
Sustainability in static-priority restricted-migration

scheduling

Frédéric Fauberteau, Serge Midonnet

To cite this version:

Frédéric Fauberteau, Serge Midonnet. Sustainability in static-priority restricted-migration
scheduling. RACS 2012, Oct 2012, San Antonio, United States. pp.416-421, 2012,
<10.1145/2401603.2401692>. <hal-00797909>

HAL Id: hal-00797909

https://hal.archives-ouvertes.fr/hal-00797909

Submitted on 7 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Ecole des Ponts ParisTech

https://core.ac.uk/display/48333646?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00797909

Sustainability in static-priority restricted-migration
scheduling

Frédéric Fauberteau
CEA, List,

Embedded Real-Time Systems Laboratory
Point Courrier 94

Gif-sur-Yvette, F-91191 France
frederic.fauberteau@cea.fr

Serge Midonnet
Université Paris-Est

LIGM, UMR CNRS 8049
5, bd Descartes – Champs-sur-Marne

77454 Marne-la-Vallée CEDEX 2, France
serge.midonnet@univ-paris-est.fr

ABSTRACT
In this paper, we focus on the static-priority scheduling of
periodic hard real-time tasks upon identical multiprocessor
platforms. In order to bound the inter-processor migrations,
we consider the restricted-migration scheduling policy for
which a task is allowed to migrate only at job boundaries.
Several jobs of the same task can then be assigned on differ-
ent processors but a given job can not migrate. It has been
shown that this scheduling policy can suffer from schedul-
ing anomalies. These anomalies occur when a decrease in
execution requirement of a job causes a deadline miss. We
present a static-priority restricted-migration scheduling al-
gorithm and we prove it does not suffer from these anoma-
lies. We also review the scheduling anomalies according to
the scheduling tests for this algorithm.

Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems]:
Real-time and embedded systems; J.7 [Computers in other
systems]: Real time

General Terms
Algorithms

Keywords
Real-Time, Scheduling, Multiprocessor, Sustainability

1. INTRODUCTION
The recent improvements in the embedded systems induce

more powerful and complex systems on which we can reason-
ably run a modern operating system. In the case of the real-
time embedded applications, a Real-Time Operating System
(RTOS) can be a good solution to provide security and re-
liability. A RTOS also enables to implement an advanced
scheduler without suffering from intolerable overrides due

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RACS’12 October 23-26, 2012, San Antonio, TX, USA.
Copyright 2012 ACM 978-1-4503-1492-3/12/10 ...$10.00.

to costly computations of scheduling decisions. In the case
of the multiprocessor embedded systems, the choice of the
scheduler is very important in order to reduce the number
of context switches and migrations.

The literature about real-time multiprocessor scheduling
often states two main approaches (a third one is presented
bellow) to schedule sets of tasks. These two multiproces-
sor scheduling approaches are referenced as global and par-
titioned scheduling. The first one allows inter-processor mi-
grations while the second one prevents them. Although the
superiority of partitioned scheduling over global scheduling
has been highlighted according to the best known schedu-
lability tests [2], these two approaches are incomparable.
Some set of tasks can be scheduled with partitioned algo-
rithm and not by a global one and vice versa. It remains
difficult to choose among one of these two approaches. As
presented in [7], the intermediate restricted-migration ap-
proach has to be considered. This approach allows task-level
migrations but no job-level migrations. A non-hybrid 1 mul-
tiprocessor scheduling algorithm can be classified among one
of the following classes:

• partitioned: Each task is assigned on a processor.
For a given task, each job is released on the processor
on which the task has been assigned. No migration is
allowed (e.g. [19], EDF-FF [17]).

• restricted-migration: At each time a job is released,
it can be assigned on a different processor. The task-
level migrations are allowed but a job can not migrate
during its execution (e.g. r-EDF [5], r-SP wl [8]).

• global: The job-level migrations are allowed. A job
can start on a first processor and finishes on a second
one (e.g. RM-US[m/(3m− 2)] [1]), PriD [12]).

This classification reminds the one made for the three
main classes of uniprocessor scheduling algorithm. A unipro-
cessor scheduling algorithm can be classified among one of
the following classes:

• fixed-task-priority or static-priority: A priority is
attributed to each task composing the system. For a
given task, each job inherits the priority of the task
which generates it. The priority of a job is constant
during its execution. (e.g. Rate-Monotonic [16], Dead-
line-Monotonic [15], ...).

1An hybrid algorithm exploits behavior from two different
classes for two different subsets of tasks (See [11] for more
details)

• fixed-job-priority: At each time a job is released,
its priority is computed and it is constant during the
execution of the job (e.g. Earliest-Deadline-First [16]).

• dynamic-priority: The priority of any job can change
during its execution (e.g. Least-Laxity-First [18])

We refer to a fixed-priority scheduling algorithm in the
case where the scheduling algorithm is either fixed-task-
priority or fixed-job-priority and only jobs are considered.

In multiprocessor context, a non-hybrid scheduling algo-
rithm can reasonably be referred according to both how the
prioritization is done (fixed-task / fixed-job / dynamic) and
how the migrations are allowed (no / task-level / job-level).

Although the restricted-migration scheduling has been less
studied than the two main multiprocessor scheduling ap-
proaches, we can exhibit some interesting works. Ha and Liu
have studied the fixed-priority restricted-migration schedul-
ing of a set of jobs and have shown this kind of scheduling
is prone to a problem of predictability (scheduling anomaly
which occurs when the execution requirement of jobs is de-
creased). Baruah and Carpenter have proposed r-EDF, an
EDF-based algorithm for periodic tasks on identical proces-
sors [5]. In the same paper, they also proposed an extension
of PriD [12] to r-PriD (which exploits restricted-migration).
Funk has studied in her thesis [10] the restricted-migration
scheduling approach in the case of an uniform multipro-
cessor. Fisher has studied in his thesis [9] the restricted-
migration scheduling approach in the case of scheduling of
a set of jobs. Fauberteau et al. have proposed r-SP wl, a
static-priority algorithm for periodic tasks on identical pro-
cessors [8]. The contribution of this paper is to propose a
proof of sustainability for r-SP wl algorithm in the case of
the constrained deadline period sets of tasks.

The remainder of this paper is organized as follows. In
Section 2, we remind the model that we consider and we
introduce the notations that we use. In Section 3, we de-
fine the concept of sustainability and we give an example
illustrating a scheduling anomaly which can occur with a
non-predictable algorithm. In Section 4, we present our
static-priority restricted-migration scheduling algorithm and
we prove that it is sustainable according to our considered
model. We conclude in Section 5 by giving some future work
perspectives.

2. SYSTEM MODEL
We consider a set τ of n constrained deadline periodic

tasks indexed from 1 to n. (i.e. τ = {τ1, . . . , τn}). The
index of the task is in inverse proportion to its priority. The
less is the task index the higher its priority is.

A task τi is characterized by:

• its Worst Case Execution Time (WCET) denoted Ci,

• its relative deadline denoted Di,

• its period denoted Ti.

A task τi (Ci, Di, Ti) consists of an infinite recurrence of
jobs where each job Ji,k is characterized by:

• its release time denoted ri,k,

• its execution requirement denoted ei,k such that 0 ≤
ei,k ≤ Ci,

• its absolute deadline denoted di,k such that di,k =
ri,k +Di.

For readability, we can consider a job independently of the
task which generates it and we denote it Jk(rk, ek, dk).

By definition, the utilization of a periodic task is given
by ui = Ci

Ti
. By extension, we define the utilization of a

set of tasks as the sum of the utilization of the tasks which
compose it and its value is given by U(τ) =

∑n
i ui. We also

denote Umax(τ) the maximum utilization of τ and we define
it as: Umax(τ) = maxni ui.

We also consider a set Π of m processors πj indexed from
1 to m (i.e. Π = {π1, . . . , πm}). We consider the processors
as identical (homogeneous case). In other terms, each job is
executed as the same rate on any processor.

3. SUSTAINABILITY
In order to analyze a given hard real-time system, a tech-

nique consists in highlighting the worst case scenario in which
the worst response time could be met. Intuitively, this sce-
nario has to occur when the utilization of the set of tasks
is maximum. In other words, it has to occur when the ex-
ecution requirement of each job is maximum and when the
inter-arrival time of each task is minimum.

But it has been shown that some classes of algorithms
are prone to scheduling anomalies [14, 13]. In particular, it
has been shown that a fixed-priority restricted-migration job
assignment is not predictable. Let Jk denote a job generated
by a task τi. Let Sk denote the start time of Jk and S−k its
minimum start time. In the same manner, let Fk denote
the finish time of Jk and F+

k its maximum finish time. The
non-predictability of a scheduling algorithm is a scheduling
anomaly which occurs when the execution time ek of Jk is
such that e−k ≤ ek ≤ e+k and (i) either Sk < S−k or (ii)
Fk > F+

k .
In Figure 1, we show an example from [14] illustrating this

kind of scheduling anomaly. The Table 1(a) represents the
arrival time rk, the absolute deadline dk and the execution
requirement ek of the job Jk for 1 ≤ k ≤ 6. The priority
of the jobs are given in decreasing order of their index (J1
is the higher priority and J6 is the lower priority). In this
example, the execution requirement of J2 can vary from 2
to 6. In Figure 1(b), respectively 1(c), J2 runs for its maxi-
mum, respectively its minimum, execution requirement. We
notice that all deadlines are met. Intuitively, we could con-
clude that no deadlines can be missed in all cases. But in
Figure 1(d), J2 runs for 3 time units and J4 misses its dead-
line. Finally, in Figure 1(e), when J2 runs for 5 time units,
the finish time F4 of J4 is minimum.

The predictability is a notion linked to the execution re-
quirement of the jobs. It consists in guaranteeing that a
scheduling algorithm can successfully schedule a set of jobs
when the execution requirement of one or many jobs is re-
duced. The concept of sustainability comes from the notion
of predictability but it is extended to the relaxation of other
parameters as relative deadlines or arrival times.

Definition 1 (Sustainable algorithm). Let A de-
note a scheduling algorithm. Let τ denote any set of tasks
that is A-schedulable. Let J denote a collection of jobs gen-
erated by τ . Scheduling algorithm A is said to be sustainable
if and only if A meets all deadlines when scheduling any col-
lection of jobs obtained from J by changing the parameters

job rk dk [e−k , e
+
k] job rk dk [e−k , e

+
k]

J1 0 10 [5, 5] J4 0 20 [10, 10]
J2 0 10 [2, 6] J5 5 200 [100, 100]
J3 4 15 [8, 8] J6 7 25 [2, 2]

(a) Job parameters

J1 J3

J4 J6

J5π1

π2 J2

0 5 10 15 20

(b) e2 = 6

J1π1

π2 J2 J4 J3

J5

J6J4

0 5 10 15 20

(c) e2 = 2

J1π1

π2 J3

J5

J4J2 J6J4

0 5 10 15 20

(d) e2 = 3

J1 J3 J5π1

π2 J2 J4 J6

0 5 10 15 20

(e) e2 = 5

Figure 1: A example illustrating scheduling anoma-
lies from [14].

of one or more individual jobs in any, some, or all the fol-
lowing ways: (i) decreased execution requirements; (ii) larger
relative deadlines and (iii) latter arrival times.

In addition to the scheduling algorithms, the concept of
sustainability can be used in the case of schedulability tests.
In the same manner a scheduling policy can suffer from
scheduling anomalies when job or task parameters are re-
laxed, a schedulability test can argue that a set of tasks is
schedulable and invalidate this response if one or many of
the scheduling parameters is relaxed.

Definition 2 (Sustainable test). Let A denote a
scheduling algorithm and F a schedulability test for A. Let τ
denote any set of tasks that is A-schedulable. Let J denote
a collection of jobs generated by τ . Scheduling test F is
said to be sustainable if and only if A meets all deadlines
when scheduling any collection of jobs obtained from J by
changing the parameters of one or more individual jobs in
any, some, or all the following ways: (i) decreased execution
requirements; (ii) larger relative deadlines and (iii) latter
arrival times.

In the case of uniprocessor scheduling, the schedulability
tests have been studied in order to highlight which of them
are sustainable [4, 6]. This work has been extended in the
case of the multiprocessor scheduling [3].

4. SCHEDULING ALGORITHM
In Section 4.1 below, we describe the behavior of the

fixed-priority restricted-migration scheduling algorithm as

presented in [14]. In Section 4.2, we define r-SP wl, a static-
priority restricted-migration multiprocessor scheduling algo-
rithm for scheduling periodic sets of tasks upon identical
multiprocessor platforms. In Section 4.3, we prove that r-
SP wl is sustainable according to decreased execution time,
later arrival times and larger relative deadlines. In Sec-
tion 4.4, we review the sustainability of the schedulability
tests of r-SP wl.

4.1 Non-predictable algorithm
We have reminded in Section 3 that a fixed-priority restrict-

ed-migration scheduling algorithm is not predictable. By
extension, a static-priority restricted-migration suffers from
the same scheduling anomaly. In order to propose a pre-
dictable scheduling algorithm of this class, it is necessary
to analyze the properties of the scheduling algorithm given
in [14] to discover which property is responsible of the non-
predictability. This scheduling algorithm is described by the
Algorithm 1.

Algorithm 1: Fixed-priority restricted-migration
scheduling algorithm from [14].

Input: Ready job Jk
Input: Global pending jobs queue Qg

Input: Local pending jobs queues Q = {Q1, . . . ,Qm}
1 foreach πj ∈ Π do
2 if πj is free then
3 if there is a lower priority job Jl running on πj

then
4 stop Jl;
5 put Jl in Qj ;

6 end
7 start Jk on πj ;

8 else
9 put Jk in Qg;

10 end

11 end

This algorithm is designed to assign jobs on the multipro-
cessor platform when they are released only if a processor is
available. In this last case, the assignment is postponed to a
time at which a processor becomes available (the finish time
of a higher priority job). The ready job Jk is tested to be
assigned on one of the m available processors (Lines 1-11).
If one of these processors is free – in the sense of no higher
priority job is running on this processor – then Jk starts on
πj (Lines 2-7). If a lower priority job is already running,
it is preempted and put in the πj local queue (Lines 3-6).
Otherwise, if no processor is free for Jk at its release time,
its start is postponed and it is put in the global queue Qg

(Lines 8-9). For readability, we voluntarily omit the algo-
rithm part corresponding to the finish time of a job. But
when a job finishes its execution, the scheduler is called to
check the pending local and global job queues in order to
start the higher priority waiting job.

Definition 3 (Lower-priority-agnostic test). A
schedulability test is lower-priority-agnostic if for a given
job Jk, no lower priority than Jk job has to be considered to
decide the schedulability of Jk.

As shown in Figure 1(d), the fixed-priority restricted-
migration scheduling algorithm from [14] is lower-priority-

agnostic since J3 is assigned on processor π2 without con-
sideration in J4 which will miss deadline because of lake of
processor execution time.

Definition 4 (Processor-available assignment).
An assignment is processor-available if the assignment of a
job Jk is made when a processor becomes available.

As shown in Figures 1(b) and 1(c), the algorithm from
[14] performs a processor-available assignment. The job J3
released at time 4 is either assigned on processor π1 at time
5 because no processor is available before or on processor
π2 at time 4 because of lower priority job runs and can be
preempted.

Definition 5 (Work-conserving algorithm). A
multiprocessor scheduling algorithm is work-conserving if no
processor is idled while there are active jobs.

As explained above, when a job finishes its execution,
the scheduler is executed in order to wake up a potential
pending job from both the processor local queues and the
global system queue. This behavior leads to produce a work-
conserving scheduler.

We have shown that the fixed-priority restricted-migration
scheduling algorithm from [14] is a work-conserving algo-
rithm and that its job assignment is processor-available using
a schedulability test which is lower-priority-agnostic.

4.2 Algorithm r-SP wl

According to the previous cited properties, we now ex-
amine how to design a predictable static-priority restricted-
migration scheduling algorithm. In a more general purpose,
we extend this property of predictability to a sustainability
one.

Algorithm 2: r-SP wl scheduling algorithm.

Input: Ready job Jk
Input: Local pending jobs queues Q = {Q1, . . . ,Qm}

1 foreach πj ∈ Π do
2 if πj is free then
3 if Jk is the most priority on πj then
4 if there is a lower priority job Jl running on

πj then
5 stop Jl;
6 put Jl in Qj ;

7 end
8 start Jk on πj ;

9 else
10 put Jk in Qj ;
11 end

12 else
13 return unschedulable;
14 end

15 end

This algorithm is designed to assign jobs on the multipro-
cessor platform at their release time even if no processor is
available. In this last case, jobs are put in the local queue
of the chosen processor. The ready job Jk is tested to be
assigned on one of the m available processor (Lines 1-15). If
one of these processors is free then Jk starts on πj (Lines 2-
11). With r-SP wl, a processor πj is considered free for the

job Jk if all jobs Jj ∈ J(πj)
′ (with J(πj)

′ = J(πj) ∪ Jk)
have enough laxity Lj(πj , rk) on processor πj at their re-
leased time rj to be scheduled. The laxity values are com-
puted and maintained by the scheduler. If a lower priority
job is already running, it is preempted and put in the πj
local queue (Lines 3-8). If no processor is free for job Jk
at its release time, it is considered unschedulable. Like the
algorithm presented in [14], the scheduler has to be executed
at a time when a job finishes its execution but it has only to
examine the local queue of the processor on which this job
finishes. The laxity has also to be decreased for a job Jk at
time rk + Ck in order to guarantee the predictability of the
schedule.

Definition 6 (Laxity). The laxity Lk(πj , t) of a job
Jk on a processor πj at time t is given by:

Lk(πj , t) = Dk − Ck −
∑

Jh∈hp(πj ,Jk)

e∗h(t)

where e∗h(t) denotes the remaining execution requirement of
the job Jh at time t.

A static-priority schedulability test is in general lower-
priority-agnostic. In uniprocessor, this behavior is com-
pletely justified because a higher priority job has to be sched-
uled before other jobs even if these last ones do not meet
their deadline. But in the multiprocessor case, this behav-
ior can lead to the case that the job is assigned on a processor
on which a lower priority task could miss its deadline or mi-
grate while another processor could discard this eventuality.
In the case of a global scheduler, a lower-priority-agnostic
test can lead to a more important number of migrations
without impacting the schedulability. But in the case of
restricted-migration approach, it can cause deadline misses.

Definition 7 (Lower-priority-aware test). A
schedulability test is lower-priority-aware if for a given job
Jk, lower priority than Jk jobs have to be considered to de-
cide the schedulability of Jk.

In the case of fixed-priority restricted-migration, one of
the main causes of the predictability problem is the processor-
available assignment. During the release time of a job and
when a processor becomes free to admit it, many changes
can occur in the scheduling scenario. These changes can
lead to the job assigned on a completely different proces-
sor. At this point, it is impossible to predict the worst case
behavior of this job since it is not allowed to migrate on
another processor in order to continue its execution after a
preemption by a higher priority job.

Definition 8 (Release-time assignment). An
assignment is release-time if the assignment of a job Jk is
made when Jk becomes active (at its release time) instead of
the time at which a processor becomes available.

The algorithm r-SP wl is driven by the laxity of the jobs at
time t. We can notice that this value of laxity is computed
using the WCET of the task which generates the job. If
a job Jk finishes its execution earlier than this WCET, it
can result in an idle time on the processor on which Jk was
executed.

Definition 9 (Idle algorithm). A
multiprocessor scheduling algorithm is idle if at least one
processor can be idled while there are active jobs.

0 5 10 15 20 25 30

1

π2

J1,1

J2,1 J3,1

J1,2

J2,2 J3,2

J1,3

J2,3 J3,3

J1,4 J1,5

J2,4 J3,4 J2,5

J1,6

J3,5

π

(a) Schedulable set of jobs.

π1

π2

J1,5J1,4 J1,6J1,1 J1,2 J1,3

J3,1 J2,2 J3,2 J2,3 J3,3 J2,4 J3,4 J3,5J2,1

J2,5J2,5

0 5 10 15 20 25 30

(b) Unschedulable set of jobs without idle times.

π1

π2

J1,3J1,1 J1,2 J1,4

J2,1 J3,1 J2,2 J3,2 J2,3 J3,3

J1,5 J1,6

J2,4 J3,4 J2,5 J3,5

0 5 10 15 20 25 30

(c) Schedulable set of jobs with idle times.

Figure 2: Impact of idle times in restricted-
migration scheduling.

We illustrate in Figure 2 the problems which we can en-
counter with restricted-migration scheduling in the case of
work-conserving algorithms and lower-priority-agnostic sche-
dulability tests. The system depicted in this figure is gener-
ated by three tasks τ1(5, 5, 5), τ2(3, 6, 6) and τ3(3, 6, 6) and
scheduled among two processors. In Figure 2(a), we rep-
resent a set of jobs schedulable with respect to the static-
priority restricted-migration scheduling. In Figure 2(b), we
represent the same set of jobs but the job J1,5 has an execu-
tion requirement of 4 instead of 5. In this case, the processor
π1 becomes idle at time 24. In this scenario, the job J2,5 can
be assigned to the processor π1 and start its execution. But
at time 25, the sixth job of τ1 is released and preempts the
job of τ2 since τ1 is higher priority. At this time, it is possible
to know that J2,5 will miss its deadline because it has not
enough laxity to finish its execution. In Figure 2, the same
set of jobs is depicted, but the lower-priority-aware test of
r-SP wl is used. Since the laxity of a job on a processor is
updated at the time of its worst case finish time, the laxity
of J1,5 at time 24 is always 0 and therefore the laxity of J2,5
is also 0. The processor π1 can not be considered as avail-
able for the assignment of this last job. This behavior leads
to produce idle times in scheduling. It is also important
to notice that the lower-priority-aware schedulability test of
r-SP wl does not allow J1,6 to be assigned on π1 because
the laxity of lower priority job J2,6 would not be enough to
permit it to finish its execution before its deadline.

We shown that r-SP wl differs from the fixed-priority restr-
icted-migration from [14] in three points. We now prove that
it is sustainable.

4.3 Sustainability of r-SP wl

In order to prove the sustainability of r-SP wl, we must
verify that it can successfully schedule a set of tasks ac-
cording to the three relaxations of parameters which are (i)
execution requirement decreasing (ii) relative deadline in-
creasing (iii) arrival time increasing. We verify these points
by the three following lemmas.

Lemma 1. Let τ denote any set of tasks that is schedula-
ble by r-SP wl. Let J denote a collection of jobs generated by
τ The algorithm r-SP wl meets all deadlines when schedul-
ing any collection of jobs obtained from J by changing the

parameters of one or more jobs by decreasing execution re-
quirements.

Proof. The proof comes from a mathematical induction
over the priority of the jobs. Let J be a set of n jobs. We
denote J−i the job for which the execution requirement is
such that e−i < ei. We also denote L−i (πj , t) = Di − Ci −∑
J−
h
∈hp(πj ,J

−
i)
e−∗j (t) the laxity of J−i on the processor πj at

time t. The induction hypothesis is ∀ 1 ≤ i ≤ n, L−i (πj , t) ≥
Li(πj , t). The hypothesis is true at step one by definition
of the laxity since Ji is the most priority job: L−i (πj , t) =
Li(πj , t). We suppose the induction is true at step i. We
verify that the relation L−i+1(πj , t) ≥ Li+1(πj , t) is true for
the job Ji+1. By contradiction:

L−i+1(πj , t) < Li+1(πj , t) (1)

⇒
∑

J−
h
∈hp(πj ,J

−
i)

e−∗j (t) >
∑

Jh∈hp(πj ,Ji)

e∗j (t) (2)

Since πj stay idle when higher priority jobs than J−i have
finished their execution before their WCET, we obtain∑

J−
h
∈hp(πj ,J

−
i)

e−∗j (t) =
∑

Jh∈hp(πj ,Ji)

e∗j (t)

which is in contradiction with (2). The induction hypothesis
follows.

Lemma 2. Let τ denote any set of tasks that is schedu-
lable by r-SP wl. Let J denote a collection of jobs gener-
ated by τ The algorithm r-SP wl meets all deadlines when
scheduling any collection of jobs obtained from J by chang-
ing the parameters of one or more jobs by enlarging relative
deadlines.

Proof. The scheduling decisions are made considering
the laxity at time t of the jobs. The deadline of the jobs is
not used to compute this laxity then scheduling decision can
not be changed if a deadline is enlarged.

Lemma 3. Let τ denote any set of tasks that is schedula-
ble by r-SP wl. Let J denote a collection of jobs generated by
τ The algorithm r-SP wl meets all deadlines when schedul-
ing any collection of jobs obtained from J by changing the
parameters of one or more jobs by enlarging arrival times.

Proof. The considered tasks are periodic then the arrival
time of a job can not be increased.

Proposition 1. The static-priority restricted-migration
scheduling algorithm r-SP wl is sustainable with respect to
WCET, relative deadlines and period.

Proof. The proof is made from Lemmas 1, 2 and 3.

4.4 Sustainability of r-SP wl tests
In order to decide the schedulability of a set of tasks with

r-SP wl, we proposed a sufficient schedulability test based
on the notion of LOAD. LOAD at level k represents the
maximum processor demand of the jobs of priority greater
than and equal to k at any time t.

Theorem 1 (From [8]). Any set τ of periodic tasks
satisfying:

∀k : 1 ≤ k ≤ n :

[
LOAD(k) ≤ 1 + (m− 1)Umin(k)

1 + 2(Dmax(k)/Dk)

]

is r-SP wl schedulable upon identical multiprocessor plat-
forms where Umin(k) is the minimum utilization and Dmax(k)
the maximum deadline of the tasks of priority from 1 to k.

The sufficient schedulability condition given by Theorem 1
is not sustainable. In order to decide schedulability of a set
of tasks without sustainability problem, it is necessary to
consider the schedule over the feasibility interval given by
[X1, Sn + P] where Xn is given by Xn = Sn and Xi =

Oi +
⌊
Xi+1−Oi

Ti

⌋
Ti and where Sn is given by S1 = O1 and

Si = max(Oi, Oi +
⌈
Si−1−Oi

Ti

⌉
Ti). P denotes the hyper-

period of the set of tasks and Oi the offset of the task τi.

5. CONCLUSION
In the case of embedded real-time multiprocessor schedul-

ing, the restricted-migration scheduling is an interesting ap-
proach. But it has been shown that it suffers from sustain-
ability problems in the case of fixed-priority. In this pa-
per, we review the notion of sustainability and we analyze a
non-predictable algorithm in order to propose a sustainable
alternative. We highlight the properties of lower-priority-
agnostic test, processor-available assignment and work-conserving
algorithm which are responsible of the non-predictability.
We propose for our algorithm r-SP wl the properties of lower-
priority-aware test, release-time assignment and idle algo-
rithm. We prove that it does not suffer from scheduling
anomaly with the model of tasks we consider.

In a previous work, we proposed a sufficient schedulability
test for r-SP wl. Unfortunately, this test is not sustainable
and we intend to develop a sustainable one in a future work.

6. REFERENCES
[1] B. Andersson, S. K. Baruah, and J. Jonsson.

Static-priority scheduling on multiprocessors. In
Proceedings of the 22nd IEEE Real-Time Systems
Symposium (RTSS), pages 193–202, London, UK,
December 2001. IEEE Computer Society.

[2] T. P. Baker. Comparison of empirical success rates of
global vs. partitioned fixed-priority and EDF
scheduling for hard real time. Technical Report
TR-050601, Florida State University, Tallahassee, FL,
USA, July 2005.

[3] T. P. Baker and S. K. Baruah. Sustainable
multiprocessor scheduling of sporadic task systems. In
Proceedings of the 21st Euromicro Conference on
Real-time Systems (ECRTS), pages 141–150, Dublin,
Irland, July 2009. IEEE Computer Society.

[4] S. K. Baruah and A. Burns. Sustainable scheduling
analysis. In Proceedings of the 27th IEEE Real-Time
Systems Symposium (RTSS), pages 159–168, Rio de
Janeiro, Brazil, December 2006. IEEE Computer
Society.

[5] S. K. Baruah and J. Carpenter. Multiprocessor
fixed-priority scheduling with restricted interprocessor
migrations. In Proceedings of the 15th Euromicro
Conference on Real-time Systems (ECRTS), pages
195–202, Porto, Portugal, July 2003. IEEE Computer
Society.

[6] A. Burns and S. K. Baruah. Sustainability in real-time
scheduling. Journal of Computing Science and
Engineering (JCSE), 2(1):74–97, March 2008.

[7] J. Carpenter, S. H. Funk, P. Holman, A. Srinivasan,
J. H. Anderson, and S. K. Baruah. Handbook of
Scheduling: Algorithms, Models, and Performance
Analysis, chapter A Categorization of Real-Time
Multiprocessor Scheduling Problems and Algorithms,
pages 30–1 – 30–19. Chapman and Hall/CRC, Boca
Raton, Florida, 2004.

[8] F. Fauberteau, S. Midonnet, and L. George.
Laxity-based restricted-migration scheduling. In
Proceedings of the 16th IEEE International
Conference on Emerging Technologies and Factory
Automation (ETFA), pages 1–8, Toulouse, France,
September 2011. IEEE Computer Society.

[9] N. W. Fisher. The Multiprocessor Real-Time
Scheduling of General Task Systems. PhD thesis,
University of North Carolina at Chapel Hill, 2007.

[10] S. H. Funk. EDF Scheduling on Heterogeneous
Multiprocessors. PhD thesis, University of North
Carolina at Chapel Hill, 2004.

[11] L. George, P. Courbin, and Y. Sorel. Job vs. portioned
partitioning for the earliest deadline first
semi-partitioned scheduling. Journal of Systems
Architecture, 57(5):518–535, May 2011.

[12] J. Goossens, S. H. Funk, and S. K. Baruah.
Priority-driven scheduling of periodic task systems on
multiprocessors. Real-Time Systems, 25(2-3):187–205,
September 2003.

[13] R. Ha. Validating timing constraints in multiprocessor
and distributed real-time systems. PhD thesis,
University of Illinois, Dept. of Computer Science,
Urbana-Champaign, IL, USA, 1995.

[14] R. Ha and J. W. S. Liu. Validating timing constraints
in multiprocessor and distributed real-time systems. In
Proceedings of the 14th International Conference on
Distributed Computing Systems (ICDCS), pages
162–171, Pozman, Poland, June 1994. IEEE Computer
Society.

[15] J. Y.-T. Leung and J. Whitehead. On the complexity
of fixed-priority scheduling of periodic, real-time tasks.
Performance Evaluation, 2(4):237–250, December
1982.

[16] C. L. Liu and J. W. Layland. Scheduling algorithms
for multiprogramming in a hard-real-time
environment. Journal of the ACM, 20(1):46–61,
January 1973.

[17] J. M. López, M. Garćıa, J. L. Dı́az, and D. F. Garćıa.
Worst-case utilization bound for EDF scheduling on
real-time multiprocessor systems. In Proceedings of the
12th Euromicro Conference on Real-time Systems
(ECRTS), pages 25–33, Stockholm , Sweden, June
2000. IEEE Computer Society.

[18] A. K.-L. Mok. Fundamental Design Problems of
Distributed Systems for Hard-Real-Time
Environments. PhD thesis, Massachusetts Institute of
Technology, Cambridge, MA, USA, May 1983.

[19] D.-I. Oh and T. P. Baker. Utilization bounds for n
-processor rate monotone scheduling with static
processor assignment. Real-Time Systems,
15(2):183–192, September 1998.

