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ABSTRACT 

 
Wireless smart sensor networks have become an attractive alternative to traditional wired sensor 
systems in order to reduce implementation costs of structural health monitoring systems. The 
onboard sensing, computation, and communication capabilities of smart wireless sensors have 
been successfully leveraged in numerous monitoring applications. However, the current data ac-
quisition schemes, which completely acquire data remotely prior to processing, limit the applica-
tions of wireless smart sensors (e.g., for real-time visualization of the structural response). While 
real-time data acquisition strategies have been explored, challenges of implementing high-
throughput real-time data acquisition over larger network sizes still remain due to operating sys-
tem limitations, tight timing requirements, sharing of transmission bandwidth and unreliable 
wireless radio communication. This report presents the implementation of real-time wireless data 
acquisition on the Imote2 platform. The challenges presented by hardware and software limita-
tions are addressed in the application design. The framework is then expanded for high-
throughput applications that necessitate larger networks sizes with higher sampling rates. Two 
approaches are implemented and evaluated based on network size, associated sampling rate, and 
data delivery reliability. Ultimately, the communication and processing protocol allows for near-
real-time sensing of 108 channels across 27 nodes with minimal data loss.  
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Chapter 1 
 

INTRODUCTION 

Civil infrastructure is essential for public safety and prosperity. The numerous bridge collapses, 
including the I-35 bridge collapse in Minnesota, highlight the importance of structural health 
monitoring (SHM) as civil infrastructure ages. Furthermore, monitoring systems can allow engi-
neers to evaluate a structural system after an extreme loading event such as an earthquake or ty-
phoon. However, implementation of traditional wired monitoring systems can come at a high 
price due to installation costs. In the literature, a wired monitoring implemented in a building has 
been reported to be as much as $5000 per channel (Çelebi 2002); whereas for the 84 accelerome-
ters deployed on the Bill Emerson Memorial Bridge, the average installed cost per channel was 
over $15 K per channel (Çelebi, et al. 2004). Wireless smart sensors, which include onboard 
communication, processing, and memory, have the potential to significantly reduce these imple-
mentation costs and allow dense network deployments (Lynch and Loh, 2006). 
 However, wireless sensor networks present inherent challenges to performing traditional 
monitoring. The limited network resources, including power and communication bandwidth, can 
make handling large quantities of data challenging (Nagayama et al. 2007; Nagayama and Spen-
cer 2007). Two common approaches to data acquisition in large sensor networks are used: data 
logging and decentralized data aggregation. In the first, data is acquired locally on sensor nodes 
prior to sending the measured data individually back to the base station. The collected time histo-
ries can then be analyzed. This data logging approach better utilizes the transmission bandwidth 
when compared to real-time acquisition; however, the process can take a significant amount of 
time. In the second approach, data is acquired locally and then processed, typically in small 
communities of neighboring sensor nodes; the aggregated data is returned to the gateway node 
(Rice et al. 2010).   This approach leverages the onboard computational power to reduce trans-
mission size and power consumption (Lynch et al. 2004); however, complete time histories of 
the measured data are no longer available. 
 On the other hand, real-time data acquisition offers an alternative data collection ap-
proach, which can increase the applications of wireless sensors. For example, real-time acquisi-
tion allows wireless sensor networks to mimic tethered acquisition systems when real-time visu-
alization of the response is desired. Furthermore, this approach may be desirable if actuation ca-
pabilities are included in the wireless system and real-time state knowledge is necessary (e.g., 
structural control). Despite the onboard processing and communication capabilities, real-time 
data acquisition on wireless smart sensors is challenging due to operating system limitations, 
tight timing requirements, sharing of transmission bandwidth, and unreliable wireless radio 
communication.  
 Recent sensor systems have implemented real-time data acquisition by limiting network 
size, channels acquired, and/or sampling rates. Galbreath et al. (2003) achieve continuous 
streaming on their own prototype sensor by acquiring 3-channels of 12-bit sensor data sampled at 
1 kHz on a single sensor node. In this monitoring approach, multiple nodes were not required to 
communicate with the gateway node. Similarly, Paek et al. (2006) limit the size of their networks 
and sampling rate to achieve sampling of 12 channels of acceleration across four nodes at 20 Hz 
using a TENET network with Stargate and MicaZ sensor nodes. Wang et al. (2007) achieve reli-
able near-real-time transmission of 24 wireless sensors with 16-bit data at sampling rates up to 
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50 Hz on their own prototype sensor node. Their multithreaded operating system with multiple 
memory buffers does not require sending within one sample period and as a result can use a retry 
and acknowledgement protocol to ensure reliable communication. Whelan and Janoyan (2009) 
achieve reliable real-time acquisition of 40 channels of 12-bit data over 20 nodes at a sampling 
rate of 128 Hz on the TmoteSky sensor node through low-level modification of TinyOS-1.x han-
dling of events.  To achieve reliable communication, they retransmit lost data, which can intro-
duce some latency. While the Whelan and Janoyan (2009) system exhibits impressive perfor-
mance, the time synchronization among nodes is only viable for several minutes, which limits 
the sensing interval. Thus, although real-time data acquisition has been implemented, high-
throughput, near-real-time, data acquisition over large networks for an extended sampling inter-
val has not been realized. 
 This report presents the implementation of high-throughput, real-time, wireless data ac-
quisition on the Imote2, an advanced smart sensor platform used extensively today (Jang et al. 
2010; Yan et al. 2010; Ni et al. 2009; Nguyen et al. 2011). Chapter 2 discusses the implications 
of hardware and software limitations on the implementation of real-time sensing. These issues 
are addressed in the communication protocol and application design for real-time acquisition 
presented and evaluated in Chapter 3. Finally, in Chapter 4, the initial application framework is 
expanded to provide high-throughput, near-real-time wireless data acquisition for applications 
requiring a larger network size. Two approaches are considered and evaluated based on their re-
sulting network size, sampling rate, and data delivery reliability. The communication protocol 
used accounts for the number of nodes in the network as well as the sending and processing 
times to ultimately achieve sampling of 108 channels over 27 nodes at sampling rates up to 25 
Hz. 
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2.2 Embedded Software 

The embedded software is an essential component in the design of the real-time wireless data 
acquisition. This section will discuss the four main components of the software for application 
development: the operating system, software architecture, time synchronization, and sensing ap-
proach. 

Operating	System	

The operating system popular with numerous embedded wireless sensor networks, TinyOS, is 
used on the Imote2 (Lynch and Loh 2006). TinyOS (www.tinyos.net) is a component-based op-
erating system written in the NesC language, a version of C for embedded systems, which has 
limited memory requirements. The open-source software supports an event-driven concurrency 
model, in which tasks are completed in a first-in-first-out (FIFO) manner along with interrupts 
(Levis et al. 2005). The inclusion of asynchronous interrupts allows the system to interact with 
real-time hardware. Thus, two main execution methods are possible: a task posted to a queue and 
an asynchronous interrupt handler. 

Software	Architecture	

Similar to the component-based operating system, the Illinois Structural Health Monitoring 
(ISHMP) Services Toolsuite (http://shm.cs.uiuc.edu/software.html) used in the development of 
real-time wireless sensing utilizes a modular service-oriented architecture. The framework con-
sists of three main elements: foundation services, application (domain-specific) services, and 
tools and utilities (Rice et al. 2010). A typical application would combine several foundation and 
application services. Several of the key foundation services to support real-time sensing include 
reliable communication and synchronized sensing. The reliable communication service allows 
reliable sends of different message types, including commands and long data sets. The synchro-
nized sensing service combines time synchronization, which provides global timestamps, and 
resampling to account for sampling offset and variation of sampling rates (Nagayama et al. 
2009).  

Time	Synchronization	

Precise time synchronization serves two key purposes in real-time sensing: (i) providing con-
sistent global timestamps for synchronizing the data acquired from different sensor nodes, and 
(ii) scheduling communication. While approximately 1 ms precision typically suffices for com-
munication scheduling, much tighter precision is needed for acquiring high-quality synchronized 
data.  A custom time synchronization protocol for SHM applications on the Imote2 has been im-
plemented (Nagayama et al. 2009).  By extending the Flooding Time Synchronization Protocol 
(FTSP) with clock drift estimation and compensation features, it maintains synchronization error 
within 80 µs over a period of several minutes without resynchronization. 

Sensing	Approach	

In general, the sensing application on the Imote2 interfaces with the sensor board through driver 
commands. The user first specifies the desired channels, sampling rate, and number of samples. 
The application relays this information to the driver when posting a sensing task. When the driv-
er is initialized, sensing begins and the data is passed to the application through a buffer. Sensing 
continues until the desired amount of data has been acquired. 
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2.3 Implications of Hardware and Embedded Software on Implementation of Real-Time 
Sensing 

The TinyOS operating system design, while useful for embedded applications, makes the real-
time scheduling and control required for real-time wireless data acquisition challenging. This 
section will outline how the event-driven concurrency model of TinyOS along with standard 
hardware limitations impacts real-time sensing. 

Sampling	Rate	Limitation	

The FIFO task queue and lack of priority-based scheduling limit the sampling rates possible for 
real-time data acquisition. Each data sample is passed through to the application from the driver 
in an event generated by an interrupt handler, which is similar to posting a task. Any processing 
tasks including, calculating the global time stamps, temperature correction, and sending must 
occur before the next data sample is passed. Otherwise, the task queue will slowly fill and the 
real-time nature is lost. Thus, the sample interval is limited by the total time required to process 
and send. 

Communication	Time	

To improve communication reliability, the radio utilizes a clear channel assessment to ensure 
that the wireless channel is free prior to transmitting. Thus, multiple nodes transmitting at the 
same time can increase communication time. Furthermore, because the radio waits a random 
back-off time prior to reassessing the channel, the time required to send while multiple nodes are 
transmitting is not consistent. Therefore, predicting the sending time, which is important for de-
termining the sampling rate as mentioned previously, is challenging.  

Sensing	Offset	

The sensing approach, as well as variation in hardware start-up times, introduces an offset be-
tween the desired and actual start of sensing. A desired sensing start time is specified when the 
sensing task is posted; however, sensing does not begin at this exact specified time. Nagayama et 
al. (2009) explains that while a hardware interrupt could be used to gain more accurate timing 
than posting a task, firing an interrupt at a high frequency is unreasonable. Furthermore, varia-
tion in hardware initialization times would result in a delay nonetheless.   

As a result, the sensing approach, illustrated in Figure 2, accepts relative uncertainty in 
the start time for sensing. When the driver initializes, sensing begins; however, samples are not 
stored and passed to the application until they are within a sampling interval of the desired start 
time, tstart. This offset is non-trivial and, due to variation in processing of the sensing task and the 
hardware initialization time, is non-deterministic. In local data logging approaches, this sensing 
offset is recorded and accounted for during post-processing by resampling the data prior to 
transmission (Nagayama et al. 2009).  
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Figure 2: Sensing Approach. 

However, the strict timing of real-time transmission requires accounting for this offset 
during sensing in the application design. Although time synchronization aligns the global clocks 
among the nodes, the sampling times are not consistent due to this offset. Thus, any scheduling 
among nodes based on sample ready events will not be aligned. Furthermore, the time stamps of 
the data must be transmitted as well, so the offset can be accounted for later in resampling, if de-
sired. 
  

Δstart 

tstart  + Δt tstart  ‐ Δt tstart  ‐ 2Δt 
Sensorboard Samples 

Stored Samples 
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Chapter 3 
 

REAL-TIME DATA ACQUISITION SERVICE  
FOR REAL-TIME STATE KNOWLEDGE 

The sampling rate limit, sensing approach, and communication latency limitations due to the de-
sign of wireless sensor hardware and TinyOS described in the previous chapter must be ad-
dressed in the application design. Consequently, unlike wired systems, implementation of real-
time wireless data acquisition requires addressing the tradeoff between performance, including 
network size and sampling rate, and reliability. The resulting wireless data-acquisition service, 
which could be applied to structural control or health monitoring applications, and its perfor-
mance will be presented in this section. 

3.1 Application Design 

Given the FIFO scheduling of TinyOS, minimizing the time for each element of a sampling in-
terval and providing a consistent time to send is necessary for determining the maximum sample 
rate possible. Due to the random communication latency when multiple nodes send at the same 
time, a scheduled communication approach is utilized. Furthermore, within this framework, the 
amount of data returned to the gateway nodes is minimized to the 8-bit node ID, 4 channels of 
16-bit data, and a 32-bit timestamp for accurate reconstruction of the data. Thus, the total packet 
payload is limited to a minimum of 14 bytes.  

Communication	Protocol	
The common time-division multiple access (TDMA) protocol is implemented to allow multiple 
leaf nodes to communicate with a single receiver, or gateway node, by transmitting in different 
time slots. A TDMA protocol, illustrated in Figure 3, permits only one node to send at a time; 
thus, allowing the communication time to be more readily determined due to the absence of con-
tention and back-off delays.  

 
Figure 3: TDMA Communication Protocol 

Because a reliable communication protocol involving acknowledgements and resends, 
may take an undetermined amount of time, a generic, or unreliable, communication scheme with 
only a cyclic-redundancy check (CRC) for packet error detection is used. Thus, if bit errors are 
found within the packet, the data packet is dropped and no retransmission occurs. While this Ge-
nericComm scheme does not address packet loss, a relatively consistent send time is possible 
(TinyOS 2006). Furthermore, a TDMA protocol reduces the loss of packets due to collisions by 
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Table 1: Timing Analysis for Steps in Wireless Data Acquisition 

 Processing Leaf 
(ms) 

Sending Leaf  
(ms) 

Processing 
Gateway (ms) 

Total Time  
(ms) 

97th Percentile 0.50 6.55 1.5 8.55 
Mean 0.37 4.17 1.27 5.81 

Standard Deviation 0.09     1.48    0.20 1.77 
 
 In addition, the variable processing speed of the Imote2 is utilized to reduce the time re-
quired for each step. The speed is increased from the normal operating speed of 13 MHz to 104 
MHz to achieve this performance. Because the processing time given in Table 1 is so much 
smaller than the sending time, the processing speed is not increased higher due to the significant-
ly greater power consumption at higher speeds (Miller et al. 2010). 

Sensing	Offset	 	

The TDMA communication protocol assumes that all nodes are sensing at the same time; how-
ever, as discussed in Chapter 2, there is an offset in the exact time of sensing for each node. This 
offset, which is not known prior to the start of sampling, must be accounted for in the communi-
cation scheduling to ensure that sends do not overlap despite using a TDMA approach. Further-
more, the time stamp must be returned with the data to account for this offset in resampling, 
which increases the packet payload for each sample. 

3.2 Application Flowchart 

The complete application requires combining accurate time synchronization and reliably sent 
commands to start sensing with this scheduled communication approach. Figure 5 illustrates the 
combination of these services into the overall program flow. At the start of the application, the 
user inputs the sensing parameters including the channels, number of samples, sampling rate, and 
leaf nodes for which data is to be acquired. These parameters are sent to the leaf nodes reliably to 
initialize the application. Time synchronization then occurs to ensure the leaf node’s clocks are 
aligned, which is necessary to provide reasonable alignment in sensing and allow the tight 
scheduling of sends in the TDMA protocol. After synchronization a message for calculating the 
appropriate delay in sending for the communication protocol is sent reliably to the responsive 
nodes. The two initialization messages are sent reliably, because they are essential to successful 
completion of the application and, as such, more time is allotted for these messages. Once sens-
ing begins, the continuous sensing and sending protocol starts and continues until the leaf nodes 
have acquired and sent all the desired number of samples.  

Because the continuous sampling component is the central part of real-time wireless data 
acquisition, it is presented in more detail in Figure 6. When a sample is passed from the sensor 
board driver to the application, a sample ready event is called. Next, the time for a send interrupt 
is calculated based on the time the sample is received, the start of sensing offset, and the sending 
delay determined for the TDMA scheme. If the time calculated is greater than one sampling in-
terval due to the sensing offset, then it must be accounted for when setting the interrupt and de-
termining the appropriate packet to send when the interrupt fires. An interrupt is used to signal 
the send rather than posting a task, as accurate scheduling is required for the TDMA scheme. 
Once the interrupt is set, the sample is processed. The time stamp is calculated and temperature 
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Chapter 4 

HIGH-THROUGHPUT NEAR-REAL-TIME 
WIRELESS DATA ACQUISITION 

For applications that only require near-real-time sensing, such as structural health monitoring, 
the performance of real-time wireless data acquisition discussed in Chapter 3 can be significantly 
improved by buffering samples. The performance improvement is seen in the network size and 
associated sampling rate and data throughput. However, there is a tradeoff between the latency, 
network size, and sampling rate, since they are directly related to the number of samples buffered 
prior to sending. As such, the design and performance of two different buffering sizes are pre-
sented: 3-sample buffer and a 9-sample buffer. 

4.1 Application Design 

The application design for a buffered approach mirrors the design for real-time data acquisition 
presented in Chapter 3. A scheduled communication approach is still used; however, it is ex-
panded to utilize the advantage of buffering of multiple samples within one packet prior to send-
ing. Within this framework, the data returned to the gateway includes the desired number of 
buffered samples, which is comprised of 4 channels of 16-bit sensor data, an associated 32-bit 
time stamp, and an 8-bit node ID. Thus, the payload when buffering three and nine samples is 38 
and 110 bytes respectively. A maximum of nine buffered samples is considered, since the maxi-
mum data payload of one radio packet dictated by the IEEE 802.15.4 protocol and TinyOS 1.x 
standard MAC protocol is 112 bytes (see Figure 7). The three sample buffer offers an increase in 
network size over the previous approach with a relatively small increase in payload size, which 
will slightly decrease the maximum sampling rate as discussed later.  

Communication	Protocol	
Similar to the previous design, a scheduled TDMA communication protocol is used to allow 
multiple leaf nodes to communicate with one gateway node in a consistent and more reliable 
manner. However, buffering of multiple samples prior to sending allows the number of nodes in 
the network to increase for a comparable sampling rate. As shown in Figure 8, a staggered 
TDMA approach is used based on the number of samples buffered. For example, when three 
samples are buffered, three sampling intervals can be used for sending. Thus, the TDMA ap-
proach illustrated in Figure 3 can be applied to all three sampling intervals. 
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Furthermore, an increase in the number of samples buffered, means a higher number of samples 
will be lost if a packet is dropped using unreliable communication. The resulting performance of 
the application in both sampling rate and reliability is presented in this section. 

Sampling	Rate	and	Throughput	
Given the timing analysis presented in Table 3 and the application design, the resulting perfor-
mance in terms of network size and associated maximum sampling rate and throughput is pre-
sented in Table 4 and Table 5. The resulting network size and data throughput is significantly 
improved over the previous approach by buffering samples. Furthermore, the drop in the maxi-
mum possible sampling rate for the network is not significant considering the large increase in 
network size. This large increase in network size and associated packet payload is the biggest 
contributor to the increase in data throughput.  
 

Table 4: Application Performance for 3-Sample Buffer Approach 

Number of Nodes Sampling Rate 
(Hz) 

Max. Data 
Throughput 

(Kbps) 
1 – 3 100 19.2 
4 – 6 50 19.2 
7 – 9  35 20 

 
Table 5: Application Performance for 9-Sample Buffer Approach 

Number of Nodes Sampling Rate 
(Hz) 

Max. Data 
Throughput 

(Kbps) 
1 – 9 75 43.2 

10 – 18 40 46 
19 – 27  25 43.2 

Data	Delivery	Performance	
Because an unreliable communication protocol is used in combination with a timed communica-
tion scheme, some data loss is expected. However, the packet loss due to the application design 
and chosen sending delays is expected to be minimal. Because multiple samples are buffered into 
one packet, a lost packet corresponds to more lost data and thus is a greater concern and needs to 
be investigated.  

To determine the data delivery performance of near-real-time data acquisition applica-
tion, the application was evaluated in a near perfect communication environment. The sensor 
nodes with a mix of onboard and external antennas were placed evenly spaced in an open envi-
ronment with a clear line-of-sight to the gateway node. The 3-sample approach was tested in an 
outdoor parking garage on the University of Illinois campus as pictured in Figure 9(a). Due to 
inclement weather, the 9-sample approach was conducted in a classroom in the Newmark Civil 
Engineering building on the university campus as shown in Figure 9(b). Five trials of continuous 
data acquisition of several hundred samples at key sample rates for each approach and network 
size were conducted. Two different node configurations for each network size were considered. 
The complete testing matrix is provided in Table 6. Fewer samples were taken in each trial of the 
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performance could be accounted for by the indoor testing environment, which has a higher like-
lihood of poor communication due to multi-path effects and other wireless networks or devices 
operating locally on the 2.4 GHz band. In general, however, the maximum cluster size is small 
for both approaches. 

 
Figure 10: Data Delivery Performance Results for 3-Sample Approach 

 

 
Figure 11: Data Delivery Performance Results for 9-Sample Approach 

Overall, these results highlight the tradeoff between the number of samples buffered, 
network size, maximum available sampling rate, and reliability. The 9-sample approach signifi-
cantly increases the network size for a small increase in sampling interval; however, the average 
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reception rate is lower, because a lost packet corresponds to more data loss. Thus, the real-time 
data acquisition application can be tailored based on the desired network performance, i.e. for 
minimum latency the un-buffered approach is used, for maximum network size with high sam-
pling rates the 9-sample buffer is used, and for balanced throughput, latency, and reliability the 
3-sample buffer is used. 
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Chapter 5 

CONCLUSION 

This report presents the implementation of high-throughput real-time wireless data acquisition on 
the Imote2 platform. While this implementation is specific to the Imote2, the hardware and soft-
ware challenges addressed are common to many available platforms. The resulting application 
framework for real-time data acquisition and its performance are presented. The application is 
expanded for high-throughput applications that require large network sizes and high sampling 
rates. Ultimately, the communication and processing protocols allow for near-real-time sensing 
of 108 channels across 27 nodes at up to 25 Hz with minimal data loss. 

The event driven nature of TinyOS, communication latency, and existing sensing frame-
work necessitate a tightly scheduled approach to achieve real-time data acquisition. Accurate 
time synchronization, reliable initialization commands to start sensing, and TDMA communica-
tion protocol are combined to achieve wireless real-time data acquisition. By buffering samples, 
this application framework is expanded to increase network size and throughput, while maintain-
ing high sampling rates. Because a tradeoff exists between the number of samples buffered, la-
tency, network size, sampling rate, and reliability, two buffer sizes are considered: 3 and 9-
sample buffers. The network size, associated sampling rate and throughput, and data delivery 
performance are investigated for both buffer sizes. Both approaches, particularly the 9-sample 
approach, increase the network size for a relatively small increase in sampling interval. Thus, 
high-throughput near-real-time wireless data acquisition that is viable over an extended period is 
successfully implemented on the Imote2 smart sensor platform. Furthermore, the appropriate re-
al-time data acquisition service can be selected from the three approaches, including the un-
buffered, 3-sample buffer, or 9-sample buffer, based on the network goals, i.e. low latency for 
real-time control or large network size and throughput for monitoring applications. 

The application framework allows for future improvements, including network size and 
reliability. A frequency-division multiple access (FDMA) approach could be utilized alongside 
the current design to have multiple smaller networks operating on different radio bands for a 
larger total network size. Finally, the data could be logged locally on the leaf nodes and retrans-
mitted later if completely reliable data acquisition is necessary. 
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