
Performance Evaluation of an Object Management

Policy Approach for P2P Networks

Dario Vieira, César Melo, Yacine Ghamri-Doudane

To cite this version:

Dario Vieira, César Melo, Yacine Ghamri-Doudane. Performance Evaluation of an Object
Management Policy Approach for P2P Networks. International journal of digital multimedia
broadcasting, Hindawi, 2012, 2012, pp.189325.1-189325.11. <10.1155/2012/189325>. <hal-
00794518>

HAL Id: hal-00794518

https://hal.archives-ouvertes.fr/hal-00794518

Submitted on 26 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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The increasing popularity of network-based multimedia applications poses many challenges for content providers to supply
efficient and scalable services. Peer-to-peer (P2P) systems have been shown to be a promising approach to provide large-scale
video services over the Internet since, by nature, these systems show high scalability and robustness. In this paper, we propose
and analyze an object management policy approach for video web cache in a P2P context, taking advantage of object’s metadata,
for example, video popularity, and object’s encoding techniques, for example, scalable video coding (SVC). We carry out trace-
driven simulations so as to evaluate the performance of our approach and compare it against traditional object management
policy approaches. In addition, we study as well the impact of churn on our approach and on other object management policies
that implement different caching strategies. A YouTube video collection which records over 1.6 million video’s log was used in
our experimental studies. The experiment results have showed that our proposed approach can improve the performance of the
cache substantially. Moreover, we have found that neither the simply enlargement of peers’ storage capacity nor a zero replicating
strategy is effective actions to improve performance of an object management policy.

1. Introduction

The increasing popularity of network-based multimedia
applications poses many challenges for content providers
to supply efficient and scalable services. Peer-to-peer (P2P)
systems have been shown to be a promising approach to
provide large-scale video services over the Internet since, by
nature, these systems show high scalability and robustness.

One of the essential problems in measuring how these
systems perform is the analysis of their properties in the pres-
ence of churn, a collective effect created by the independent
arrival and departure of peers. Resiliency, key design parame-
ters, and content availability are issues in P2P systems that are
influenced by the churn. Hence, the user-driven dynamics of
peer participation must be taken into account in both design
and evaluation of any P2P system and its related mechanics,
such as object management policies. For instance, when
peers go off-line, the locally stored data become unavailable

as well. This temporary content unavailability can lead to
congestion on backbone links due to the extra traffic gen-
erated by requesting to the original content provider.

The main contributions of this paper are as follows.

(1) First, we propose and analyze an object management
policy approach for videos’ web cache in a P2P con-
text. In this approach we exploit the object’s meta-
data, for example, video popularity, and object’s en-
coding techniques, for example, scalable video coding
(SVC). In Section 5, we describe the object manage-
ment policy based on popularity (POP); that is, we
describe how user-generated content is used to define
this object management policy. We have carried out
set of studies by using three different scenarios so as
to analyze our approach with regarding other object
management policies. We evaluated how the inser-
tion, replacement, and discarding of videos impacts
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the object management policies. Besides, we study as
well the effects of the video popularity and the dis-
carding of video layers in the performance of object
management policies. In Section 6 we present the
numerical results collected from these simulation ex-
periments. We show as well how much our content-
oriented web cache mechanism can improve tra-
ditional web cache mechanisms. Basically, we have
found that our approach outperforms the traditional
one and consequently reduce the capacity demand
poses over the community output link by increasing
the hit rate of community demands and optimizing
the network resources available.

(2) Second, we study the impact of the user churn on
object management policies. For that, we have used a
churn model that is based on a stationary alternating
renewal process with its average up and down behav-
ior based on the type of peer (cf. Section 4). By using
this churn model, we have evaluated the enlargement
of individual peer storage capacity as an action to
keep policies performance since the community stor-
age capacity will be affected directly by the churn. In
Section 7, we present the numerical results collected
from these simulation experiments. We can point
that peers will be able to store valuable objects over
a long time-scale which could improve content avail-
ability. We have noted that the gap among all police
performance shrinks due to this enlargement. None-
theless, this enlargement does not impact linearly the
performance of the policies.

(3) Finally, we have evaluated on how much the repli-
cated data affects policies performance by measuring
it on a system with and without duplicated data.
Indeed, each time a peer leaves the system, it will
make chunks of popular content unavailable for other
peers. Whenever that peer rejoins the system, its con-
tent could have been accessed by other peer. Accord-
ingly, data are naturally replicated into the system
due to the churn. This naturally replication has as
consequence the decreases of the nominal system
storage capacity. So, we have evaluated on how much
this replicated data affects policies performance by
measuring it on a system with and without duplicated
data. In Section 7.1, we present the numerical results
collected from these simulation experiments. We
have found that the performance of policies is im-
pacted, either positively or negatively, by this repli-
cated data which suggests that content availability
could be improved whether the volume of duplicated
data is under policy control.

We have used in our experimental studies a YouTube
video collection, which records over 1.6 million video’s log.
In our experiments, each peer can store up to 25 short videos
of 4:50 minutes—the average video length identified in the
studied video collection. The overall storage capacity, which
is defined by the sum of the storage capacity of all peers, is
equal to one percent of the video collection storage demand

(cf. Section 3). Different simulated scenarios were defined by
scaling up the system storage capacity until 20% of the video
collection storage demand.

We have evaluated five policies in our experiments: (i)
the context-aware and content-oriented policy (POP), (ii)
least recently used (LRU) policy, (iii) least frequently used
(LFU) policy, (iv) popularity-aware greedy-dual size (GDSP)
policy [1], and (v) proportional partial caching (PARTIAL)
policy [2]. The last four policies (described in Section 2)
are representative implementations of their classes, that is,
recency-based, frequency-based, and cost-based policies.

2. Cache Algorithms

This section gives a short overview of the traditional cache
algorithms that we use through this paper. Essentially, these
algorithms can be classified into three major flavors of strat-
egies as follows.

Recency-Based Strategies. This kind of approach uses recency
as a main factor. Least recently used (LRU) strategy, and all its
extensions, is a good example of these strategies. LRU makes
use of the locality information to predict future accesses to
objects from past accesses. In effect, there are two sorts of
locality: (i) temporal locality and (ii) spatial locality. The first
one is based on the idea that recently accessed objects are
likely to be used again in the future. In the latter approach,
the references to some objects suggest accesses to other ob-
jects. Recency-based strategies make use of temporal locality;
that is, LRU exploits temporal locality. The major disadvan-
tage of these strategies is that they do not consider object
size information. Moreover, they do not consider frequency
information.

Frequency-Based Strategies. These strategies exploit the fre-
quency as a main factor. They are based on the idea that
different objects have different popularity values and this
implies that these objects have different frequency values.
Accordingly, these values are used for future decisions. The
least-frequently used (LFU) is the well-known implementa-
tion of these strategies. There are two kinds of implemen-
tation of LFU (and its extensions): (i) perfect LFU, which
counts all requests to an object. This keeps on across replace-
ment; (ii) in-cache LFU, whose counts are carried out only
for cache objects. It should be noted that this does not repre-
sent all request in the past. The major disadvantage is that the
frequency counts are too static for dynamic environments.

Cost-Based Strategies. In cost-based policies, the importance
of an object is defined by a value got from a cost function.
When a cache runs out of space, objects are evicted based
on their cost; objects with the smallest cost will be evicted
first. The greedy-dual size (GDS) policy was the first policy
to implement a cost-based cache strategy. It maintains, for
each object, a characteristic value Hi which is set in the very
first request and calculated every time the object is requested.
Improvements on GDS policy have been implemented to
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Figure 1: Statistics for YouTube Entertainment category [3].

consider historical and access frequency data (GDSP—popu-
larity-aware greedy-dual size [1]) and the dynamics of peer-
to-peer system (proportional partial caching) [2].

3. Video Collection

In this section, we present the video collection used so as
to carry out our experiments. Our dataset consists of meta-
information about user-generated videos from YouTube ser-
vices. We limited our experiments to the Entertainment cate-
gory collected by [3] owing to the massive scale of YouTube.
This collection consists of 1,687,506 videos where each line
represents a single video. Furthermore, each video record
contains both fixed and time-varying information (e.g.,
length, views, ratings, stars, and URL), which means

(1) views and ratings stand for the number of times the
video has been played and evaluated by users,

(2) stars stand for the average score from rating, and

(3) URL denotes the list of external web pages hyper-
linking the video.

We limited the maximum size of cacheable video to 99
minutes; videos with more than this value are considered
crawler mistake. Figure 1(a) depicts videos’ length distribu-
tion in seconds, with video length being equal to 291 seconds.

Figure 1(b) shows the video popularity distribution. By
examining the number of requests recorded in our video
collection, we grouped those videos in four sets. In the first
set we gathered video with less than 100 views. This subset
is made of 34.4% of videos in our collection. In the second
subset we gathered videos with a number of views into the
range of 100 views and 1000 views, which contains 40.5%
of videos in our collection. The third subset has videos
with a number of views into the range of 1,000 views and
10,000 views and makes up 21.4% of videos recorded in our
collection. Finally, in the fourth subset we gathered videos

that recorded over 10.000 views, which contains 3.7% of
videos in our collection. Based on our analysis, we see that
video requests are highly concentrated on a small set of
videos. In fact, the fourth subset has 60% of the total number
of views.

This video collection misses individual user requests in-
formation; that is, timestamps mark that record when a user
dispatched his/her requests. To deploy our simulation stud-
ies, we must have such individual user’s behavior. Hence, we
developed a procedure to simulate the users’ behavior based
on information gathered from the video collection. There-
fore, in order to use this collection, we define a procedure for
the generation of requests, as follows.

(1) All requests will be driven by a combination of the
video length and the “think time.”

(2) For each two nonpopular videos, we picked up three
popular videos. This ratio was derived based on the
preview analysis carried over our video collection;
that is, we determined the number of (non)popular
video views recorded.

(3) The pick-up procedure of popular and not popular
videos is independent and follows a uniform distri-
bution.

(4) A popular video must be recorded more than 10,000
views.

The rationales behind our procedure are (i) downloaded
videos will be watched end-to-end, and users will spend
some time looking for related videos, the thinking time, be-
fore dispatching a new request; (ii) over the time scale the
system is observed, popular and nonpopular videos will keep
their status, a reasonable assumption since we are interested
only on the effectiveness of popularity as a criterion to man-
age those videos; (iii) in our collection, videos with more
than 10,000 views represent less than 4% of the whole col-
lection but recorded over 60% of the total number of views.
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4. A Hierarchical Content-Oriented
Overlay Network

In this section, we present the networking scenario used in
our studies. First, the network infrastructure is considered,
then we describe how peers are classified and objects are
searched in this infrastructure. Finally, the churn model used
to characterize peers’ dynamics is presented.

4.1. The Network Infrastructure. The network infrastructure
is a structured peer-to-peer (P2P) system made by ordinary
nodes and supernodes and with peers that are locality-aware
clustered into communities or groups. These communities
are built around subjects, for example, science, sports, and
DIY. Figure 2 illustrates this infrastructure. Peers locality
awareness limits content lookups to very few hops into the
community. In Crespo and Garcia-Molina [4], similar ideas
have been proposed to share music files with overlays being
built based on music genres, and lookup operations being
bounded to the community.

In this network infrastructure, for each group there is one
or more superpeers, which are analogous to gateways routers
in hierarchical IP networks. The goal is to use superpeers so
as to transmit messages intergroups.

On this networking scenario, the mix of gathered peers
defines a community as homogeneous or heterogeneous. Ac-
cordingly, peers can be classified based on their up probabil-
ity and they can be clustered in T > 1 groups. In this paper,
we classify and cluster them in four groups (i.e., T = 4) as
follows.

(i) Stable group, each peer is up with probability big or
equal to p.

(ii) Moderate group, each peer is up with probability t,
but with p� t.

(iii) Low group, each peer is up with probability r, but with
t� r.

(iv) Unstable group, each peer is up with probability less
or equal to q, but with r � q.

These peer group’s up probabilities are mapped to the
peer group’s up session duration in our numerical studies as
suggested by Wang et al. [5]. Specifically, we studied a com-
munity made by peers that fits in a low group behavior; that
is, peers up sessions last 28 minutes in average, and a typical
YouTube session duration by the time our video collection
was collected, according to Wang et al. [5].

4.2. The Churn Model. To model the peers’ dynamics, we
have exploited a generic churn model defined by Yao et al.
[6]. Consider a P2P system with n peers, where each peer i is
either UP at time t or DOWN. This behavior can be modeled
by a renewal process {Zi(t)} for each peer i:

Zi(t) =
{

1, peer i is alive at time t,

0, otherwise,
1 ≤ i ≤ n. (1)

Unlike [6], the UP and DOWN lasting sessions of {Zi(t)}
are based on the type of peer i. Therefore, the actual pairs
(Fi(x),Gi(x)) are chosen randomly from set F define as fol-
lows.

F =
{(

F(1)(x),G(1)(x)
)

, . . . ,
(
F(T )(x),G(T )(x)

)}
, (2)

where T ≥ 1 is the number of peer types in the system.
Therefore, for each process {Zi(t)}, its UP lasting sessions

{Li,c}∞c=1 have some joint distribution Fi(x), and its DOWN
lasting sessions {Di,c}∞c=1 have another joint distribution
Gi(x), where c stands for cycle number and durations of
users and i’s UP and DOWN sessions are given by random
variables Li,c > 0 and Di,c > 0, respectively.

Examples of UP/DOWN distributions used throughout

this paper are (i) the exponential, defined as

F′i = 1− e−λix, (3)
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Figure 4: Complementary cumulative distribution functions of UP and DOWN session duration used on exponential and heavy tail churn
models.

with mean 1/λi, and (ii) the Pareto, defined as

F
′′
i = 1−

(
1 +

x

βi

)αi

, x > 0, αi > 1, (4)

with mean βi/(αi − 1).
Based on the aforementioned model, the following

assumptions are made.

(1) To capture the independent nature of peers, we as-
sume that the set {Zi(t)}ni=1 consists of mutually inde-
pendent alternating renewal processes, as depicted in
the Figure 3. Accordingly, peers behave independent-
ly of each other and processes {Zi(t)} and {Z j(t)}, for
any i /= j, are independent.

(2) Note that li, the average UP session duration, and di,
the average DOWN session duration, are indepen-
dent and unique for each peer. Once pair (li; di) is
generated for each peer pi, it remains constant for the
entire evolution of the system.

(3) 28-minute YouTube average session duration is set
to li. In addition, half of the value of li is set to di.
Hence, as regards content availability, a demanding
community of peers is expected.

(4) The upprobability of peer i at an arbitrary time
instance t is given by

p = lim
t→∞P({Zi(t)} = 1) = li

li + di
. (5)

Based on previous characterization, two churn models
have been used on our studies: heavy tail and exponential.
When exponential churn model is applied, the lasting of UP
session is driven by exp(1/li) distribution, while the lasting
of DOWN session is driven by a pareto (3,di) distribution,
where li stands for the expected mean of UP session duration
and di stands for the expected mean DOWN session dura-
tion.

Figure 4(a) shows the complementary cumulative distri-
bution function (CCDF) of the exponential (UP session) and
Pareto (DOWN session) distributions when li and di are set
as mentioned previously. For exponential distribution, the
probability of chose values greater than the expected ones
vanishes after minute 120. However, for Pareto distribution,
this probability still exists over large time-scale. This churn
pattern can be summarized by the following: peers will stay
connected, as they join the community, but will lose interest
over time.
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Require: video popularity ∨ cache size ≥ 0
request from community(video);
if miss video then

request from outside(video);
end if
if video popularity > threshold then

insert cache(video);
end if

Algorithm 1: The popularity-based object management policy.

In the heavy tail churn model, the UP and DOWN
sessions are driven by the Pareto distributions. Different
from exponential churn model, heavy tail churn model draws
probability still significant over time, Figure 4(b), which
means that picking a value great than the mean value is
highly possible. The churn pattern defined by this heavy tail
model can be summarized by the following: peers will keep
interest on content over long time-scales.

5. POP: A Content-Oriented Management
Policy Based on Popularity

As mentioned in Section 4.1, peers will cooperate and the
interesting-oriented community has very useful information
to improve the cache system performance. In this context, the
probability that a video comes to be accessed again by other
members of a community is higher than that in a general case
since members inside a community might share common
interests. Hence, the question about how much popular a
video is inside a community seems to be an important
metadata to be considered when implementing an object
management policy.

Based on the aforementioned assumptions, we have de-
veloped an object management policy [7], that is, the popu-
larity-based (POP) policy. In this object management policy,
we keep the most popular video in cache (number of visu-
alizations) based on a predefined threshold. The rationale of
our policy is that the majority of video requests is targeted
to the popular ones, hence keeping the cache filled by the
popular video will probably improve the hit rate and decrease
the volume of traffic that flows outside the community link.
Algorithm 1 describes this procedure.

As said, the threshold used to identify popular videos
is a predefined value and closed related to video collection
statistics. In our studies we set the threshold equal to 10,000
visualizations which defines a popular video collection with
less than 4% of the whole video collection, at the same time,
this popular video collection has over 60% of all visuali-
zations. In summary, the threshold setting procedure will
reduce the number of videos that have to be managers, but
those videos will receive the majority of requests.

6. Performance Analysis of POP

In this section we show the numerical results collected
from our first studies. We evaluated how the insertion,

Require: video popularity ∨ cache size ≥ 0
if video popularity > threshold then

insert cache(video);
end if

Algorithm 2: Considering video popularity.

replacement, and discarding of videos impact the object
management policies. To evaluate the effectiveness of our
proposed policy, we defined a reference scenario and we com-
pared it to three other different scenarios so as to evaluate
the performance of the POP. For that, we assume that peers
are always connected to the system, a borrowed concept from
[5] which identifies and describes the importance of stable
peers.

6.1. Numerical Results. We use a trace-driven simulation to
evaluate our proposed policy. The simulated P2P network
has 10,000 peers, and we assume that there is only one com-
munity where each peer can connect to any other peer. Each
peer has a cache with capacity to storage up to 1.000 seconds
of video. The total number of video requests is 200,000, and
we consider that videos with more than a threshold value are
popular. In our experiments, the threshold value is equal to
10,000 views.

6.2. Reference Scenario. In this scenario, we establish the fol-
lowing conditions: (i) every requested (and not yet cached)
video must be added to the cache, (ii) LRU is the object re-
placement policy implemented by the web cache, and (iii) the
whole video will be discarded when the managed cache is full.
Taking into consideration these assumptions, we simulated
the user requests based on a uniform distribution. As we have
pointed out, the results are then compared with three other
scenarios, which are described as follows.

6.3. Scenario Number 1. In this scenario, we evaluated the
effects of the video popularity on the performance of our web
cache. Instead of adding all referenced, and not yet cached
videos, we keep only cached videos that are considered pop-
ular, that is, videos that have a number of views greater than
10,000. The rationale of our policy is that the majority of
video requests is targeted to the popular ones, hence keeping
the cache filled by the popular video will probably improve
the hit rate and decrease the volume of traffic that flow out-
side the community link. In summary, in scenario number
1 we cached only popular videos, the object management
policy is still the LRU, and the whole video is discarded when
the managed cache is full.

Algorithm 2 describes the patched applied to the ob-
ject management policy; that is, the execution of function
insert cache(·) is conditioned to the video popularity. Figures
5 and 6, the first bars, show the improvements, in terms of
hit rate (35.2%) and volume of traffic that is saved (36.2%),
when that new policy is implemented.
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Require: free cache size ∨ video size
While free cache size < video size do

(video,node)⇐ LRU video object();
nlayers⇐ discard highest layer(video, node);
if nlayers = 0 then

nlayers⇐ discard highest layer(video, node);
remove reference DHT(video, node);

end if
end while

Algorithm 3: Discarding layers, the local approach.

6.4. Scenario Number 2. In this scenario, we evaluated the
effects of the video popularity and the discarding of video
layers on the performance of our object management policy.
Differently to the scenario number 1, we dispose only video
layers that are coding to improve the video quality and
hence keep those layers that have the minimum amount of
data to the receiver reproduce his/her requested video. The
least recently used criterion is applied to elect which video
must have its layers discarded. Whether the room made
available by the discarded layer is still insufficient to store the
recently accessed video, a new video is elected and its layer
is discarded. This process is repeated until the web cache
has sufficient space to store the recently referenced video.
The rationale of our policy is to keep as much as possible
a popular video cached, even it is a low-quality copy, since
references to it are very probable.

Algorithm 3 presents the patch applied to object man-
agement policy. Function LRU video object(·) finds the least
recently used cached object and returns both that video and
the node that has the object. Function discard highest layer
(video, node) discards the highest layer of the found video.
For example, if there are two layers for this video in cache,
the second, which has less priority, will be discarded. Addi-
tionally, after calling the discard highest layer(·) function no
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Figure 6: Traffic volume reduction—based on reference scenario.

Require: free cache size ∨ video size
While free cache size < video size do

(video, node)⇐ random video object();
nlayers⇐ discard highest layer(video, node);
if nlayers = 0 then

nlayers⇐ discard highest layer(video, node);
remove reference DHT(video, node);

end if
end while

Algorithm 4: Discarding layers, the global approach.

layers could remain for that video, hence the reference for this
video must be removed from distributed hash table (DHT).
Figures 5 and 6, the second bars, show the improvements in
term of hit rate (35.2%) and saved traffic (36.2%) when a
new policy is implemented.

6.5. Scenario Number 3. In this scenario, we introduce the
layer discarding policy associated with a global approach in-
stead of the local one deployed in scenario number 2. In other
words, we randomly selected objects in cache and discarded
the highest layer of this object. The rationale of our approach
is that when a cache run out of space, we have a set of high
popular videos cached with all those video showing a high
requesting rate. Hence when we apply the discarding policy
over the whole set of videos, and not just over the “least” re-
cently used set, we will increase the set of popular videos
that can be cached. Consequently, we can observe an im-
provement over the hit rate. In summary, scenario number 3
has only popular video cached, a random object replacement
policy, and video layers are discarded when cache is full.

Algorithm 4 presents the patches applied to the object
management policy. Function random video object(·) picks a
cached object and returns both the targeted video and node
that has that object.
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Figures 5 and 6, the third bars, show the improvements
in terms of hit rate (43%) and saved traffic (44.2%) when the
new policy is implemented.

6.6. Discussions. Requests to popular video are much more
probe than nonpopular videos; over 60% of requests record-
ed in our video collection are targeted to popular videos.
In addition, popular videos made just 3.7% of our video
collection. Based on these facts, we tested the video popu-
larity metadata as the criteria to cache or dispose recently
accessed videos. As noted from scenario number 1, there
was a 30% improvement in the cache hit rate, compared to
the traditional approach, reassuring that bringing metadata
associated to the objects will save the network resources with
server communities that were built around subjects.

Although 30% improvement is remarkable, we learnt
that traditional web cache policies do not assume anything
about the managed objects. In the scenario number 3, we
exploit the fact that videos are distributed in layers. Besides,
we use a discarding policy based on those layers instead of
discarding the whole video, as implemented on traditional
web cache policy. We underline that the discarding of layers
does not constrain a web cache to server requests to that
video; that is, videos can be served, for instance, in a low
definition instead of high definition. As a result, whenever a
cache runs out of space and a new object needs to be cached,
the number of cached videos increase since the discarding of
a whole video will be postponed, at least in the first moment.

An important finding to be explained is how LRU policy
and video layers discarding policy are related, as pointed
in scenario number 2. In this scenario, we discard video
layers that belong to the set of the least recently used videos.
Nonetheless, this situation does not offer any improvement
in both the number and quality of cached objects. This
happens because the group of least used objects is very small
(only popular video are cached), which heavily restrict the
space where our discarding policy can act to improve the
number of cached videos.

We noted as well that bringing video metadata (i.e., video
popularity) into an object management policy associated
with a global layers discard policy can increase substantially
the quality and number of cached videos. Consequently, this
improves the cache hit rate and saved traffic measured over
the output link. Using these approaches, we got over 40%
improvement which could mean to postpone updates over
an output link.

7. Numerical Results

In this section, we have carried out some studies so as to
evaluate the impact of the churn on object management
policies implemented by peers. Accordingly, we have set up
a peer-to-peer-assisted video distribution system, compare
Section 4, and we have measured the decreasing ratio, that
is, on how much the policy performance measured by the hit
rate is impacted by the churn. The decreasing ratio is defined
by the following equation:

HRDecr = 1− HRWith

HRWithout
, (6)

where HRWith and HRWithout are, respectively, the measured
hit rates in a system with and without churn. In our exper-
iments, we have employed both exponential and heavy tail
churn models (cf. Section 4.2).

As we have pointed out, the accomplishment of an object
management policy is affected by the performance metrics
taken into account. For instance, the LRU policy can have
high hit rate but performs poorly in term of byte hit rate.
Therefore, we have studied also the decreasing ratio defined
by the byte hit rate collected in a system with and without
churn. From a qualitative stand point of view, the impacts
measured by the decreasing ratio defined by both, hit rate
and byte hit rate, are similar. Hence, we show as well the
decreasing ratio defined by (6).

We have evaluated five policies: the context-aware and
content-oriented policy (POP) [7], least recently used (LRU)
policy, least frequently used (LFU) policy, popularity-aware
greedy-dual size (GDSP) policy [1], and proportional partial
caching (PARTIAL) policy [2]. The last four policies are rep-
resentative implementations of their classes, that is, recency-
based, frequency-based, and cost-based policies.

In our experiments, each peer can store up to 25 short
videos of 4:50 minutes—the average video length identified
in the studied video collection. The overall storage capacity,
which is defined by the sum of the storage capacity of all
peers, is equal to one percent of the video collection storage
demand, see Section 3. We have defined different simulated
scenarios by scaling up the system storage capacity until 20%
of the video collection storage demand.

Figure 7 depicts the impact of the churn in term of de-
creasing on hit rate, when both exponential and heavy tail
models drive the churn. Although their decreasing ratios,
defined by (7), have different values, all policies’ behavior is
as follows: the gap among their performance shrinks as the
system storage capacity is enlarged. However, this enlarge-
ment does not impact linearly the performance of policies.
Specifically, for an enlargement of 20% in the system storage
capacity, LFU policy has recorded a variation of 36% (29%)
on its decreasing ratio for the exponential (heavy tail) churn
model. LRU shows a variation of 34% (27%), while GDSP
shows a variation of 33% (24%) and PARTIAL shows varia-
tion of 29% (23%).

The performance of POP policy represents an exception
in the previous conclusion, specially for heavy tail churn
model where the variation on its decreasing ratio is equal
to 20%. That is, for the POP policy, the impact of churn is
linearly reduced by the system enlargement. The volume of
replicated data is the main reason for that performance (cf.
Section 7.1).

The enlargement of the system storage capacity im-
pacts policies performance, especially for exponential churn
model where variations in the decreasing ratio are more
pronounced as this enlargement happens. Figure 8 depicts
the decreasing of system size, that is, the shrinking on the
number of UP peers, when exponential and heavy tail churn
models drive the joining and leaving events. When the churn
is driven by the heavy tail model, the maximum decreasing
on system size is 39%, whereas for exponential model, this
value is 48%. As a general system design observation, we
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Figure 7: Decreasing ratio of object management policies (see (6)).

have noted that, since strong assumption on peers’ storage
capacity could jeopardize the system implementation, P2P-
assisted systems have to deploy mechanisms to keep, over
large time-scales, peers interested on content made available
by communities.

7.1. Replicated Data. Each time a peer leaves the system, it
will make chunks of popular content unavailable for other
peers. Whenever that peer rejoins the system, its content
could have been accessed by an other peer. This dynamic
replicates data over peers that share interest and, consequent-
ly, decreases the nominal system storage capacity. Figure 9
shows the percentage of data that has been replicated into
the system due to the churn.

For LRU, LFU, and GDSP policies, the maximum
amount of replicated data demands 20% of storage capacity.

25

30

35

40

45

50

55

0 10 20 30 40 50 60

Simulation time (×

Exponential churn model
Heavy tail churn model

D
ec

ea
si

n
g 

on
 U

P
 p

ee
rs

 (
%

)

)105 s

Figure 8: The decreasing on number of UP peers.

However, for the two other policies, PARTIAL and POP, the
amount of replicated data is around 25% and over 45%,
respectively. The POP policy can handle twice as much repli-
cated data than other policies. Since the POP policy keeps
only objects with certain number of views (10,000 views in
our experiments) and this requirement is too restrictive, the
amount of replicated data grows rapidly due to the churn.

Resilience to failure is a key property of P2P systems. In
this context, every time a peer A fails in delivering a service,
which is under its responsibility, another peer will replace the
peer A so as to deliver this service. This property has con-
sequences in the proposed video distribution system; that
is, the studied policies have to handle replicated data held
independently by peers. From the preview results, at least
20% of stored data is replicated ones, this value being greater
than 45% when the POP policy is used.

To measure the impact of replicating on policy perfor-
mance, we have performed experiments by using the follow-
ing nonreplicating procedure: peers must evict any replicated
video every time they rejoin the system.

In this new scenario, we have computed the decreasing
ratios as follows:

HRDecrNorep = 1− HRNorepWith

HRWithout
, (7)

where HRNorepWith is the collected hit rate in a system with
churn but without replicated data, and HRWithout is the hit
rate in a system without churn.

Figure 10 shows the decreasing ratio for all studies’
policies. We have noted that in spite of the enlargement
of the system storage capacities, the decreasing ratio is
around 40% when the exponential churn model drives the
joining and leaving dynamics. For peers under the heavy
tail churn model, this decreasing ratio is around 20% (see
Figure 10(b)).

Compared to results showed in Figure 7, the perform-
ance of policies under both churn models reduces by 50%.
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Figure 9: The amount of replicated data handled by policies.

This suggests that (i) an enlarged storage capacity has lim-
ited impact over policies performance and (ii) a controlled
amount of replicated data tends to improve the performance
of policies. In fact, it is under evaluation an algorithm to
support replicating. Peers that just initiated the leaving pro-
cedure will use this algorithm to spread objects’ metadata in
order to support the decisions made by other peers during
the evicting process.

8. Related Work

Several approaches (e.g., [8]) have been proposed in the lit-
erature so as to deal with video caching. In these approaches,
whether a video or some part of it cannot be found in local
proxies, it can be requested from the original central provid-
er. In a P2P video system, however, there is no such central
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Figure 10: The decreasing on hit rate in a nonreplica system (see
(7)).

video server nor does any peer guarantee the availability of
any data it caches.

Zink et al. [9] and Cha et al. [3] strongly suggest that met-
rics such as object popularity has to be considered in-cache
object management policies. These studies show that popular
and nonpopular videos access ratio is 2 in 3, despite popular
video collection is being made of just 3.7% of the whole video
collection. Although Zink et al. [9] show that local popularity
has a weak correlation with the global popularity, still most
of the accessed videos are the local popular ones.

Kulkarni and Devetsikiotis [10] propose the design of
a distributed cache similar in principle to a content distri-
bution network (CDN). The goal is to select some of the
most valuable objects and bring them closer to the clients
requesting them so that redundant load on the network is
reduced. Social network analysis techniques were used to
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identify the most valuable objects that should be cached.
While Kulkarni’s work focus is to determine the measure-
ments that can be used to define the objects popularity, our
goal is to verify the effectiveness of such measurements in the
implementation of a cache approach based on P2P systems.

The behavior of P2P system under churn is one of the
most fundamental issues of P2P research (e.g., [6, 11, 12]).
Several approaches (e.g., [11, 13]) have dealt with churn by
investigating its characteristics (e.g., median session length)
in large-scale P2P systems. Gummadi et al. [11] measure
session lengths by monitoring a router at the University of
Washington. Sripanidkulchai et al. [13] study the live stream-
ing workload of a large-content delivery system and present
an analysis characterizing popularity, arrival process, and
session length.

9. Conclusions

In this paper we studied object management policies in a
peer-to-peer network context. While traditional object man-
agement policies were built around only three object propri-
eties, that is, aging, size, and frequency, we built our policy
around user-generated content and metadata made available
by content providers. We used video popularity and took
advantage of video-encoding techniques to build our policy.
We have carried out a set of simulation experiments so as to
evaluate the performance of our approach. In the first part
of our simulation experiments, we have observed that our
approach outperforms the traditional one and consequently
will reduce the capacity demand poses over the community
output link by increasing the hit rate of community demands
and optimizing the network resources available.

We have studied as well the impact of the churn on the
object management policies. We evaluated the enlargement
of peer’s storage capacity as an action to keep policies per-
formance since the system storage capacity will be affected
by the churn. Though the gap among a policy’s performance
shrinks as we enlarged the storage capacity, it does not impact
proportionally a policy performance.

Also, we have carried out studies to look into how repli-
cated data impact the performance of object management
policies. We found that the worst case scenario, in terms of
content availability, is for a system without replicated data.
Despite the enlargement of the storage capacity, in general,
we have not seen improvements on policies performance for
such systems. On the other hand, replicating due to the churn
improved the performance of policies to a certain level. How-
ever, we have shown from the POP policies performance,
whether the amount of duplicated data is under policy con-
trol, the content availability could be greatly improved.

As future works, we have looked into mechanisms to
control the amount of replicated data through the system
and investigated whether or not incentive-based peer partici-
pating mechanisms, developed for other content distribution
systems, could be applied in such hybrid P2P-CDN system.
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