, while the corresponding SLP, of length 3, has a single disjunction line

and two elementary lines. The reader is referred to b F6Figure 6a for an example of the Four Russians SLP

construction.

3. EXPERIMENTAL RESULTS

We implemented several algorithms in Java: (1) the algorithms of Arslan, (2) the algorithm of Chung

et al., (3) our algorithm based on Four Russians based SLPs, and (4) our algorithm based on Steiner trees.

The programs can be activated through a web interface and are also available for download via our web

page http://www.cs.bgu.ac.il/*negevcb/RL-CSA/index.php. We added to the preprocessing stage of the

Four Russians based SLPs a trimming step, in which unused lines are removed from the SLP. Trimming an

SLP can be done by locating all lines that take part in the construction of one of the required vectors in S

(described in Subsection 2.1) and removing the rest (Fig. 6a,b).

Figure 6a,b shows an example of Four Russians based SLP construction and trimming. This example has

Boolean vectors of length 8. The untrimmed SLP (Fig. 6a) has 23 lines, where the first 17 lines are block

FIG. 6. (a) An example of a Four

Russians based SLP construction,

before trimming. (b) An example of

a trimmed Four Russians based SLP.

a b
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vector lines. The blocks are of length 3, so lines 1–7 enumerate all possible values in bits 0–2 (displayed

left to right), lines 8–14 enumerate all possible values in bits 3–5, and lines 15–17 enumerate all possible

values in the remaining bits 6–7. During the trimming step, five unused block vector lines are removed,

yielding the trimmed SLP (Fig. 6b). For example, line 5 is not used in any disjunction operation nor is it

one of the output vectors.

We compared the relative efficiency, as explained below, of heuristic Steiner minimal directed trees and

Four Russians based SLPs as a function of NFA density ( b F7Fig. 7). To measure this, we randomly generated

NFAs, constructed their corresponding data structures (Steiner minimal trees and SLPs) and measured their

sizes. This simulation was repeated 100 times for each NFA size t, for different automata sizes t¼ 20, 40,

100, 160. We measured the relative efficiency of a data structure as 1�N/jdj, where N is its size (i.e., the

size of the constructed Steiner directed tree, the length of the constructed Four-Russians SLP). The relative

efficiencies of the different data structures were compared as a function of the density of the NFA. The

density of the NFA equals jdj/t2. The random NFAs were constructed as follows. We created automata

without transition labels, since they are irrelevant, and constructed only their graph structure. This is due to

the fact that, at each step of the algorithm, transitions labeled by a single specific letter are used (see Eq. 3

and Eq. 4). We created an NFA transition table, where each transition exists with a probability of a

randomly chosen density. Only NFAs with t reachable states were considered.

For each NFA, a Steiner directed tree was constructed, using the heuristic algorithms of Lin and Ni

(1993) and Sheu and Yang (2001), with a minor modification that forces the constructed tree to be directed.

Also, for each NFA, a corresponding Four-Russians based SLP was constructed, as described in Theorem 3,

and then unused vectors were trimmed from it. Since the size of the trimmed Four-Russians based SLP is

better than min minf 2t2

log t
, jdjg and the size of the Steiner tree is at most t

2

4
, it follows that, for large values of

t, the SLP construction is better than the Steiner trees.

Our simulations show that both proposed data structures are smaller than the size of the transition table,

which is a factor in the time complexity of the algorithm of Chung et al. Both have an increased efficiency

as NFA density increases (Fig. 7). The heuristic Steiner minimal directed tree dominates for small values of

t and low NFA density while the Four Russians SLP construction, described in Theorem 3, dominates for

large values of t and high NFA density.

We conclude this section by demonstrating the performance of the three algorithmic approaches using

part an example given in Chung et al. (2007a). The calculation of constrained sequence alignment on the

FIG. 7. Efficiency comparison of

different data structures as a func-

tion of NFA density. The simulation

was repeated for number of states,

t¼ 20, 40, 100, 160, each containing

100 randomly generated NFAs with

t states and their corresponding data

structures. Blue diamond, heuristic

Steiner minimal directed tree; black

square, SLP Four-Russians con-

struction.
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AtGST and SsGST glutathione S-transferase (GST) sequences that appear in the example of Chung et al.

(2007a), with regular expression constraint (S jT).2(D jE), yields 225370 max operations using our im-

plementation of the algorithm of Chung et al., 211370 max operations using our Steiner tree based

algorithm and 187606 max operations using our Four-Russians SLP based algorithm. The PAM250 scoring

matrix, used in this example, gives a score of� 22. The alignment is given here:

AtGST: -A-GIKVFGHPASIATRRVLIALHEKNLDFELVHVELKDGEHKKEPFLSRNPFGQ

SsGST: PPYTITYFPVRGRCEAMRMLLADQDQSWK-EEV-VTM---E-TWPPLKPSCLFRQ

AtGST: VPAFEDGDLKLFESRAITQYIAHRYENQGTNLLQTDS-KNISQY-AIMAIGMQVE

SsGST: LPKFQDGDLTLYQSNAILRHLGRSFGLYGKDQKKEAALVDMDDNDGVEDLRCKYA

AtGST: DHQFDP-VASKLAFEQIFKSIYGLTTDEAVVAEEEAKLAKVL--DV-Y-EARLKE

SsGST: TLIYTNYEAGKEKYVKEL-PEH-LKPFETLLSQNQGGQAFVVGSQISFADYNLLD

AtGST: -FKYLAGETFjTLTDjLHHIPAIQY

SsGST: LLRIHQVLNPjSCLDj--AFP-L--

4. CONCLUSION

We have revisited the problem of Regular Language Constrained Sequence Alignment with focus on

improving the dense NFA case. While Chung et al.’s algorithm yields O(n2jQj � jdj)¼O(n2t3) time and

O(n2t2) space, we achieved a bound of O(n2t3/logt) time and O(n2t2) space for the same problem. The above

contribution is interesting when the input automaton is dense, i.e., when jdj is asymptotically larger than t2

log t
.

We also implemented all four algorithms—Arslan (2007); Chung et al. (2007b), our SLP-based algo-

rithm, and our Steiner-based algorithm—and made them available for public use on the Internet. Our

experimental results, based on these implementations, indicate that the two approaches suggested in this

article are also useful in practice.

We note that, in addition to the general result of Chung et al. mentioned above, they also gave an O(n2t2

log t)-time algorithm for the special case where t¼O(log n) and assuming a unit cost RAM model (Chung

et al., 2007b). Our algorithm does not assume a unit cost RAM model nor any restriction on the ratio

between the size of the automaton t and the length of the sequences n.

We further note that, in the case where the input is given in the form of a regular expression rather than

an automaton, the complexity analysis of the algorithm can be expressed in terms of the length of the input

regular expression. This is achieved based on recent algorithms which take as input a regular expression of

length r and convert it into an e-free NFA with O(r) states and O(r log 2r) transitions (Hromkoviěc et al.,

2001; Schnitger, 2006; Geffert, 2003). This yields an O(n2r2 log 2r) time and O(n2r2) space complexities for

the algorithm of Chung et al. We note that this was not observed by Arslan and Egecioglu (2005) and

Chung et al. (2007b).
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