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Abstract We study the behavior of the critical price of an American put
option near maturity in the exponential Lévy model. In particular, we prove
that, in situations where the limit of the critical price is equal to the strike
price, the rate of convergence to the limit is linear if and only if the underlying
Lévy process has finite variation. In the case of infinite variation, a variety of
rates of convergence can be observed: we prove that, when the negative part of
the Lévy measure exhibits an α-stable density near the origin, with 1 < α < 2,
the convergence rate is ruled by θ1/α| ln θ|1− 1

α , where θ is time until maturity.
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1 Introduction

The behavior of the exercise boundary of the American put near maturity is
well understood in the Black-Scholes model. In particular, Barles-Burdeau-
Romano-Samsoen [1] (see also [8]) showed that, in the absence of dividends,
the distance between the strike price K and the critical price at time t, which
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we denote by bBS(t) satisfies

lim
t→T

K − bBS(t)
σK
√

(T − t)| ln(T − t)|
= 1, (1.1)

where T is the maturity, and σ is the volatility (see also [4] for higher order
expansions).

The aim of this paper is to study the exercise boundary of the American put
near maturity in exponential Lévy models. Note that Pham [16] proved that
the estimate (1.1) holds in a jump diffusion model satisfying some conditions.
We will first extend Pham’s result to slightly more general situations and, then,
we will concentrate on Lévy processes with no Brownian part. In a recent paper
(see [10]), we characterized the limit of the critical price at maturity for general
exponential Lévy models (see also Levendorskii [13] for earlier related results).
In particular, we proved that, if the interest rate r and the dividend rate δ
satisfy

r − δ ≥
∫

(ey − 1)+ ν(dy), (1.2)

where ν is the Lévy measure of the underlying Lévy process, the limit of the
critical price at maturity is equal to the strike price K. In the present paper,
we limit our study to situations where the limit is equal to K. We refer to [12]
for results when the limit is not K within the Black-Scholes framework.

The early exercise premium formula is crucial in our approach. This result
was established by Carr-Jarrow-Myneni [3], Jacka [6] and Kim [7] in the Black-
Scholes model, and by Pham [16] in the jump diffusion model. In this work,
we extend it to an exponential Lévy model when the related Lévy process is
of type B or C (see the definition p.4).

The paper is organized as follows. In Section 2, we recall some facts about
the exponential Lévy model and the basic properties of the American put price
in this model. In Section 3, we establish the early exercise premium representa-
tion, and we slightly extend Pham’s result by showing that (1.1) remains true
when the logarithm of the stock includes a diffusion component and a pure
jump process with finite variation. In the fourth section, we prove that the
convergence rate of the critical price is linear with respect to t when the log-
arithm of the stock price is a finite variation Lévy process (see Theorem 4.2).
Section 5 deals with the case when the logarithm of the stock price is an infinite
variation Lévy process. We show in this case that the convergence speed of the
critical price is not linear (see Theorem 5.1). Finally, in Section 6, we study
processes with a Lévy density which behaves asymptotically like an α-stable
density in a negative neighborhood of the origin, with 1 < α < 2. In this case,
the rate of convergence involves time to maturity to a power 1/α, together
with a logarithmic term, with exponent 1− 1

α (see Theorem 6.1). So, there is
a logarithmic factor (as in the Black-Scholes case), in contrast with the finite
variation setting where the behavior is purely linear.

Remark 1.1 Some of our results can probably be extended to models involv-
ing more general Markov processes, but this extension might be technically
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heavy. We refer to [14] for results on the behavior of option prices near matu-
rity in a rather general context.

2 The model

2.1 Lévy processes

A real Lévy process X = (Xt)t≥0 is a càdlàg1 real valued stochastic process,
starting from 0, with stationary and independent increments. The Lévy-Itô
decomposition (see [17]) gives the following representation of X

Xt = γt+ σBt + Yt, t ≥ 0, (2.1)

where γ and σ are real constants, (Bt)t≥0 is a standard Brownian motion, and
the process Y can be written in terms of the jump measure JX of X

Yt =
∫ t

0

∫
{|x|>1}

xJX(ds, dx) +
∫ t

0

∫
{0<|x|≤1}

xJ̃X(ds, dx), t ≥ 0. (2.2)

Recall that JX is a Poisson measure on R+ × (R \ {0}), with intensity ν, and
J̃X(dt, dx) = J(dt, dx) − dtν(dx) is the compensated Poisson measure. The
measure ν is a positive Radon measure on R\{0}, called the Lévy measure of
X, and it satisfies ∫

R
(1 ∧ x2)ν(dx) <∞. (2.3)

The Lévy-Itô decomposition entails that the distribution of X is uniquely
determined by (σ2, γ, ν), which is called the characteristic triplet of the process
X. The characteristic function of Xt, for t ≥ 0, is given by the Lévy-Khinchin
representation (see [17])

E[eiz.Xt ] = exp[tϕ(z)], z ∈ R, (2.4)

with

ϕ(z) = −1
2σ

2z2 + iγz +
∫ (

eizx − 1− izx1{|x|≤1}
)
ν(dx).

The Lévy process X is a Markov process and its infinitesimal generator is
given by

Lf(x) = σ2

2
∂2f

∂x2 (x) + γ
∂f

∂x
(x)

+
∫ (

f(x+ y)− f(x)− y ∂f
∂x

(x)1{|y|≤1}

)
ν(dy), (2.5)

for every f ∈ C2
b (R), where C2

b (R) denotes the set of all bounded C2 functions
with bounded derivatives.

We recall the following classification of Lévy processes (see [17]).

1 The sample paths of X are right continuous with left limits.
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Definition 2.1 Let X a real Lévy process with characteristic triplet (σ2, γ, ν).
We say that X is of

– type A, if σ = 0 and ν(R) <∞;
– type B, if σ = 0, ν(R) = ∞ and

∫
{|x|≤1} |x|ν(R) < ∞ (infinite activity

and finite variation);
– type C, If σ > 0 or

∫
|x|≤1 |x|ν(R) =∞ (infinite variation).

We complete this section by recalling the so-called compensation formula
(see [2], preliminary chapter). We denote by ∆Xt = Xt−Xt− the jump of the
process X at time t.

Proposition 2.2 Let X be a real Lévy prosess and Φ : (t, ω, x) 7→ Φxt (ω) a
measurable nonnegative function on R+ ×Ω × R, equipped with the σ-algebra
P ⊗ B(R), where P is the predictable σ-algebra on R+ × Ω, and B(R) is the
Borel σ-algebra on R. We have,

E

 ∑
0≤s<∞

1{∆Xs 6=0}Φ
∆Xs
s

 = E
[∫ ∞

0
ds

∫
ν(dy)Φys

]
. (2.6)

Remark 2.3 The equality (2.6) remains true if the non-negativity assumption
on Φxt is replaced by the condition

E
[∫ ∞

0
ds

∫
ν(dy)|Φys |

]
<∞.

2.2 The exponential Lévy model

In the exponential Lévy model, the price process (St)t∈[0,T ] of the risky asset
is given by

St = S0e
(r−δ)t+Xt , (2.7)

where the interest rate r, the dividend rate δ are nonnegative constants and
(Xt)t∈[0,T ] is a real Lévy process with characteristic triplet (σ2, γ, ν). We in-
clude r and δ in (2.7) for ease of notation.

Under the pricing measure P, the discounted, dividend adjusted stock price
(e−(r−δ)tSt)t∈[0,T ] is a martingale, which is equivalent (see, for instance, [5]),
to the two conditions∫
|x|≥1

exν(dx) <∞ and
σ2

2 + γ +
∫ (

ex − 1− x1|x|≤1
)
ν(dx) = 0. (2.8)

We suppose that these conditions are satisfied in the sequel. We deduce from
(2.8) that the infinitesimal generator defined in (2.5) can be written as

Lf(x) = σ2

2

(
∂2f

∂x2 −
∂f

∂x

)
(x) +

∫ (
f(x+ y)− f(x)− (ey − 1)∂f

∂x
(x)
)
ν(dy).

(2.9)
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The stock price (St)t∈[0,T ] is also a Markov process and St = S0e
X̃t , where

X̃ is a Lévy process with characteristic triplet (σ2, r− δ+ γ, ν). We denote by
L̃ the infinitesimal generator of X̃. So, from (2.9), we have

L̃f(x) = σ2

2
∂2f

∂x2 (x) +
(
r − δ − σ2

2

)
∂f

∂x
(x) + B̃f(x), (2.10)

where

B̃f(x) =
∫
ν(dy)

(
f(x+ y)− f(x)− (ey − 1)∂f

∂x
(x)
)
.

2.3 The American put price

In this model, the value at time t of an American put with maturity T and
strike price K is given by

Pt = ess sup
τ∈Tt,T

E(e−rτψ(Sτ ) | Ft),

where ψ(x) = (K − x)+ and Tt,T denotes the set of stopping times satisfying
t ≤ τ ≤ T . The filtration (Ft)t≥0 is the usual augmentation of the natural
filtration of X. It can be proved (see, for instance, [15]) that

Pt = P (t, St),

where,
P (t, x) = sup

τ∈T0,T−t

E(e−rτψ(Sxτ )), (2.11)

with Sxt = xe(r−δ)t+Xt . The following proposition follows easily from (2.11).

Proposition 2.4 For t ∈ [0, T ], the function x 7→ P (t, x) is non-increasing
and convex on [0,+∞).

For x ∈ [0,+∞), the function t 7→ P (t, x) is continuous and nondecreasing
on [0, T ].
Note that we also have P (t, x) ≥ Pe(t, x), where Pe denotes the European put
price, defined by

Pe(t, x) = E(e−r(T−t)ψ(SxT−t)), (t, x) ∈ [0, T ]× R+.

We proved in [10] that the American put price satisfies a variational in-
equality in the sense of distributions. It is more convenient to state this vari-
ational inequality after a logarithmic change of variable. Define

P̃ (t, x) = P (t, ex), (t, x) ∈ [0, T ]× R. (2.12)

We have
P̃ (t, x) = sup

τ∈T0,T−t

E(e−rτ ψ̃(x+ X̃τ )),

where ψ̃(x) = ψ(ex) = (K − ex)+.
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Theorem 2.5 (see [10]) The distribution (∂t+ L̃− r)P̃ is a nonpositive mea-
sure on (0, T )×R, and, on the open set C̃ we have (∂t+ L̃−r)P̃ = 0, where C̃
is called the continuation region, defined by C̃ = {(t, x) ∈ (0, T )×R | P̃ (t, x) >
ψ̃(x)}.

2.4 The free boundary

Throughout this paper, we will assume that at least one of the following con-
ditions is satisfied:

σ 6= 0, ν((−∞, 0)) > 0 or

∫
(0,+∞)

(x ∧ 1)ν(dx) = +∞. (2.13)

We then have P (Xt < A) > 0, for all t > 0 and A ∈ R, so that Pe(t, x) > 0 for
every (t, x) ∈ [0, T ) × R+. We will also assume that r > 0. The critical price
or American critical price at time t ∈ [0, T ) is defined by

b(t) = inf{x ≥ 0 | P (t, x) > ψ(x)}.

Note that, since t 7→ P (t, x) is nonincreasing, the function t 7→ b(t) is
nondecreasing. It follows from (2.13) that b(t) ∈ [0,K). We obviously have
P (t, x) = ψ(x) for x ∈ [0, b(t)), and also for x = b(t), due to the continuity of
P and ψ. We also deduce from the convexity of x 7→ P (t, x) that

∀t ∈ [0, T ), ∀x > b(t), P (t, x) > ψ(x).

In other words the continuation region C̃ can be written as

C̃ = {(t, x) ∈ [0, T )× [0,+∞) | x > b̃(t)},

where b̃(t) = ln(b(t)). The graph of b is called the exercise boundary or free
boundary.

It was proved in [10] that the function b is continuous on [0, T ), and that
b(t) > 0. We also recall the following result, characterising the limit of the
critical price near maturity (see [10] Theorem 4.4).

Theorem 2.6 Denote

d+ = r − δ −
∫

(ex − 1)+ν(dx).

If d+ ≥ 0, we have limt→T b(t) = K.

If d+ < 0, we have limt→T b(t) = ξ, where ξ is the unique real number in
the interval (0,K) such that ϕ0(ξ) = rK, where ϕ0 is the function defined by
ϕ0(x) = δx+

∫
(xey −K)+ν(dy), x ∈ (0,K).
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3 The early exercise premium formula

The early exercise premium is the difference P − Pe between the American
and the European put prices. It can be expressed with the help of the exercise
boundary. This expression can be deduced from the following Proposition,
which characterises the distribution (∂t + L̃ − r)P̃ as a bounded measurable
function, with a simple expression involving the exercise boundary.

Proposition 3.1 The distribution (∂t + L̃− r)P̃ is given by

(∂t + L̃− r)P̃ (t, x) = h(t, x), dtdx-a.e. on (0, T )× R+, (3.1)

where h is the function defined by

h(t, x) =
[
δex − rK +

∫
{y>0}

(
P̃ (t, x+ y)− (K − ex+y)

)
ν(dy)

]
1{x<b̃(t)},(3.2)

with b̃(t) = ln b(t).

Proof We know from Theorem 2.5 that, on the open set

C̃ = {(t, x) ∈ (0, T )× R | x > b̃(t)},

we have (∂t + L̃− r)P̃ (t, x) = 0. On the other hand, on the open set

Ẽ = {(t, x) ∈ (0, T )× R+| x < b̃(t)},

we have P̃ = ψ̃, so that, using (2.10) and ψ̃(x) = K − ex, we have

(∂t + L̃− r)P̃ (t, x) = L̃P̃ (t, x)− r(K − ex)
= δex − rK + B̃P̃ (t, x)
= δex − rK

+
∫
ν(dy)

(
P̃ (t, x+ y)− ψ̃(x)− (ey − 1)ψ̃′(x)

)
= δex − rK

+
∫
ν(dy)

(
P̃ (t, x+ y)− (K − ex)− (ey − 1)(−ex)

)
= δex − rK +

∫
ν(dy)

(
P̃ (t, x+ y) + ex+y −K

)
.

At this point, we clearly have (∂t + L̃ − r)P̃ = h on the open sets C̃ and Ẽ.
Now, if σ > 0 and ν(R) < ∞, we know (cf. [18]) that the partial derivatives
are locally bounded functions, so that the distribution (∂t + L̃ − r)P̃ = h is
in fact a locally bounded function, and, since the complement of C̃ ∪ Ẽ is
Lebesgue-negligible, we deduce (3.1). Now, observe that h(t, x) ≥ −rK, so
that we have −rK ≤ (∂t + L̃ − r)P̃ ≤ 0, at least if σ > 0 and ν(R) < ∞.
On the other hand, in the general case, we can approximate (in law) the Lévy
process X by a sequence of processes Xn with finite Lévy measures νn and
positive Brownian variance parameters σ2

n, in such a way that the American
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put prices Pn converge simply to P . We then have convergence of (∂t+L̃−r)P̃n
to (∂t + L̃ − r)P̃ in the sense of distributions, so that the double inequality
−rK ≤ (∂t + L̃ − r)P̃ ≤ 0 is preserved in the limit. And we can conclude as
in the special case that (3.1) is true.

The early exercise premium formula is given by the following theorem.

Theorem 3.2 The American put price P , related to a Lévy process X of type
B or C, has the following representation

P (t, x) = Pe(t, x) + e(t, x),

where e is the early exercise premium, defined by

e(t, x) = E

(∫ T−t

0
k(t+ s, Sxs )e−rsds

)
,

and the function k is given by

k(t, x) =
[
rK − δx−

∫
{y>0}

(P (t, xey)− (K − xey)) ν(dy)
]
1{x<b(t)},(3.3)

for every (t, x) ∈ [0, T )× R+.

Proof We first extend the definition of P̃ by setting

P̃ (t, x) = 0, for t /∈ [0, T ], x ∈ R.

Next, we regularize P̃ . Let (ρn)n∈N be a sequence of nonnegative C∞ functions
on R2, such that, for every n ∈ N, supp(ρn) ⊂ (−1/n, 1/n)× (−1/n, 1/n) and∫
R2 ρn = 1. Define

P̃n(t, x) = (P̃ ∗ ρn)(t, x) =
∫
R2
P̃ (t− v, x− y)ρn(v, y)dvdy, (t, x) ∈ R× R.

Note that, for each n, the function P̃n is C∞, with bounded derivatives, and
that we have

∀(t, x) ∈ (0, T )×R, 0 ≤ P̃n(t, x) ≤ K and lim
n→∞

P̃n(t, x) = P (t, x). (3.4)

Now, fix t in the open interval (0, T ), and let

fn(s, y) = P̃n(t+ s, y), (s, y) ∈ R× R.

Since fn is smooth with bounded derivatives, we have for any time t1, with
0 < t1 < T − t and any x ∈ R,

E
(
e−rt1fn(t1, x+ X̃t1)

)
= fn(0, x)+E

[∫ t1

0
e−rs

(
∂s + L̃− r

)
fn(s, x+ X̃s)ds

]
.

(3.5)
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Recall that (X̃t)t∈[0,T ] is defined by X̃t = (r − δ)t + Xt, and that L̃ is the

infinitesimal generator of X̃.

We have, using Proposition 3.1 and the equality L̃(ρn ∗ P̃ ) = ρn ∗ L̃P̃ (see
[10]), (

∂s + L̃− r
)
fn = ρn ∗

(
∂s + L̃− r

)
P̃n(t+ ·, ·) = ρn ∗ h(t+ ·, ·).

Note that −rK ≤ h ≤ 0, and it follows from (3.2) that h is continuous on
the set {(s, y) | 0 < s < T and y 6= b̃(s)} (note that, for the continuity
of the integral, a domination condition can be deduced from the fact that
x 7→ P (t, x) − (K − x) is non decreasing, as follows from the convexity of
P (t, .)). Now, since X̃ is a Lévy process of type B or C, we have, for every
s ∈ (0, T − t) (see [17]),

P
(
x+ X̃s = b̃(t+ s)

)
= 0,

so that, by dominated convergence,

lim
n→∞

E
[∫ t1

0
e−rs

(
∂s + L̃− r

)
fn(s, x+ X̃s)ds

]
= E

[∫ t1

0
e−rsh(t+ s, x+ X̃s)ds

]
.

On the other hand, using (3.4), we have limn→∞ fn(0, x) = P̃ (t, x) and, by
passing to the limit in (3.5),

E
(
e−rt1 P̃ (t+ t1, x+ X̃t1)

)
= P̃ (t, x) + E

[∫ t1

0
e−rsh(t+ s, x+ X̃s)ds

]
.

Now, take the limit as t1 → T − t, and use the continuity of P̃ on [0, T ] × R
to derive

E
(
e−r(T−t)P̃ (T, x+ X̃T−t)

)
= P̃ (t, x) + E

[∫ T−t

0
e−rsh(t+ s, x+ X̃s)ds

]
.

We have P (t, x) = P̃ (t, ln x) and

Pe(t, x) = E
(
e−r(T−t)

(
K − xeX̃T−t

)
+

)
= E

(
e−r(T−t)P̃ (T, ln x+ X̃T−t)

)
,

so that

P (t, x) = Pe(t, x)− E

[∫ T−t

0
e−rsh(t+ s, ln x+ X̃s)ds

]
,

and the early exercise premium formula follows, using the equality k(t, x) =
−h(t, ln x).
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Remark 3.3 It follows from Proposition 3.1 that h ≥ −rK1x<b̃(t), so that,

for t ∈ (0, T ) and s ∈ (0, T − t),

lim inf
n→∞

ρn ∗ h(t+ s, x+ X̃s) ≥ −rK1{x+X̃s≤b̃(t+s)}.

Using this inequality, we deduce from the proof of Theorem 3.2 that (even if
X is not of type B or C),we have

0 ≤ P (t, x)− Pe(t, x) ≤ rKE

(∫ T−t

0
1{Sxs≤b(t+s)}ds

)
.

The following consequence of Theorem 3.2 will be useful in Section 6.

Corollary 3.4 For every t ∈ [0, T ), the function x 7→ P (t, x) − Pe(t, x) is
nonincreasing on R+.

Proof It suffices to show that the early exercise premium e(t, x) in Theorem 3.2
is a nonincreasing function of x. This will clearly follow if we prove that x 7→
k(t, x) is nonincreasing, where k is the function defined in (3.3). Note that, due
to the convexity of P (t, .), the function x 7→ P (t, x)−(K−x) is nondecreasing,
so that

x 7→ rK − δx−
∫
{y>0}

(P (t, xey)− (K − xey)) ν(dy),

is nonincreasing.

Corollary 3.4 was proved for jump-diffusion models by PDE arguments in [16],
and was one of the ingredients for establishing the rate of convergence of the
critical price to its limit. In fact, by following Pham’s proof, we can extend his
result in the following form (details can be found in [9]).

Theorem 3.5 Assume σ > 0 and
∫
{|x|≤1} |x|ν(dx) <∞. If d+ > 0, we have

lim
t→T

b(t)−K
σK
√

(T − t)| ln(T − t)|
= 1.

Remark 3.6 It is quite likely that the result of Theorem 3.5 is also true in the
case of a jump part with infinite variation, but we have not been able to prove
it. In fact, one of the arguments needed in Pham’s proof involves an estimate
on the difference of the American put prices in the Black-Scholes model and
the jump diffusion model. This difference is clearly O(θ), where θ is time until
maturity, in the case of finite variation, but, in the case of infinite variation,
it might be different.
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4 The critical price near maturity in a finite variation Lévy model

Throughout this section, we suppose that X is a Lévy process with finite
variation, or, equivalently,

σ = 0 and

∫
|x|≤1

|x|ν(dx) <∞.

The decomposition (2.1) can then be written as follows

Xt = γ0t+
∑

0<s≤t
∆Xs, t ≥ 0, (4.1)

where γ0 = γ−
∫
|x|≤1 xν(dx). Note that, due to the martingale condition (2.8),

we have

γ0 = −
∫

(ey − 1)ν(dy). (4.2)

This section is divided into two parts. In the first part, we introduce what
we call the European critical price, namely the stock price value for which
the American put price is equal to its intrinsic value, and we characterise its
behavior near maturity. In the second part, we analyze the difference between
the European and American critical prices and deduce the behavior of the
American critical price.

4.1 The European critical price

For each t in the interval [0, T ), we define the European critical price at time
t ∈ [0, T ) by

be(t) = inf{x ∈ R+ | Pe(t, x) > ϕ(x)}.
Note that, since Pe(t,K) > 0 and Pe(t, 0) = Ke−r(T−t), we have 0 < be(t) <
K. Using the convexity of Pe(t, ·), one can see that be(t) is the only real number
in the interval (0,K) satisfying the equality Pe(t, be(t)) = K−be(t). Recall that
P ≥ Pe, so that b ≤ be ≤ K, and it follows from Theorem 2.6 that, if d+ ≥ 0,
we have limt→T be(t) = limt→T b(t) = K. The following result characterises
the rate of convergence of be(t) to K.

Theorem 4.1 If d+ > 0, we have

lim
t→T

[
1

T − t

(
K

be(t)
− 1
)]

=
∫

(ey − 1)−ν(dy).

Proof Starting from the equality Pe(t, be(t)) = K − be(t), we have, with the
notation θ = T − t,

K − be(t) = E(e−rθ(K − be(t)e(r−δ)θ+Xθ )+)
= e−rθK − be(t)Ee−δθ+Xθ + E(e−rθ(K − be(t)e(r−δ)θ+Xθ )−)
= e−rθK − be(t)e−δθ + E(e−rθ(be(t)e(r−δ)θ+Xθ −K)+),
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Dividing both sides by be(t), we get

K

be(t)
(1− e−rθ) + e−δθ − 1 = E

[
e−rθ

(
e(r−δ)θ+Xθ − K

be(t)

)
+

]
.

Note that, since limt→T be(t) = K,

K

be(t)
(1− e−rθ) + e−δθ − 1 = (r − δ)θ + o(θ).

Therefore, using the decomposition (4.1),

(r − δ)θ = E
(
e(r−δ)θ+Xθ − K

be(t)

)
+

+ o(θ)

= E
(
e(r−δ+γ0)θ+Zθ − K

be(t)

)
+

+ o(θ), (4.3)

with the notation
Zt =

∑
0<s≤t

∆Xs, t ≥ 0.

We have

E
(
e(r−δ+γ0)θ+Zθ − K

be(t)

)
+

= E
(
eZθ [1 + (r − δ + γ0)θ]− K

be(t)

)
+

+ o(θ)

= E
(
eZθ + (r − δ + γ0)θ − K

be(t)

)
+

+ o(θ),

where the last equality follows from the fact that limθ→0 E|eZθ −1| = 0. Going
back to (4.3), we deduce

(r − δ)θ = E(fθ(Zθ)) + o(θ), (4.4)

where the function fθ is defined by

fθ(x) = (ex − 1− ζ̃(θ))+, x ∈ R,

with

ζ̃(θ) = K

be(t)
− 1− (r − δ + γ0)θ.

Since the process Z is the sum of its jumps, we have, using the compensation
formula (see Proposition 2.2),

E(fθ(Zθ)) = fθ(0) + E

 ∑
0<s≤θ

[fθ(Zs)− fθ(Zs−)]


= fθ(0) + E

(∫ θ

0
ds

∫
(fθ(Zs + y)− fθ(Zs))ν(dy)

)

= ((r − δ + γ0)θ − ζ(θ))+ +
∫ θ

0
ds

∫
ν(dy)E (fθ(Zs + y)− fθ(Zs)) ,
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with

ζ(θ) = ζ̃(θ) + (r − δ + γ0)θ = K

be(t)
− 1.

Note that, since limθ↓0 ζ̃(θ) = 0, we have, for any fixed y ∈ R,

lim
θ↓0

1
θ

∫ θ

0
dsE (fθ(Zs + y)) = lim

θ↓0

1
θ

∫ θ

0
dsE

(
eZs+y − 1− ζ̃(θ)

)
+

= lim
θ↓0

1
θ

∫ θ

0
dsE

(
eZs+y − 1

)
+

= (ey − 1)+ ,

where the last equality follows from the fact that lims→0 e
Zs = 1 in L1.

On the other hand, we have

1
θ

∫ θ

0
dsE (fθ(Zs + y)− fθ(Zs)) ≤

1
θ

∫ θ

0
dsE

(
eZs |ey − 1|

)
= 1
θ

∫ θ

0
dse−γ0s |ey − 1| ≤ e|γ0|θ − 1

|γ0|θ
|ey − 1| .

Since sup
0<θ<1

e|γ0|θ − 1
|γ0|θ

< ∞ and
∫
|ey − 1| ν(dy) < ∞, we deduce, by domi-

nated convergence, that

lim
θ↓0

1
θ

∫ θ

0
ds

∫
ν(dy)E (fθ(Zs + y)− fθ(Zs)) =

∫
(ey − 1)+ ν(dy).

We can now rewrite (4.4) as

(r − δ)θ = ((r − δ + γ0)θ − ζ(θ))+ + θ

∫
(ey − 1)+ν(dy) + o(θ),

so that

d+θ =
(
r − δ −

∫
(ey − 1)+ν(dy)

)
θ = ((r − δ + γ0)θ − ζ(θ))+ + o(θ).

Since d+ > 0, we must have (r − δ + γ0)θ − ζ(θ) > 0 for θ close to 0. Hence

lim
θ↓0

ζ(θ)
θ

= γ0 +
∫

(ey − 1)+ν(dy) =
∫

(ey − 1)−ν(dy),

where the last equality follows from (4.2).
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4.2 The behavior of the critical price

We are now in a position to prove the main result of this section.

Theorem 4.2 If d+ > 0, we have

lim
t→T

1
T − t

(
K

b(t) − 1
)

=
∫

(ey − 1)−ν(dy).

Proof In view of Theorem 4.1, it suffices to prove that

lim
t→T

be(t)− b(t)
(T − t) = 0.

Recall that be ≥ b and, from Remark 3.3, we have, for (t, x) ∈ [0, T )× R+,

0 ≤ P (t, x)− Pe(t, x) ≤ rKE

(∫ T−t

0
1{Sxs≤b(t+s)}ds

)
. (4.5)

From the equality Pe(t, be(t)) = K − be(t) and the convexity of P (t, ·), we
deduce

P (t, be(t))− Pe(t, be(t)) = P (t, be(t))− (K − be(t))
≥ P (t, b(t)) + (be(t)− b(t))∂+

x P (t, b(t))− (K − be(t))
= (be(t)− b(t))(∂+

x P (t, b(t)) + 1). (4.6)

We now use the following lower bound for the jump of derivative of P (t, ·) at
b(t) (see [11], Remark 4.1).

∂+
x P (t, b(t)) + 1 ≥ d+

d
,

with d = d+ +
∫

(ey − 1)−ν(dy). By combining (4.5) and (4.6), we get

0 ≤ be(t)− b(t) ≤
rKd

d+ E

(∫ T−t

0
1{Sbe(t)

s ≤b(t+s)}ds

)
.

We now want to prove that

lim
t→T

1
T − t

E

(∫ T−t

0
1{Sbe(t)

s ≤b(t+s)}ds

)
= 0. (4.7)

We first note that

E

(∫ T−t

0
1{Sbe(t)

s ≤b(t+s)}ds

)
=
∫ T−t

0
P
(

(r − δ)s+Xs ≤ ln
(
b(t+ s)
be(t)

))
ds.
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Using the notation θ = T − t and ζ(u) = K
be(T−u) , for u ∈ (0, T ], we have

ln
(
b(t+ s)
be(t)

)
≤ ln

(
be(t+ s)
be(t)

)
≤ be(t+ s)

be(t)
− 1 = ζ(θ)− ζ(θ − s)

ζ(θ − s) ≤ |ζ(θ)− ζ(θ − s)| ,

since ζ ≥ 1. Therefore,

E

(∫ θ

0
1{Sbe(t)

s <b(t+s)}ds

)
≤
∫ θ

0
P ((r − δ)s+Xs ≤ |ζ(θ)− ζ(θ − s)|) ds.(4.8)

It follows from Theorem 4.1 that

lim
u→0

ζ(u)
u

=
∫

(ey − 1)−ν(dy).

Therefore, given any ε > 0, there exists ηε > 0 such that, for u ∈ (0, ηε],

−ε+
∫

(ey − 1)−ν(dy) ≤ ζ(u)
u
≤ ε+

∫
(ey − 1)−ν(dy).

Take θ ∈]0, ηε] and s ∈]0, θ]. We have

ζ(θ)− ζ(θ − s) ≤ θ

(
ε+

∫
(ey − 1)−ν(dy)

)
− (θ − s)

(
−ε+

∫
(ey − 1)−ν(dy)

)
= s

∫
(ey − 1)−ν(dy) + 2θε− sε

≤ s

∫
(ey − 1)−ν(dy) + 2θε.

Hence, using (4.1) and (4.2), we get, with the notation Zs = Xs − γ0s,

P ((r − δ)s+Xs ≤ |ζ(θ)− ζ(θ − s)|) ≤ P
(

(r − δ)s+Xs ≤ s
∫

(ey − 1)−ν(dy) + 2θε
)

= P
(
Zs ≤ −s

(
r − δ + γ0 −

∫
(ey − 1)−ν(dy)

)
+ 2θε

)
= P

(
Zs ≤ −sd+ + 2θε

)
. (4.9)

Now, take ε < d+

4 and θ ≤ ηε. We deduce from (4.8) and (4.9) that

E

(∫ θ

0
1{Sbe(t)

s ≤b(t+s)}ds

)
≤
∫ θ

0
P
(
Zs ≤ −sd+ + 2θε

)
ds

=
∫ 4θε

d+

0
P
(
Zs ≤ −sd+ + 2θε

)
ds+

∫ θ

4θε
d+

P
(
Zs ≤ −sd+ + 2θε

)
ds

≤ 4θε
d+ +

∫ θ

4θε
d+

P
(
Zs
s
≤ −d+ + 2θε

s

)
ds

≤ 4θε
d+ +

∫ θ

4θε
d+

P
(
Zs
s
≤ −d

+

2

)
ds ≤ 4θε

d+ +
∫ θ

0
P
(
Zs
s
≤ −d

+

2

)
ds.
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Since the process Z has no drift part, we have lim
s→0

Zs
s

= 0 a.s. (see [17], Section

47), so that

lim
s→0

P
(
Zs
s
≤ −d

+

2

)
= 0.

Hence

lim sup
θ↓0

1
θ
E

(∫ θ

0
1{Sbe(t)

s ≤b(t+s)}ds

)
≤ 4ε
d+ .

Since ε can be arbitrarily close to 0, (4.7) is proved.

5 The critical price near maturity in an infinite variation Lévy
model

Throughout this section, we assume thatX is an infinite variation Lévy process
i.e.

σ 6= 0 or

∫
|x|≤1

|x|ν(dx) =∞.

Our main result is that, in this case, the convergence of b(t) to K cannot be
linear.

Theorem 5.1 Assume that X is Lévy process with infinite variation. If d+ ≥
0, we have

lim
t→T

1
T − t

(
K

b(t) − 1
)

=∞.

This result follows from the following Lemma, which will be proved later.

Lemma 5.2 If X is a Lévy process with infinite variation, we have

lim
t→0

E
(
Xt

t

)
+

=∞.

Proof of Theorem 5.1 We use the notation θ = T − t. From the equality
Pe(t, be(t)) = K − be(t), we derive, as in the proof of Theorem 4.1 (see (4.3)),
that

(r − δ)θ = E

[(
e(r−δ)θ+Xθ − K

be(t)

)
+

]
+ o(θ)

Denote ζ(θ) = K
be(t) − 1. Using the inequality ex ≥ x+ 1, we deduce

(r − δ)θ = E
[(
e(r−δ)θ+Xθ − 1− ζ(θ)

)
+

]
+ o(θ)

≥ E
(
((r − δ)θ +Xθ − ζ(θ))+

)
+ o(θ)

≥ E [(r − δ)θ +Xθ]+ − ζ(θ) + o(θ)
= E

(
X̃θ

)
+ − ζ(θ) + o(θ),
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where X̃t = (r − δ)t+Xt. Therefore,

lim inf
θ↓0

ζ(θ)
θ
≥ lim

θ↓0
E
(
X̃θ

θ

)
+
− (r − δ).

Since X̃ is a Lévy process with infinite variation, the Theorem follows from
Lemma 5.2. �

Proof of Lemma 5.2 Denote by (σ2, γ, ν) the characteristic triplet of X. The
Lévy-Itô decomposition of X can be written (see (2.1) and (2.2))

Xt = γt + σBt + X̂t +X0
t , t ≥ 0,

with

X̂t =
∫ t

0

∫
{|x|>1}

xJX(ds, dx) and X̃0
t =

∫ t

0

∫
{0<|x|≤1}

xJ̃X(ds, dx),

where JX is the jump measure of X. Note that X̂ is a compound Poisson
process. We have

(Xt)+ =
(
γt + σBt + X̃0

t + X̂t

)
1{γt+σBt+X̃0

t+X̂t≥0}
≥
(
γt+ σBt + X̃0

t

)
1{γt+σBt+X̃0

t≥0}1{X̂t=0}.

Since B, X̂ and X̃0 are independent, we have

E
(
Xt

t

)
+
≥ E

(
σBt + X̃0

t

t
+ γ

)
+
P(X̂t = 0)

≥ E
(
σBt + X̃0

t

t
+ γ

)
+
e−tν({|x|≥1}),

where the last inequality follows from the fact that the first jump time of
the process X̂ is exponentially distributed with parameter ν({|x| ≥ 1}). Since(
σBt+X̄0

t

t + γ
)

+
≥
(
σBt+X̄0

t

t

)
+
− |γ|, it suffices to show that

lim
t→0

E

[(
σBt + X̃0

t

t

)
+

]
=∞. (5.1)

For that, we discuss two cases.
We first assume that σ 6= 0. Recall that B and X̃0 are independent and

E(X̃0
t ) = 0. By conditioning on B and using Jensen’s inequality, we get

E
(
σBt + X̃0

t

t

)
+

= E

[
E

((
σBt + X̃0

t

t

)
+
| Bt

)]

≥ E

[(
E
(
σBt + X̃0

t

t
| Bt

))
+

]
= E

[(
σ
Bt
t

)
+

]
= |σ| 1√

2πt
,
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so that (5.1) is proved.
Now, assume σ = 0. Since the process X has infinite variation, we must

have

∫
|y|≤1

|y|ν(dy) =∞. Given ε ∈ (0, 1) and t > 0, introduce

X̃ε
t =

∫ t

0

∫
{ε≤|x|≤1}

xJ̃X(ds, dx)

= Xε
t − Cεt,

where

Xε
t =

∑
0≤s≤t

∆Xs1{ε≤|∆Xs|≤1} and Cε =
∫
{ε≤|y|≤1}

yν(dy).

We have X̃0
t = X̃ε

t + (X̃0
t − X̃ε

t ), and the random variables X̃ε
t and X̃0

t − X̃ε
t

are independent and centered. Therefore

E

[(
X̃0
t

t

)
+

]
≥ E

[(
X̃ε
t

t

)
+

]
= E

(
Xε
t − tCε
t

)
+
. (5.2)

We have E (Xε
t − tCε)+ = Egt(Xε

t ), with gt(x) = (x − tCε)+. Since Xε is a
compound Poisson process,

gt(Xε
t )− gt(0) =

∑
0<s≤t

(gt(Xε
s )− gt(Xε

s−)) ,

so that, due to the compensation formula (cf. Proposition 2.2),

E (Xε
t − tCε)+ = gt(0) + E

 ∑
0≤s≤t

(gt(Xε
s )− gt(Xε

s−))


= t (−Cε)+ + E

(∫ t

0
ds

∫
{ε≤|y|≤1}

(gt(Xε
s + y)− gt(Xε

s )) ν(dy)
)
.

For any fixed ε ∈ (0, 1), we have

E

(∫ t

0
ds

∫
{ε≤|y|≤1}

(gt(Xε
s + y)− gt(Xε

s )) ν(dy)
)

= E
[∫ t

0
ds

∫
[(Xε

s + y)+ − (Xε
s )+] ν(dy)

]
+ o(t)

= t

∫
{ε≤|y|≤1}

y+ν(dy) + o(t).

Therefore,

E[(Xε
t − tCε)+] = t

(
(−Cε)+ +

∫
{ε≤|y|≤1}

y+ν(dy)
)

+ o(t).
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Going back to (5.2), we derive

lim inf
t→0

E

[(
X̃0
t

t

)
+

]
≥ (−Cε)+ +

∫
{ε≤|y|≤1}

y+ν(dy)

=
(
−
∫
{ε≤|y|≤1}

yν(dy)
)

+

+
∫
{ε≤|y|≤1}

y+ν(dy).

Since
∫
{|y|≤1} |y|ν(dy) =∞, we have either limε↓0

∫
{ε≤|y|≤1} y+ν(dy) =∞ or

lim
ε↓0

(
−
∫
{ε≤|y|≤1}

yν(dy)
)

+

=∞,

and (5.1) follows. �

6 Critical price and tempered stable processes

Throughout this section, the following assumption is in force.

(AS) We have

E
(
eiuXt

)
= exp

(
t

∫ (
eiuy − 1− iu(ey − 1)

)
ν(dy)

)
,

with
∫

(ey − 1)+ν(dy) < r − δ and, for some a0 < 0,

1{a0<y<0}ν(dy) = η(y)
|y|1+α1{a0<y<0}dy,

where 1 < α < 2 and η is a positive bounded Borel measurable function
on [a0, 0), which satisfies limy→0 η(y) = η0 > 0.

Note that, under this assumption, we have ν[(−∞, 0)] > 0, so that (2.13) is
satisfied.

Theorem 6.1 Under assumption (AS), we have

lim
t→T

K − b(t)
(T − t)1/α| ln(T − t)|1− 1

α

= K

(
η0
Γ (2− α)
α− 1

)1/α
.

Remark 6.2 Our assumptions exclude the case α = 1. In this case, we still
have a Lévy process with infinite variation and we can apply Theorem 5.1:
limt→T (K − b(t))/(T − t) = ∞. On the other hand, using comparison argu-
ments, we can deduce from Theorem 6.1 that limt→T (K−b(t))/(T−t)1−ε = 0,
for all ε > 0. It would be interesting to clarify the rate of convergence of b(t) to
K in this case. As pointed out by the referees, the case α = 1 is important in
reference to the Normal Inverse Gaussian model. However, in this model, the
Lévy measure is symmetric, and the assumption r−δ−

∫
(ey−1)+ν(dy) ≥ 0 is

not satisfied, so that limt→T b(t) < K (see Theorem 2.6). The asymptotics of
b(t) near T cannot then be treated by the methods of the present paper (see
[12] for the Black-Scholes case).
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For the proof of Theorem 6.1, we use the same approach as in Section 4.
Namely, we first characterise the rate of convergence of the European critical
price be(t): this is done in Section 6.1 (see Proposition 6.4, and recall that
b(t) ≤ be(t) ≤ K). Then, we estimate the difference between the European
and the American critical prices. In fact, Theorem 6.1 is a direct consequence
of Proposition 6.4, combined with Proposition 6.9.

Before investigating the behavior of the European critical price, we estab-
lish a crucial consequence of assumption (AS), namely the fact that, for small
t, the Lévy process at time t behaves asymptotically like a one-sided stable
random variable of order α.

Lemma 6.3 Under assumption (AS), as t goes to 0, the random variable
Xt/t

1/α converges in distribution to a random variable Z with characteristic
function given by

E
(
eiuZ

)
= exp

(
η0

∫ +∞

0

(
e−iuz − 1 + iuz

) dz

z1+α

)
, u ∈ R.

Proof: Introduce the following decomposition of the process X

Xt = X0
t − t

∫
(ey − 1)+ν(dy) + X̄t, t ≥ 0,

where
X0
t =

∑
0<s≤t

∆Xs1{∆Xs>0}.

Note that the processX0 is well defined because
∫
y+ν(dy) ≤

∫
(ey−1)+ν(dy) <

∞, and the characteristic function of X̄t is given by

E
(
eiuX̄t

)
= exp

(
t

∫
(−∞,0)

(
eiuy − 1− iu(ey − 1)

)
ν(dy)

)
, u ∈ R. (6.1)

We have limt↓0
X0
t

t = 0 a.s. (see [17], Section 47), so that, with probability
one,

lim
t↓0

Xt − X̄t

t1/α
= 0.

We will now prove that X̄t/t
1/α weakly converges to Z as t → 0. For a fixed

u ∈ R, we have

E
(
e
iu

X̄t

t1/α

)
= exp

(
t

∫
(−∞,0)

(
eiuy/t

1/α
− 1− iu

t1/α
(ey − 1)

)
ν(dy)

)
.

The integral in the exponential can be split in two parts∫
(−∞,0)

(
eiuy/t

1/α
− 1− iu

t1/α
(ey − 1)

)
ν(dy) =

∫
(−∞,a0]

(
eiuy/t

1/α
− 1− iu

t1/α
(ey − 1)

)
ν(dy)

+
∫ 0

a0

(
eiuy/t

1/α
− 1− iu

t1/α
(ey − 1)

)
ν(dy).
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We have∣∣∣∣∣
∫

(−∞,a0]

(
eiuy/t

1/α
− 1− iu

t1/α
(ey − 1)

)
ν(dy)

∣∣∣∣∣ ≤ 2ν((−∞, a0]) + |u|
t1/α

∫
(−∞,a0]

|ey − 1|ν(dy),

so that

lim
t↓0

(
t

∫
(−∞,a0]

(
eiuy/t

1/α
− 1− iu

t1/α
(ey − 1)

)
ν(dy)

)
= 0.

On the other hand,∫ 0

a0

(
eiuy/t

1/α
− 1− iu

t1/α
(ey − 1)

)
ν(dy) =

∫ 0

a0

(
eiuy/t

1/α
− 1− iu

t1/α
y

)
η(y)
|y|1+α dy

+ iu

t1/α

∫ 0

a0

(y − (ey − 1)) η(y)
|y|1+α dy

=
∫ |a0|

0

(
e−iuy/t

1/α
− 1 + iu

t1/α
y

)
η(−y)
y1+α dy

+O(t−1/α),

where the last equality follows from the boundedness of η and the fact that∫
(a0,0) y

2ν(dy) <∞. Hence, using the substitution z = y/t1/α,

∫ 0

a0

(
eiuy/t

1/α
− 1− iu

t1/α
(ey − 1)

)
ν(dy) = 1

t

∫ |a0|
t1/α

0

(
e−iuz − 1 + iuz

) η(−z/t1/α)
z1+α dz

+O(t−1/α),

so that, by dominated convergence,

lim
t↓0

(
t

∫ 0

a0

(
eiuy/t

1/α
− 1− iu

t1/α
(ey − 1)

)
ν(dy)

)
=
∫ +∞

0

(
e−iuz − 1 + iuz

) η0

z1+α dz,

and the lemma is proved. �

6.1 European critical price

Denote θ = T − t. The equality Pe(t, be(t)) = K − be(t) can be written as
follows

K − be(t) = Ee−rθ
(
K − be(t)e(r−δ)θ+Xθ

)
+

= Ke−rθ − be(t)e−δθ + Ee−rθ
(
be(t)e(r−δ)θ+Xθ −K

)
+
.

Hence

K

be(t)
(
1− e−rθ

)
−
(
1− e−δθ

)
= Ee−rθ

(
e(r−δ)θ+Xθ − K

be(t)

)
+
. (6.2)
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Since limt→T be(t) = K, the left-hand side is equal to (r − δ)θ + o(θ). For the
study of the right-hand side, let ζ(θ) = K

be(t) − 1, so that from (6.2) we derive

(r − δ)θ = Ee−rθ
(
e(r−δ)θ+Xθ − 1− ζ(θ)

)
+

+ o(θ)

= E
(
e(r−δ)θ+Xθ − 1− ζ(θ)

)
+

+ o(θ), (6.3)

where we have used the fact that limθ→0 E
(
e(r−δ)θ+Xθ − 1− ζ(θ)

)
+ = 0. The

following statement clarifies the behavior of ζ(θ) as θ ↓ 0.

Proposition 6.4 Under assumption (AS), we have

lim
θ↓0

ζ(θ)
θ1/α| ln θ|1− 1

α

= (αη0Iα)1/α =
(
η0
Γ (2− α)
α− 1

)1/α
,

where

Iα =
∫ +∞

0

(
e−z − 1 + z

) dz

z1+α = Γ (2− α)
α(α− 1) .

The first step in the proof of Proposition 6.4 is the following lemma.

Lemma 6.5 We have

lim
θ→0

ζ(θ)
θ1/α = +∞. (6.4)

Proof: Note that∣∣∣∣E(e(r−δ)θ+Xθ − 1− ζ(θ)
)

+
− E

(
eXθ − 1− ζ(θ)

)
+

∣∣∣∣ ≤ (e(r−δ)θ − 1
)
E
(
eXθ
)

= O(θ),

so that, in view of (6.3), we have

E
(
eXθ − 1− ζ(θ)

)
+ = O(θ).

Since ex ≥ 1 + x, we also have E (Xθ − ζ(θ))+ = O(θ). Therefore

lim
θ↓0

E
(
Xθ

θ1/α −
ζ(θ)
θ1/α

)
+

= 0.

If we had lim infθ↓0 ζ(θ)/θ1/α = λ ∈ [0,+∞), we would deduce from Lemma 6.3
and Fatou’s Lemma that

E (Z − λ)+ = 0.
Hence P(Z ≤ λ) = 1. However, the support of the random variable Z (which
is a one-sided stable random variable of order α) is the whole real line. This
proves (6.4) by contradiction. �

The next lemma provides some estimates for the moment generating func-
tion of the process X̄, defined by

X̄t = Xt + t

∫
(ey − 1)+ν(dy)−

∑
0<s≤t

∆Xs1{∆Xs>0}, t ≥ 0.
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Lemma 6.6 We have, for all ρ ≥ 0, t ≥ 0,

E
(
eρX̄t

)
= etϕ̄(ρ),

with

ϕ̄(ρ) =
∫

(−∞,0)
(eρy − 1− ρ(ey − 1)) ν(dy), ρ ≥ 0. (6.5)

Morover, for any a ∈ [a0, 0) and any ρ ≥ 0, we have

ραHa(ρ)− νa − ρν̄a ≤ ϕ̄(ρ) ≤ ρνa + ραHa(ρ),

where

νa = ν((−∞, a]), ν̄a =
∫ |a|

0

(
e−y − 1 + y

)
ν(dy)

and

Ha(ρ) =
∫ |a|ρ

0

(
e−z − 1 + z)

) η(−z/ρ)
z1+α dz.

Proof: First, note that (6.5) is deduced from (6.1) by analytic continuation.
Now, fix ρ ≥ 0 and a ∈ [a0, 0). We have,

ϕ̄(ρ) =
∫

(−∞,a]
(eρy − 1− ρ(ey − 1)) ν(dy) + ϕ̄a(ρ)

with the notation

ϕ̄a(ρ) =
∫ 0

a

(eρy − 1− ρ(ey − 1)) ν(dy), ρ ≥ 0.

For y ∈ (−∞, a], we have −1 ≤ eρy − 1− ρ(ey − 1) ≤ ρ. Therefore

ϕ̄a(ρ)− νa ≤ ϕ̄(ρ) ≤ ϕ̄a(ρ) + ρνa.

On the other hand,

ϕ̄a(ρ) =
∫ |a|

0

(
e−ρy − 1− ρ(e−y − 1)

) η(−y)
y1+α dy

=
∫ |a|

0

(
e−ρy − 1 + ρy)

) η(−y)
y1+α dy − ρ

∫ |a|
0

(
e−y − 1 + y

) η(−y)
y1+α dy.

We have e−y − 1 + y ≥ 0. Hence

−ρ
∫ |a|

0

(
e−y − 1 + y

) η(−y)
y1+α dy + ψa(ρ) ≤ ϕ̄a(ρ) ≤ ψa(ρ),

where

ψa(ρ) =
∫ |a|

0

(
e−ρy − 1 + ρy)

) η(−y)
y1+α dy

= ρα
∫ |a|ρ

0

(
e−z − 1 + z)

) η(−z/ρ)
z1+α dz = ραHa(ρ).
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�

The crucial step in the proof of Proposition 6.4 is an asymptotic estimate
for the tail of the distribution of X̄θ/θ

1/α as θ approaches 0. This will be given
in Lemma 6.8. We first give a preliminary uniform bound.

Lemma 6.7 Let a ∈ [a0, 0). There exists a positive constant Ca such that, for
all θ > 0, t > 0, we have

lnP
(
X̄θ

θ1/α ≥ t
)
≤ Caθ1− 1

α t
1

α−1 − Jα(a)t
α
α−1 ,

where

Jα(a) = α− 1
α

α
α−1 (η∗(a)Iα)

1
α−1

,

with

η∗(a) = sup
u∈(a,0)

η(u) and Iα =
∫ +∞

0

(
e−z − 1 + z

) dz

z1+α = Γ (2− α)
α(α− 1) .

Proof: For any p > 0, we have, using Markov’s inequality and Lemma 6.6,

P
(
X̄θ

θ1/α ≥ t
)
≤ e−ptE

(
epX̄θ/θ

1/α
)

= e−pteθϕ̄(p/θ1/α)

≤ e−ptep
αHa(p/θ1/α)+θ1− 1

α pνa

≤ e−ptep
αη∗(a)Iα+θ1− 1

α pνa ,

where the last inequality follows from Ha(ρ) ≤ η∗(a)Iα. By choosing p =(
t

αη∗(a)Iα

)1/(α−1)
, we get

P
(
X̄θ

θ1/α ≥ t
)
≤ exp

(
−Jα(a)t

α
α−1 + Caθ

1− 1
α t

1
α−1

)
,

with Ca = (αη∗(a)Iα)−
1

α−1 νa. �

We are now in a position to prove the main estimate for the proof of
Proposition 6.4.

Lemma 6.8 Denote, for θ > 0, Z̄θ = X̄θ

θ1/α . We have, for any function ξ :
(0,+∞)→ (0,+∞) satisfying lim

θ↓0
ξ(θ) = +∞,

lim
θ↓0

lnP(Z̄θ ≥ ξ(θ))
(ξ(θ))

α
α−1

= −Jα(0), where Jα(0) = lim
a↑0

Jα(a) = α− 1
(ααη0Iα)

1
α−1

.
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Proof: We first prove

lim sup
θ↓0

lnP(Z̄θ ≥ ξ(θ))
(ξ(θ))

α
α−1

≤ −Jα(0). (6.6)

Applying Lemma 6.7 with t = ξ(θ), we have, for all a ∈ [a0, 0),

lnP(Z̄θ ≥ ξ(θ)) ≤ −Jα(a)(ξ(θ))
α
α−1 + Caθ

1− 1
α (ξ(θ))

1
α−1 .

Hence

lim sup
θ↓0

lnP(Z̄θ ≥ ξ(θ))
(ξ(θ))

α
α−1

≤ −Jα(a),

and (6.6) follows by letting a go to 0.
In order to derive a lower bound for the lim inf, we proceed as follows.

Given any p > 0 and any t > 0, we have

E
(
epZ̄θ

)
= E

(
epZ̄θ1{Z̄θ<t}

)
+ E

(
epZ̄θ1{Z̄θ≥t}

)
= E

(∫ Z̄θ

−∞
pepsds1{Z̄θ<t}

)
+ E

(
epZ̄θ1{Z̄θ≥t}

)
≤ 1 + E

(∫ +∞

0
peps1{0<s≤Z̄θ<t}ds

)
+ E

(
epZ̄θ1{Z̄θ≥t}

)
≤ 1 +

∫ t

0
pepsP

(
Z̄θ ≥ s

)
ds+ E

(
epZ̄θ1{Z̄θ≥t}

)
.

It follows from Lemma 6.7 that P
(
Z̄θ ≥ s

)
≤ exp

(
Caθ

1− 1
α s

1
α−1 − Jα(a)s

α
α−1

)
,

so that

E
(
epZ̄θ

)
≤ 1 + pFa(θ, t)

∫ t

0
eps−Jα(a)s

α
α−1

ds+ E
(
epZ̄θ1{Z̄θ≥t}

)
, (6.7)

with

Fa(θ, t) = eCaθ
1− 1

α t
1

α−1
.

For notational convenience, let

α̂ = α

α− 1 , so that α̂− 1 = 1
α− 1 ,

and
fp(s) = ps− Jα(a)sα̂, s > 0.

We have f ′p(s) = p− α̂Jα(a)sα̂−1, so that the function fp is increasing on the
interval [0, s∗p] and decreasing on [s∗p,+∞), where

s∗p =
(

p

Jα(a)α̂

) 1
α̂−1

=
(

p

Jα(a)α̂

)α−1
.



26 Damien Lamberton, Mohammed Adam Mikou

We now fix t > 0 and choose p = Mt
1

α−1 , where M is a constant satisfying

M > Jα(0)α̂ = α

α− 1Jα(0) = 1
(αη0Iα)

1
α−1

.

We then have M > Jα(a)α̂ for all a ∈ [a0, 0), so that

t <

(
M

Jα(a)α̂

)α−1
t =

(
p

Jα(a)α̂

)α−1
= s∗p.

Therefore

∀s ∈ [0, t], fp(s) ≤ fp(t) = pt− Jα(a)tα̂ = tα̂ (M − Jα(a)) ,

so that ∫ t

0
efp(s)ds ≤ tefp(t) = t exp

(
tα̂ (M − Jα(a))

)
.

Going back to (6.7), we get

E
(
eMt

1
α−1 Z̄θ

)
≤ 1 +Mt

1
α−1Fa(θ, t)t exp

(
tα̂ (M − Jα(a))

)
+ E

(
eMt

1
α−1 Z̄θ1{Z̄θ≥t}

)
= 1 +Mtα̂Fa(θ, t) exp

(
tα̂ (M − Jα(a))

)
+ E

(
eMtα̂−1Z̄θ1{Z̄θ≥t}

)
.(6.8)

On the other hand, we have, using Lemma 6.6,

E
(
eMt

1
α−1 Z̄θ

)
= E

(
eMtα̂−1X̄θ/θ

1/α
)

= exp
(
θϕ̄(Mtα̂−1/θ1/α)

)
≥ exp

[
θ

((
Mtα̂−1

θ1/α

)α
Ha(Mtα̂−1/θ1/α)− νa −

Mtα̂−1

θ1/α ν̄a

)]
= exp

(
tα̂Ka(M, θ, t)

)
Ga(M, θ, t), (6.9)

where

Ka(M, θ, t) = MαHa(Mtα̂−1/θ1/α) and Ga(M, θ, t) = e−θνa−Mθ1− 1
α tα̂−1ν̄a .

Combining (6.8) and (6.9), we have

E
(
eMtα̂−1Z̄θ1{Z̄θ≥t}

)
≥ et

α̂Ka(M,θ,t)
(
Ga(M, θ, t)− e−t

α̂Ka(M,θ,t)

−Mtα̂Fa(θ, t) exp
(
tα̂ (M − Jα(a)−Ka(M, θ, t))

))
.

(6.10)

In order to study the sign of the quantity M − Jα(a) −Ka(M, θ, t), which is
equal to M −MαHa(Mtα̂−1/θ1/α)− Jα(a), we introduce the function

ψα(M) = M −Mαη0Iα, M > 0.
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We have
ψ′α(M) = 1− αMα−1η0Iα.

Since M > 1
(αη0Iα)

1
α−1

, we have ψ′α(M) < 0. Therefore

ψα(M) < ψα (Jα(0)α̂)

= ψα

(
1

(αη0Iα)
1

α−1

)

= 1
(αη0Iα)

1
α−1

(
1− 1

α

)
= Jα(0).

Since lima↑0 Jα(a) = Jα(0), we also have, for a close to 0,

ψα(M) < Jα(a).

Now, consider any function ξ : (0,+∞) → (0,+∞), such that limθ↓0 ξ(θ) =
+∞. We will apply (6.10) with t = ξ(θ). Note that limθ↓0Ka(M, θ, ξ(θ)) =
Mαη0Iα, so that

lim
θ↓0

(M − Jα(a)−Ka(M, θ, ξ(θ))) = ψα(M)− Jα(a) < 0,

and

lim
θ↓0

(
ξα̂(θ) Fa(θ, ξ(θ))

Ga(M, θ, ξ(θ)) exp
[
ξα̂(θ) (M − Jα(a)−Ka(M, θ, ξ(θ)))

])
= 0.

For the last equality, we observe that Fa(θ,ξ(θ))
Ga(M,θ,ξ(θ)) behaves like eCθ

(α−1)/αξα̂−1(θ),

for some C > 0. Therefore, we deduce from (6.10) that

lim inf
θ↓0

lnE
(
eMξα̂−1(θ)Z̄θ1{Z̄θ≥ξ(θ)}

)
ξα̂(θ) ≥ lim

θ↓0
Ka(M, θ, ξ(θ)) = Mαη0Iα.

(6.11)
Now, it follows from Hölder’s inequality that, for any q > 1,

E
(
eMξα̂−1(θ)Z̄θ1{Z̄θ≥ξ(θ)}

)
≤
(
E
(
eqMξα̂−1(θ)Z̄θ

))1/q [
P
(
Z̄θ ≥ ξ(θ)

)]1− 1
q

= exp
[
θ

q
ϕ̄
(
qMξα̂−1(θ)/θ1/α

)] [
P
(
Z̄θ ≥ ξ(θ)

)]1− 1
q .

Hence(
1− 1

q

)
lnP

(
Z̄θ ≥ ξ(θ)

)
≥ ln

[
E
(
eMξα̂−1(θ)Z̄θ1{Z̄θ≥ξ(θ)}

)]
− θ

q
ϕ̄

(
q
Mξα̂−1(θ)
θ1/α

)
≥ ln

[
E
(
eMξα̂−1(θ)Z̄θ1{Z̄θ≥ξ(θ)}

)]
−νaθ1− 1

αMξα̂−1(θ)−Mαξα̂(θ)qα−1Ha

(
qMξα̂−1(θ)

θ1/α

)
,
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where the last inequality follows from Lemma 6.6. We now deduce from (6.11)
and from the fact that limρ→∞Ha(ρ) = η0Iα(

1− 1
q

)
lim inf
θ↓0

lnP
(
Z̄θ ≥ ξ(θ)

)
ξα̂(θ) ≥Mαη0Iα

(
1− qα−1) .

Hence

lim inf
θ↓0

lnP
(
Z̄θ ≥ ξ(θ)

)
ξα̂(θ) ≥Mαη0Iα

q − qα

q − 1 ,

and, by taking the limit as q goes to 1,

lim inf
θ↓0

lnP
(
Z̄θ ≥ ξ(θ)

)
ξα̂(θ) ≥ −(α− 1)Mαη0Iα

Since M is arbitrary in
(

(αη0Iα)
−1
α−1 ,+∞

)
, we can take the limit as M goes

to (αη0Iα)
−1
α−1 , so that

lim inf
θ↓0

lnP
(
Z̄θ ≥ ξ(θ)

)
ξα̂(θ) ≥ −(α− 1) η0Iα

(αη0Iα)
α
α−1

= −Jα(0).

�

Proof of Proposition 6.4: We first prove

lim inf
θ↓0

ζ(θ)
θ1/α| ln θ|1− 1

α

≥ (αη0I0)1/α
. (6.12)

We deduce from (6.3) that

E
(
e(r−δ)θ+Xθ − 1− ζ(θ)

)
+

= (r − δ)θ + o(θ).

We have the decomposition Xθ = X̄θ + X0
θ − θ

∫
(ey − 1)+ν(dy), where the

processes X̄ and X0 are independent and E
(
eX

0
θ

)
= eθ

∫
(ey−1)+ν(dy), so that,

by conditioning with respect to X̄,

E
(
e(r−δ)θ+Xθ − 1− ζ(θ)

)
+
≥ E

(
e(r−δ)θ+X̄θ − 1− ζ(θ)

)
+

≥ E
(
(r − δ)θ + X̄θ − ζ(θ)

)
+ ≥ E

(
X̄θ − ζ(θ)

)
+ .

Hence, with the notations of Lemma 6.8,

E
(
Z̄θ − ζ̄(θ)

)
+ ≤ (r − δ)θ1− 1

α + o(θ1− 1
α ), where ζ̄(θ) = ζ(θ)

θ1/α .

We deduce thereof that there exists a positive constant C such that, for θ close
to 0,

lnE
(
Z̄θ − ζ̄(θ)

)
+ ≤

(
1− 1

α

)
ln θ + C. (6.13)
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Now, given any β > 1, we have

E
(
Z̄θ − ζ̄(θ)

)
+ ≥ (β − 1)ζ̄(θ)P

(
Z̄θ ≥ βζ̄(θ)

)
,

so that

lnE
(
Z̄θ − ζ̄(θ)

)
+ ≥ ln[(β − 1)ζ̄(θ)] + lnP

(
Z̄θ ≥ βζ̄(θ)

)
.

Since limθ↓0 ζ̄(θ) = +∞, we have ln[(β − 1)ζ̄(θ)] ≥ 0 for θ close to 0. Hence

lim inf
θ↓0

lnE
(
Z̄θ − ζ̄(θ)

)
+

ζ̄
α
α−1 (θ)

≥ lim inf
θ↓0

lnP
(
Z̄θ ≥ βζ̄(θ)

)
ζ̄

α
α−1 (θ)

= −β
α
α−1 Jα(0),

where the last inequality follows from Lemma 6.8, applied with ξ(θ) = βζ̄(θ).
Going back to (6.13), we deduce(

1− 1
α

)
lim inf
θ↓0

ln(θ)
ζ̄

α
α−1 (θ)

≥ −β
α
α−1 Jα(0).

Since β is arbitrary in (1,+∞), we have(
1− 1

α

)
lim sup
θ↓0

| ln(θ)|
ζ̄

α
α−1 (θ)

≤ Jα(0).

Therefore

lim inf
θ↓0

ζ̄
α
α−1 (θ)
| ln(θ)| ≥

α− 1
αJα(0) = (αη0I0)

1
α−1 ,

which proves (6.12).

In order to derive an upper bound for lim supθ↓0
ζ(θ)

θ1/α| ln θ|1−
1
α

, we first de-

duce from (6.3) a lower bound for E
(
eX̄θ − 1− ζ(θ)

)
+

. We have

E
(
e(r−δ)θ+Xθ − 1− ζ(θ)

)
+

= E
(
e(r−δ)θ+Xθ1{Xθ≥ln(1+ζ(θ))−(r−δ)θ}

)
−(1 + ζ(θ))P(Xθ ≥ ln(1 + ζ(θ))− (r − δ)θ).

Note that

P(Xθ ≥ ln(1 + ζ(θ))− (r − δ)θ) = P
(
Xθ

θ1/α ≥
ln(1 + ζ(θ))− (r − δ)θ

θ1/α

)
.

Since Xθ/θ
1/α weakly converges to a finite random variable Z as θ ↓ 0 and

limθ↓0 ζ(θ)/θ1/α = +∞, we have

lim
θ↓0

P
(
Xθ

θ1/α ≥
ln(1 + ζ(θ))− (r − δ)θ

θ1/α

)
= 0.

Note that we also have

lim
θ↓0

E
(
e(r−δ)θ+Xθ − 1− ζ(θ)

)
+

= 0.
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Therefore
lim
θ↓0

E
(
eXθ1{Xθ≥ln(1+ζ(θ))−(r−δ)θ}

)
= 0

and

E
(
e(r−δ)θ+Xθ − 1− ζ(θ)

)
+

= E
(
eXθ1{Xθ≥ln(1+ζ(θ))−(r−δ)θ}

)
−(1 + ζ(θ))P(Xθ ≥ ln(1 + ζ(θ))− (r − δ)θ) + o(θ),

so that, using (6.3),

(r − δ)θ = E
(
eXθ − (1 + ζ(θ))

)
1{Xθ≥ln(1+ζ(θ))−(r−δ)θ} + o(θ)

≤ E
(
eXθ − 1− ζ(θ)

)
+ + o(θ). (6.14)

Using the decomposition Xθ = X̄θ+X0
θ −θ

∫
(ey−1)+ν(dy), the independence

of X̄ and X0, and the equality EeX̄θ = 1 (which follows from Lemma 6.6), we
have

E
(
eXθ − 1− ζ(θ)

)
+ ≤ E

(
eX

0
θ+X̄θ − 1− ζ(θ)

)
+

= E
((
eX

0
θ − 1

)
eX̄θ + eX̄θ − 1− ζ(θ)

)
+

≤ E
((
eX

0
θ − 1

)
eX̄θ
)

+ E
(
eX̄θ − 1− ζ(θ)

)
+

= eθ
∫

(ey−1)+ν(dy) − 1 + E
(
eX̄θ − 1− ζ(θ)

)
+

= θ

∫
(ey − 1)+ν(dy) + E

(
eX̄θ − 1− ζ(θ)

)
+

+ o(θ).

Hence, going back to (6.14),(
r − δ −

∫
(ey − 1)+ν(dy)

)
θ ≤ E

(
eX̄θ − 1− ζ(θ)

)
+

+ o(θ). (6.15)

Introducing the notation l(θ) = ln(1 + ζ(θ)), we have

E
(
eX̄θ − 1− ζ(θ)

)
+

= E
(
eX̄θ − el(θ)

)
+

= E

(
1{X̄θ≥l(θ)}

∫ X̄θ

l(θ)
eydy

)
+

≤
∫ +∞

l(θ)
eyP

(
X̄θ ≥ y

)
dy

= θ1/α
∫ +∞

l̄(θ)
ezθ

1/α
P
(
X̄θ ≥ zθ1/α

)
dz,

with l̄(θ) = l(θ)/θ1/α. It follows from Lemma 6.7 that, given any a ∈ [a0, 0),
we have

P
(
X̄θ ≥ zθ1/α

)
≤ exp

(
Caθ

1− 1
α z

1
α−1 − Jα(a)z

α
α−1

)
.
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Now, fix ε > 0. Since limθ↓0 l̄(θ) = +∞, we have, for θ close to 0,

∀z ≥ l̄(θ), zθ1/α + Caθ
1− 1

α z
1

α−1 ≤ εz
α
α−1 .

Hence, with the notation α̂ = α
α−1 ,

E
(
eX̄θ − 1− ζ(θ)

)
+
≤ θ1/α

∫ +∞

l̄(θ)
e−(Jα(a)−ε)zα̂dz.

We can assume ε close enough to 0 so that Jα(a) > ε, and∫ +∞

l̄(θ)
e−(Jα(a)−ε)zα̂dz ≤ 1

α̂(Jα(a)− ε)(l̄(θ))α̂−1

∫ +∞

l̄(θ)
α̂(Jα(a)− ε)zα̂−1e−(Jα(a)−ε)zα̂dz

= 1
α̂(Jα(a)− ε)(l̄(θ))α̂−1

e−(Jα(a)−ε)l̄α̂(θ).

Going back to (6.15), we deduce(
r − δ −

∫
(ey − 1)+ν(dy)

)
θ1− 1

α ≤ 1
α̂(Jα(a)− ε)(l̄(θ))α̂−1

e−(Jα(a)−ε)l̄α̂(θ)+o(θ1− 1
α ),

so that, for θ close to 0,

θ1− 1
α ≤ Cε

(l̄(θ))α̂−1
e−(Jα(a)−ε)l̄α̂(θ),

where Cε is a positive constant. Hence(
1− 1

α

)
ln θ ≤ −(Jα(a)− ε)l̄α̂(θ) + ln

(
Cε

(l̄(θ))α̂−1

)
,

and (
1− 1

α

)
lim sup
θ↓0

ln θ
l̄α̂(θ)

≤ −(Jα(a)− ε).

Since a and ε can be arbitrarily close to 0, we get, in the limit,

lim sup
θ↓0

ln θ
l̄α̂(θ)

≤ − α

α− 1Jα(0) = −(αη0I0)
−1
α−1 .

Note that limθ↓0
l(θ)
ζ(θ) = 1, so that we can conclude that

lim sup
θ↓0

ζ̄α̂(θ)
| ln θ| ≤ (αη0I0)

1
α−1 .

�
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6.2 Estimating the difference be − b

Proposition 6.9 Under assumption (AS), we have

lim sup
t→T

be(t)− b(t)
(T − t)1/α <∞.

Proof: It follows from the variational inequality and the inequality ∂P/∂t ≤ 0
that, for t ∈ (0, T ) and x ∈ (b(t),K), we have

(r−δ)x∂P
∂x

(t, x)+
∫ (

P (t, xey)− P (t, x)− x∂P
∂x

(t, x)(ey − 1)
)
ν(dy) ≥ r(K−x).

Note that, since
∫

(ey − 1)+ν(dy) <∞, we may write∫
(0,+∞)

(
P (t, xey)− P (t, x)− x∂P

∂x
(t, x)(ey − 1)

)
ν(dy) =∫

(0,+∞)
(P (t, xey)− P (t, x)) ν(dy)− x∂P

∂x
(t, x)

∫
(0,+∞)

(ey − 1) ν(dy),

so that, using the notation

d+ = r − δ −
∫

(ey − 1)+ ν(dy),

we get

d+x
∂P

∂x
(t, x) +

∫
(0,+∞)

(P (t, xey)− P (t, x)) ν(dy)

+
∫

(−∞,0)

(
P (t, xey)− P (t, x)− x∂P

∂x
(t, x)(ey − 1)

)
ν(dy) ≥ r(K − x).

Therefore, for x ∈ (b(t),K),∫
(−∞,0)

(
P (t, xey)− P (t, x)− x∂P

∂x
(t, x)(ey − 1)

)
ν(dy) ≥ −d+x

∂P

∂x
(t, x)− J(t),

where

J(t) =
∫

(0,+∞)
sup

b(t)<x<K
|P (t, xey)− P (t, x)| ν(dy).

Note that, due to the Lipschitz property of P (t, .), we have, for x ∈ (b(t),K)
and y > 0,

0 ≤ P (t, x)− P (t, xey) ≤ x (ey − 1) ≤ K (ey − 1) ,

and

P (t, x)− P (t, xey) ≤ P (t, b(t)).
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Since limt→T P (t, b(t)) = P (T,K) = 0, we deduce limt→T J(t) = 0. Now, for
x ∈ (b(t), be(t)), we have (with θ = T − t)

∂P

∂x
(t, x) ≤ ∂−P

∂x
(t, be(t)) ≤

∂−Pe
∂x

(t, be(t)) = −E
(
e−δθ+Xθ1{be(t)e(r−δ)θ+Xθ≤K}

)
,

where ∂− refers to left-hand derivatives, the first inequality follows from the
convexity of P (, t, .) and the second inequality follows from the fact that x 7→
(P − Pe)(t, x) is non-increasing (see Corollary 3.4). Observe that

E
(
e−δθ+Xθ1{be(t)e(r−δ)θ+Xθ≤K}

)
= E

(
e−δθ+Xθ1{(r−δ)θ+Xθ≤ln(1+ζ(θ))}

)
= E

(
e−δθ+Xθ1{ (r−δ)θ+Xθ

θ1/α
≤ ln(1+ζ(θ))

θ1/α

}) .
Using (6.4) and Lemma 6.3, we derive

lim
θ→0

E
(
e−δθ+Xθ1{ (r−δ)θ+Xθ

θ1/α
≤ ln(1+ζ(θ))

θ1/α

}) = 1.

Now, for x ∈ (b(t),K) denote

I(t, x) =
∫

(−∞,0)

(
P (t, xey)− P (t, x)− x∂P

∂x
(t, x)(ey − 1)

)
ν(dy).

It follows from the above discussion that

lim inf
t→T

inf
x∈(b(t),be(t))

I(t, x) ≥ d+K. (6.16)

We will now derive an upper bound for I(t, x), for b(t) < x < K. We have

I(t, x) =
∫(
−∞,ln b(t)

x

] (P (t, xey)− P (t, x)− x∂P
∂x

(t, x)(ey − 1)
)
ν(dy)

+
∫(

ln b(t)
x ,0
) (P (t, xey)− P (t, x)− x∂P

∂x
(t, x)(ey − 1)

)
ν(dy).

For y ≤ ln b(t)
x , we have

P (t, xey)− P (t, x)− x∂P
∂x

(t, x)(ey − 1) = (K − xey)− P (t, x)

−x∂P
∂x

(t, x)(ey − 1)

≤ (K − xey)− (K − x)

−x∂P
∂x

(t, x)(ey − 1)

= x

(
1 + ∂P

∂x
(t, x)

)
(1− ey) .
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For y ∈ (ln(b(t)/x), 0), we have, using the convexity of P (t, .),

P (t, xey)− P (t, x)− x∂P
∂x

(t, x)(ey − 1) ≤ x(ey − 1)∂P
∂x

(t, xey)− x∂P
∂x

(t, x)(ey − 1)

= x

(
∂P

∂x
(t, x)− ∂P

∂x
(t, xey)

)
(1− ey) .

Therefore

I(t, x) ≤ x

(
1 + ∂P

∂x
(t, x)

)∫(
−∞,ln b(t)

x

] (1− ey) ν(dy)

+
∫(

ln b(t)
x ,0
) x(∂P

∂x
(t, x)− ∂P

∂x
(t, xey)

)
(1− ey) ν(dy). (6.17)

Due to (6.16), there exists η > 0 such that for t ∈ [T − η, T ),

inf
x∈(b(t),be(t))

I(t, x) ≥ d+K

2 . (6.18)

From now on, we assume t ∈ [T − η, T ) and, for ξ ∈ (0, ln(be(t)/b(t))) we set

gt(ξ) = P (t, b(t)eξ).

Note that the derivative of gt is given by

g′t(ξ) = b(t)eξ ∂P
∂x

(t, b(t)eξ),

and, due to the smooth fit property, g′t(0) = −b(t). We also have |g′t(ξ)| ≤
be(t) ≤ K. Applying (6.17) with x = b(t)eξ, we have, using (6.18),

d+K

2 ≤
(
g′t(ξ)− g′t(0)eξ

) ∫
(−∞,−ξ]

(1− ey) ν(dy)∫
(−ξ,0)

(
g′t(ξ)− g′t(ξ + y)e−y

)
(1− ey) ν(dy)

Note that(
g′t(ξ)− g′t(0)eξ

) ∫
(−∞,−ξ]

(1− ey) ν(dy) = (g′t(ξ)− g′t(0))
∫

(−∞,−ξ]
(1− ey) ν(dy)

+g′t(0)(1− eξ)
∫

(−∞,−ξ]
(1− ey) ν(dy).

For ξ ∈ (0, ln(be(t)/b(t))), we have, for any ε > 0,(
eξ − 1

) ∫
(−∞,−ξ]

(1− ey) ν(dy) ≤
(
eξ − 1

)
ν ((−∞,−ε]) +

∫
(−ε,0)

(
e−y − 1

)
(1− ey) ν(dy)

≤
(
be(t)
b(t) − 1

)
ν ((−∞,−ε]) +

∫
(−ε,0)

(
e−y − 1

)
(1− ey) ν(dy).
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Therefore

lim
t→T

sup
ξ∈(0,ln(be(t)/b(t)))

(
eξ − 1

) ∫
(−∞,−ξ]

(1− ey) ν(dy) = 0.

By taking η smaller if necessary, we can now assume that, for t ∈ [T − η, T )
and ξ ∈ (0, ln(be(t)/b(t))), we have

d+K

3 ≤ (g′t(ξ)− g′t(0))
∫

(−∞,−ξ]
(1− ey) ν(dy)

+
∫

(−ξ,0)

(
g′t(ξ)− g′t(ξ + y)e−y

)
(1− ey) ν(dy). (6.19)

Now, take a ∈ (0, ln(be(t)/b(t))). By integrating (6.19) with respect to ξ from
0 to a, we get

d+K

3 a ≤ j1(a) + j2(a),

where

j1(a) =
∫ a

0
dξ (g′t(ξ)− g′t(0))

(∫
(−∞,−ξ]

(1− ey) ν(dy)
)

and

j2(a) =
∫ a

0
dξ

∫
(−ξ,0)

ν(dy)
(
g′t(ξ)− g′t(ξ + y)e−y

)
(1− ey) .

In order to estimate j1(a) we note that, for ξ ∈ (0, a),

g′t(ξ) = b(t)eξ ∂P
∂x

(t, b(t)eξ)

≤ b(t)eξ ∂P
∂x

(t, b(t)ea) = eξ−ag′t(a) ≤ e−ag′t(a),

where the first inequality follows from the convexity of P (t, .) and the second
one from g′t(a) ≤ 0. Hence

j1(a) ≤
(
e−ag′t(a)− g′t(0)

) ∫ a

0
dξ

(∫
(−∞,−ξ]

(1− ey) ν(dy)
)

=
(
e−ag′t(a)− g′t(0)

) ∫ 0

−∞
ν(dy) (1− ey)

(∫ a∧(−y)

0
dξ

)
.

Note that e−ag′t(a) − g′t(0) = b(t)
(
1 + ∂P

∂x (t, b(t)ea)
)
≥ 0. Using the assump-

tions we have on ν, we can find β < 0 such that, for y ∈ (β, 0),

ν(dy) ≤ 2η0

|y|1+α dy,
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so that, using ey ≥ 1 + y,

j1(a) ≤
(
e−ag′t(a)− g′t(0)

)(
a

∫
(−∞,β]

ν(dy) (1− ey) +
∫

(β,0)

2η0dy

|y|1+α (1− ey)
(∫ (a∧−y)

0
dξ

))

≤
(
e−ag′t(a)− g′t(0)

)(
aν((−∞, β]) +

∫ a

0
dξ

∫ |β|
ξ

2η0dy

|y|1+α |y|

)

≤
(
e−ag′t(a)− g′t(0)

)(
aν((−∞, β]) + 2η0

α− 1

∫ a

0
ξ1−αdξ

)
=
(
e−ag′t(a)− g′t(0)

)(
aν((−∞, β]) + 2η0

(2− α)(α− 1)a
2−α

)
Note that a ∈ (0, ln(be(t)/b(t))) and limt→T ln(be(t)/b(t)) = 0. So, for t close
enough to T , we may assume a ∈ (0, 1], so that a ≤ a2−α (recall 1 < α < 2).
Therefore, for some C > 0,

j1(a) ≤ Ca2−α (e−ag′t(a)− g′t(0)
)

= Ca2−α (g′t(a)− g′t(0)) + Cg′t(a)a2−α (e−a − 1
)

≤ Ca2−α (g′t(a)− g′t(0)) + CKa3−α. (6.20)

We now study j2(a). Note that, for y < 0,

g′t(ξ)− g′t(ξ + y)e−y = b(t)eξ
(
∂P

∂x

(
t, b(t)eξ

)
− ∂P

∂x

(
t, b(t)eξ+y

))
≥ 0.

Since a ∈ (0, ln(be(t)/b(t))) and limt→T ln(be(t)/b(t)) = 0, we may assume
a < |β| and write

j2(a) ≤
∫ a

0
dξ

∫
(−ξ,0)

2η0

|y|1+α dy
(
g′t(ξ)− g′t(ξ + y)e−y

)
(1− ey)

= 2η0

∫ a

0
dξ

∫ ξ

0

dy

y1+α (g′t(ξ)− g′t(ξ − y)ey)
(
1− e−y

)
≤ 2η0

∫ a

0
dξ

∫ ξ

0

dy

yα
(g′t(ξ)− g′t(ξ − y)ey) ,

where the last inequality follows from 1− e−y ≤ y. Hence

j2(a) ≤ 2η0

∫ a

0

dy

yα

∫ a

y

dξ (g′t(ξ)− g′t(ξ − y)ey)

= 2η0

∫ a

0

dy

yα
(gt(a)− gt(a− y)ey − gt(y) + gt(0)ey) .

= 2η0

∫ a

0

dy

yα
(gt(a)− gt(a− y)− gt(y) + gt(0)) + 2η0

∫ a

0

dy

yα
(ey − 1) (gt(0)− gt(a− y))

≤ 2η0

∫ a

0

dy

yα
(gt(a)− gt(a− y)− gt(y) + gt(0)) + 2η0Ka

∫ a

0

dy

yα
(ey − 1),
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where the last inequality follows from ||g′t||∞ ≤ K. Note that a

∫ a

0

dy

yα
(ey−1) ≤

Ca3−α for some C > 0. On the other hand, we have, for y ∈ (0, a),

gt(a)− gt(a− y) =
∫ y

0
g′t(a− z)dz

=
∫ y

0
b(t)ea−z ∂P

∂x

(
t, b(t)ea−z

)
dz

≤
∫ y

0
b(t)ea−z ∂P

∂x
(t, b(t)ea) dz

≤
∫ y

0
b(t)∂P

∂x
(t, b(t)ea) dz = yb(t)∂P

∂x
(t, b(t)ea) = ye−ag′t(a),

where the first inequality follows from the convexity of P (t, .) and the second
one from ∂P/∂x ≤ 0. Similarly, we have

gt(y)− gt(0) =
∫ y

0
g′t(z)dz =

∫ y

0
b(t)ez ∂P

∂x
(t, b(t)ez) dz

≥
∫ y

0
b(t)ez ∂P

∂x
(t, b(t)) dz

≥ yb(t)ey ∂P
∂x

(t, b(t)) = g′t(0)yey.

Hence∫ a

0

dy

yα
(gt(a)− gt(a− y)− gt(y) + gt(0)) ≤

∫ a

0

dy

yα
y
(
e−ag′t(a)− eyg′t(0)

)
=
∫ a

0

dy

yα−1 (g′t(a)− g′t(0))

+
∫ a

0

dy

yα−1

[(
e−a − 1

)
g′t(a) + (1− ey) g′t(0)

]
≤
∫ a

0

dy

yα−1 (g′t(a)− g′t(0))

+(a+ (ea − 1))K a2−α

2− α
≤ Ca2−α (g′t(a)− g′t(0)) + Ca3−α,

for some C > 0, so that we have

j2(a) ≤ Ca2−α (g′t(a)− g′t(0)) + Ca3−α (6.21)

Putting (6.20) and (6.21) together, we conclude that, for some positive con-
stant C, we have

d+K

3 a ≤ Ca2−α (g′t(a)− g′t(0)) + Ca3−α



38 Damien Lamberton, Mohammed Adam Mikou

or, equivalently,

d+K

3C aα−1
(

1− 3C
d+K

a2−α
)
≤ g′t(a)− g′t(0).

For t close enough to T , we have, for all a ∈ (0, ln(be(t)/b(t))), a2−α < d+K
6C ,

hence
d+K

6C aα−1 ≤ g′t(a)− g′t(0).

We now integrate this inequality with respect to a from 0 to at = ln(be(t)/b(t))
to derive

aαt ≤ C (gt(at)− atg′t(0)− gt(0)) ,

where C is a positive constant. Hence

1
C

(be(t)− b(t))α ≤ P (t, be(t)) + b(t) ln be(t)
b(t) − P (t, b(t))

≤ P (t, be(t)) + be(t)− b(t)− (K − b(t))
= P (t, be(t))− Pe(t, be(t)) ≤ rK(T − t),

where the last inequality follows from the Early Exercise Premium Formula. �
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Journal of Applied Probability 49, 137-149, 2012.

12. Lamberton, D., and Villeneuve, S. : Critical Price near Maturity for an American Option
on a Dividend-Paying Stock. Annals of Applied Probability 13, 800-815, 2003.

13. Levendorskii, S.Z.: Pricing of the American Put Under Lévy Processes. International
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