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SUMMARY

In this paper, 3D steady-state fluid flow in a pa@somedium with many intersecting
fractures is derived numerically by using collocatimethod. Fluid flow, in the matrix
and fractures, are described by Darcy’s law ands&aiille’s law, respectively. The
recent theoretical development presented a gengo#éntial solution to model the
steady-state flow in fractured porous media undéardield condition. This solution is a
hypersingular integral equation with pressure figldthe fracture surfaces as the main
unknown. The numerical procedure can resolve theblem for any form of fractures
and also takes into account the interactions aedintkersection between fractures. Once
the pressure field, and then the flux field in tia@es have been determined, the pressure
field in the porous matrix is computed completélfe basic problem of a single fracture
is investigated and a semi-analytical solution ieggented. Using the solution obtained
for a single fracture, Mori-Tanaka and self-consigt schemes are employed for
upscalling the effective permeability of 3D fracddrporous media.

KEYWORDS: Fractured porous media; steady-state fluid flowfeefive permeability;
Upscaling; Integral Equation; Poiseuille’s flow.

1. INTRODUCTION

In the last two decades, there has been an intensivestigation in the fluid flow
analysis in cracked porous media or fractured rawlsses, due to the modelling
requirements for important industrial applicatiossach as: underground radioactive
waste repositories, natural oil/gas recovery, ggmal CQ, storage, geothermal energy,
etc. However, determining effective permeability foactured rock formations is one of
the most challenging problems that are faced byngsshanical researchers and
geotechnical engineer&ffective continuums a simple and efficient approach to study
the macroscopic properties of fractured and hetemegus media by taking over a
representative elementary voluni@iscrete Fracture NetworKkDFN) model has been a
powerful approach to simulate the flow in the naluractured reservoirs for a long time
[1-4]. DFN is introduced in several commercial sodtes as UDEC (ltasca) [5], Fraca
[6], etc. Nevertheless, the matrix is supposed taveh negligible porosity and
permeability in DFN models. A common approach toemome this limit isdual
porosity/dual permeabilitymodel that was first proposed by Barenblatt et 3]. In this
framework, fracture and porous matrix are consideais two interactive continua. This
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approach has been widely used for modelling fldmnf in fractured materials. A brief
review of several flow models can be consulted &fiadi and Babadagli [4]. Different
numerical techniques, such as finite element met{felM) [8-11] and finite volume
method (FVM) [L2-16] have been used to resolve fluid flow equationsfiactured
porous media.

Modelling of the steady-state flow in a fracturedrpus media under a far-field
condition constitutes a key problem for effectivermeability determination. In this
work, we investigate numerically the flow aroundverml fractures embedded in an
infinite body described by a uniform gradient pness at infinity. The fracture is
modelled by a zero thickness surface with no presgsump between two faces; i.e.,
having an infinite transverse conductivity. In orde upscale effective permeability, it is
interesting to consider the solution of flow arousml isolated fracture. This problem can
be derived by using the Darcy’s ellipsoidal inclusi model [17-19]. Nonetheless,
Poiseuille’s law is a more common model to descthe flow in a single fracture in the
physical rock area. A comparison between these nvealels can be seen in Pouya and
Vu [20].

Potential solution based on singular integral emumais proposed recently to study the
steady-state flow in an infinite fractured porousdium with homogeneous permeability
matrix. The 2D problem is studied by Liolios and daktylos [21]; Pouya and
Ghabezloo [22]; Pouya and Vu [23]. In these studidse effective permeability is
computed analytically by Pouya and Ghabezloo [22d aumerically by Pouya and Vu
[23]. The potential solution was extended to 3D lgeon by Pouya [24], which reveals
the pressure field in porous matrix as a functidrthe infiltration through the curved
fracture surfaces. Therefore, this advance of mattecal formulation allows us to
decrease dimension of the discretised domain: 3@sgure field in the whole body) to
2D (infiltration through the fracture surfaces).a and Vu [20] used this potential
solution to establish a semi-analytical solutior o superconductive elliptical disc-
shaped fracture governed by Poiseuille’s law flddareover, a closed-form solution for
a superconductive circular disc fracture is derivieadthis work [20]. The obtained
solution is then used to estimate the effectivenpeability. However, any analytical
solution for the general case of the fracture watHinite conductivity does not exit.
Hence, numerical resolution is naturally imposed.

This paper focuses on singular integral equatiothme to resolve the potential equation
in 3D fractured porous media. Some examples withesd intersecting fractures are
presented. Numerical solution for a single fractotgained in this way permits us to
establish a semi-analytical description of infitican through the fracture as a function of
fracture conductivity, matrix permeability and ftace geometry. Then, Mori-Tanaka and
self-consistent schemes are employed to estimat dhliective permeability of a

fractured porous media by using this semi-analytisalution. The superconductive
fracture is always used in this work as a referepiblem to make reader confident on
the results.

Notations

In the following, light-face (Greek or Latin) lette denote scalars; underlined letters denote
vectors, bold-face letters designate second rangote or double-index matrices. The scalar
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product of two vectora andb is labelled ag.b. For second rank tensors, the tensor transposed
from A is denotedA’, the matrix product is labelled @B and the determinant d4|. The
operation ofA ona is labelled a®\.a. The convention of summation on repeated indisa®t
used for Latin indicesi (], k...) that number surfaces, lines, etc., and are nioigitferently as
subscript or superscripf] represents the gradient aAdhe Laplace operator for a scalar field
and (J.) the divergence for a vector field.

2. GOVERNING EQUATIONS

Considering a reference volunie of an infinite three-dimensional porous media mayvi
isotropic permeability matrixk=ké and containing a family of fractures numberedjby
and notedl” (Fig. 1). Each fracture surfacFE is defined by a smooth functiaz of the
curvilinear parameterss{} (a=1,2). Two or more fractures can intersect along an
intersection lineand three or more fractures can cross atirgersection point The
intersection linesand the border of fracture surfacéB constitute a set osingular
points denoted byS [24]. The set of points on the fracture surfacedenoted byr.
Therefore SO T" and rock matrix corresponds fb-I". A far-field linear pressure defined
asp«(x)=A.x is applied to the domaif2, with A a constant pressure gradient.

The fluid flow in the matrix is governed by Darcyaw:
OxO0Q-I' V(X =-k(X.0pY (1)

where,v(x) andp(x) are local fluid velocity and pressure, respedive

Fig. 1 Porous medium containing intersecting fraetu
In absence of point sources, continuity equatiofiwfl in the matrix reads:
OxOdQ-T Ov(x)=0 (2)

As mentioned by Guéguen and Palciauskas [25], Rdls& law is the most common
model for flow in a single fracture. This law esligshes a linear relation between the
flux vector and the in-plane pressure gradienthi@ fracture as follows:

OsOr q(s) =-c(9.Ls 3 (3)

where, c is the hydraulic conductivity and consists of ager of 2x2 dimension in the
plane of fracture and is assumed to be isotropi.,( = cd). By neglecting roughness
effect, the hydraulic conductivity of a fractuceis deduced by the classical cubic law.
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Hence ¢ depends on the fracture apertueeand the fluid dynamic viscosity, as
c=e%/(124). However, real rock fractures have rough wallsjatsle aperture and asperity
areas. To simplify the problem, a single averagki@acalled hydraulic aperture, is
usually employed to characterize the mechanicattapee of an individual fracture. The
empirical relations between these two variables learfound in a great amount of works
in the literature. A review of these models is dahle in Zhou et al. [26].

The in-plane pressure gradient is defined by tbeithg formulation:
op . . 0p
0.p(9 =——t +—
P(9) a5, 4 a%_tz (4)

and, {1,t,) defined byt,=0dz/ds, are two perpendicular unit vectors tangeni't(Fig. 2)

Fig. 2 Curvilinear parameters [24]

The fracture-matrix mass exchange aegular pointon the fracturd-S (excluding the
intersection points is widely described in the literature [7,27,281G]. This law
generally has been obtained by considering masanbalin a small volum® around a
point z. Using the scheme presentedFig. 3a the mass conservation reads [24]:

2] n(9+0,.4$=0 (5)
where,n is the normal unit vector to the fracture surfapeinting fromI" toI'*. v and
v" are the fluid velocity in the matrix at the ponbf lower and upper fracture surface,
respectively.[v(2)] =V (2 - V(¥ designates the discontinuity or jump of fluid veity

across the fracturdls.q(s) represents theurface divergencelf the curvature effect of
surface is neglected [24], the surface divergereals:

(6)

Mass balance at intersection lines between sevieagfures surfaces is an important
issue in studying the fluid flow in the fracturedrpus media. Pouya [24] presented a
rigorous way to obtain the closed-form formulatiohmass balance atsingular point
This relation is similar to one that can be found & fracture network in an impermeable
medium.



Zj:ﬂj-r_"i =0 (7)

where,q; is the infiltration vector old’; andm; tangent normal vector of the intersection
line onI’j pointing outward from the domain as seen in Fig. 3

(b)

Fig. 3 Masse exchange between matrix and fract24é: [(a) at a regular point and (b) on an
intersection line

The pressure fielgh(x) in a fractured porous domain, under a far-fietthstant pressure
gradient, must satisfy the constitutive equatioh (3) and mass balances equations (2),
(5), (7) and boundary conditions. For fractureshwinfinite transversal transmissivity
(no pressure jump between their two sides), PoW4 [proposed a general pressure
potential solution as a function of the infiltraniehrough the fractures such as:

1« 9O (23
p() = R.(R+ == ds
4”"21':!1 Ix-2'(9]

For the effective permeability estimation purpos#se numerical calculation is only
applied for plane surface factures in the presemtkwNevertheless, equatigs) is valid
for the curved intersecting fracture surfaces vathitrary forms.

(8)

Introducing equation (3) into (8), a hypersinguilatregral equations is obtained, in which
the pressure field on fractures is the main unknoWwme proposed flow model makes an
important advantage by reducing a three-dimensigmablem to two-dimensional one.
Hence, 2D mesh is only generated on the fracturéases in the first stage to obtain the
pressure and the infiltration solutions on the fuaes, and then, these results are used
again to compute the pressure field in the wholendim in the second stage. Unlike
FEM and FVM, which pass by volume discretizatiordarquire 3D meshes in the whole
space.

3. NUMERICAL RESOLUTION

FEM is very efficient for solving finite-domain plotems, but it is less convenient to
5



deal with infinite domain problems. Integral equeiti method or boundary element
method is an efficient alternative that has beetersively used for solving infinite or
half-plane problems [29,30]. This section descritesnumerical procedure to solve
equation (8) based on collocation method. The ppiecresolution of integral equation
by collocation method can be found in Bonnet [3A]robust methodology is proposed in
this work to achieve fast numerical calculationfieTnumerical procedure is presented
for solving a general problem to model the flow @am infinite isotropic medium
containing several intersecting curved fracture fawgs under a uniform far-field
pressure gradient. Some results of pressure fialthe fractures are illustrated for many
intersecting fractures or a curved surface at the ef this section to demonstrate the
capacity of the developed numerical code.

3.1. Geometry discretization and variables integpiain

A mesh is generated on the surface of all fractuless constituted byN nodes andM
triangular linear elements numberedand denotedE,,. This mesh must be consistent at
the intersection lines between the fractures. Bplaeing the infiltration by equation (3),
an approximated form for equation (8) can be oladin

- __CcN
m&~mx4m;%@ 9)

where,l, is an elementary integral:

o= [ PO,
e A9

The choice of the interpolation function for themlents at the boundary of fractures is
based on the velocity profile in this area. Regagdone-dimensional singular integral
equation over a finite interval, many authors [38-8haracterized the solution profile at
the extremity points, which varies as’? in vicinity of these points. Pouya and
Ghabezloo [22] derived the problem of fluid flowoand an isolated superconductive
crack line located at the interval [-1,1] on tB&-axis and under a constant gradient of

pressure at infinity. A closed-form solution of flus found, which varies as/1-r?in
the fracture. Pouya and Vu [23] used the interpolabf dischargey(s) corresponding to
a variation according ts'? for the general case of Poiseuille’s fracture, hwit the
distance from extremity point. In two dimension@lplfe [35] and Boersma and Danicki
[36] considered the problem of the electrostatitepbial due to a charged elliptic disk.
The solution also varies as$'? closed to disk border, with the distance from the disk
border. Recently, Pouya and Vu [20] analyticallyided the problem presented in this
work for a single superconductive circular disccttae. They showed the infiltration

solution varies as/1-r? perpendicular to the fracture border.

(10)

As a result, three types of element are distingedshType 0, 1 and 2 correspond to the
element that has no node, one and two nodes obdldaer of fractures respectivelfig.

4). Element of type 0 is considered as isoparametre a linear interpolation of
pressure is used that leads to a constant §uon that elements. On the other hand,
inspiring from closed-form solution of two-dimensi@ and three-dimensional problems,
the interpolation function of flux vector is chosémr element of types 1 and 2, which
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varies ag'’? in the perpendicular direction of the facture bdary and be constant in the
other direction in each element of those typesegsated in Fig. 5.

Fracture Boundary

Fig. 5 Interpolation function of flux flow in thelement of type 1 (left) and of type 2 (right)

Interpolation functions of pressure on the elemearftsype 1 and 2 can be deduced from
equation (3) and its formulations in global coomti@s systems is presented in Appendix
A.

To simplify the notationy, (x) is used to show the interpolation functions ofettypes
of elements throughout this text.

3.2. Construction and resolution of linear systeirEquations

The collocation method consists in forcing the gredifferential equation (9) to be
verified exactly at collocation point&. M collocation points are chosen as the set of
barycenters oM triangular elements and are numbered as the elemd&herefore, the

discretization of equations, for collocation poigi; on the element, is performed by
transferring the variables interpolations:

. _ _LM i
p(x) = P, (%) 4]7ka:1 (%) (11)



such as:

pUTNCAN RV TS %) I(%(@;F_L“)-(_é—_z(s)
45|

4T[k m=1 k 1
This equation is first written foM collocation points, and then, assembly operation
based on two nested loops over all collocation tmand all elements lead to:

HP=G (13)

where, G(Mx1) is the column of pressure prescribed at infinptyx) at M collocation
points, P(Nx1) the column of nodal pressures or unknowns, BifiIxN) the matrix of
coefficients obtained by elementary integrationcaétion explained in the next section.

ds (12)

Em

It should be noted that the system of Equations) (d@sists ofM equations andN
unknowns withM>N. Indeed, most of meshes built on the surface sttwof fractures
contain more elements than nodes. This situatioralisays seen for fine meshes.
However, the approximated solution could be comguig a least squares fitting method
minimizing |H.P - GJ%.

3.3. Elementary integral calculation
Equation (12) contains an elementary integral:

ksz(llJ 2 wl((;”é Z(s")d andlm=kZ:Imk (14)

This integral is singular if>_<icDEm.i.e. i=m and regular if)_(icDEmor iZm. The singular
elementary integrals are evaluated in Cauchy PpalciValue meaning [37]. In the
boundary element method field, computation of regutlementary integral is usually
based, as well as in finite element method, onude of Gaussian quadrature formulas.
However, ordinary numerical method would not yielliable and consistent solutions
for evaluating singular elementary integrals sitlwe singularities arise from the kernels
of integrals. Several powerful schemes are appitedompute accurately these integrals
such as: integration by parts [38], Limit proce89]f and transformation method [31,
40, 41]. The numerical difficulty appears when twlocation point is too close to the
element, so the integral is not strictly singulart mearly singular. Boundary element
method researchers have proposed various numescaAkemes or semi-analytical
approaches to derive such nearly singular integral®rief review of some techniques
can be found in Liu et al. [42].

In this work, the elementary integral may be conegutoy different ways, namely:
analytical, numerical and semi-analytical depending the relative position of
collocation pointx. regarding the elemerE and the type of element.€. interpolation
function). .

Analytical scheme

Analytical procedure is developed to calculate #iegular elementary integral over
element of type 0 (Fig. 6a). The treatment techaigqpf singularity is based on the



introduction of a polar coordinate system centreg.an elementt:
Z=X*pPp (15)
where, @=(cost,sirf . Linear interpolation of pressure over elementdedhat the

gradient of interpolation functions is constantush we supposeﬂ(mk(g)):ék = cons.

ElementE is divided into four parts: a small circl@ of radiuse centred atx. and three
sub-trianglesT; (1=1,2,3).

Rewriting integral (14) in polar coordinate yields:

& . d 50 d
DN HS [J'(_p—pd6+2jc_p—pdeJ (16)
k=1 C p |:1'|] p
then,
3 € d 2m 3 6 P (8) d
|mk:2pf§k[j—pjc_pde+2jc_pde —pJ (17)
k=1 o P % 1=1 g, e P

where, the parameter of each sub-triangl€l=1,2,3) in equation (17) can be found in

Fig. 7. As expected, the first integral in this Bgjon is a singular integral which is
21

vanishing due tc;fc_[nlezo. The second integral is a regular one and cannbegrated
0

explicitly. Indeed,e appears in the result of integral over each sidmngle and vanishes
after summing three integrals.

Let us considelf as the plane that contains elemé&ntt is interesting to notice that this
analytical scheme is also valid for the case inchkhihe collocation poink; is on plane
Y and is not in the elemerE of type O (Fig. 6b). This procedure provides a fast
numerical calculation for evaluating the effectipermeability of fractured porous media
as demonstrated in sectifn

Semi-analytical scheme

Singular elementary integrals cannot be computqaieixly over the element of types 1
and 2 due to complicated nature of interpolatiomction in equations (49), (50). A
semi-analytical procedure is developed to evaluhise kinds of integrals, which is
based on the transformation to polar coordinatdesyscentred at collocation point
such as one presented in the aforementioned schemaew of singularity treatment,
the integration of variablep is performed analytically. In this manipulationhet
singularity ofp is disappeared. And then, the integration of Mag® is regular and can
be integrated by Gaussian quadrature in one-dino@asi

In addition, the nearly singular elementary intdgis also computed by this semi-
analytical procedure in which the polar coordinaystem is centred at the projectign
of collocation pointx. on elementE (Fig. 6¢). Supposindy as the distance between
and elemenkE, integral (14) for element of typ®in polar coordinate reads:



(18)

Fig. 6 Relative position between collocation poxptand elemenE (Y is supposed b®xy): (a)
X in elementE; (b) is on planeéy and not in the elemeil; (c) x; is not onY andxc, in element
E; (d) xc is not onY and xcp not in elemert.

Fig. 7 Parameters of each sub-triangje

As analysed in the analytical scheme in equation),(bnly the second integral in this
formula contributes to final result in which thetegration ofp can be manipulated
explicitly and then a numerical integration is eoy®d for variablé. Unlike the general
numerical procedure of boundary element method, tearly singular integral is
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evaluated by some transformation technique for eatr@ting the Gauss’s points in the
vicinity of x,c that costs many computational time and memory©f P

The importance of correct evaluation of singulad arearly singular elementary integral
takes full advantage for the good conditioning ofhebhr system. Especially, the
application of this numerical method in fracturedrpus rock formation in which the
ratio between fracture conductivity and permeapitift rock is normally considerable.

Numerical scheme

Let us consideKc, as the projection of. on Y. Gaussian quadrature rule is an efficient
method for computing the elementary integral in tlasex.; is not on the plan® andx

is not in E (Fig. 6d). Referring to the theory of numericaltagration [43], the
approximate value of integral (14) reads:

N9 _ D(ka(l(ej))-(lé__)((;j) (19)

3

where, Ng is the number of Gaussian poirds; the Gaussian point and; weight of
numberj. This scheme can be also used to evaluate reglgarentary integrals over the
elements of type 1 and 2 where the collocation prins on the plan&”

4. VALIDATION OF NUMERICAL SOLUTION

The limit case of a superconductive fracture isduss a benchmark problem for the
numerical method in this work due to the fact thia¢ closed-form solutions are well
known for this reference case. In this view, twstteases with different geometries are
proposed.

4.1. Single superconductive disc fracture

The first case, an isolated superconductive fract(@—~) is modelled by a zero-
thickness disc of radiuR in an infinite porous matrix under the limit cotion p.(x)=x.
This disc is placed on the plaxéy as depicted in Fig. 8. Pouya and Vu [20] preseraed
rigorous procedure to derive the explicit solutimn a superconductive fractured. the
pressure is constant in the fracture surface). &halytical solution of flux in the
fracture disc is expressed in equation (20) anaatstour is shown in Fig. 9.

Let us now apply the numerical calculation for agle superconductive fracture (c>>1
for numerical modelling). The numerical solution pfessure obtained by singular
integral equation is constant in superconductiacture. Regarding the flux solution, a
perfect agreement between analytical solution autherical solution is also observed
(Fig. 10. A relative error is then calculated to comparenerical and analytical results
(21), where,gn, ga are infiltration solutions obtained by numericaldaanalytical ways,
respectively. The maximum value for the erroEjsaxdx) = 0,06%.

a(E) = —8k2 {(er_ R+ R- r23j5+(3 i R- P+ 2R- 2/ R- rzgj@Dg)}T_/ (20)

3

~ 1
where,r=_/8&, ¢E==¢, T=08-e,06¢,.
2R E-IAELICTEE
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Fig. 8 An isolated superconductive disc in an iitBrnporous medium
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Fig. 9 Closed-form infiltration solution throughsangle superconductive circular fracture in an
infinite matrix under a far-field gradient pressgl,0,0) [20]
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B—E—u-q 0

3+ B-8-4-6,r.0)
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e -0, (1, 172)
4 ¥-9-¥ -q,r1m2)
1 00, (4

G -9--0 q,/(rm4)

0 0.2 0.4 0.6 0.8 1

Fig. 10 Analytical vs. numerical solutions of irtfihtion q(r) for different value 08. 0<r <R
and Qax Jay, Onx, Ony @re analytical and numerical infiltration field ¢ime fracture ik andy
directions
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4.2. Single superconductive band fracture

In the second case, a single superconductive fracf—) is modelled by a zero-
thickness band of finite width and of infinite lengthA (numericallyA>>L) in a 3D
infinite porous medium of isotropic permeabilik=ké (Fig. 11 left). Pressure field
P~(X)=y is imposed at infinity. Theoretically, the fluidofv in every plane being
perpendicular tx-axisis similar. As a consequence, this 3D configunati® equivalent
to the fluid flow in an infinite plane (plan¥2) containing an isolated fracture line of
length L under the limit conditiomp.(X)=y (as seen in Fig. 11 right). For thD
configuration, a closed-form solution of flux inafture line is given by Pouya and
Ghabezloo [22]. From a numerical point of view, anl fracture withA/L=5 is
modelled. The numerical solution of pressure figldracture allows computing the flux
in y-direction that passes at the middle of fractureoagreement between the current
approach and the benchmark solutions is observédgnl2.

|

|
| Z = |
! | Fracture I" . : | I \

|

| | / | : | Fracture line Z |
: 7 | | \
' ‘ | \ V = [ 1 | _ =
o / . | |
|
Py 2 I EEI B
I // E.(xF=v / 3D Porous matrix : // | 2D Porous matrix |
S 4 .- |

Fig. 11 Studied 3D band fracture and equivalentc2bfiguration

259 _____ 2D closed-form solution

3D Numerical solution

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

Fig. 12 Comparison of numerical solution in 3D cignfration and closed-form solution in 2D
configuration

These two examples of validation show that the thgyed numerical procedure provides
results with high fidelity and accuracy.
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MEDIA
a curved freetsurface is modelled as a piece of a

In the second example, a cur@edtture surface with a constant

5. APPLICATION TO FLOW THROUGH THREE-DIMENSIONAL FRACURED POROUS
In order to demonstrate the capacity of the devetbpumerical procedure to simulate

the flow through fracture networks, two applicati@xamples are presented in this
section. The first one consists in modelling fluildw through several intersecting

circular fractures.
obtained pressure field in the fracture network. dtserved, the pressure seems to be

continuous on the intersection lines between freetu The masse balance (7) at these
lines can be verified and is well satisfied as &saalso checked in our previous work on

2D problem [23]. In the second one
illustrated in Fig. 15b. However, we do not intetadanalyse these results since it is not

mesh is generated on the circular fractures asrebdein Fig. 13. Fig. 14 presents the
the main objective of this paper and we hope retirrthis subject in an application
work.

conductivity embedded in an infinite matrix is cadeyed. In the first case, a consistent
spherical surface (Fig. 15a). The numerical solutief pressure on this fracture is
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Fig. 13Mesh of several intersecting fractures in an irtBnisotropic matrix under a far-field
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Fig. 14 Numerical solution of pressure field on severaknsecting fractures in an infinite
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Fig. 15Generated mesh (a) andmerical solution of pressure field (b) on a cuhfeacture
surface embedded in an infinite isotropic matritdar a uniform pressure gradieht= (1,0,0)
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6. APPLICATION TO EFFECTIVE PERMEABILITY ESTIMATION

Contrary to the case of superconductive disc fragtthe case of disc fracture having a
finite conductivity has not an analytical solutiohumerical computation based on
singular integral method can deal with this problérhe numerical procedure described
in section 3 is applied for a single circular fra with different conductivity values.
Obtained numerical solutions allow us to determiaesemi-analytical solution of
infiltration through this fracture and effective rpgeability of fractured porous media as
a function of fracture conductivity, matrix perméldly and geometry variables.

6.1. Semi-analytical solution of flux on fracture
An infinite body with isotropic permeabilitk=kdé containing a single fracture disc of
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radiusR and of constant conductivity is considered (Fig. 8). The body is submitted at
infinity to a constant gradieA. Equation (8) is written for this problem such as:

c | Op(2.(x- 2 d

pP(X) = Ax- (22)
an; x4
Let us introduce following dimensionless variables:
X :é, A :L (23)
R ATKR
And the notation,
X
R (X) :ﬁ, Op() =| ADR(X) (24)

By supposingl'™* as a circle of unit radius centred at the origihcoordinates system,
equation (22) reads:
A X Z
R (X ﬂ I 2
A r ||>< Z||

Numerical procedure described in section 3 is emgpdoto resolve equation (25) for
calculating the pressure fiek,(X) corresponding to different values of The numerical
result forA = 2 is shown inFig. 16 Evaluation of integral flux field over the fractu
surface gives:

QX = —cj O R dxe - cﬁ|_ys{ OR Xd (26)

(25)

By defining,
_ QXA _

Aj OR( X dX 27)

Re| A

Pressure

011847
0.052061
0.065653
- 0.039246
- 0.012838
-0.01357
-0.039977
-0.066355
-0.092733

y
01182 (a) k x

Fig. 16 Pressure field in the fractura € 2)

(b)

The value obtained numerically fé(X) allows describing with a great precision the
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relation between two variable® (X) and) by the following formulae as plotted ifig.
17.

Q 4 3
Despite the fact that the above expression is akthinumerically by curve fitting, it
reveals to be extremely accurate. Equation (28yides a relationship between integral
of flux field over the circular disc fractur®(X) and the problem parameters, namely:

fracture conductivityc, matrix permeabilityk, and fracture geometry:

16kcR
3 +—kR
3
This equation can be verified by its asymptotic ddbur when A—o such:
Iimg(_x)=—$£\, which is according to close-formed solution farpsrconductive

circular disc fracture given by Pouya and }20]. Furthermore, this result is consistent
with one obtained by Shafiro and Kachanov [17] tbe superconductive flattened
ellipsoidal inclusion with Darcy’s flow. This propy reveals a high precision of the
semi-analytical solution (29). Therefore, this risoan be used confidently in the
following to calculate the effective permeability @ fractured porous media.

In order to determine the equivalent permeabiligngor of fractured porous media,
equation (29) could be expressed for the geners¢ @d an arbitrary circular fracture in
space such as:

Q) =- 16kcR T A

3c+8R (30)
3

where, T is the projection operator on the plane of fraetwiven by the following
expression in whicl represents the unit normal of the fracture plane:

T=6-n0n (31)
250
1
c/Q*=2.355A+0.3333 7
200 R2=1.00 o
150 I
C/Q* B E/ s
100 et
50 — = 7
- /IZ 4
08 ‘ \ ‘ \ ‘ \

0 4C A 8C 12¢

Fig. 17 Numerical solution for cQ (X) depending oA, fitted by a linear function
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6.2. Upscaling of effective permeability

Let us consider a set of fracturES embedded in a reference homogeneous volGnud

an infinite 3D porous medium having isotropic peahiity k = ké. By considering the
fracture as the limit case of a thin permeable taybe average velocity i®2 reads
[13,22,16,20]:

v

mrm

éuyd9+2j_qd'} (32)

A linear pressur@(x) = A.x is applied at the boundagf2. Using the divergence theorem
for the pressure function in a domain containing diéscontinuities with the fact that

[[p]]:o on the fractures, allows the determination of thverage pressure gradient as
follows:

1
G=—|UOpdQ=A
G Qi pdQ = / (33)
Introducing (1) into the first term df in (32) yields:

1
—|vdQ=-k.A
Q f £ (34)

In addition, the effective permeabiliﬂgl is yielded by = - l?.g, hence,

ﬁ =k+kf (39)
where k' is the contribution of fractures to the effectivermeability defined as:

1 Lt

Eérj;gdr__k A (36)

According to the above-mentioned analyses, the samalytical solution expressed in
equation (30) could be used to calculate the eifegbermeability in equation (35) when
the domainQ tends to infinity. For a weak fracture densitylute Mori-Tanaka scheme
for estimation ofk can be used. In this scheme, the interaction betwleactures is
neglected and each fracture is subject to the siamé&eld pressure, unperturbed by the
presence of other fractures. In this approximatibwe, effective permeability tensde is
expressefd as the sum of the matrix permeability aohditional permeability due to each
fracturek:

k=k&+> k! (37)

Assuming that each family of fracturds" is characterized by a mean radiRS, an
orientationn™ (unit normal of fracture), a conductivity”™ and a density (number of

fracture center per unit volume', the expression ok will be obtained as follows:

m s
er :pm]'GkC—R(ﬁ—Dm DDm)A
o+ 16 (39)
3
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Equations (37)-(38) cover arbitrary orientationsfadfctures and constitute an approach
to calculate fluid flow in porous media with stoshia distribution of fracture.

For the case of random orientation of fracturese(all isotropy), the average value of
nln is %6 and the effective permeability tensor is isotropitd readsk =k&. If all

fractures with density have identical shapes (i.e. identical radiRs and identical
conductivityc, Mori-Tanaka’s estimate results in an isotropiteefive permeability:

KT = e p SCER (39)

p9c+16kR
Self-consistent scheme consists in replacing thérimgermeabilityk in the fracture
contribution k" (second term in the right hand side of equatiof))3®y the unknown
effective permeabilityk = k*°. This leads the following second degree equatmrki,

k= = ko p SEKTCR (40)

P 9c+16k*R

Indeed, the dilute Mori-Tanaka’s estimate (39) esponds to the first order
development of Equation (40) with respectpto

In order to unify the results for other fractureapks, it is useful to use dimensionless
variables. We recall the definition of the excludedlume Ve, to define the
dimensionless density. The excluded volume foraztiure is defined as the volume into
which the center of another fractures may not eiftéhere is no fracture intersection.
Therefore, the dimensionless dengityhat is defined as the number of fractures per

excluded volume reads [45]:

P =pVe, (41)
where, Ve,=n?R® for disc fracture of radiu® [46]. In order to study the variation of
effective permeability versup, another dimensionless variable is introducedodi®ws:

Cc
47kR
Fig. 18 displays the variation of self-consistent estimkifewith the fracture density for
different values of fracture conductivity. In thémit case A - «, the self-consistent

7=

(42)

model (40) reveals a critical valug, zﬁ i.e p= which is exactly the singular

32 32R°
value of density obtained by Pouya and Vu [20] tfloe case of superconductive circular
fracture (i.e.,c- ). This result can have another interpretation: Tihet case ofA -«
corresponds to an impermeable matrk- Q). For this case, the effective permeability
can be different from zero beyond the critical walp,. According to Dormieux and
Kondo [18], this critical density could be considdras the percolation threshold for the
fracture network.

As it can be observed iRig. 18 the variation ofA versusp, for the casek = 0 and
p=p,, can be approximated by a line with the followiaguation:
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2P %=2.55(6—ﬁJ (43)
Furthermore,

CELREL 2.55\(ﬁ—%j (a)

32

For a finite value of\, the slope of curved/\ increases withp up to an asymptotic
value. It also exits a critical value for each oeinbeyond which the effective
permeability increases up to one order of magnitudéis critical point can be
determined as the intersection of the initial amdf tangents of the curve.

10

Fig. 18 Self-consistent scheme estimation of dimensioniessable 1/\ plotted as a function
of the dimensionless density for different valués.o

10° =
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Fig. 19Variation ofk*7k versus dimensionless density for different valoéa
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Furthermore, the variation d“k as function of dimensionless densifyis plotted in
Fig. 19 for different value of. The critical valuep_is also observed in this figure for
great values ofA corresponding to a jump ik°°. The calculatedp,is very close to the
value obtained by Huseby et al. [47].

As mentioned earlier, the effective permeability affractured porous medium can be
evaluated by considering only a single fracturenéts the computation can be carried
out by employing only analytical and semi-analytiebementary integrals in numerical

procedure since all collocation points are locavedthe fracture plane. This leads to a
fast and efficient numerical programme for compgtiaquivalent permeability of a

fractured material.

7. CONCLUSION

Numerical computation based on singular integraliagmpns method is described to
resolve the general potential solution presented®Pbyya [24] for the fluid flow in an
infinite fractured porous media under a far-fielcegsure gradient. In this framework, a
consistent mesh is only required on the surfacdrattures of the studied network.
Numerical solution is successfully validated by qanng numerical results with
analytical solutions of two benchmark problems, e§m a single superconductive
circular disc-shaped fracture in 3D and a singlpesaonductive fracture line in 2D. A
semi-analytical solution for infiltration throughe fracture versus fracture conductivity,
matrix permeability and fracture geometry parameteased on numerical solutions is
obtained for a single fracture and different valoédracture conductivity. This is a key
result to upscale the effective permeability of iafinite porous medium containing a
distribution of fractures with finite conductivity.

The numerical procedure presented in this studyalgd for intersecting curved fractures
surface in various scales. Thus, it can be applediodel the flow in a set of curved
faults under a far-field pressure condition. In tparlar, the developed model can be
used for a more accurate simulation of hydromecotenibehaviour of the “fault zones”
where a dense fracture networks surround the cemaat of the fault [48]. This
possibility opens a way to motivate further works the industrial application fields as
petroleum, geothermic, geological @6&torage, etc.

It is worth reminding that only fractures with n@nessure jump between their two faces
are considered in the present work. However, atfm&c can act as an impermeable
membrane with a pressure discontinuity across ut§ase. A closed-form solution for

the potential discontinuity across an imperviouscdembedded in an infinite matrix is
proposed by Martin [49]. The study on 2D problem,drder to upscale the effective
permeability of a porous media containing impensgatrack lines, is an ongoing work
and will be addressed in a future paper.
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APPENDIX A

The shape functions of an arbitrary element areaioletd from ones on the reference
element. The equilateral triangle is selected as rdference element in the parameter
space {1,&}(Fig. 20) with the shape functions as:

J3(1+n)-¢& .
23

J3(1-n)-¢& .
NEI

3

AGRIE 73

W,(n.€) =

W;(n,¢) = (45)

N

n

X

Fig. 20 Transformation of an element from globabatinate system to reference element

These functions could be rewritten in the vectanfo

where, &=(n,§);

B (8) =A +0, &
a, =(,B); A =A,=05; A,=0; q

k=1,2,3 (46)

-05; a,=05; a,=0;
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1 1
[3 :B = [3 =
1 2 2\/:_3 3 \/5
The transformation from a triangular element in tg®bal coordinate system to a
reference element is described as:

n X=%
=J. or £=J.(x-X, (47)
(EJ (y_ yoJ a ( )

with, J the matrix of transformation andg(yo) the origin of transformation. The shape
functions thus are obtained in the global coordénststem:

ka(l():)‘k+gk-‘]-(l(_l%) k=1,2,3 (48)

Interpolation functions of pressure on the elemarftsype 1 and 2 can be deduced from
equation (3). Their formulations in reference canede systems are given in equations
(49) and (50), respectively. As a consequence, ekiension of these formulations in
global coordinates systems is carried out by ushegfollowing equation.

"I’Jlk(ll’E) )\t (BlkJ E,\/E] k_112:3) (49)
W, (n =N+ 2 k=1,2,3 50
2 1 i K . 3 11 ]
k( E) [BiJ (\/_3—5) ) (50

with, AL =A; AZ=A2=0; Ai=1; a, =-a=qa,;

1 g e b

B =B =B =Bl B e
2/3/3 YEE
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