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Abstract 

The equations governing plane steady-state flow in heterogeneous porous media 
containing curved-line intersecting cracks (Pouya and Ghabezloo 2010) and the potential 
solution obtained for these equations are considered here. The theoretical results are first 
completed for the mass balance at crack intersections points. Then, a numerical procedure based 
on a singular integral equations method is described concretely to derive this solution for cracked 
materials. Closed-form expressions of elementary integrals for special choice of collocation 
points lead to a very quick and easy numerical method. It is shown that this method can be 
applied efficiently to the study of the steady state flow in cracked materials with anisotropic 
matrix permeability and a dense distribution of curved-line intersecting cracks. Some applications 
of this method to the permeability of cracked materials are given. 

 

Keywords: porous media, cracks, steady state flow, singular integral equations, effective 
permeability  

 

1 Introduction 

The discontinuities such as fractures and cracks have generally a great influence on the effective 

permeability of fractured rocks and porous materials. Some physical and engineering problems 

such as the contaminant transport in micro-cracked rocks or reservoir study in petroleum industry 

require the modelling of the fluid flow in porous media containing cracks or fractures. The 

problem of flow in a porous matrix containing cracks with mass exchange between matrix and 

cracks has been intensively investigated in recent years by different approaches (see the reviews 

given by Sánchez-Vila et al. (1995), Goméz-Hernández and Wen (1996) and Renard and de 

Marsily (1997)). Two-dimensional flow in and around a facture embedded by an infinite 

porous medium, under a constant pressure gradient, has in  several cases derived 

analytically by means of some geometrical simplifications.  In particular, the fracture has 

been sometimes modelled as a flattened ellipsoidal inclusion (Zimmerman, 1996) or as a 

two-dimensional lens (Mityushev and Adler, 2006) filled with a Darcy type material. In the 
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present paper, we only consider the case of zero-thickness fractures with no pressure 

jump between the two faces of the fracture. This corresponds to an assumption of infinite 

transverse permeability of the fracture and excluding the cases where fractures act as an 

impermeable membrane like some cases of shear faults (Manzocchi et al. 2010). The 

effective permeability of materials with this kind of cracks has been studied by many numerical-

empirical approaches. A more rigorous approach based on the homogenization scheme has 

been given by Shafiro and Kachanov (2000), Dormieux and Kondo (2004) and Barthélémy 

(2009) in which the crack is assimilated to oblate ellipsoidal inclusions obeying to a Darcy’s law. 

This powerful approach easily provides results for the effective permeability of 3D cracked 

materials, but it can not take into account crack intersections explicitly. Regarding the numerical 

modelling, the most difficult question is to generate a consistent mesh for a randomly fractured 

medium. A robust and automated algorithm was presented first by Koudina et al. 1998 to 

triangulate a polygonal fracture network; and then was extended for the fracture network and the 

embedding matrix as described by Bogdanov et al., 2003. The flow equations are then 

discretized by means of the finite volume method as to compute the effective permeability of 

fractured porous media (Bogdanov et al., 2003; Bogdanov et al., 2007; Mourzenko et al. 

2011).        

Following a different way, Liolios and Exadaktylos (2006) presented a mathematical formulation 

for plane steady-state flow in a cracked porous matrix where the cracks are considered as zero 

thickness discontinuity lines. However, their method, using complex number potentials, was 

restricted to isotropic matrix and excluded crack intersections. More recently, Pouya and 

Ghabezloo (2010) used a direct approach to model plane steady-state fluid flow in an anisotropic 

porous body containing curved line cracks with possible intersections. This approach provided a 

general potential solution for the fluid pressure in the matrix function of discharge along cracks. 

The flow in the cracks is modelled by a Poiseuille type law, a linear relation between the 

discharge and the pressure gradient along the crack. This model of cracks will be designated as 

Poiseuille crack to be distinguished from ellipsoidal cracks obeying to Darcy’s law. Moreover, 

closed-form solutions were derived for the case of a single crack in an infinite matrix and applied 

to the problem of permeability upscaling. 

In the present paper, we first complete the work of Pouya and Ghabezloo (2010) by the mass 

balance equation at crack intersection points. Then a numerical method is developed to solve the 

general system of singular equations for the case of an infinite body containing a dense family of 

curved line and intersecting cracks. This method is based on the resolution of the equations for a 

finite number of collocation points. A special choice of collocation points is given to simplify the 

computation. Besides, all the elementary integral terms are calculated explicitly. This leads to a 

highly efficient and fast calculation method. After presenting the method, a successful validation 

is first presented by comparing the numerical results obtained for a single superconductive crack 

with the closed-form solution for this case. Then, the flow is modelled around several curvilinear 
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and intersecting cracks and the masse balance is checked carefully at intersection points. After 

that, the effective permeability of a material containing a random crack distribution, inspired from 

geological observations on a rock formation, is studied for the illustration of the method. Finally, 

the effective permeability of a periodic crack network is calculated with this method and the 

result is compared to those obtained by theoretical methods. 

 

2 Governing equations 

In this section, we briefly present the basic results obtained by Pouya and Ghabezloo 
(2010). An infinite heterogeneous porous body Ω containing a crack network is 
considered. The cracks are numbered by m and denoted by Γm (Fig. 1). The crack Γm is 

geometrically represented by a smooth curve mz  of the curvilinear abscise s. A crack can 
end in the matrix or intersect other cracks at its extremities. The intersection points of 
two or more cracks and the extremities of cracks ending in the matrix constitute a set of 
singular points denoted by S. The set of points on the cracks are denoted by Γ, therefore, 
S⊂  Г. The matrix corresponds to Ω-Г. 

 

 q(x) p(x) 

Ω ∂p Ω 

Γ 

p(x), v(x) 

∂v Ω 

 
Fig. 1 Heterogeneous porous material containing micro-cracks 

The fluid flow in the matrix is assumed to be governed by Darcy’s law: 

Γ−Ω∈∀x  ( ) ( ). ( )kv x x p x= − ∇  (1) 

where, v(x) designates the fluid velocity, k the local permeability and ∇p(x) the pressure 
gradient at x. 

In the absence of point sources, mass conservation in the matrix reads: 

Γ−Ω∈∀x  ∇.v(x) = 0 (2) 

The flow model in the cracks is described commonly by a Poiseuille type law (Louis, 
1969; Norton and Knapp, 1977; Witherspoon et al, 1980; Guéguen and Palciauskas, 
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1994) in which the discharge q in the crack is proportional to the pressure gradient along 
the crack line: 

Γ∈∀s  ( ) ( ). sq s c s p= − ∂  (3) 

where c is the hydraulic conductivity of the crack depending on its hydraulic aperture or 
its fill materials. According to the Poiseuille’s law c=e3/(12µ) where e is the hydraulic 
aperture of the crack and µ  the fluid viscosity. Superconductive cracks correspond to the 
limite case of ( ∞→c ). In this case the pressure is constant along the crack curve. 

The equation governing the crack-matrix mass exchange at regular points on the crack 
(excluding intersection points) is established by considering mass balance in a fragment 
of the crack comprised between abscises s and s+ds (Fig. 2a). It reads: 

Γ∈∀s  � �( ) . ( ) ( ) 0sv z n s q s+ ∂ =  (4) 

In this equation, z  is the point on the crack at the curvilinear abciss s, )(sn is the unit 
normal vector to the crack curve oriented from the side Г- to Г+  (Fig. 2a) and 

� �( ) ( ) ( )v z v z v z+ −= −  is the discontinuity or jump of fluid velocity across the crack. 

At crack intersections, analysing the mass balance in a circle centred at the intersection 
point, Pouya and Ghabezloo (2010) established the following relation for the fluid velocity at 
this point: 

Sz∈∀  ( )0. ( ) 0j
j

v x q x z
 

∇ + δ − = 
 
∑  (5) 

where, 0
jq  designates the outgoing discharge on the crack branch number j , x  is a point 

in a small neighbourhood of z  containing only z  as singular point (Fig. 2b), and δ  
represents the Dirac distribution. 

 

 

s s+ds 

Γ + 

q(s+ds) q(s) 

Γ - 

n 

v -
 

v +
 

x 

 

x 

D 

Γj+1 

v 
 

 
0
jq  

 1
0
jq +  
Dj,j+1 

Γj  

n 
 

∂D 

 1j
Dq +  

 j
Dq  

∂Dj,j+1 
n 

 

n 

n 

v- 

v+  

 

    (a)     (b) 
Fig. 2 a Crack-matrix mass exchange at a regular point on a crack. b Crack-matrix mass 

exchanges at an intersection point of several cracks 
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The body is submitted at infinity to a pressure field p∞(x):  

 [ ] 0)()( =− ∞
∞→

xpxpLim
x

 (6) 

The field p∞ satisfies ∆p∞=0. In the most general case of effective permeability 
modelling, p∞ corresponds to constant pressure gradient, i.e. p∞(x)=A.x where A is a 
constant vector. 

For the case of uniform matrix permeability k, a general potential solution for these 
equations was rigorously established by Pouya and Ghabezloo (2010) with the following 
expression:      

 
    p(x)  = p∞ (x)+ 

m

m
mm

2
mm

1 ( )
( ) . ( )

2
( )

-1

-1
k .

k .

x z s
q s t s ds

x z sΓ

−
πκ  −

 

∑ ∫  
(7) 

In this relation, x is the current point in the porous body, zm(s) is the point on the crack 
Г

m at the curvilinear abscise s, qm(s) is the discharge along the crack m, tm(s) is unit 
vector tangent to this crack at the point zm(s) and κ is the square root of determinant of 

k:  κ = k . If the discharge q(s) in (7) is replaced by its expression function of p(s), for 

instance by (3), and the collocation point x is taken on the cracks, then a system of 
equations is obtained that allows us to determine the pressure p on the crack network. It 
is worth noting that this system of equation involves only the pressure on the crack lines 
and thus reduces the dimension of the problem from 2 to 1. This simplifies considerably 
the numerical resolution method in the same way that Boundary Elements method 
simplifies the numerical resolution compared to Finite Elements or Finite Volume 
methods. 

 

3 Mass balance at intersection points 

A deeper mathematical analysis of the mass balance condition at intersection points 
allows going further than equation (5) and demonstrates that at these points we have: 

 
0 0j

j

q =∑  (8) 

This relationship has an important physical interpretation and consequences for 
numerical modelling that will be detailed further. To demonstrate it, let us consider a 
small domain D surrounding an intersection point z with its boundary designated by ∂D 
(Fig. 2b).  If there are J intersecting cracks at z, then D is divided into J sub-domains 
Dj ,j +1 bounded by the cracks Γj  and Γj+1 (with the convention ΓJ+1 = Γ1 to have cyclic 
notation). The mass exchange between D and the matrix contains two parts: one by flow 
through the matrix on ∂D with fluid velocity v, and the other by the cracks Γj at their 
intersection with ∂D where discharge is designated by D

jq . Therefore, the mass balance 

for this domain reads: 

 . 0D
j

jD

v n ds q
∂

+ =∑∫  (9) 
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Now, we consider the mass balance in the subdomain ∂Dj,j+1 . It reads: 

 
, 1 1

. . . 0
D D

j j j jD

v n ds v n ds v n ds
+ +

+ −

∂ Γ Γ

− + =∫ ∫ ∫  
(10) 

where, D
jΓ  represents the portion of Γj  included in D, n is the unit normal vector on the 

integration line. On ∂Dj ,j +1,  n represents the outward unit normal, whereas on Γj , it is 
oriented from the surface Γj to the domain Dj,j+1. On Γj the fluid velocity is 
discontinuous: v− and v+ represent the velocity at respectively the negative and positive 
sides of this surface orientated by n (Fig. 2b).  This convention determines the sign of 
the two last integrals in (10). When summing this equation on j , the contribution of the 
two last integrals can be transformed into expressions involving the jump of v on Γj. 
Hence, the following equation is then found:  

 � �. . 0
D
j

jD

v n ds v n ds
∂ Γ

− =∑∫ ∫  
(11) 

Now, by using (4)  the second integral in this equation can be changed to write: 
  

 � � 0. ( )
D
j

D
j j

j j

v n ds q q
Γ

= − −∑ ∑∫  
(12) 

Introducing (12) and (11) into (9) results in (8).  

The physical interpretation of (8) is that the masse balance condition at crack 
intersection points is independent from the crack-matrix mass exchange. This relation is 
the same that one would find for a crack network in impermeable material. Moreover, 
this result also allows extending the Cauchy integration to intersection points by 
elimination of the singular contribution of different crack branches at these points to the 
integral (7). This equation will be verified numerically in Section 5. 

 

4 Numerical resolution 

By replacing q(s) in (7) by its expression (3), a system of integro-differential equations 

is obtained and then solved in order to determine the pore pressure and the fluid flow 

fields. This system allows us to investigate in a first stage only the pressure along crack 

lines and determining it by resolving the system of singular integral equations. In the 

second stage, the integral equation (7) with the known expression of the discharge q(s) 

will be used to calculate the pressure field at an arbitrary point of the matrix. It is worth 

noting that the values of q(s) in the first stage can be directly used for permeability 

upscaling and the second stage is not necessary for this purpose. This is an interesting 

feature of the numerical method presented here as it will be seen in section 6.  

The principle for resolving the singular integral equations by collocation method can be 

found in Bonnet (1995). We propose in this paper a special choice of interpolation 

functions and collocation points as well as analytical expressions for elementary 
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integrals that lead to an efficient and fast resolution method. The numerical method 

presented in the following assumes a constant value for the cracks conductivity c but it 

can be easily extended to variable conductivities for cracks. 

   

4.1 Discretization and Interpolation 

 

As a consequence for the theoretical formulae (7), numerical calculation only requires a 

mesh generation on the cracks which must be consistent by taking into account crack 

intersection points. Thus, cracks are discretized by a number of intervals, called in the 

sequel « elements ». The set of intervals on all cracks define globally N elements 

numbered by n and denoted by En (1≤n≤N). With these notations, Eq. (7) can be written 

as: 

 p(x) 
1

.
N

n
n

A x I
=

= +∑  (13) 

where, 

 
n

n
nn

2
n

( )
( ) ( ) . .

. ( )

−=
 − 

∫n
E

x z s
I x q s t ds

x z s

-1

-1

k
k

 
(14) 

In order to define the interpolation functions of variable on the elements, we distinguish 

two types of elements: current element on the crack and extremity elements where the 

cracks end in the matrix. On the current elements, a linear interpolation of pressure is 

used; hence, q is constant on the element (Fig. 3). For extremity elements, general 

theoretical results concerning the velocity field singularity close to a crack tip leads to 

suppose that v  varies as r1/2 around the crack extremity points (Muskhelishvili, 1953). 

Besides, based on the analytical solutions of fluid flow in superconductive cracks (Pouya 

and Ghabezloo, 2010), we choose an interpolation function for discharge q(s) with a variation as 

s1/2 where s is the distance from crack extremity. This leads to a variation as s3/2 for p(s) on 

the extremity elements. We designate by L the length of the element and by p1 and p2 its 

nodal pressures at curvilinear abscises s = 0 and s = L. Then the interpolation functions 

for the pressure and discharge on current elements, left extremity elements (tip at s = 0) 

and right extremity elements (tip at s = L) take, respectively, the following expressions: 

 p(s) = p1 + 2 1−p p

L
s;   q(s) = -c 2 1−p p

L
 (15) 

 p(s) = p1 +
32 1

3

−p p
s

L
;   q(s) = -a s  (16) 
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 p(s) = p2 -
32 1

3

−
−

p p
L s

L
;   q(s) = -a −L s  (17) 

where: 

 a = 2 1
3

3

2

−p pc

L
 (18) 

 

 

Fig. 3 Interpolation of the discharge (a) and pressure (b) a long a discretized crack 

 

4.2 Choice of collocation points 

 

The collocation method consists in enforcing exactly the singular integral equation (7) at 
a finite number of points called collocation points. In its simplest form and in most 
studies in the literature, these collocation points are chosen to be the nodes used to 
discretize the geometry. Herein, we propose another way to choose the collocation points 
that easily allows the introdution of analytical expressions for the elementary integrals 
and thus the simplification of the calculation. At first, a collocation point is taken per 
element and if the collocation point x is on the element En, In(x) becomes a singular 
integral. For the current element, a collocation point xn is placed naturally in the middle 
of the element because this implies:  

 In(xn) = 0 (19) 

This equation results from the linearity of pressure interpolation on the current elements 
and simplifies the calculations. It suggests also choosing the collocation point on the 
extremity element such that the same equation (19) will be obtained. 

 
Consider a left-extremity element En with endpoints z1 and z2 and take the collocation point: 

 x = z(sx) = z1 + (sx/L) (z2 - z1) (20) 
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with 0 < sx < L. Substituting Eqs.(16), (18) and (20) into Eq.(14), then In(x) can be 
integrated explicitly. As a result, equation (19) is fulfilled for a value of sx /L = ξ where 
ξ is the solution of the equation: 

 
1 2

1
Log

+ ξ =
− ξ ξ

 (21) 

Numerical computation leads to ξ ≈ 0.694817. In a similar way, the condition sx/L = 1-ξ 
is obtained with the same numerical value for ξ for right-extremity elements.  

In conclusion, on the element En, a collocation point xn = z1 + ξn (z2 - z1) is chosen with, 
ξn = ξ, ξn = 0.5 and ξn = 1-ξ for respectively left-extremity, current and right-extremity 
elements. 

It should be noted that depending on the crack network connectivity, the number of 
elements can be smaller than the number of nodes. Hence, it is not generally sufficient to 
take one collocation point per element to solve the system of equations that has the nodal 
pressures as unknown variable because the number of equations can be smaller than the 
number of unknowns. The difference between the number of nodes and elements depends 
on the connectivity properties of the crack network and is not easy to determine. 
Nevertheless, a summary count of nodes and elements could help to determine an 
optimum choice of collocation points. As a matter of fact, each element is always related 
to two nodes, whereas, except for crack extremity points, a node is related to two or 
more elements. Thus, the number of elements is more than the number of nodes that are 
not crack extremities. Therefore, if, to the set collocations points xn defined here-above 
(the same number than the elements), we add the crack extremity points, the number of 
collocation points will become always greater than the number of nodes. In this way, we 
can have more equations than unknowns, and then the least square fitting method will be 
required to solve the problem. This method will be presented later in the paper. 

 

4.3 Explicit expression for elementary integrals 

 

In the literature on boundary elements method, computation of regular elementary 
integrals is usually based, as well as in finite element method, on the use of Gaussian 
quadrature formulas. Contrariwise, the Cauchy Principal Value definition for the 
singular elementary integral is the standard technique in the boundary integral analysis 
(Guiggiani, 1991). However, there are still other techniques available to deal with the 
singular integral such as: regularization technique (Tanaka et al. 2002) that permits 
treating weak singularity; boundary limit approach (Sutradhar et al. 2008) that defines 
the boundary equation as a limit case of x  approaches the boundary from either interior 
or exterior and which is efficient for symmetric Galerkin boundary elements method. 
Otherwise, the numerical difficulty appears when x is too close to En. In this case, the 
integrals are not strictly singular but nearly singular and can be computed by some 
transformation techniques that allow the concentration of Gauss’s points in the vicinity 
of the orthogonal projection of x on the considered element. In this study, all elementary 
integrals are explicitly computed by an analytical procedure which aims to a high speed 
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convergence of numerical computation and avoids also the numerical integration 
difficulties.  

According to the relative position of the point xc and the element En, we can distinguish 
five types of elementary integrals In(xc) to be calculated: 
(i) xc = xn  is the collocation point defined here above on the interval En, 
(ii ) xc is the extremity point on the extremity element En, 
(iii ) xc is an intersection point 
(iv) xc is on the element En but is not an extremity nor endpoint, 
(v) xc is not on En. 

For the first case, we have already chosen xn verified In(xn)=0. For the second case, the 
integrant function is singular at the point xc, but remains integrable because its 
singularity is the order of s-1/2. In the third case, xn is an intersection point between 
several cracks or common points between several elements En. Each In(xc) is singular in 
this case, nevertheless, the sum of singularities vanishes because of the mass balance (8). 
For the fourth case, the integrant function is singular at xc, but can be integrated in 
Cauchy principal value sense. Finally, the integrand function is not singular in the last 
case. For determination of the nodal pressure, or for the first stage of our numerical 
method (see the beginning of Section 4), the system of equations derived from (13)  
involves only the first and second cases listed above. In these cases, In(xc) can be 
expressed by the analytical expressions. Hence, equation (13) leads to a matrix equation 
in which all components of the matrix are computed analytically. This provides a very 
fast calculation method for determining the nodal pressures in the first stage. In the case 
(iii ) listed above, xc is a nodal point and its pressure in deduced from the results of the 
first stage. The pressure for the case (iv) is deduced by interpolation functions (15) to 
(17) from the nodal pressure. For the last case (v), analytical expressions for elementary 
equations can also be derived that simplify the calculations. Analytical expressions of 
different cases of elementary integrals are given in Appendix. 

 

4.4 Construction and resolution of linear system of equations 

 

The set of M scalar equations (13) for N nodal pressure unknowns have the following 
matrix structure: 

 F=HP=C+GP (22) 

where, F(M×1) is the column of pressure values at collocation points, P(N×1) is the 
column of unknown nodal pressure, C(M×1) is column of infinite pressure field p∞ 
applied to collocation points, H(M×N) is established from the interpolation functions in 
Eqs.(15)-(17), G(M×N) is computed from the elementary integrals in right-hand side of 
equation (7) which is set up through the assembly operation that is carried out by two 
nested loops: the first one is over all collocation points and the second one over all 
elements. 

As a consequence, the system (22) consists of M equations and N unknowns with M>N . 
However, an approximate solution can be computed by using the least squares fitting 
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method which is performed by minimizing |(H-G)P - C|2 on the P values. This leads to 
the equation:  

 KP=Y (23) 

where: 

 K = (H-G)T(H-G); Y = (H-G)TC (24) 

 

In this way, finally, the system of equations (13) is reduced to a linear system of N 
equations on N unknown nodal pressures. 

 

5 Numerical examples 

In this section, we present some examples that illustrate the numerical method obtained 
in precedent sections. The algorithm described in precedent section was been 
implemented in a Fortran code that generates automatically a consistent mesh to 
discretize the crack network. Then, as described here above, the nodal pressures are 
determined from (24) in a first stage and inserted in (13) to determine the pressure at an 
arbitrary point.  

 

5.1 Straight single crack in an infinite plane  

 

In order to validate the numerical solution, the fluid flow around a single straight crack 
in an infinite homogeneous matrix was modeled and compared to the analytical and 
semi-analytical results obtained by Pouya and Ghabezloo (2010). Consider an infinite 
matrix, with uniform and isotropic permeability k, containing a straight crack of length 
2L and conductivity c, occupying the interval [-L,L] on the x-axis of coordinate system. 
This infinite body is submitted to a farfield pressure with a uniform gradient A = (a,0) 
parallel to the crack: 

 p∞(x) = a.x (25) 

The following dimensionless parameters are introduced: 

 
( ,0)

, , ( )
2

c x p x
X P X

kL L aL
λ λ= = =

π
 (26) 

Fig. 4 displays, for different values ofλ , the pressure and the discharge obtained along 
the crack line. Since the problem is symmetric with respect to the y-axis, only the 
solution on the right half-crack (0≤X≤1) is presented in the figure. It is important to note 
that, for every value of 0>λ , at the crack tip, the discharge q as well as the pressure 
gradient in the crack are null. The pressure field obtained for the limit case of 
superconductive crack (c→∞ or λ→∞, numerically λ = 105) is presented in Fig. 5. This 
figure shows the singularity of the pressure gradient in the neighbourhood of the crack 
tip. The numerical results obtained here are in perfect agreement with the semi-analytical 
or close-formed solutions given by Pouya and Ghabezloo (2010) (Fig. 4 - right). 
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Fig. 4 Pressure and discharge along the crack line plotted for different values of λ. Left: 

pressure Pλ along the x-axis, right: discharge q in the crack (0<X<1) 

 
Fig. 5 Pressure field p(x,y) in the plane of the crack for a uniform pressure gradient at infinity 

parallel to the crack (X-axis in the figure). 

 

5.2 Curvilinear cracks with intersection  

The following example of several straight or curvilinear intersecting cracks allows us to 
illustrate the benefit of the new numerical method compared to previous works, and also 
to numerically check the mass balance equation (8). The geometry of the cracks is 
presented in the Fig. 6, with details for elements surrounding the intersection point on 
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the right. The pressure field has been calculated here for an anisotropic matrix (kxx = 2, 
kyy=0.5) under the limit condition (25). The pressure field obtained in the matrix is 
presented in the left of Fig. 6. This example illustrates two improvements of the method 
compared to that presented by Liolios and Exadaktylos (2006): extension to intersecting 
cracks and to anisotropic matrix.        

Note that the limit condition of pressure is given by p(x) = ax at infinity and not on the 
boundary of the domain presented in the figure. On this boundary the pressure is affected 
by the presence of the cracks. This shows another advantage of the method: in numerical 
calculations for determination of the effective permeability of cracked materials, one 
often seeks for the flow in a family of cracks in an infinite matrix subjected at infinity to 
a uniform pressure gradient. This is the concept of an inclusion in an infinite matrix. But 
to determine numerically the flow field, generally an REV (Representive Element 
Volume) is considered and a pressure p(x) =ax is imposed on the boundary of this REV 
(Long et al., 1982, Pouya and Fouché, 2009). This does not correspond to the theoretical 
condition of a farfield pressure gradient. The method presented here, based on equation 
(7), allows naturally imposing a uniform pressure gradient at infinite boundary.        

Here is also an occasion to check if the numerical results satisfy well the mass balance 
(8) at the intersection points. Note that equation (8) has not been included in the system 
of equations determining the numerical results and then mass balance (8) is not an a 
priori  condition imposed on these results.  

 

 
Fig. 6 The Pressure field p(x,y) in the anisotropic matrix 



14 

 

However, the numerical discharges obtained on the elements related to the intersection 
point in the right-side of Fig. 6 (the node j=122), show that this mass balance is very 
accurately satisfied. As a matter of fact, let the error estimation be defined by: 

 
�

b
j

b

b
j

q

E
q

=
∑

 (27) 

where b
jq  is the discharge outgoing from the node j  on the branch b (one of the four 

elements in the case considered here), and �b
jq  is the average absolute value of theses 

discharges. In the case considered here above, we found at the intersection point j =122 
E ≈ 0.004 and E ≈ 0.012 for an isotropic and anisotropic matrix, respectively Thus, the 
mass balance is fulfilled with a good accuracy. The same result is obtained for all the 
intersection points that were analyzed.  

 

6 Application to the permeability of cracked porous media 

The numerical method established here above specially becomes interesting and efficient 
compared to other methods in cases where a great number of cracks are present. We 
show in this section its application to compute the permeability of cracked materials 
which needs the modelling of the flow in the presence of a crack distribution. 

A homogeneous domain Ω, containing a population of internal curvilinear cracks Γm, is 
under the influence of the linear pressure condition xAxp .)( =  applied on its 
boundary Ω∂ . A general and classical result for the case of cracks with zero or negligible 
thickness is that the effective permeability ke is the sum of the matrix permeability k and 
a contribution of cracks kc; 

  ke=k+kc  (28) 

The crack contribution kc can be deduced from the balance of discharge in the cracks 
under a farfield pressure gradient applied to the matrix from the following relation 
(Bogdanov et al., 2003; Liolios and Exadaktylos, 2006; Pouya and Ghabezloo, 2010): 

 
1

.k
m

c

m

qtds A
Γ

= −
Ω∑ ∫  (29) 

In this formula, A is the pressure gradient imposed on the boundary Ω∂  that contains the 
cracks Γm.  It is sufficient to compute the left-side of (29) for two different directions of 
A to be able to determine kc. The result can be compared to that predicted by 
approximate closed-form solutions for the case of straight cracks. Let Γm designate a 
family of cracks with length 2Lm, orientation tm, conductivity cm and density (number of 
crack centres per unit area) ρm. In the case of randomly oriented cracks, kc is isotropic: 

 kc = kc δδδδ   (30) 
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 and then ke = keδδδδ where, according to Pouya and Ghabezloo (2010), the Mori-Tanaka and 
self consistent estimates, ke are respectively given by (31a) and (31b):  

 
2

m m
e m m

m m
m

L c
k k L

c L

πκ= + ρ
+ πκ∑  (31a) 

 
2

e m m
e m m

m e m
m

L c
k k L

c L

πκ= + ρ
+ πκ∑  (31b) 

 

with κ = k , κe = k e . In this case κ = k and κe = ke. 

For a network of parallel cracks, with unit vector t, we have: 

 kc = kc t⊗t   (32) 

and then: 

 ke = k n⊗n + ke t⊗t (33) 

where, the Mori-Tanaka and self consistent estimates of ke are deduced respectively from 
(34a) and (34b): 

 2
2

e cL
k k L

c L

π κ= + ρ
+ π κ

 (34a) 

 2
2

e
e

e

cL
k k L

c L

π κ= + ρ
+ π κ

 (34b) 

where, κe = . ek k . Thus, the self-consistent scheme (34b) leads to the third-degree 
equation for the variable ke.  

The dilute Mori-Tanaka estimations (31a) and (34a) do not take into consideration the 
interaction between cracks whereas this interaction is implicitly taken into account in 
some approximate forms of the self consistent scheme and fully in the numerical 
modelling. In the following, the theoretical results will be compared to the results 
obtained by the numerical method in the two cases that of porous media containing a 
distribution of randomly oriented cracks and that of a regular network of parallel cracks. 

 

6.1 Randomly oriented cracks 

 

A geological rock formation is considered containing several families of fractures. Each 
family of fractures is characterized by an average length, a mean orientation and a 
density that are determined from in situ geological observations  (Billaux, 1990; Gervais, 
1993). The rock formation is represented by an infinite porous matrix with uniform and 
isotropic permeability and containing several families of cracks randomly generated by 
stochastic laws. A domain of 10×10 (Fig. 7 - left) in the cracked matrix is used for the 
numerical modelling. In this domain, fractures are generated according to statistical laws 
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reproducing the geological data.  This domain is submitted to the boundary conditions 
(25). A smaller area is taken in which the pressure field is computed and used for the 
equivalent permeability calculation. (Fig. 7 - right). The numerical method is very easy 
to use since it does not require meshing the whole surface as it would be required for 
Finite Element or Finite Volume methods. The pressure field obtained by this method is 
represented in Fig. 7 - right. The conductivity of cracks relative to the matrix 
permeability is given by λ = 1 where dimensionless variable λ is defined by (26). For a 
crack family of density (number of crack centres per unit area) ρ=2.5, average length L = 
0.35 and of uniformly distributed orientation (so globally isotropic), the Mori-Tanaka 
estimate (31a) provides ke/k = 1.38, the self consistent estimate, ke/k = 1.53 and the 
numerical calculation ke/k = 1.59. The difference between the numerical and Mori-
Tanaka estimation reveals the effect of the interaction between cracks. The self-
consistent estimate takes approximately the crack interaction into account and is, for this 
reason, closer to the numerical result. 

 

 
Fig. 7 Cracks network in geological rock formation 

 

6.2 Periodic distribution cracks 

An infinite porous matrix containing a periodic distribution of cracks parallel to the x-
axis is considered (Fig. 8). The matrix has a uniform and isotropic permeability k, and is 
submitted to the farfield pressure gradient (25). The cracks have the length 2L and the 
distance 2b between their extremities in the x-direction and h between their centres in 
the y-direction. The crack density is then:  
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1

2 ( )

N

h b L
ρ = =

Ω +
 (35) 

where, N is number of cracks on Ω. The mean value of qds
Γ
∫  is numerically computed on 

an array of (m×m) cracks at the centre of the domain with m=1,2,3… Greater is m, more 
accurately the interaction between cracks is taken into account. As predicted by the 
formula (33), the effective permeability is changed only in the direction parallel to 
cracks. 

 

Fig. 8 Periodic distribution of parallel cracks in infinite porous media 

 

Fig. 9 depicts the variation of ke as a function of the crack density ρ for different values 
of λ. The equivalent permeability ke obviously increases with the density ρ and with the 
crack conductivity represented by λ. The evolution of ke with ρ is not linear due to the 
cracks interactions. It is interesting to compare these results to theoretical estimates. 

Erreur ! Source du renvoi introuvable. Effective permeability of direction x plotted as a 
function of crack density ρ for different dimensionless variable λ 

 Fig. 10 displays the effective permeability computed by the numerical method compared 

to Mori-Tanaka and self consistent estimates. The three curves begin with the same slope 

at ρ=0, and this shows that the theoretical estimates give the exact variation of the 

permeability at first order development for small ρ values. The dilute Mori-Tanaka 

estimate remains a linear function of ρ because it does not take into consideration the 

cracks interaction. It can be noticed that the self-consistent estimate, that is supposed to 

take into account in some extent the cracks interactions, is strangely less accurate that 

the Mori-Tanaka estimate. This result is in contrast with that obtained in precedent 

section for randomly oriented cracks. However, it is well known that the self-consistent 

scheme improves the estimation only in the case of a random orientation of the 

heterogeneity (Dormieux and Kondo, 2004). It can be shown that the in the case of 

parallel cracks must lead to a smaller equivalent permeability than that one obtained by 

the Mori-Tanaka estimate, and to prove that the numerical results presented here give the 
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good trend of equivalent permeability versus density. This can be done by using the 

solution obtained for the pressure field around a single crack as shown in Fig. 10.  

    

kc/k 

0.1 0.2 0.3 0.4 0.5

0

0.4

0.8

1.2

1.6

2
Numerical solution
Mori-Tanaka estimation
Self-consistent estimation

ρ  
Fig. 9 Comparison of effective permeability in the direction x obtained by three different ways: 

numerical method and Mori-Tanaka and self-consistent estimations (λ=1) 

 

Fig. 10 displays the pressure field in the infinite matrix containing only one of the cracks 
among the network presented in Fig. 8 (crack number 1). The pressure field, before this 
crack is placed in the matrix, is represented by the straight line corresponding to the 
farfield gradient. The bold line displays the pressure field on line containing a first crack 
placed in the matrix and the two other lines, the pressure on the lines parallel to the first 
line and distant from it of h and 2h. When the second and third cracks are placed in the 
matrix at a distance h and 2h from the first crack (cracks number 2 and 3 in Fig. 8), they 
are placed in the pressure field locally represented by the curve y = h and y = 2h in the 
figure, hence, in a local pressure field with smaller gradients compared to the farfield 

gradient encountered by the first crack. The qds
Γ
∫  determining the contribution of these 

cracks to the global permeability is therefore smaller than that obtained for the first 
crack. This reasoning is somehow approximate since it takes into account the effect of 
the presence of the first crack on the pressure field encountered by the following cracks 
but not the effects of the following cracks on the first one. However, it explains well 
why the crack interaction tends to decrease the slope of the equivalent permeability 
curve versus the crack density, as found by the numerical results shown in Fig. 7. It also 
confirms that the self consistent scheme is here deficient. 
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Fig. 10  Pressures along the lines at different level of y these are parallel to the axe x on which 

an isolated crack is placed (λ=∞)   

 

7 Conclusions 

Recent theoretical advances in the modelling of flow in cracked porous materials (Pouya 
and Ghabezloo, 2010) were in some points completed here and then used to establish a 
numerical method for the study of these materials. This method was validated in the 
simple cases of a finite size crack in an infinite matrix for which closed-form solutions 
are available. It was shown that this method can be easily applied to the determination of 
the steady state flow in the materials with an anisotropic permeability, containing a 
dense distribution of curved-line cracks that intersect together. Some examples showed 
the efficiency of this method to determine the equivalent permeability of micro-cracked 
porous materials. 

The efficiency of the numerical method is partly due to special choice of collocation 
points and to using closed-form expressions of elementary integrals. The theoretical 
result obtained on the mass balance at intersection points allows establishing a probably 
more efficient numerical method in which nodes are chosen as collocation points and 
using yet analytical expressions for elementary integrals. Furthermore, the theoretical 
results and the numerical algorithm may be extended to the 3D steady-state flow 
problem. These extensions are pursued in our ongoing research and will be presented in 
future papers.   

Although these methods include some simplificative assumptions, like the uniform 
permeability of the matrix and no pressure jump between the two faces of the fracture, 
they can be usefully applied to many current research and engineering problems. The 
determination of the equivalent permeability of fractured oil reservoirs, of geological 
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formations used for CO2 sequestration and of damaged zones around underground 
galleries for nuclear waste disposal are some possible examples of applications that we 
undertake in parallel researches.  

 

 

Appendix:  Analytical expression of elementary integrals 

The element En between the endpoints z1, z2 is considered with the unit tangent vector 
designated by t. An arbitrary point in the plane of the crack is designated by x.  It can be 
shown that the elementary integral in Eq.(13) can be calculated analytically with the 
interpolation functions (15)-(17) for current elements and extremity elements as 
following: 

Current element 

 In(x) = 
2
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1 1
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Extremity element 
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with  
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and 

 
2L

ζ + φα = ,  
2L

ζ − φβ =  and 
2 22

2 ( )

L L

L L

− φ + ζ
Φ =

+ ζ + φ + ζ
 (39) 

where c stands for the hydraulic conductivity of crack; p1, p2 the nodal pressures of the 
element En, z0=z1 and ε =1 for the left extremity element, z0=z2 and ε =-1 for the right 
extremity elements. 
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