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To cite this version:

Chan Le Duc, Myriam Lamolle, Olivier Curé. An ExpSpace Tableau-based Algorithm for
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Abstract. In this paper, we propose an EXPSPACE tableaux-based algorithm for

SHOIQ. The construction of this algorithm is founded on the standard tableaux-

based method for SHOIQ and the technique used for designing a NEXPTIME

algorithm for the two-variable fragment of first-order logic with counting quanti-

fiers C2.

1 Introduction

The ontology language OWL-DL [1] is widely used to formalize semantic resources

on the Semantic Web. This language is mainly based on the description logic SHOIQ
which is known to be decidable [2]. An interesting feature of logics with nominals

(denoted by O in SHOIQ) is that they allow for expressing relationships, represented

as role instances, between two sets of individuals which are represented as nominals or

standard concepts. Such sets of individuals can be finitely enumerable or infinite.

There were several works on the consistency problem of a SHOIQ knowledge

base. These works have not only shown decidability and complexity of the problem

but also led to develop and implement efficient systems for reasoning on OWL-based

ontologies. A result in [2] has shown that the consistency problem of a SHOIQ knowl-

edge base is NEXPTIME-complete. Moreover, tableaux-based algorithms presented in

[3] for SHOIQ have been exploited to implement reasoners such as Pellet [4], which

inherit from the success of early Description Logic reasoners such as FaCT [5].

It has been shown that when nominals are added to these DLs the consistency prob-

lem is harder. In fact, the complexity jumps from EXPTIME-complete for SHIQ to

NEXPTIME-complete for SHOIQ [2]. The work in [6] has indicated that when nom-

inals are allowed in SHIQ, the resolution-based approach yields a triple exponential

decision procedure for the consistency problem. The authors have also identified that

the interaction between nominals, inverse roles and number restrictions makes termina-

tion more difficult to be achieved, and thus, is responsible for this hardness.

Our approach is inspired from a technique that was employed by Ian Pratt-Hartmann

in [9] to construct a NEXPTIME algorithm for the logic C2 including SHOIQ. Unlike

the existing tableaux-based algorithms, this technique does not explicitly build a graph

for representing a model but it builds a structure, called a frame, from star-types each

of which represents a set of individuals. A result from [9] shows that a model of a C2

knowledge base can be constructed from a frame tiled by well selected star-types.



The present paper is structured as follows. In the next section, we describe the logic

SHOIQ and the consistency problem for a SHOIQ knowledge base. Section 3 de-

scribes a 2EXPSPACE tableaux-based algorithm for checking consistency of a SHOIQ
knowledge base. An advantage of this algorithm is that a tree-like structure can be main-

tained to obtain termination. Section 4 transfers a result in [9] from C2 to SHOIQ.

Based on the these results, we propose an EXPSPACE tableaux-based algorithm for

SHOIQ. Finally, we discuss the results and future work.

For the lack of place, we refer the reader to [10] for examples and full proofs.

2 The Description Logic SHOIQ

In this section, we present the syntax and the semantics of SHOIQ. We start by defin-

ing a role hierarchy and its semantics.

Definition 1 (role hierarchy). Let R be a non-empty set of role names and R+ ⊆ R

be a set of transitive role names. We use RI = {P− | P ∈ R} to denote a set of inverse

roles. Each element of R∪RI is called a SHOIQ-role. We define a function R⊖ which

returns R− if R ∈ R, and returns R if R ∈ RI. A role hierarchy R is a finite set of role

inclusion axioms R ⊑ S where R and S are two SHOIQ-roles. A relation ∗⊑ is defined

as the transitive-reflexive closure of ⊑ on R∪ {R⊖ ⊑ S⊖ | R ⊑ S ∈ R}. We define a

function Trans(R) which returns true iff there is some Q ∈ R+∪{P⊖ | P ∈ R+} such

that Q∗⊑R. A role R is called simple w.r.t. R if Trans(Q) = false. An interpretation I =
(∆I , ·I) consists of a non-empty set ∆I (domain) and a function ·I which maps each

role name to a subset of ∆I×∆I such that R−I
= {〈x, y〉 ∈ ∆I×∆I | 〈y, x〉 ∈ RI}

for all R ∈ R, and 〈x, z〉 ∈ SI , 〈z, y〉 ∈ SI implies 〈x, y〉 ∈ SI for each S ∈ R+. An

interpretation I satisfies a role hierarchy R if RI ⊆ SI for each R ⊑ S ∈ R. Such an

interpretation is called a model of R, denoted by I |= R.

Notice that the simplicity of roles which relies on the function Trans(·) plays a

crucial role in guaranteeing decidability of SHIQ [11]. The underlying idea is that if

a role R is simple then it is sufficient to count “direct” R-neighbors t of an individual

s, i.e. 〈s, t〉 ∈ RI for some interpretation I, in order to satisfy a restriction that bounds

the number of R-neighbour of s.

Definition 2 (terminology). Let C be a non-empty set of concept names with a non-

empty subset Co ⊆ C of nominals. The set of SHOIQ-concepts is inductively defined

as the smallest set containing all C in C, ⊤, C⊓D, C⊔D, ¬C, ∃R.C, ∀R.C, (≤nS.C)
and (≥nS.C) where n is a positive integer, C and D are SHOIQ-concepts, R is an

SHOIQ-role and S is a simple role w.r.t. a role hierarchy. We denote ⊥ for ¬⊤. The

interpretation function ·I of an interpretation I = (∆I , ·I) maps each concept name

to a subset of ∆I such that ⊤I = ∆I , (C ⊓D)I = CI ∩DI , (C ⊔D)I = CI ∪DI ,

(¬C)I = ∆I\CI , card{oI} = 1 for all o ∈ Co, (∃R.C)I = {x ∈ ∆I | ∃y ∈
∆I , 〈x, y〉 ∈ RI ∧ y ∈ CI}, (∀R.C)I = {x ∈ ∆I | ∀y ∈ ∆I , 〈x, y〉 ∈ RI ⇒
y ∈ CI}, (≥ nS.C)I = {x ∈ ∆I | card{y ∈ CI | 〈x, y〉 ∈ SI} ≥ n},

(≤nS.C)I ={x ∈ ∆I | card{y ∈ CI | 〈x, y〉 ∈ SI} ≤ n}
where card{S} is denoted for the cardinality of a set S.



∗ C ⊑ D is called a general concept inclusion (GCI) where C,D are SHOIQ-

concepts (possibly complex), and a finite set of GCIs is called a terminology T .

∗ An interpretation I satisfies a GCI C ⊑ D if CI ⊆ DI and I satisfies a terminology

T if I satisfies each GCI in T . Such an interpretation is called a model of T , denoted

by I |= T .

Definition 3 (knowledge base). A pair (T ,R) is called a SHOIQ knowledge base

where R is a SHOIQ role hierarchy and T is a SHOIQ terminology. A knowledge

base (T ,R) is said to be consistent if there is a model I of both T and R, i.e., I |= T
and I |= R. A concept C is called satisfiable w.r.t. (T ,R) iff there is some interpre-

tation I such that I |= R, I |= T and CI 6= ∅. Such an interpretation is called a

model of C w.r.t. (T ,R). A concept D subsumes a concept C w.r.t. (T ,R), denoted by

C ⊑ D, if CI ⊆ DI holds in each model I of (T ,R).

Thanks to the reductions between unsatisfiability, subsumption of concepts and knowl-

edge base consistency, it suffices to study knowledge base consistency.

For the ease of construction, we assume all concepts to be in negation normal form

(NNF), i.e., negation occurs only in front of concept names. Any SHOIQ-concept

can be transformed to an equivalent one in NNF by using DeMorgan’s laws and some

equivalences as presented in [11]. For a concept C, we denote the nnf of C by nnf(C)
and the nnf of ¬C by ¬̇C. Let D be an SHOIQ-concept in NNF. We define cl(D) to

be the smallest set that contains all sub-concepts of D including D. For a knowledge

base (T ,R), we can define a set cl(T ,R). For the sake of brevity, we refer the reader

to [7] for a more complete definition.

To prove soundness and completeness of our algorithms, we need a tableau structure

that represents a model of a SHOIQ knowledge base. Regarding the definition of

tableaux for SHOIQ presented in [7], we add a new property, namely P15. This new

property imposes an exact number of S-neighbour individuals t of s if (≤ nS.C) ∈
L(s). This property makes explicit nondeterminism implied from the semantics of (≤
nS.C) and requires an extra expansion rule, namely ⊲⊳-rule, introduced in Figure 1

(Appendix). The presence of this rule may have an impact on the so-called “pay-as-

you-go” behaviour of the tableaux-based algorithm presented in this paper.

P15 If (≤ nS.C) ∈ L(s) and there is t ∈ S such that C ∈ L(t) and 〈s, t〉 ∈ E(S)
then there is some 1 ≤ m ≤ n such that {(≤ mS.C), (≥ mS.C)} ⊆ L(s).

It is not hard to prove that there is a tableau with the new property P15 for a

SHOIQ knowledge base (T ,R) iff (T ,R) is consistent. A proof of a similar result

for SHIQ tableaux can be found in [12].

3 A 2EXPSPACE decision procedure for SHOIQ

In this section, we introduce a structure, called SHOIQ-forest. We will show that such

a forest is sufficient to represent a model of a SHOIQ-knowledge base.

Definition 4 (SHOIQ-tree). Let (T ,R) be a SHOIQ knowledge base. For each

o ∈ Co, a SHOIQ-tree for (T ,R), denoted by To = (Vo, Eo,Lo, x̂o,
·6=o), is defined

as follows:



∗ Vo is a set of nodes containing a root node x̂o ∈ Vo. Each node x ∈ Vo is labelled

with a function Lo such that Lo(x) ⊆ cl(T ,R) and o ∈ Lo(x̂o). A node x ∈ Vo is

called nominal if o′ ∈ Lo(x) for some o′ ∈ Co. In addition, the inequality relation ·6=o

is a symmetric binary relation over Vo.

∗ Eo is a set of edges. Each edge 〈x, y〉 ∈ Eo is labelled with a function Lo such that

Lo(〈x, y〉) ⊆ R(T ,R). If 〈x, y〉 ∈ Eo then y is called a successor of x, denoted by

y ∈ succ1(x), or x is called the predecessor of y, denoted by x = pred1(y). In this

case, we say that x is a neighbour of y or y is a neighbour of x. If z ∈ succn(x)
(resp. z = predn(x)) and y is a successor of z (resp. y is the predecessor of z) then

y ∈ succ(n+1)(x) (resp. y = pred(n+1)(x)) for all n ≥ 0 where succ0(x) = {x} and

pred0(x) = x. A node y is called a descendant of x if y ∈ succn(x) for some n > 0.

A node y is called an ancestor of x if y = predn(x) for some n > 0. To ensure that

To is a tree, it is required that (i) x is a descendant of x̂o for all x ∈ Vo with x 6= x̂o,

and (ii) each node x ∈ Vo with x 6= x̂o has a unique predecessor. A node y is called

an R-successor of x, denoted by y ∈ succ1R(x) (resp. y is called the R-predecessor

of x, denoted by y = pred1R(x)) if there is some role R′ such that R′ ∈ Lo(〈x, y〉)
(resp. R′ ∈ Lo(〈y, x〉)) and R′ ∗⊑R. A node y is called a R-neighbour of x if y is

either a R-successor or R-predecessor of x. If z is an R-successor of y (resp. z is the

R-predecessor of y) and y ∈ succnR(x) (resp. y = prednR(x)) then z ∈ succ
(n+1)
R (x)

(resp. z = pred
(n+1)
R (x)) for n ≥ 0 with succ0R(x) = {x} and x = pred0R(x).

∗ For a node x, a role S and o ∈ Co, we define the set STo(x,C) of x’s S-neighbours

as follows: : STo(x,C) = {y ∈ Vo | y is a S-neighbour of x and C ∈ Lo(x)}.

∗ A node x is called iterated by y w.r.t. a node xo if x has no nominal ancestor except

for x̂o and there are integers n,m > 0 and nodes x′, y′ such that : (i) xo = predn(y),
y = predm(x), (ii) x′ = pred1(x), y′ = pred1(y), (iii) Lo(x) = Lo(y), Lo(x

′) =
Lo(y

′), (iv) Lo(〈x
′, x〉) = Lo(〈y

′, y〉), and (v) if there are z, z′ and i > 0 such that

z′ = pred1(z), predi(z′) = xo, Lo(z) = Lo(y), Lo(z
′) = Lo(y

′) and Lo(〈z
′, z〉) =

Lo(〈y
′, y〉) then i ≥ n.

A node x is called 1-iterated by y if x is iterated by y w.r.t. x̂o. A node x is called

blocked by y, denoted by y = b(x), if x is iterated by y w.r.t. a 1-iterated node xo.

∗ In the following, we often use L(x), L(〈x, y〉), ST(x,C) and ·6= instead of Lo(x),
Lo(〈x, y〉), S

To(x,C) and ·6=o, respectively. This does not cause any confusion since

Vo ∩Vo′ = ∅ and Eo ∩Eo′ = ∅ if o 6= o′. In addition, x ·6=oy is never defined for x ∈ Vo

and y ∈ Vo′ with o 6= o′.

We can remark that the definition of 1-iterated nodes in Definition 4 for SHOIQ-

trees is very similar to the standard definition of blocked nodes for SHIQ completion

trees (see [11]). Moreover, if we consider the subtree rooted at a 1-iterated node as a

SHIQ completion tree then blocked nodes according to Definition 4 are also blocked

nodes according to the standard definition for this SHIQ completion tree.

A SHOIQ-tree consists of two layers : the first layer is formed of nodes from the

root to 1-iterated nodes or nominal nodes, and the second layer consists of nodes from

each 1-iterated node to blocked or nominal nodes. In addition, each node x in the layer

2 has a unique 1-iterated node, denoted b̂(x), such that b̂(x) is an ancestor of x.



Definition 5 (SHOIQ-forest). Let (T ,R) be a SHOIQ knowledge base. A SHOIQ-

forest for (T ,R) is a pair G = 〈T, ϕ〉, where T = {To | o ∈ Co} is a set of

SHOIQ-trees for (T ,R) with To = (Vo, Eo,Lo, x̂o,
·6=o), and ϕ is a partitioning

function ϕ : V → 2V with V =
⋃

o∈Co
Vo. We denote L′(〈x, y〉) = Lo(〈x, y〉) if

〈x, y〉 ∈ Eo, and L′
o(〈x, y〉) = {S⊖ | S ∈ Lo(〈y, x〉)} if 〈y, x〉 ∈ Eo for some o ∈ Co.

The partitioning function ϕ satisfies the following conditions:

1. For each x ∈ V , ϕ(x) is the partition of x with x ∈ ϕ(x). There are x0, · · · , xn ∈ V
such that ϕ(xi) ∩ ϕ(xj) = ∅ with 0 ≤ i < j ≤ n and

⋃
0≤i≤n ϕ(xi) = V;

2. For all x, x′ ∈ V , if x′ ∈ ϕ(x) then ϕ(x) = ϕ(x′) and L(x) = L(x′). We de-

note Λ(ϕ(x)) = L(x). In addition, an inequality relation over partitions can be

described as follows : for x, x′ ∈ V we define ϕ(x) ·6=ϕ(x′) if there are two nodes

y ∈ ϕ(x) and y′ ∈ ϕ(x′) such that y ·6=oy
′ for some o ∈ Co;

3. For all ϕ(x) and ϕ(x′), if there are two edges 〈y, y′〉 ∈ Eo and 〈w,w′〉 ∈ Eo′ with

o, o′ ∈ Co such that y, w ∈ ϕ(x), y′, w′ ∈ ϕ(x′) and L′(〈y, y′〉) 6= ∅,L′(〈w,w′〉) 6=
∅ then L′(〈y, y′〉) = L′(〈w,w′〉).
We define a function Λ(〈·, ·〉) for labelling edges ended by two partitions as follows:

Λ(〈ϕ(x), ϕ(x′)〉) = L′(〈z, z′〉) where z ∈ ϕ(x), z′ ∈ ϕ(x′), L′(〈z, z′〉) 6= ∅, and

{〈z, z′〉, 〈z′, z〉} ∩ Eo′ 6= ∅ for some o′ ∈ Co. We say ϕ(x′) is a S-neighbour

partition of ϕ(x) if S ∈ Λ(〈ϕ(x), ϕ(x′)〉).
4. For all x, x′ ∈ V , if o ∈ L(x) ∩ L(x′) for some o ∈ Co and ϕ(x) ·6=ϕ(x′) does not

hold then ϕ(x) = ϕ(x′); and

5. If (≤ nR.C) ∈ Λ(ϕ(x)) for some x ∈ V and there exist (n+1) nodes x0, · · · , xn ∈
V such that (i) ϕ(xi) ∩ ϕ(xj) = ∅ for all 0 ≤ i < j ≤ n, and (ii) C ∈ Λ(ϕ(xi)),
R ∈ Λ(〈ϕ(x), ϕ(xi)〉) for all i ∈ {0, · · · , n}, then ϕ(xl)

·6=ϕ(xm) for all 0 ≤ l <
m ≤ n.

∗ Clashes: T is said to contain a clash if one of the following conditions holds:

1. There is some node x ∈ V such that {A, ¬̇A} ⊆ Λ(ϕ(x)) for some concept name

A ∈ C;

2. There are nodes x, y ∈ V such that ϕ(x) ·6=ϕ(y) and o ∈ Λ(ϕ(x)) ∩ Λ(ϕ(y)) for

some o ∈ Co;

3. There is a node x ∈ V with (≤ nR.C) ∈ Λ(ϕ(x)) and there are (n + 1) nodes

x0, · · · , xn ∈ V such that ϕ(xi) ∩ ϕ(xj) = ∅, ϕ(xi)
·6=ϕ(xj) with 0 ≤ i < j ≤ n,

and C ∈ Λ(ϕ(xi)), R ∈ Λ(〈ϕ(x), ϕ(xi)〉) for i ∈ {0, · · · , n}.

We now describe the tableaux-based algorithm whose goal is to construct from a

knowledge base (T ,R) a SHOIQ-forest G = 〈T, ϕ〉. To do this, the algorithm ap-

plies the expansion rules as described in Figure 1 and 2 (Appendix), and terminates

when none of the rules is applicable. The obtained G is called complete, and if G con-

tains no clash then G is called clash-free. In this case, we also say To is complete and

clash-free for all To ∈ T. Before presenting these expansion rules, we introduce an

operation, namely Propagate, which is used in expansion rules.

Propagation Propagate(ϕ(x), ϕ(x′), ϕ(y)) is an operation which propagates (i) node

labels from a partition ϕ(x) to another partition ϕ(x′), and vice versa, (ii) edge labels



from the edges ended by nodes of ϕ(x) and ϕ(y) to the edges ended by nodes of ϕ(x′)
and ϕ(y), and vice versa. In other terms, Propagate(· · · ) merges ϕ(x) into ϕ(x′), and

〈ϕ(x), ϕ(y)〉 into 〈ϕ(x′), ϕ(y)〉. More precisely, let G = 〈T, ϕ〉 be a SHOIQ-forest

with T = {To | o ∈ Co} and To = (Vo, Eo,Lo, x̂o,
·6=o). Propagate(ϕ(x), ϕ(x

′), ϕ(y))
updates the label of nodes and edges in T as follows:

1. L(z) = L(x) ∪ L(x′) for all z ∈ ϕ(x) ∪ ϕ(x′),
2. for all z, z′ ∈ ϕ(x) ∪ ϕ(x′) and w,w′ ∈ ϕ(y), if z is a S-neighbour of w and

L′(〈z′, w′〉) 6= ∅ then (i) if z′ is a successor of w′ and S /∈ L(〈w′, z′〉) then L(〈w′, z′〉) =
L(〈w′, z′〉)∪{S}, (ii) if w′ is a successor of z′ and S /∈ L(〈z′, w′〉) then L(〈z′, w′〉) =
L(〈z′, w′〉) ∪ {S⊖}.

The rules in Figure 1 (Appendix) maintain the tree-like structure of SHOIQ-forest

and they are similar to those in [7] except that if a concept C is added to the label of a

node x due to application of these rules then C is propagated to the label of each node

y ∈ ϕ(x). Moreover, all rules in Figure 1 except for ∃- and ≥-rule update only the label

of nodes or edges and do no change on the partitioning function ϕ. Especially, when

the ≤-rule is applied to a node x with two S-neighbours y, z of x, it must propagate

the label of 〈x, y〉 to that of all 〈x′, z′〉 (or 〈z′, x′〉) where x′ ∈ ϕ(x) and z′ ∈ ϕ(z),
and set the label of 〈x, y〉 to empty set. This may change ϕ only if ϕ(y) is singleton.

By the ⊲⊳-rule in Figure 2, each node x containing a term (≤ nS.C) has exactly m
S-neighbours containing C with some m ≤ n. As a result, this rule and ≥-rule ensure

that if there are two nodes y, y′ ∈ ϕ(x) then y and y′ have exactly m S-neighbours

which contain C in their label. Finally, we can avoid infinite sequences of “merging-

and-generating” without pruning nodes since all merges due to number restrictions or

nominals are performed by updating the partitioning function.

The following lemma establishes correctness and completeness of the algorithm.

Lemma 1. Let (T ,R) be a SHOIQ knowledge base.

1. The tableaux algorithm terminates and builds a SHOIQ-forest whose the size is

bounded by a double exponential function in the size of (T ,R).
2. If the tableaux algorithm yields a clash-free and complete SHOIQ-forest for

(T ,R) then there is a tableau for (T ,R).
3. If there is a tableau for (T ,R) then the tableaux algorithm yields a clash-free and

complete SHOIQ-forest for (T ,R).

It is straightforward to show that the size of a SHOIQ-forest is bounded by a dou-

ble exponential function in the size of (T ,R). To prove soundness of the tableaux

algorithm, we can devise a model from a clash-free and complete SHOIQ-forest by

considering a partition as an individual and unraveling blocked nodes since we can

show that each blocking node b(x) has no “core path” from b(x) to every nominal

descendant y, i.e., there do not exist terms (≤ miRi.Ci) ∈ predi(y), roles Ri ∈
L(〈predi−1(y), predi(y)〉) and concepts Ci ∈ L(predi+1(y)) for k < i ≤ 0 with

b(x) = predk(y).
The following theorem is a consequence of Lemma 1.

Theorem 1. Let (T ,R) be a SHOIQ knowledge base. The tableaux algorithm is a

decision procedure for consistency of (T ,R) and it runs in 2NEXPTIME in the size of

(T ,R).



4 An EXPSPACE tableaux-based algorithm for SHOIQ

This section starts by translating from results presented in [9] for C2 into those for

SHOIQ.

Definition 6 (star-type). Let (T ,R) be a SHOIQ knowledge base. A star-type is a

triplet σ = 〈λσ, ν̄σ, µ̄σ〉, where λσ ∈ 2cl(T ,R), ν̄σ contains at most a pair 〈r, l〉 ∈
2R(T ,R) × 2cl(T ,R) and µ̄σ = (〈r1, l1〉, · · · , 〈rdσ

, ldσ
〉) is a d-tuple over 2R(T ,R) ×

2cl(T ,R). A pair 〈r′, l′〉 is a ray of σ if 〈r′, l′〉 is a component of µ̄σ or 〈r′, l′〉 ∈ ν̄σ . We

define an inequality relation ·6= over the set of rays. A ray 〈r′, l′〉 of σ is primary w.r.t. a

term (≤ mR.C), denoted 〈r′, l′〉〈≤mR.C〉, if (≤ mR.C) ∈ λσ , R ∈ r′ and C ∈ l′. For

a term (≤ mR.C) ∈ λσ , we denote Cσ
〈≤mR.C〉 for the set of all rays 〈r′, l′〉 of σ such

that R ∈ r′, C ∈ l′.

– A star-type σ is nominal if o ∈ λσ for some o ∈ Co.

– A star-type σ is isomorph to a star-type σ′ if λσ = λσ′ , and for each term (≤
mR.C) ∈ λσ , there is an injection π : Cσ

〈≤mR.C〉 → Cσ′

〈≤mR.C〉 such that π(〈r, l〉) =

(〈r, l〉).
– Two star-types σ, σ′ are isomorph if λσ = λσ′ , and for each term (≤ mR.C) ∈ λσ ,

there is a bijection π : Cσ
〈≤mR.C〉 → Cσ′

〈≤mR.C〉 such that π(〈r, l〉) = (〈r, l〉).

– A star-type σ = 〈λ, ν̄, µ̄〉 with µ̄ = (〈r1, l1〉, · · · , 〈rdσ
, ldσ

〉) and λ = l0, ν̄ =
{〈rdσ+1, ldσ+1〉}, is valid if the following conditions are satisfied:

1. If C ⊑ D ∈ T then nnf(¬C ⊔D) ∈ li for all 0 ≤ i ≤ dσ + 1;

2. {A,¬A} 6⊆ li for every concept name A with 0 ≤ i ≤ dσ + 1;

3. If C1 ⊓ C2 ∈ li then {C1, C2} ⊆ li for all 0 ≤ i ≤ dσ + 1;

4. If C1 ⊔ C2 ∈ li then {C1, C2} ∩ li 6= ∅ for all 0 ≤ i ≤ dσ + 1;

5. If ∃R.C ∈ λ then there is some 1 ≤ i ≤ dσ + 1 such that C ∈ li and R ∈ ri;
6. If (≤ nS.C) ∈ λ and there is some 1 ≤ i ≤ dσ + 1 such that S ∈ ri then

C ∈ li or ¬̇C ∈ li;
7. If (≤ nS.C) ∈ λ and there is some 1 ≤ i ≤ dσ+1 such that C ∈ li and S ∈ ri

then there is some 1 ≤ m ≤ n such that {(≤ mS.C), (≥ mS.C)} ⊆ λ;

8. For each 1 ≤ i ≤ dσ + 1, if R ∈ ri and R∗⊑S then S ∈ ri;
9. If ∀R.C ∈ λ and R ∈ ri for some 1 ≤ i ≤ dσ + 1 then C ∈ li;

10. If ∀R.D ∈ λ, S ∗⊑R, Trans(S) and R ∈ ri for some 1 ≤ i ≤ dσ + 1 then

∀S.D ∈ li;
11. If (≥ nS.C) ∈ λ then there are 1 ≤ i1 < · · · < in ≤ dσ + 1 such that C ∈ lij

and S ∈ rij for all 1 ≤ j ≤ n;

12. If (≤ nS.C) ∈ λ and there are no 1 ≤ i1 < · · · < in+1 ≤ dσ + 1 such that

C ∈ lij and S ∈ rij for all 1 ≤ j ≤ n;

We denote Σ for the set of all star-types for (T ,R).

In the context of a SHOIQ-forest, we can think of a star-type σ as the set of nodes

which satisfy λσ and have R-neighbours such that R is included in their rays. Moreover,

we can merge nodes satisfying homomorph and isomorph star-types without violating

semantic constraints imposed by node and edge labels. A star-type σ is valid if no

expansion rule is applicable to a node whose label is λσ .



Definition 7 (frame). Let (T ,R) be a SHOIQ knowledge base. A frame for (T ,R)

is a tuple F = 〈(N0, · · · ,NH), δ, Φ, δ̂〉, where H ∈ N is the dimension of F , Ni ⊆
Σ for all 0 ≤ i ≤ H , and all star-types in N0 are nominal, δ is a function δ :⋃

i∈{1,··· ,H} Ni → N, Φ is a function Φ :
⋃

i∈{1,··· ,H} Ni → 2
⋃

i∈{1,··· ,H} Ni , and δ̂

is a function δ′ : Φ(
⋃

i∈{1,··· ,H} Ni) → N;

1. Two star-types σ, σ′ ∈
⋃

i∈{1,··· ,H} Ni are mergeable in F , denoted σ ≈ σ′, if,

either σ and σ′ are homomorph to a star-type σ0; or σ and σ′ are isomorph. The

relation of mergeability ≈ is an equivalence relation over
⋃

i∈{1,··· ,H} Ni. We de-

note Φ(σ) = {σ′ | σ′ ≈ σ} and Φ(σ) is called mergeable. We say that Φ(σ) is

homomorph w.r.t. a star-type σ0 if σ′ is homomorph to σ0 for all σ′ ∈ Φ(σ). We

say that Φ(σ) is isomorph if σ′, σ′′ are isomorph for all σ′, σ′′ ∈ Φ(σ). For each

Φ(σ), we define a set of rays of Φ(σ) as follows:

– If Φ(σ) is homomorph w.r.t. a star-type σ0 ∈ Φ(σ) and 〈r′, l′〉 is a primary ray

of σ0 then we define a primary ray 〈r, l〉 of Φ(σ) with r = r′ and l = l′;

– If Φ(σ) is isomorph and 〈r′, l′〉 is a primary ray of some fixed star-type σ0 ∈
Φ(σ) then we define a primary ray 〈r, l〉 of Φ(σ) with r = r′ and l = l′;

– If 〈r′, l′〉 is a non primary ray of Φ(σ) then there is some σ′ ∈ Φ(σ) that has a

non primary ray 〈r, l〉 such that r = r′ and l = l′.

We denote CΦ(σ) for the set of all rays of Φ(σ), and C
Φ(σ)
〈≤mR.C〉 = {〈r′, l′〉 ∈ CΦ(σ) |

R ∈ r, C ∈ l}.

2. A star-type σ ∈ Nk (0 ≤ k ≤ H) is called linkable with a star-type σ′ ∈ Nk−1 ∪
Nk+1 by a ray 〈r, l〉 of σ if σ′ has a ray 〈r′, l′〉 such that l = λσ′ , l′ = λσ and

r = r′− where r′− = {R⊖ | R ∈ r′}.

The frame structure, as introduced in Definition 7, allows us to tile star-types to ob-

tain a forest structure. Such a structure is crucial to obtain termination when designing

a tableaux-based algorithm. An important difference between a frame and a SHOIQ-

forest is that a frame does not represent nodes corresponding to individuals but store

the number of individuals satisfying a star-type. The function δ(σ) is used for this pur-

pose. According to Lemma 1, the number of a SHOIQ-forest’s nodes may be double

exponential in the size of a SHOIQ knowledge base (T ,R) while the number of dis-

tinct star-types is bounded by an exponential function since star-types are built from

the signature of (T ,R). This implies that δ(σ) may take a double exponential value. In

the context of a SHOIQ-forest, we can think of a Φ(σ) as the set of partitions each of

which satisfies all σ′ ∈ Φ(σ). The function δ̂(σ) is used to store the number of partitions

satisfying all σ′ ∈ Φ(σ).

Definition 8 (valid frame). Let (T ,R) be a SHOIQ knowledge base. A frame F =

〈(N0, · · · ,NH), δ, Φ, δ̂〉 is valid if the following conditions are satisfied:

1. For each σ ∈
⋃

i∈{1,··· ,H} Ni, if δ(σ) ≥ 1 then σ is valid;

2. For each o ∈ Co there is a unique σo ∈ N0 such that o ∈ λσo
and δ(σo) = 1;

3. For each o ∈ Co, Φ(σo) = {σ ∈
⋃

i∈{1,··· ,H} Ni | o ∈ λσ} and δ̂(Φ(σo)) = 1;



4. For each 0 ≤ k < H and 〈λ, r, λ′〉 ∈ 2cl(T ,R) × 2R(T ,R) × 2cl(T ,R) with r− =
{R⊖ | R ∈ r},

∑

σ∈Nk

δ(σ)|µ̄σ|〈λ,r,λ′〉 =
∑

σ′∈Nk+1

δ(σ′)|ν̄σ′ |〈λ′,r−,λ〉 (1)

where |ν̄ω|〈λ,r,λ′〉 and |µ̄ω|〈λ,r,λ′〉 are denoted for the number of components 〈r′, l′〉

of respective ν̄ω and µ̄ω such that λω = λ, r′ = r and l′ = λ′ for a star-type

ω = 〈λω, ν̄ω, µ̄ω〉;
5. For each 〈λ, r, λ′〉 ∈ 2cl(T ,R) × 2R(T ,R) × 2cl(T ,R) with r− = {R⊖ | R ∈ r},

∑

Φ(σ)

δ̂(Φ(σ))|Φ(σ)|〈λ,r,λ′〉 =
∑

Φ(σ′)

δ̂(Φ(σ′))|Φ(σ′))|〈λ′,r−,λ〉 (2)

where |Φ(ω)|〈l,s,l′〉 is denoted for the number of rays 〈u, h〉 of Φ(ω) with some

star-type ω such that λω = l, u = s and h = l′.
6. For each Φ(σ) with σ ∈

⋃
i∈{1,··· ,H} Ni, and for each term (≤ mR.C) ∈ λσ ,

card{C
Φ(σ)
〈≤mR.C〉} ≤ m (3)

The notion of validity for a frame is crucial to establish a connection with the

tableaux-based algorithm presented in Section 3, i.e., how to build a SHOIQ-forest

from a valid frame, and inversely. Condition 1 in Definition 8 requires that every star-

type counted by δ must be valid. Condition 2 and 3 ensure that each nominal is counted

exactly once. In the context of a SHOIQ-forest, these conditions imply that for each

nominal o there is exactly one tree whose root contains o and there is exactly one par-

tition contains o. Condition 4 allows for linking star-types at level k with star-types at

level k− 1 and k+1. It ensures that each node x satisfying (or counted for) a star-type

σ at level k is linked by its rays to neighbours satisfying star-types at level k − 1 and

k + 1. The number of these neighbours corresponds exactly to the number of x’s rays.

Condition 5 guarantees that each partition satisfying Φ(σ) can be linked exactly with

another partition via a ray of Φ(σ). Finally, Condition 5 ensures that each partition sat-

isfying Φ(σ) with (≤ mR.C) ∈ λσ can be linked at most with m partitions containing

C via rays that include R.

Lemma 2. Let (T ,R) be a SHOIQ knowledge base.

1. If the tableaux algorithm can build a clash-free and complete SHOIQ-forest for

(T ,R) then there is a valid frame for (T ,R).

2. If there is a valid frame F = 〈(N0, · · · ,NH), δ, Φ, δ̂〉 for (T ,R) then the tableaux

algorithm can build a clash-free and complete SHOIQ-forest for (T ,R).

Lemma 2 points out the equivalence between a clash-free and complete SHOIQ-

forest and a valid frame for (T ,R). The following lemma affirms that there is an expo-

nential structure, a valid frame, which can represent a SHOIQ-forest whose size may

be double exponential.



Lemma 3. Let (T ,R) be a SHOIQ knowledge base. The size of a valid frame F =

〈(N0, · · · ,NH), δ, Φ, δ̂〉 is bounded by an exponential function in the size of (T ,R).

We can sketch a proof of the lemma here. We have H ≤ K where K = 22m+k × 2
with m = card{cl(T ,R)} and k = card{R(T ,R)}. card{Σ} ≤ (card{cl(T ,R)})2 ×

card{R(T ,R)} δ(σ) ≤ M22m+k×2 where M =
∑

mi + E, mi occurs in a number

restriction term (≥ miR.C) appearing in T , and E is the number of distinct terms

∃R.C appearing in T for σ ∈ Σ. If δ(σ) is represented as a binary number then it takes

an exponential number of bits.

Based on Lemma 3 and 2, we can present straightforwardly an optimal worst-case

algorithm for checking the consistency of a SHOIQ knowledge base. However, such

an algorithm cannot be used in practice since there are tremendously non-determinisms

which must be dealt with when constructing a valid frame. In the sequel, based on the

results obtained so far, we try to design an algorithm which has more goal-directed

behaviours.

Blocking condition for a frame Let F = 〈(N0, · · · ,NH), δ, Φ, δ̂〉 be a frame. A star-

type σk ∈ Nk with 0 < k ≤ H is blocked if there are σi ∈ Ni with 0 ≤ i ≤ k such

that σi is linkable with σi−1 for all i ∈ {1, · · · , k}, then there are 0 < k1 < k2 < k3 <
k4 ≤ k such that:

1. λσk1
= λσk2

, ν̄σk1
= ν̄σk2

, and there is no 0 < j < k2 such that j 6= k1, λσj
= λσk2

and ν̄σj
= ν̄σk2

;

2. λσk3
= λσk4

, ν̄σk3
= ν̄σk4

, and there is no k2 < j < k4 such that j 6= k3,

λσj
= λσk4

and ν̄σj
= ν̄σk4

.

Notice that this blocking condition is looser than the blocking condition introduced in

Definition 5 for a SHOIQ-forest. Since we can not determine the path from root to a

node satisfying a star-type over a frame, it not possible to check blocking condition in

the same way as for a SHOIQ-forest. The blocking condition for a frame, as described

above, implies that a node satisfying a blocked star-type must have an ancestor which

is blocked according to the blocking condition for a SHOIQ-forest.

We are now ready to propose an EXPSPACE tableaux-based algorithm for SHOIQ.

Before applying the frame rules described in Figure 3 (Appendix), we initialise a frame

F = 〈(N0, · · · ,NH), δ, Φ, δ̂〉 from a (T ,R) knowledge base as follows:

N0 := {〈{o}, ∅, ∅〉 | o ∈ Co}; δ(σo) := 1, Φ(σo) = {σo} and δ′(Φ(σo)) = 1 for all

σo ∈ N0.

If no frame rule is applicable to all star-types of F then we say that F is complete.

If we obtain a valid and complete F by applying the frame rules from a (T ,R), then

we conclude that (T ,R) is consistent. Otherwise, (T ,R) is not consistent.

Soundness of the tableaux-based algorithm for building a frame can be established

thanks to Lemma 2. Since each frame rule has its counterpart in the expansion rules,

completeness of the algorithm can be shown by using the same arguments as those

employed to prove Lemma 1. From these results and Lemma 3, we obtain the following

main result of the section:

Theorem 2. Let (T ,R) be a SHOIQ knowledge base. The tableaux algorithm for

contructing a frame is a decision procedure for consistency of (T ,R) and it runs in

EXPSPACE in the size of (T ,R).



5 Conclusion and Discussion

We have presented in this paper a practical EXPSPACE decision procedure for the logic

SHOIQ. The construction of this algorithm is founded on the well-known results for

SHOIQ and C2. First, we have based our approach on a technique that constructs

tree-like structures for representing a model without adding nominal nodes with new

nominals. This technique is founded on the fact that fusions of nodes triggered by merg-

ing nominal nodes can be replaced with governing a partitioning function which would

simulate this merging process. This allows us to reuse the blocking technique over these

tree-like structures to obtain termination. Second, we have transferred to SHOIQ the

method used for constructing a NEXPTIME algorithm for C2. This enables us to repre-

sent a double exponential SHOIQ-forest by an exponential structure.

The algorithms proposed in the present paper have used several nondeterministic

rules, e.g., ⊲⊳ or ≤o-rules. We think that these rules should be improved in some way

such that, for instance, they would take advantage of information from the part of the

frame which has already built.
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Appendix

The rules in Figure 3 for building a frame calls the algorithms described in Figure 1,

2, 3 and 4. Basically, these algorithms update the frame by adding a new star-type or

modifying the functions δσ and δ̂σ.

Notation Let F = 〈(N0, · · · ,NH), δ, Φ, δ̂〉 be a frame.

– For each σ ∈ Nk, if k = 0 then we define N (σ) = ∅ and N̂ (σ, 〈e, h〉) = ∅;

– For each σ ∈ Nk with k > 0, we denote N (σ) ⊆ Nk−1 for the non-empty set with

N (σ) = N ′(σ) ∪ {ω0} such that∑

ω′∈N ′(σ)

δ(ω′) < δ(σ),
∑

ω′∈N ′(σ)

δ(ω′) + δ(ω0) ≥ δ(σ), and for all σ′ ∈ N (σ) it

holds that λσ′ = l0, σ′ has a ray 〈r′′, l′′〉 /∈ ν̄σ′ with r′′ = r−0 and l′′ = λσ .

– For each ray 〈r, h〉 of σ with 〈r, h〉 /∈ ν̄σ , we denote N̂ (σ, 〈e, h〉) ⊆ Nk+1 for the

non-empty set with N̂ (σ, 〈e, h〉) = N̂ ′(σ, 〈e, h〉) ∪ {ω̄0} such that∑

ω′∈N̂ ′(σ,〈e,h〉)

δ(ω′) < δ(σ),
∑

ω′∈N̂ ′(σ,〈e,h〉)

δ(ω′) + δ(ω̄0) ≥ δ(σ), and for all σ′ ∈

N̂ (σ, 〈e, h〉) it holds that λσ′ = h, σ′ has a ray 〈r′′, l′′〉 ∈ ν̄σ′ with r′′ = r− and

l′′ = λσ .



⊑-rule: if C ⊑ D ∈ T and nnf(¬C ⊔D) /∈ L(x)
then L(x′) = L(x′) ∪ {nnf(¬C ⊔D)} for all x′ ∈ ϕ(x).

⊓-rule: if C1 ⊓ C2 ∈ L(x) and {C1, C2} 6⊆ L(x)
then L(x′) = L(x′) ∪ {C1, C2} for all x′ ∈ ϕ(x).

⊔-rule: if C1 ⊔ C2 ∈ (x) and {C1, C2} ∩ L(x) = ∅
then L(x′) = Lo(x

′) ∪ {C} with some C ∈ {C1, C2} for all x′ ∈ ϕ(x).
∃-rule: if 1. ∃S.C ∈ L(x), x is not blocked, x is not non-root nominal, and

2. x has no S-neighbour y with C ∈ L(y)
then create a new node y with L(〈x, y〉)={S}, L(y)={C} and ϕ(y) = {y}.

∀-rule: if 1. ∀S.C ∈ L(x), and

2. there is a S-neighbour y of x such that C /∈ L(y)
then L(y′) = L(y′) ∪ {C} for all y′ ∈ ϕ(y).

∀+-rule: if 1. ∀S.C ∈ L(x), and

2. there is some Q with Trans(Q) and Q∗⊑S, and

3. there is an Q-neighbour y of x such that ∀Q.C /∈ L(y)
then L(y′) = L(y′) ∪ {∀Q.C} for all y′ ∈ ϕ(y).

ch-rule: if 1. (≤ n S.C) ∈ L(x), and

2. there is an S-neighbour y of x with {C, ¬̇C} ∩ L(y) = ∅
then L(y′) = Lo(y

′) ∪ {E} with some E ∈ {C, ¬̇C} for all y′ ∈ ϕ(y).
≥-rule: if 1. (≥ n S.C) ∈ L(x), x is not blocked, x is not non-root nominal, and

2. x has no n S-neighbours y1, ..., yn such that C ∈ L(yi), and

yi
·6=yj for 1 ≤ i < j ≤ n,

then create n new nodes y1, ..., yn with L(〈x, yi〉)={S}, L(yi)={C},

ϕ(yi) = {yi} and yi
·6=yj for 1 ≤ i < j ≤ n.

≤-rule: if 1. (≤ n S.C) ∈ L(x), and

2. card{ST(x,C)} > n and there are two S-neighbours y, z of x with

C ∈ L(y) ∩ L(z), y is not an ancestor of z and not y ·6=z
then 1. for all z′ ∈ ϕ(z), x′ ∈ ϕ(x) such that L′(〈x′, z′〉) 6= ∅,

if x′ is an ancestor of z′ then L(〈x′, z′〉) = L(〈x′, z′〉) ∪ L(〈x, y〉)
else L(〈z′, x′〉) = L(〈z′, x〉) ∪ {R⊖ | R ∈ L(〈x, y〉)}

2. L(z′) = L(z′) ∪ L(y) for all z′ ∈ ϕ(z) and L(〈x, y〉) = ∅
3. add u ·6=z for all u such that u ·6=y.

⊲⊳-rule: if 1. (≤ nR.C) ∈ L(x), {(≤ l R.C), (≥ l R.C)} * L(x) for all l ≤ n,

2. (≤ k R.C) /∈ L(x) for all k < n, and

3. x has a R-neighbour y such that C ∈ L(y)
then 1. guess m with 1 ≤ m ≤ n, and

2. L(x′) = L(x′) ∪ {≤ mR.C,≥ mR.C} for all x′ ∈ ϕ(x).

Fig. 1. Expansion rules for SHIQ



oϕ-rule: if 1. there are nodes x, x′ with o ∈ L(x) ∩ L(x′) for some o ∈ Co,

2. ϕ(x) ∩ ϕ(x′) = ∅ and ϕ(x) ·6=ϕ(x′) does not hold,

then 1. Propagate(ϕ(x), ϕ(x′), ϕ(y)) for each y such that

{〈x′′, y〉, 〈y, x′′〉} ∩ Eo 6= ∅ for x′′ ∈ ϕ(x) ∪ ϕ(x′), o ∈ Co.

2. ϕ(y′) = ϕ(x) ∪ ϕ(x′) for all y′ ∈ ϕ(x) ∪ ϕ(x′).
≤ϕ-rule: if 1. (≤ nR.C) ∈ L(x),

2. there are nodes y0, · · · , yn with ϕ(yi) ∩ ϕ(yj) = ∅, 0 ≤ i < j ≤ n,

C ∈ Λ(ϕ(yi)), R ∈ Λ(〈ϕ(x), ϕ(yi)〉) for all 0 ≤ i ≤ n, and

3. there are x′, x′′ ∈ ϕ(x) with x′ 6= x′′, and x′ has a R-neighbour y′,

x′′ has a R-neighbour y′′ s.t. C ∈ L(y′) ∩ L(y′′), ϕ(y′) ∩ ϕ(y′′) = ∅,

and not ϕ(y′) ·6=ϕ(y′′)
then 1. Propagate(ϕ(y′), ϕ(y′′), ϕ(x)),

2. ϕ(y) = ϕ(y′) ∪ ϕ(y′′) for all y ∈ ϕ(y′) ∪ ϕ(y′′).

Fig. 2. New expansion rules for SHOIQ

Input : σ = 〈λσ, µ̄σ, ν̄σ〉 ∈ Nk, r ⊆ R(T ,R), l ⊆ cl(T ,R) and

F = 〈(N0, · · · ,NH), δ, Φ, δ̂〉
Output: the frame obtained by updating F

Build a star-type ω with λω = λσ , ν̄ω = ν̄ω and µ̄ω = (µ̄σ, 〈r, l〉);1

Build a star-type ω′ with λω = l, ν̄ω = {〈r−, λσ〉} and µ̄ω = ∅;2

Nk := Nk ∪ {ω};3

δ(ω) := δ(σ);4

δ(σ) := 0;5

if ω′ ∈ Nk+1 then6

δ(ω′) := δ(ω′) + δ(σ);7

else8

Nk+1 := Nk+1 ∪ {ω′};9

δ(ω′) := δ(σ);10

if ω 6≈ σ′ for all σ′ ∈
⋃

i∈{1,··· ,H} Ni then11

Φ(ω) := {ω}, δ̂(Φ(ω)) := 1 and δ̂(Φ(σ)) := δ̂(Φ(σ))− 1;12

else13

if o /∈ λω for all o ∈ Co then14

δ̂(Φ(ω)) := δ̂(Φ(ω)) + 1;15

if ω′ 6≈ σ′ for all σ′ ∈
⋃

i∈{1,··· ,H} Ni then16

Φ(ω′) := {ω′}, δ̂(Φ(ω′)) := 1;17

else18

if o /∈ λω′ for all o ∈ Co then19

δ̂(Φ(ω′)) := δ̂(Φ(ω′)) + 1;20

Algorithm 1: addRay(σ, r, l) updates frame when adding a new ray 〈r, l〉 to a

star-type σ ∈ Nk.



⊑-rule: if C ⊑ D ∈ T and nnf(¬C ⊔D) /∈ λσ

then updateLabel(σ, λσ ∪ {nnf(¬C ⊔D)}).
⊓-rule: if C1 ⊓ C2 ∈ L(x) and {C1, C2} 6⊆ λσ

then updateLabel(σ, λσ ∪ {C1, C2}).
⊔-rule: if C1 ⊔ C2 ∈ λσ and {C1, C2} ∩ λσ = ∅

then updateLabel(σ, λσ ∪ {C}) with some C ∈ {C1, C2}.

∃-rule: if 1. ∃S.C ∈ λσ , λσ is not blocked, and

2. σ has no ray 〈r, l〉 with S ∈ r and C ∈ l
then addRay(σ, r, l).

∀-rule: if 1. ∀S.C ∈ λσ , and

2. σ has a ray 〈r, l〉 such that S ∈ r and C /∈ l
then if 〈r, l〉 ∈ ν̄σ then updatePredRay(σ, 〈r, l〉, r, l ∪ {C})

else updateSuccRay(σ, 〈r, l〉, r, l ∪ {C})
∀+-rule: if 1. ∀S.C ∈ λσ , and

2. there is some Q with Trans(Q) and Q∗⊑S, and

3. σ has a ray 〈r, l〉 such that Q ∈ r and ∀Q.C /∈ l
then if 〈r, l〉 ∈ ν̄σ then updatePredRay(σ, 〈r, l〉, r, l ∪ {∀Q.C}).

else updateSuccRay(σ, 〈r, l〉, r, l ∪ {∀Q.C})
ch-rule: if 1. (≤ n S.C) ∈ λσ , and

2. σ has a ray 〈r, l〉 such that S ∈ r and {C, ¬̇C} ∩ l = ∅
then if 〈r, l〉 ∈ ν̄σ then updatePredRay(σ, 〈r, l〉, r, l ∪ {E}).

else updateSuccRay(σ, 〈r, l〉, r, l ∪ {E}) with some E ∈ {C, ¬̇C}.

≥-rule: if 1. (≥ n S.C) ∈ λσ , σ is not blocked, and

2. σ has no n rays 〈r1, l1〉, ..., 〈rn, ln〉 such that R ∈ ri, C ∈ li, and

〈ri, lj〉
·6=〈rj , lj〉 for 1 ≤ i < j ≤ n,

then call addRay(σ, {R}, {C}) n times to create n rays 〈r1, l1〉, ..., 〈rn, ln〉
with ri = {R} and li = {C} for 1 ≤ i ≤ n, and

〈ri, li〉
·6=〈rj , lj〉 for 1 ≤ i < j ≤ n.

≤-rule: if 1. (≤ n S.C) ∈ σ, and

2. σ has (n+ 1) rays 〈r0, l0〉, ..., 〈rn, ln〉 such that R ∈ ri, C ∈ li for all

0 ≤ i ≤ n and there are 0 ≤ i < j ≤ n
such that 〈ri, li〉

·6=〈rj , lj〉 does not hold

then 1. For each 〈r, l〉 ∈ {〈ri, li〉, 〈rj , lj〉}, if 〈r, l〉 ∈ ν̄σ ,

then, updatePredRay(ω, 〈r, l〉, r ∪ r′, l ∪ l′),
else, updateSuccRay(ω, 〈r, l〉, r ∪ r′, l ∪ l′)

where 〈r′, l′〉 ∈ {〈ri, li〉, 〈rj , lj〉} with 〈r′, l′〉 6= 〈r, l〉.
2. add 〈r′, l′〉 ·6=〈ri, li〉 for all ray 〈r′, l′〉 such that 〈r′, l′〉 ·6=〈rj , lj〉.

o-rule: if 1. there are star-types σ1, · · · , σk such that o ∈ λσi
for some o ∈ Co

then updateLabel(σ1, · · · , σk),
≤o-rule: if 1. there are star-types σ1, · · · , σk ∈ Φ(σ) and (≤ mR.C)} ∈ λσi

for all

1 ≤ i ≤ k, and σ1, · · · , σk have (m+ 1) distinct primary rays

〈r0, l0〉, · · · 〈rm, lm〉 such that R ∈ ri and C ∈ li for all 0 ≤ i ≤ m
then 1. Choose two rays 〈rj , lj〉, 〈rj′ , lj′〉 of respective σi ∈ Nh and σi′ ∈ Nh′

with 0 ≤ j < j′ ≤ m and 1 ≤ i < i′ ≤ k such that 〈rj , lj〉
·6=〈rj′ , lj′〉

2. For each 〈r, l〉 ∈ {〈rj , lj〉, 〈rj′ , lj′〉}, if 〈r, l〉 ∈ ν̄ω with ω ∈ {σi, σi′},

then, updatePredRay(ω, 〈r, l〉, r ∪ r′, l ∪ l′),
else, updateSuccRay(ω, 〈r, l〉, r ∪ r′, l ∪ l′)

where 〈r′, l′〉 ∈ {〈rj , lj〉, 〈rj′ , lj′〉} with 〈r′, l′〉 6= 〈r, l〉.
⊲⊳-rule: if 1. (≤ nR.C) ∈ λσ , {(≤ l R.C), (≥ l R.C)} * λσ for all l ≤ n,

2. (≤ k R.C) /∈ λσ for all k < n, and

3. σ has a ray 〈r, l〉 such that R ∈ r, C ∈ l
then 1. guess m with 1 ≤ m ≤ n, and

2. updateLabel(σ, λσ ∪ {≤ mR.C,≥ mR.C}).

Fig. 3. Expansion rules for constructing a frame.



Input : σ = 〈λσ, µ̄σ, ν̄σ〉 ∈ Nk; l ⊆ cl(T ,R) and F = 〈(N0, · · · ,NH), δ, Φ, δ̂〉
Output: the frame obtained by updating F

Let ν̄(σ) = {〈r, l〉};1

Let N (σ) = N ′(σ) ∪ {ω0};2

foreach σ′ ∈ N (σ) do3

Build a star-type ω with λω = λσ′ , ν̄ω = ν̄σ′ and µ̄ω := (µ̄σ′ , 〈r−, l0〉);4

Nk−1 := Nk−1 ∪ {ω};5

if σ′ = ω0 then6

δ(ω) := δ(σ)−
∑

ω′∈N ′(σ)

δ(ω′);
7

δ(σ′) := δ(σ′)− (δ(σ)−
∑

ω′∈N ′(σ)

δ(ω′));
8

else9

δ(ω) := δ(σ′), δ(σ′) := 0;10

if ω 6≈ ω′ for all ω′ ∈
⋃

i∈{1,··· ,H} Ni then11

Φ(ω) := {ω}, δ̂(Φ(ω)) := 1 and δ̂(Φ(σ′)) := δ̂(Φ(σ′))− 1;12

else13

if o /∈ λω for all o ∈ Co then14

δ̂(Φ(ω)) := δ̂(Φ(ω)) + 1;15

Let µ̄σ = (〈r1, l1〉, · · · , 〈ri, lj〉, · · · , 〈rk′ , lk′〉);16

foreach 〈ri, li〉 with 1 ≤ i ≤ k′ do17

Let N̂ (σ, 〈ri, li〉) = N̂ ′(σ, 〈ri, li〉) ∪ {ω̄0};18

foreach σ′ ∈ N̂ (σ, 〈ri, li〉) do19

Build a star-type ω with λω = li, ν̄ω = {〈r−i , l0〉} and µ̄ω = µ̄σ′ ;20

Nk+1 := Nk+1 ∪ {ω};21

if σ′ = ω̄0 then22

δ(ω) := δ(σ′)−
∑

ω′∈N̂ (σ,〈ri,li〉)

δ(ω′);

23

δ(σ′) := δ(σ′)− (δ(σ)−
∑

ω′∈N̂ (σ,〈ri,li〉)

δ(ω′));

24

else25

δ(ω) := δ(σ′), δ(σ′) := 0;26

if ω 6≈ ω′ for all ω′ ∈
⋃

i∈{1,··· ,H} Ni then27

Φ(ω) := {ω}, δ̂(Φ(ω)) := 1 and δ̂(Φ(σ′)) := δ̂(Φ(σ′))− 1;28

else29

if o /∈ λω for all o ∈ Co then30

δ̂(Φ(ω)) := δ̂(Φ(ω)) + 1;31

Build a star-type ω with λω = l0, ν̄ω = ν̄σ and µ̄ω = µ̄σ;32

δ(ω) := δ(σ), δ(σ) := 0, Nk := Nk ∪ {ω};33

if ω 6≈ ω′ for all ω′ ∈
⋃

i∈{1,··· ,H} Ni then34

Φ(ω) := {ω}, δ̂(Φ(ω)) := 1 and δ̂(Φ(σ′)) := δ̂(Φ(σ′))− 1;35

else36

if o /∈ λω for all o ∈ Co then37

δ̂(Φ(ω)) := δ̂(Φ(ω)) + 1;38

Algorithm 2: updateLabel(σ, l0) updates frame when modifying λσ by assigning

l to λσ .



Input : σ = 〈λσ, µ̄σ, ν̄σ〉 ∈ Nk; ν̄σ = {〈r, l〉} r0 ⊆ R(T ,R); l0 ⊆ cl(T ,R) and

F = 〈(N0, · · · ,NH), δ, Φ, δ̂〉
Output: the frame obtained by updating F

Let N (σ) = N ′(σ) ∪ {ω0};1

foreach σ′ ∈ N (σ) do2

Let ν̄(σ′) = {〈s, h〉};3

Let µ̄(σ′) = (〈s1, h1〉, · · · , 〈si, hi〉, · · · , 〈sn, hn〉) with si = r− and hi = λσ;4

Let N (σ′) = N ′(σ′) ∪ {ω′
0};5

foreach σ′′ ∈ N (σ′) do6

Build a star-type ω with λω = λσ′′ , ν̄ω = ν̄σ′′ and µ̄ω = (µ̄σ′′ , 〈s−, λσ′〉);7

Nk−2 := Nk−2 ∪ {ω};8

if σ′′ = ω′
0 then9

δ(ω) := δ(σ′)−
∑

ω′∈N ′(σ′)

δ(ω′);
10

δ(σ′′) := δ(σ′′)− (δ(σ′)−
∑

ω′∈N ′(σ′)

δ(ω′));
11

else12

δ(ω) := δ(σ′′), δ(σ′′) := 0;13

if ω 6≈ ω′ for all ω′ ∈
⋃

i∈{1,··· ,H} Ni then14

Φ(ω) := {ω}, δ̂(Φ(ω)) := 1 and δ̂(Φ(σ′′)) := δ̂(Φ(σ′′))− 1;15

else16

if o /∈ λω for all o ∈ Co then17

δ̂(Φ(ω)) := δ̂(Φ(ω)) + 1;18

Build a star-type ω with λω = l0, ν̄ω = ν̄σ′ and µ̄ω = (µ̄σ′ , 〈r−0 , l0〉);19

Nk−1 := Nk−1 ∪ {ω};20

if σ′ = ω0 then21

δ(ω) := δ(σ)−
∑

ω′∈N ′(σ)

δ(ω′);
22

δ(σ′) := δ(σ′)− (δ(σ)−
∑

ω′∈N ′(σ)

δ(ω′));
23

else24

δ(ω) := δ(σ′), δ(σ′) := 0;25

if ω 6≈ ω′ for all ω′ ∈
⋃

i∈{1,··· ,H} Ni then26

Φ(ω) := {ω}, δ̂(Φ(ω)) := 1 and δ̂(Φ(σ′)) := δ̂(Φ(σ′))− 1;27

else28

if o /∈ λω for all o ∈ Co then29

δ̂(Φ(ω)) := δ̂(Φ(ω)) + 1;30

Build a star-type ω with λω = λσ , ν̄σ0 = {〈r0, l0〉} and µ̄ω = µ̄σ;31

δ(ω) := δ(σ), δ(σ) := 0, Nk := Nk ∪ {ω};32

if ω 6≈ ω′ for all ω′ ∈
⋃

i∈{1,··· ,H} Ni then33

Φ(ω) := {ω}, δ̂(Φ(ω)) := 1 and δ̂(Φ(σ)) := δ̂(Φ(σ))− 1;34

else35

if o /∈ λω for all o ∈ Co then36

δ̂(Φ(ω)) := δ̂(Φ(ω)) + 1;37

Algorithm 3: updatePredRay(σ, 〈r, l〉, r0, l0) updates frame when modifying a

ray 〈r, l〉 of a star-type σ ∈ Nk by assigning r0, l0 to respective r and l.



Input : σ = 〈λσ, µ̄σ, ν̄σ〉 ∈ Nk; 〈r, l〉 /∈ ν̄σ is ray of σ; r0 ⊆ R(T ,R); l0 ⊆ cl(T ,R)

and F = 〈(N0, · · · ,NH), δ, Φ, δ̂〉
Output: the frame obtained by updating F

Let µ̄σ = (〈r1, l1〉, · · · , 〈ri, li〉, · · · , 〈rk, lk〉);1

foreach 〈ri, li〉 with 1 ≤ i ≤ k do2

Let N̂ (σ, 〈ri, li〉) = N̂ ′(σ, 〈ri, li〉) ∪ {ω0};3

foreach σ′ ∈ N̂ (σ, 〈ri, li〉) do4

Let µ̄σ′ = (〈s1, h1〉, · · · , 〈sj , hj〉, · · · , 〈sk′ , hk′〉);5

foreach 〈sj , hj〉 with 1 ≤ j ≤ k′ do6

Let N̂ (σ′, 〈sj , hj〉) = N̂ ′(σ′, 〈sj , hj〉) ∪ {ω1};7

foreach σ′′ ∈ N̂ (σ′, 〈sj , hj〉) do8

Build a star-type ω with λω = hj , ν̄ω = {〈s−j , λσ′〉} and µ̄ω = µ̄σ′′ ;9

Nk+2 := Nk+2 ∪ {ω};10

if σ′′ = ω1 then11

δ(ω) := δ(σ′)−
∑

ω′∈N̂ (σ′,〈sj ,hj〉)

δ(ω′);

12

δ(σ′′) := δ(σ′′)− (δ(σ′)−
∑

ω′∈N̂ (σ′,〈sj ,hj〉)

δ(ω′));

13

else14

δ(ω) := δ(σ′′), δ(σ′′) := 0;15

if ω 6≈ ω′ for all ω′ ∈
⋃

i∈{1,··· ,H} Ni then16

Φ(ω) := {ω}, δ̂(Φ(ω)) := 1 and δ̂(Φ(σ′′)) := δ̂(Φ(σ′′))− 1;17

else18

if o /∈ λω for all o ∈ Co then19

δ̂(Φ(ω)) := δ̂(Φ(ω)) + 1;20

Build a star-type ω with λω = li, ν̄ω = {〈r−i , λσ〉} and µ̄ω = µ̄σ′ ;21

Nk+1 := Nk+1 ∪ {ω};22

if σ′ = ω0 then23

δ(ω) := δ(σ)−
∑

ω′∈N̂ (σ,〈ri,li〉)

δ(ω′);

24

δ(σ′) := δ(σ′)− (δ(σ)−
∑

ω′∈N̂ (σ,〈ri,li〉)

δ(ω′));

25

else26

δ(ω) := δ(σ′), δ(σ′) := 0;27

if ω 6≈ ω′ for all ω′ ∈
⋃

i∈{1,··· ,H} Ni then28

Φ(ω) := {ω}, δ̂(Φ(ω)) := 1 and δ̂(Φ(σ′)) := δ̂(Φ(σ′))− 1;29

else30

if o /∈ λω for all o ∈ Co then31

δ̂(Φ(ω)) := δ̂(Φ(ω)) + 1;32

Build a star-type ω with λω = l0, ν̄ω = ν̄σ and µ̄ω = (µ̄σ, 〈r0, l0〉);33

δ(ω) := δ(σ), δ(σ) := 0, Nk := Nk ∪ {ω};34

if ω 6≈ ω′ for all ω′ ∈
⋃

i∈{1,··· ,H} Ni then35

Φ(ω) := {ω}, δ̂(Φ(ω)) := 1 and δ̂(Φ(σ)) := δ̂(Φ(σ))− 1;36

else37

if o /∈ λω for all o ∈ Co then38

δ̂(Φ(ω)) := δ̂(Φ(ω)) + 1;39

Algorithm 4: updateSuccRay(σ, 〈r, l〉, r0, l0) updates frame when modifying a

ray 〈r, l〉 /∈ ν̄σ of a star-type σ ∈ Nk by assigning r0, l0 to respective r and l.


