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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Ecole des Ponts ParisTech

https://core.ac.uk/display/48333611?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00798246


CONTROL OF MOLECULAR ORIENTATION AND ALIGNMENT BY
MONOTONIC SCHEMES

Salomon Julien
Laboratoire Jacques-Louis Lions
Universit Pierre & Marie Curie

Boite courrier 187, 75252 Paris Cedex 05
France

email: Salomon@ann.jussieu.fr

Gabriel Turinici
INRIA Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex

and
CERMICS-ENPC, Champs sur Marne, 77455 Marne la valle Cedex

France
email: Gabriel.Turinici@inria.fr

ABSTRACT
Many numerical simulations in quantum (bilinear) control
use monotonically convergent algorithms. A relevant time
discretization has already been proposed for these algo-
rithms. We present here a way to apply these algorithms
to the control of molecular orientation and alignment. Nu-
merical results that illustrate some of the properties of these
algorithms are given.
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1 Introduction

Laser control of complex molecular systems is becoming
feasible, especially since the introduction [1] [2] of closed
loop laboratory learning techniques and their successful
implementation [3, 4, 5, 6, 7, 8]. Among all possibilities
provided by this technique, control of molecular alignment
and orientation is not only a major concern in chemical re-
action dynamics as an efficient cross-section enhancement
device [9, 10, 11, 12] but may also become a determinant
technique in controlling surface processing [13], catalysis
[14] and for nanoscale design by laser focusing of molecu-
lar beams [13, 15].
At the level of the numerical simulations, the introduc-
tion of the monotonically convergent algorithms the Zhu
& Rabitz [16] that extends an algorithm due to Krotov [17]
has allowed a considerable progress and made possible fur-
ther investigations in this area. Recently, a general class
of monotonically convergent algorithms has been proposed
[18] and relevant time discretization has been developed
[19].
Although numerical simulation of the rotation control have
already been demonstrated [20, 21] the use of monotonic
schemes has not been tested so far. In this paper we propose
and test on an example monotonic schemes to design laser
pulses to control alignement or orientation of molecules.
The contents of the paper is as follows : the physical model
is described in Section 2 ; the necessary background and
definitions of the quantum control settings are given in the

Section 3 ; the monotonic scheme adpated to the orientation
control is presented in Section 4 followed by some numer-
ical results in Section 5.

2 Model

Let us consider the HCN molecule in its ground electronic
state as a rigid rotor interacting with an electric fieldε. This
system can be described as a permanent dipoleµ0 with po-
larizability componentsα‖, α⊥.
The Hamiltonian of this system is

H = BJ − µ0ε(t) cos θ

− ε2(t)
2 (α‖ cos2 θ + α⊥ sin2 θ)

= BJ − µ0ε(t) cos θ − ε2(t)
2 (∆α cos2 θ + α⊥),

whereJ is the angular-momentum operator defined by :

J =
−h̄2

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

,

B the rotational constant,θ the polar angle that defines
orientation of the molecule with respect to the linearly
polarized electric-field vector~ε at the timet and where
∆α = α‖ − α⊥. The time evolution of an initial distri-
bution ψ(θ, φ; t = 0) is governed by the time-dependent
Schr̈odinger equation :

ih̄∂tψ(θ, φ; t) = Hψ(θ, φ; t),

with the azimuthal angle. In what follows this angle will
be taken as 0 because of the conservation of the laboratory
axis symmetry.
Numerical computations will be done in the basis of the
eigen vectors of̂J that are the spherical harmonics :

YJ(θ) =

√

2J + 1

4π
PJ(cos θ),

wherePJ stands for theJ-th Legendre-polynomial.



3 Quantum control setting

3.1 Cost functional

The optimal control framework is then introduced to find
a suitable evolution ofε(t) over the control time interval
[0, T ]. The goal that the final stateψ(T ) has prescribed
properties is expressed by the introduction of a cost func-
tional J to be maximized. This cost functional also in-
cludes a contribution that penalizes undesirable effects. Let
us consider thus the following functional :

J(ε) =< ψ(T )|O|ψ(T ) > −

∫ T

0

λ(t)ε2(t)dt,

whereO is an observable operator that encodes the goal,
i.e. cos θ for the control of orientation case orcos2 θ for
the control of alignment case andλ(t) the penalization pa-
rameter of the electric field. For reasons that will appear
later, we will work withcos θ + Id andcos2 θ + Id which
makes the operatorO positive and does not modify extrema
of J .

3.2 Euler equations and adjoint state

At the maximum of the cost functionalJ(ε), the Euler-
Lagrange critical point equations are satisfied ; a standard
way to write these equations is to use a Lagrange multiplier
χ(θ, t) called adjoint state. The following critical point
equation are thus obtained :

i∂tψ = Hψ, ψ(0) = ψ0

i∂tχ = Hχ, χ(T ) = O(ψ(T ))

λ(t)ε(t) = −ℑ < χ|µ0. cos θ

+2ε(t).(∆α cos2 θ + α⊥)|ψ >,

(1)

whereℑ is the imaginary part of a complex number.

4 Monotonic scheme

4.1 Principle of the scheme

Let us consider two electric fieldsε1(t) andε2(t), the cor-
responding statesψ1, ψ2 and adjoint statesχ1, χ2 com-
puted by (1). The following computation allows us to elab-
orate monotonic schemes [16, 18]. Let us evaluate differ-
ence betweenJ(ε1(t)) andJ(ε2(t)) :

∆J = J(ε2) − J(ε1)

= < ψ2(T ) − ψ1(T )|O|ψ2(T ) − ψ1(T ) >

+2ℜ < ψ2(T ) − ψ1(T )|O|ψ1(T ) >

−
∫ T

0
λ(t)(ε2

2(t) − ε2
1(t))dt.

Hereℜ is the real part of a complex number. Focusing on
the term< ψ2(T ) − ψ1(T )|O|ψ1(T ) >, we find :

< ψ2(T ) − ψ1(T )|O|ψ1(T ) >=
< ψ2(T ) − ψ1(T )|χ1(T ) >

=
∫ T

0

(

< ∂t(ψ2(t) − ψ1(t))|χ1(t) >

+ < ψ2(t) − ψ1(t)|∂tχ1(t) >
)

dt

= i
∫ T

0

(

(ε1(t) − ε2(t)) < ψ2(t)|µ0 cos θ|χ1(t) >

+(ε2
1(t) − ε2

2(t)) < ψ2(t)|
∆α cos2 θ+α⊥

2 |χ1(t) >
)

dt.

Finally ∆J can be evaluated by the formulae :

∆J =< ψ2(T ) − ψ1(T )|O|ψ2(T ) − ψ1(T ) >

+
∫ T

0
(ε2(t) − ε1(t))

(

ℑ < ψ2(t)|µ0 cos θ|χ1(t) >

+(ε2(t) + ε1(t))

.
(

ℑ < ψ2(t)|
∆α cos2 θ+α⊥

2 |χ1(t) > −λ(t)
)

)

dt

The first term of this sum is positive sinceO = cos+Id

or O = cos2 +Id. Givenε1, the integrant provides thus an
implicit criterium in terms ofε2, the satisfaction of which
guaranties the positivity of∆J . Let us make explicit the
choice ofε2 : the integrant is second order polynomial with
respect toε2 and for a large enough value ofλ(t) the co-
efficientℑ < ψ2(t)|

∆α cos2 θ+α⊥
2 |χ1(t) > −λ(t) of ε2

2(t)
is negative. It has thus a unique maximum, given by the
cancellation of the derivative. The value obtained by this
method is :

ε2(t) = −
ℑ < ψ2(t)|µ0 cos θ|χ1(t) >

2ℑ < ψ2(t)|
∆α cos2 θ+α⊥

2 |χ1(t) > −λ(t)
.

4.2 Algorithm

The algorithm derived from the previous computations is
then given by the following statements : given at stepk

a fieldεk and its associated stateψk and adjoint stateχk,
compute simultaneouslyεk+1, ψk+1 by



































εk+1 = − ℑ<ψk+1(t)|µ0 cos θ|χk(t)>

2ℑ<ψk+1(t)|
∆α cos2 θ+α

⊥

2
|χk(t)>−λ(t)

i∂tψ
k+1 = (B − µ0ε

k+1(t) cos θ

− (εk+1)2(t)
2 (∆α cos2 θ + α⊥)ψk+1

ψk+1(0, θ) = ψ0(θ).



Then compute backward evolution ofχk+1 by :














i∂tχ
k+1 = (B − µ0ε

k+1(t) cos θ

− (εk+1)2(t)
2 (∆α cos2 θ + α⊥)χk+1

χk+1(T, θ) = O(ψk+1(T, θ)).

The arguments above show that :

J(εk+1) ≥ J(εk).

4.3 Remark on time discretization

The proposed algorithm contains implicit computations.
Indeed the value ofεk+1(t) has to be known to compute
ψk+1(t). We have presented in [19] time discretizations of
this scheme that cancels out the implicit steps and main-
tains the monotonicity with respect to the time discretized
cost functionnalJ∆T =< ψN |O|ψN > −∆T

∑N
0 λjε

2
j ,

where the sequences(ψj) and(εj) stand for discrete repre-
sentations ofψ(t) andε(t).

5 Numerical results

The values of the parameters we have used to test the algo-
rithm are the one of [20] which describe the HCN molecule.

B µ α‖ α⊥

6.6376 × 10−6 1.1413 20.055 8.638

Time control has been chosen with respect to the value of
the first transition of the system without laser excitation,
i.e. T0 = 2π

B
= 9.4660 × 105.

The software Octave has been used to perform numerical
computations. Two cases have then been tested : control on
[0, T0] and on[0, 10T0] for both observablesO = cos θ+Id

andO = cos2 θ + Id. Numerical simulations have been
performed in the basis of the first ten eigen vectors of the
internal Hamiltonian and the first of them has been taken as
initial valueψ0. Even though the scheme is explicit, a good
time stability has been observed since tests withdT = 104

have provided fields looking like the ones obtained with
dT = 102. It has been decided to strongly penalize the
electric field at the beginning of the control interval to sat-
isfy physical restrictions.

5.1 Control on [0, T0]

Figures below represent the values of the stateψ(θ, T0)
with respect toθ and of the corresponding electrical field of
controlε(t). These fields, corresponding toO = cos θ+Id

andO = cos2 θ+Id have been obtained after 500 iterations
of the monotonic scheme, but, dependant on the quality re-
quested, fewer number of iteration can be used.
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Figure 1. Value of λ with respect to the number of time step. This

coeffi cient of penalization is defi ned asλ(t) = 105(
t−T/2

T/2
)6 + 104 if

t < T/2 andλ(t) = 104 in the other case.

5.1.1 Control of orientation

The control obtained enables us to localize of the state
around the angular values0 and 2π. The evolu-
tion of the cost functional and of the observable<
ψ(θ, T0)| cos θ|ψ(θ, T0 > have also been represented.
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Figure 2.State|ψ(θ, T0)| with
respect to the number of time step.
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Figure 3. Electric fi eld ε(t)
with respect to the number of time
step.
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Figure 4. Value of the observable< ψ(T0)| cos θ|ψ(θ, T0) > over
100 fi rst iterations.

The value of< ψ(θ, T0)| cos θ|ψ(θ, T0) > is equal to
1.91 after 100 iterations.



5.1.2 Control of alignment

The control obtained enable the localization of the state
around the angular values0, π and2π.
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Figure 5. |ψ(θ, T0)|. Here
< ψ(θ, T0)| cos2 θ|ψ(θ, T0) >
is near 0.88 after about 200 itera-
tions.
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Figure 6. Electric fi eld ε(t)
with respect to the number of time
step.

5.2 Control on [0, 10T0]

5.2.1 Control of orientation

Figures below represent the values of the stateψ(θ, 10T0)
with respect toθ and of the corresponding electrical field
of controlε(t). In this case only 30 iterations of the mono-
tonic scheme were necessary.
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Figure 7. |ψ(θ, 10T0)|. Here
<ψ(θ, 10T0)|cos θ|ψ(θ, 10T0)>
is near 0.94.
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Figure 8. Electric fi eld ε(t)
with respect to the number of time
step.

5.2.2 Control of alignement

Figures below represent the values of the stateψ(θ, 10T0)
with respect toθ and of the corresponding electrical field
of controlε(t). About 100 iterations were performed.

5.3 Kicks

For certain choices ofλ(t), computations leads to kick-
like fields, which have physical interest because of their
simplicity [20]. Some examples of such fields have
been represented above for a control on[0, T0] :
The value of 0.97 is reached by the observable<

ψ(θ, 10T0)| cos
2 θ|ψ(θ, 10T0) > in these cases. This re-

sult is better than the one obtained with the penalization of
Fig.1. This fact can be explained by the lower values of
λ(t) we have used here.
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Figure 9. |ψ(θ, 10T0)|. Here
<ψ(θ, 10T0)|cos2θ|ψ(θ, 10T0)>
is near 0.87.
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Figure 10. Electric fi eld ε(t)
with respect to the number of time
step.
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Figure 11. Electric fi eld ε(t)
with respect to the number of time
step.
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Figure 12. Value ofλ(t) with
respect to the number of time step.
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Figure 13. Electric fi eld ε(t)
with respect to the number of time
step.
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Figure 14. Value ofλ(t) with
respect to the number of time step.
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