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Abstract

The paper discusses the issue of motion estimation

by image assimilation in numerical models, based on

Navier-Stokes equations. In such context, models’ re-

duction is an attractive approach that is used to de-

crease cost in memory and computation time. A reduced

model is obtained from a Galerkin projection on a sub-

space, defined by its orthogonal basis. Long temporal

image sequences may then be processed by a sliding-

window method. On the first sub-window, a fixed ba-

sis is considered to define the reduced model. On the

next ones, a Principal Order Decomposition is applied,

in order to define a basis that is simultaneously small-

size and adapted to the studied image data. Results

are given on synthetic data and quantified according to

state-of-the-art methods. Application to satellite images

demonstrates the potential of the approach.

1. Introduction

Many authors investigate the issue of fluid flow mo-

tion estimation and a complete survey can be found

for instance in [2]. In this paper, we are interested

by the approach of data assimilation using a dynamic

equation on the velocity field: motion is estimated as a

compromise between that dynamics and image observa-

tions [1]. As the memory requirement and computation

time of these data assimilation methods are proportional

to image size, the issue of reduction arises. We describe,

in Section 3, the reduction on a sine basis, whose results

are analyzed in Section 5. This reduced model is appli-

cable to estimate motion on a short temporal sequence.

In Section 4, processing of long sequences is described

with the use of the sine basis on a first short tempo-

ral sub-window and of Principal Order Decomposition

on the following sub-windows. This is a coupling of

reduced models with a sliding-window approach. Re-

sults are given in Section 5. The next section, Section 2,

describes first the mathematical formalism of the paper

and the model used for illustrating the coupling of re-

duced models.

2. Data Assimilation and Model Reduction

To illustrate our approach of model reduction, we

consider divergence-free motion fields w(x, t), with

x =
(

x y
)T

∈ Ω, a bounded domain, t ∈ [t0, tN ],

a closed interval, and w =
(

u v
)T

. We assume that

the motion field satisfies the heuristics of Lagrangian

constancy described by:
dw

dt
=
∂w

∂t
+ (w · ∇)w = 0.

This is rewritten as an equation on the evolution of the

vorticity ξ under the divergence-free assumption:
∂ξ

∂t
+w(ξ) · ∇ξ = 0 (1)

We consider a variable Is, named pseudo-image, which

has the same dynamics than the image observation: the

motion field transports it according to:
∂Is
∂t

+w(ξ) · ∇Is = 0 (2)

This pseudo-image is included in the state vector in or-

der to allow an easy comparison with image observa-

tions at acquisition dates: they have to be almost iden-

tical. The state vector of the model is then defined as

X(x, t) =
(

ξ(x, t) Is(x, t)
)T

, and Eqs. 1 and 2 are

summarized as:
∂X

∂t
+M(X) = 0 (3)

Data assimilation aims to find an optimal solution to

the evolution equation (Eq. 3) and to the observation

equation that links the state vector, in fact its pseudo-

image component Is, to image observations I(x, t):
Is = I (4)

Images are assimilated in the Full Model (FM), M, in

order to estimate vorticity and motion. Detailed de-

scription of the data assimilation method is given in [1].



In order to obtain a reduced model of M, subspaces

for vorticity fields and pseudo-images have to be cho-

sen, defined by their respective orthogonal basis Φ and

Ψ. Let ai(t) and bj(t) be the projection coefficients

of ξ(x, t) and Is(x, t) on Φ and Ψ, it comes: ξ(x, t) ≈
∑K

i=1 ai(t)φi(x) and Is(x, t) ≈
∑L

j=1 bj(t)ψj(x). Af-

ter replacing in Eqs. 1 and 2, simplifying the equations,

and using the property that w is a linear function of ξ,

it comes:














dak
dt

(t) + aT (t)B(k)a(t) = 0, k = 1 . . .K.

dbl
dt

(t) + aT (t)G(l)b(t) = 0, l = 1 . . . L.

(5)

with:
• a(t) =

(

a1(t) . . . aK(t)
)T

,

• b(t) =
(

b1(t) . . . bL(t)
)T

,

• B(k) a K ×K matrix:

B(k)i,j =
〈w(φi) · ∇φj , φk〉

〈φk, φk〉
,

• G(l) a K × L matrix:

G(l)i,j =
〈w(φi) · ∇ψj , ψl〉

〈ψl, ψl〉

• 〈., .〉 the scalar product: 〈f, g〉 =
∫

f(x)g(x)dx,

• w(φi) the motion field associated with the vortic-

ity field φi.

Let XR(x, t) =
(

a(t)T b(t)T
)T

be the state vector of

the reduced model. System 5 is rewritten as:

dXR

dt
+MR(XR) = 0 (6)

MR is the Galerkin projection of the full model M on

Φ and Ψ.

3. Sine Basis

A sine basis Φ is chosen to define the vorticity sub-

space, whose element i is:

φi = φ(i1,i2) =

































sin(πi1hx)sin(πi2hy)
...

sin(Nxπi1hx)sin(πi2hy)
sin(πi1hx)sin(2πi2hy)

...
sin(Nxπi1hx)sin(2πi2hy)

...
sin(πi1hx)sin(Nyπi2hy)

...
sin(Nxπi1hx)sin(Nyπi2hy)

































with:

• i = (i1, i2) a double index,

• hx =
1

Nx + 1
, Nx image size in direction x,

• hy =
1

Ny + 1
, Ny image size in direction y.

φi is an eigenvector of the Laplace operator ∆ associ-

ated to the eigenvalue

λi = −2[2− cos(πi1hx)− cos(πi2hy)]×
1

d2
(7)

d being the pixel resolution in both directions x and

y. To compute w(φi), we use this eigenvector prop-

erty and derive the stream function ϕi that is solution of

the Poisson equation:

∆ϕi = φi (8)

We have ϕi = φi/λi and w(φi) is then derived from ϕi

by:
w =

(

−∂ϕi

∂y
∂ϕi

∂x

)T

(9)

A Sine Reduced Model (SRM) is obtained by apply-

ing the Galerkin projection to the full model, defined

by Eq. 3: vorticity is projected on Φ and pseudo-image

is projected on itself (no reduction). As vorticity and

motion are weighted sums of the sine functions, the re-

sult has the same spatial properties. In particular, the

result is smooth, which is of major interest if image ob-

servations are noisy. This is a major advantage of SRM.

However, this model has the same size as the full model

if the full basis Φ is used. In this case, it offers no gain

in memory size and computation time.

4. Sliding Windows

Having obtained the reduced model SRM for pro-

cessing short temporal image sequences, the issue of

processing long time intervals arises, which is solved

by the sliding-window method.

The discrete sequence I = {Iz}z=1...Z is first split

into short sub-sequences, for instance 4 images, that

half overlap in time. The corresponding temporal in-

tervals or windows are denotedWm, withm being their

index. Images belonging toW1 are assimilated in SRM.

This allows the retrieval of the vorticity onW1. Its value

at the beginning of W2 is taken as initial condition for

a simulation by the full model of Eq. 3. Principal Order

Decomposition (POD) is then applied to the simulated

sequences of vorticity ξ and pseudo-image Is in order

to generate bases Φ and Ψ and obtain a reduced model,

named POD-POD Reduced Model of the 2nd window

(PPRM2). The coefficients of projection of images be-

longing to W2 are assimilated in PPRM2 to retrieve

the vorticity coefficients and compute the vorticity val-

ues over W2. This again provides the initial condition



Figure 1. Pseudo-image, vorticity and mo-

tion field at t = 0. Positive vorticity values

are red and negative one blue.

Figure 2. Four observations.

for W3 and allows to define a new POD-POD Reduced

Model on the third window (PPRM3). The process is

then iterated until the whole image sequence I has been

analyzed.

The major advantage of this approach is that assim-

ilation in the Sine Reduced Model is only applied on

the first temporal window W1, that has short duration.

On the next windows Wm, the complexity greatly de-

creases, as the state vectors involved in the POD-POD

Reduced Models are of size less than 10 in the experi-

ments.

5. Results

Results of the Sine Reduced Model are first provided

on synthetic and satellite images. Then the sliding-

window method is tested on synthetic data in order to

demonstrate the potential of the method to process long

temporal windows.

The divergence-free model is run from the initial

conditions displayed in Figure 1. This provides a se-

quence of five observations (the first one is the ini-

tial condition and the next four are displayed on Fig-

ure 2) and the ground-truth of vorticity and motion over

the whole temporal domain. Assimilation experiments

are performed with these five observations in order to

retrieve the vorticity and motion fields with the Full

Model and the Sine Reduced Model. For these exper-

iments, the background of vorticity (FM) or vector a
(SRM) is set to zero and the one of pseudo-image is

the first observation. The result of the assimilation pro-

cess is the state vector X(k) =
(

ξ(k) Is(k)
)T

and its

associated motion vector w(k) over the same temporal

interval than the image sequence. In Table 1, the error

Table 1. Error analysis: misfit between

motion results and ground truth.

Ang. err. (in deg.) Relative norm err.

Method Mean Std. Dev. Mean (in %)

Horn[3] 15.26 9.65 45.75

Papadakis [5] 13.89 5.03 45.59

Isambert [4] 10.61 6.92 34.84

Suter[7] 10.41 5.34 37.65

Sun [6] 8.76 4.26 29.07

FM 0.18 0.10 0.06

SRM 1.53 1.10 0.65

between the motion result and the ground truth is given

for the Full Model, the Sine Reduced Model and five

known state-of-the-art methods. For these five methods,

optimal parameter values have been used. Four of them

are image processing methods, that rely on L2 regular-

ization of motion [3, 6] or on a second-order regulariza-

tion of the divergence [4, 7]. These methods are said

static, as they do not use any model of motion evolu-

tion. Moreover, we compare with [5], that also applies

data assimilation for a divergence-free model: the state

vector reduces to vorticity and the observation equation

is the optical flow equation. Results demonstrate the

quality of the Full Model on this so-called twin exper-

iment, and its efficient approximation by the Sine Re-

duced Model.

The approach is furthermore applied on satel-

lite data. Observations are images acquired by

NOAA/AVHRR sensors over Black Sea 1, and measure

the Sea Surface Temperature (SST) with a spatial reso-

lution of about 1 km at nadir. In the upper layer of Black

Sea, horizontal motion is around 30 cm/s for mesoscale

eddies, while vertical motion is around 10−4 cm/s and

can be neglected. The 2D divergence-free assumption is

then roughly verified and the Full Model and Sine Re-

duced model are applicable. The sequence has four ob-

servations (see two of them on Figure 3). The results of

motion estimation with FM and SRM are displayed on

the same figure. Visualisation is made with the coloured

representation tool of the Middlebury database 2. On

these coloured images, the orientation and norm of ve-

locity are respectively represented by hue (colour) and

saturation.The data assimilation methods also compute

the pseudo-image values, that achieve the best compro-

mise between dynamics and observations. At acquisi-

tion dates, these pseudo-images are not exactly equal

1Data have been provided by E. Plotnikov and G. Korotaev from

the Marine Hydrophysical Institute of Sevastopol, Ukraine.
2http://vision.middlebury.edu/flow/



Figure 3. Observations (top), FM (middle),

SRM (bottom) at t = 1 (left) and 3 (right).

Table 2. Correlation between pseudo-
images and observations.

Date 1 2 3 4

FM 0.99 0.93 0.94 0.97

SRM 0.99 0.94 0.94 0.96

to the observed images. Their correlation measures if

the structures (edges) are correctly assessed and if mo-

tion is accurately estimated. Correlation results of FM

and SRM are given in Table 2: values are close to 1,

proving that the motion retrieved by both models are

coherent with the dynamics underlying the evolution

displayed by the observations. This also points out the

performance of SRM. Another mathematical criteria is

the RMSE between estimations of vorticity by FM and

SRM. Its value is 0.01, which proves that SRM is a good

approximation of FM.

The sliding-window method described in Section 4

is then applied on a sequence of 19 image observa-

tions, obtained from a run of the Full Model with ini-

tial conditions of Figure 1. The discrete sequence is

split in 7 windows of five images. The first five ob-

servations of W1 are assimilated in SRM. The result is

used to define the POD-POD Reduced Model (PPRM2)

of W2. The five observations of W2 are then assim-

ilated in PPRM2 and so on until the end of the stud-

ied sequence. Comparison of estimated vorticity with

ground-truth gives that the RMSE ranges from 0.0016

on W2 to 0.005 on W7, which demonstrates the robust-

ness obtained by coupling the Sine Reduced Model with

the coupled POD-POD Reduced Models.

6. Conclusions

The paper describes an approach for coupling re-

duced models and optimally estimate motion on long

temporal image sequences. One of these reduced mod-

els is the Sine Reduced Basis, which uses a fixed ba-

sis and presents smoothness properties. Its results have

been quantified and compared to state-of-the-art meth-

ods. The second reduced model is the Pod-Pod Reduced

Model, which relies on Principal Order Decomposition.

Its state vector has a small size, less than 10 in exper-

iments, that allow processing long sequences in almost

real time.
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consistent optical flow estimation. In Proceedings of In-

ternational Conference on Computer Vision, pages 1–7,

2007.

[6] D. Sun, S. Roth, and M. Black. Secrets of optical flow

estimation and their principles. In Proceedings of Euro-

pean Conference on Computer Vision, pages 2432–2439,

2010.

[7] D. Suter. Motion estimation and vector splines. In Pro-

ceedings of Conference on Computer Vision and Pattern

Recognition, pages 939–942, 1994.


