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émanant des établissements d’enseignement et de
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ABSTRACT: The railway track irregularities, which can be seen as a four dimensions vector-valued random
field, are the main source of excitation of the train, which isa very nonlinear system with many degrees-of-
freedom. Due to the specific interaction between the track and the train, this random field is neither Gaussian nor
stationary. In order to characterize the train dynamics, a complete parametrization of the physical and statistical
properties of the track irregularities would thus be of great concern. Based on a set of track measurements,
which can be seen as a set of independent realizations, this work proposes an innovative approach to optimally
identify in inverse the characteristics of the track irregularities random field.
At first, using a revisited Karhunen-Loève expansion, the considered random field is approximated by its trun-
cated projection on a particularly well adapted orthogonalbasis. Then, the distribution of the random vector
that gathers the projection coefficients of the random field on this spatial basis is characterized using a polyno-
mial chaos expansion. The dimension of this random vector being very high (around five hundred), advanced
identification techniques are introduced to allow performing relevant convergence analysis and identification.
Based on the stochastic modeling of the non- Gaussian non-stationary vector-valued track geometry random
field, realistic track geometries, which are representative of the experimental measurements and representative
of the whole railway network, can be generated. These trackscan then be introduced as an input of any railway
software to characterize the stochastic behavior of any normalized train.

1 INTRODUCTION

The expected benefits of simulation in the rail-
way field are multiple: robust and optimized con-
ception, shorter and cheaper certification procedure,
better knowledge of the critical situations of the
track/vehicle system, optimization of the mainte-
nance.

At its building, the theoretical new railway line is
supposed to be made of perfect straight lines and
curves. This track geometry is however gradually
damaged and regularly subjected to maintenance op-
erations. Therefore, during their lifecycles, trains are
confronted to very different running conditions.

If simulation is introduced in certification and con-

ception processes, it has to be very representative of
the physical behaviour of the system: the model of
the train has to be fully validated and the simulations
have to be raised on a realistic and representative set
of track geometries. This requires the development of
a complete stochastic modeling of the track irregulari-
ties, for which the spatial and statistical dependencies
between the different track irregularities have to be
accurately taken into account.

In reply to these expectations, the track geometry
of the French railway network has been continuously
measured since 2007. Due to the specific interaction
between the train and track, this track irregularity ran-
dom field is neiher Gaussian nor stationary, which
makes the identification of the distribution of the track



irregularity tough. Based on the experimental mea-
surements, which can be seen as a finite set of inde-
pendent realizations, the work proposes an innovative
method to completely parametrize the track irregular-
ity random field.

First, this method is based on a revisited Karhunen-
Loève (KL) decomposition, which is presented in
Section 2. This original decomposion makes a point
of maximizing the representativeness of the projec-
tion basis with respect to the available information.
Section 3 deals then with the second step of the mod-
eling, which is an inverse polynomial chaos expan-
sion identification. At last, Section 4 shows in what
extent such an approach allows the generation of track
geometries that are similar to measured ones from a
frequency and statistical point of view.

2 OPTIMAL REDUCED BASIS

Let H = L2(Ω,R4) be the space of square integrable
functions onΩ = [0, S], with values inR4, equipped
with the inner product(·, ·), such that for allz1 and
z2 in H:

(
z1,z2

)
=

∫

Ω

(
z1(s)

)T
z2(s)ds. (1)

The track irregularity random field is denoted by

{X(s) = (X1(s),X2(s),X3(s),X4(s)) , s ∈ Ω} ,

(2)

wheres is the curvilinear abscissia of the track,Ω =
[0, S] is a bounded interval andX1, X2, X3 andX4

refer to the four kinds of track irregularity that are
strongly dependent.

It is supposed thatX is a second order centered
random field, such that:

E [X(s)] = 0, ∀ s ∈Ω, ‖X‖22
def
= E [(Z,Z)]<+∞,

(3)

whereE [·] is the mathematical expectation.
It is assumed in this work thatν independent

realizations ofX, {x1, . . . ,xν}, have been mea-
sured. This defines the maximum available informa-
tion aboutX for the modeling.

For any M ≥ 1, based on this available data,
the idea of this section is to identify theM-
dimension orthonormal projection familyF (M)

opt ={
f k, 1 ≤ k ≤M

}
∈ H

M , such that:

X ≈ X̂
(M)

(F
(M)
opt )

def
=

M∑

i=k

f kCk,
(
fk,f ℓ

)
= δkℓ, (4)

with δkℓ is the kronecker symbol equal to one ifk = ℓ
and zero otherwise, which minimizes, among all the
familiesF (M) in H

M , the maximal normalized ampli-
tude of the truncation residual of each track irregular-
ity:

F
(M)
opt = arg min

F(M)∈HM





max
1≤i≤4

∥∥∥Xi − X̂
(M)
i (F

(M)
opt )

∥∥∥
2

2

‖Xi‖
2
2




.

(5)

To this end, an original expansion is proposed in
this section, that is based on a double adaptation of
the classical KL expansion.

2.1 Optimality of the KL decomposition

For anyM-dimensional set of functions ofH, F (M),
we definêX(F (M)) to denote the projection ofX on
F (M). The matrix-valued covariance function,[RXX ],
of centered random fieldX is moreover written:

[RXX(s, s
′)] = E [X(s)⊗X(s′)] , (s, s′) ∈ Ω2. (6)

The KL basis,K =
{
bk, 1 ≤ k

}
, associated with

X , can be constructed as a countable Hilbertian basis
of H, which is constituted of the eigenfunctions of
covariance matrix-valued function[RXX ], such that
for s in Ω andk, ℓ ≥ 1:

∫

Ω

[RXX(s, s′)]bk(s′)ds′ = λkb
k(s), (7)

(
bk,bℓ

)
= δkℓ, λ1 ≥ λ2 ≥ · · · → 0. (8)

Equation (7) is usually called Fredholm problem
(see Le Maître and Knio 2010, Hansen 1992, Weese
1992 for further details about its solving). Due to the
orthogonal projection theorem in Hilbert space, for
M ≥ 1, projection familyK(M) =

{
bk, 1 ≤ k ≤M

}

is optimal in the sense that, for all familyF (M) inH
M :

∥∥∥X − X̂(K(M))
∥∥∥
2

2
≤

∥∥∥X − X̂(F (M))
∥∥∥
2

2
. (9)



2.2 Scaled Karhunen-Loève expansion

Noticing that:

∥∥∥X − X̂(K(M))
∥∥∥
2

2
=

4∑

i=1

‖Xi‖
2
2

∥∥∥Xi − X̂i(K
(M))

∥∥∥
2

2

‖Xi‖
2
2

,

(10)

it can be seen that the KL expansion minimizes in pri-
ority the normalized amplitudes of the residues corre-
sponding to the components ofX that have the high-
est signal energies,‖Xi‖

2
2.

In Perrin et al. 2013, it has been shown that this can
lead to cases where the components ofX whose sig-
nal energies are low can be very badly characterized,

although error
∥∥∥X − X̂(K(M))

∥∥∥
2

2
is low. In order to

avoid this phenomenon, a scaled KL decomposition
has thus been proposed. This innovative decomposi-
tion is based on the KL expansion of an other random
field, Y (O) = [O]X, where[O] is the following di-
agonal matrix:

[O] =



O1 0 0 0
0 O2 0 0
0 0 O3 0
0 0 0 O4


 , (11)

and whereO = (O1,O2,O3,O4) is a deterministic
vector which belongs to

O =
{
x ∈]0,1[4, ‖x‖2 = 1

}
. (12)

Therefore, Perrin et al. 2013 showed that the opti-
mization problem defined by Eq. (5) can be approx-
imated by an other optimization problem overO in
O:

F
(M)
opt ≈ F

(M)
+∞ , (13)

F
(M)
+∞ = argmin

O∈O





max
1≤i≤4

∥∥∥Yi(O)− Ŷi(O,F
(M))

∥∥∥
2

2

‖Yi(O)‖22




.

(14)

A very efficient iterative algorithm is moreover
given in this work to solve Eq. (14).

Finally, when interested in studying complex sys-
tems that are excited by vector-valued random fields,
which is the case of the interaction between the trains
and the track irregularities, the scaled KL expansion
opens very interesting opportunities to identify pro-
jection basis that do not defavorize the characteriza-
tion of a particular component ofX , which could
have the lowest signal energy but play the most im-
portant role on the mechanical response of the system.

2.3 Optimal reduced basis from a finite set of
realizations

In Section 2.2, forM ≥ 1, a method to identify
optimal projection familyF (M)

opt has been presented,
which is the original goal of this section. This method
is based on the knowledge of the covariance matrix-
valued function[RXX ]. As the maximal available in-
formation aboutX is characterized by a set of in-
dependent realizations,{x1, . . . ,xν}, this covariance
function can however not be exactly identified, and
its a priori best evaluation is given by the following
empirical estimator, for(s, s′) in Ω×Ω:

[RXX(s, s
′)] ≈ [R̂XX(s, s

′)]
def
=

1

ν

ν∑

n=1

xn(s)xn(s′).

(15)

Nevertheless, there is no reason for the projection
basis associated with[R̂XX ] to be still optimal with
respect to the minimization of error

ε2(F (M))
def
=

∥∥∥X − X̂(F (M))
∥∥∥
2

2
, F (M) ∈ H

M . (16)

The KL expansion being optimal forX with re-
spect to the minimization of errorε2, it can however
be deduced that reciprocally, for allM ≥ 1:

[RXX ] = arg min
[A]∈S(R)

{
ε2(B

(M)
[A] )

}
, (17)

where:

S(R) =
{
[A] ∈ L2(Ω×Ω,R4 ×R

4), |

[A(s, s′)] = [A(s′, s)], (s, s′) ∈ Ω×Ω} ,
(18)

and where for all [A] in S(R), B
(M)
[A] ={

bk[A], 1 ≤ k ≤M
}

is the M-dimension subset
of H

M that is solution of the Fredholm problem
associated with[A]:



∫

Ω

[A(s, s′)]bk[A](s
′)ds′ = λk[A]b

k
[A](s), (19)

λ1[A] ≥ λ2[A] ≥ . . .→ 0,
(
bk[A],b

ℓ
[A]

)
= δkℓ. (20)

Hence, for allM ≥ 1, theM-dimensional KL fam-
ily, K(M), which is optimal in the sense that it mini-
mizes errorε2 and that can be searched as the solu-
tion of the Fredholm problem defined by Eq. (7), can
equivalently be searched as the solution of the follow-
ing optimization problem:

K(M) = arg min
B
(M)
[A]

, [A]∈S(R)

{
ε2(B

(M)
[A] )

}
. (21)

Hence, it has been shown in Perrin et al. 2012b that
when the available information aboutX is limited to
even a relatively small set of independent realizations,
as it is the case in this work, it is possible to identify
very relevant approximations ofK(M) by searching it
as the solution of the following optimization problem:

K(M) ≈ B
(M)
[A(α∗)], (22)





[A(α∗)] = [α∗][R̂] + ([I4]− [α∗]) [R̃]

[α∗] = arg min
[α]∈A

{
ε2(B

(M)
[A(α)])

}
.

(23)

A ={[α], | [α]pq = αpδpq,1 ≤ p, q ≤ 4 ,

(α1, . . . , α4) ∈ [0,1]4
}
,

(24)

where [I4] is the (4 × 4) identity matrix and for all
(s, s′) in Ω×Ω, 1 ≤ p, q ≤ 4 andu = s− s′:

[R̂(s, s′)]pq = R̂pq(s, s
′), (25)

[R̃(s, s′)]pq = R̃pq(s, s
′), (26)

R̂pq(s, s
′) =

1

ν

ν∑

n=1

xnp (s)x
n
q (s

′), (27)

R̃pq(s, s
′) =





1
S+u

∫ S+u

0
R̂pq(x,x− u)dx if u ∈]− S,0],

1
S−u

∫ S−u

0
R̂pq(x+ u,x)dx if u ∈]0, S[,

R̂pq(s, s
′) otherwise.

(28)

2.4 Identification of the final projection basis

In Section 2.2, a scaled KL expansion has been pre-
sented in order to define projection basis for vector-
valued random fields, which allows the minimization
of the maximal normalized amplitude of the trunca-
tion residue associated with each component ofX ,
such that no component isa priori defavorized. This
scaled KL expansion is however based on the knowl-
edge of covariance function[RXX ], which is not
available as the maximal information aboutX is a
finite set of independent realizations. In parallel, Sec-
tion 2.4 has proposed a method to optimize the ap-
proximation of the KL basis ofX whenX is only
known from a set of realizations. Therefore, by cou-
pling the two former adaptations of the classical KL
expansion, it is possible to identify projection families
that are very relevant to condense the statistical infor-
mation ofX, while not defavorizing one of its com-
ponent and even if its covariance function is unknown.
For M ≥ 1, let U (M)

ν =
{
uk, 1 ≤ k ≤M

}
≈ F

(M)
opt

be the solution of the optimization problem that com-
bines the two optimization problems defined by Eqs.
(14) and (22), that has been identified from the set of
ν independent realizations ofX, {x1, . . . ,xν}.

The projection ofX on U
(M)
ν , X̂

(M)
(U

(M)
ν ) can

thus be written:

X ≈ X̂
(M)

(U (M)
ν ) =

M∑

k=1

ukηk, ηk =
(
X ,uk

)
. (29)

Once deterministic projection familyU (M)
ν has

been identified, characterizing the distribution of

X̂
(M)

(U
(M)
ν ) amounts finally to identify the multidi-

mensional distribution of the projection random vec-
tor,η = (η1, . . . , ηM), for which components area pri-
ori dependent.

Moreover, the value of truncation parameterM can
be identified with respect to an error threshold for er-
ror

max
1≤i≤4

∥∥∥Xi − X̂
(M)
i (U

(M)
ν )

∥∥∥
2

2

‖Xi‖
2
2

. (30)

3 INVERSE POLYNOMIAL CHAOS
IDENTIFICATION IN HIGH DIMENSION

As presented in Introduction, the second step of the
stochastic modeling of the track irregularity random
field is the identification of the multidimensional dis-
tribution of the KL projection random vector,η,
which is defined by Eq. (29). The available informa-
tion about thisM-dimension random vector is also a
set ofν independent realizations,{η1, . . . ,ην}, which
is deduced from the realizations ofX as:



ηnk =
(
xn,uk

)
, 1 ≤ k ≤M, 1 ≤ n ≤ ν. (31)

In this prospect, direct and indirect methods have
been developed to identify in inverse the PDFpη of
η. On the first hand, the direct methods, such as the
ones based on the Information Theory and the Maxi-
mum Entropy Principle (MEP) (see Jaynes 1963 and
Soize 2008), have been introduced to computepη
from the only available information aboutη. On the
other hand, indirect methods aim at constructing PDF
pη from a transformationt of a chosen random vector
ξ = (ξ1, . . . , ξM):

η = t(ξ), pη = T(pξ). (32)

The transformationT betweenpη and the known and
chosen PDFpξ of ξ is thus the key step of such in-
direct methods. One of the most promising indirect
methods is currently the polynomial chaos expan-
sion (PCE) method (see Ghanem and Spanos 1990,
Ghanem and Spanos 2003, Arnst et al. 2010, Das et al.
2009, Desceliers et al. 2006, Desceliers et al. 2007,
Ghanem and Doostan 2006, Marzouk et al. 2007, Per-
rin et al. 2012a, Soize 2010b, Soize 2010a for further
details about the PCE identification in inverse). This
technique is based on a direct projection ofη on a
polynomial hilbertian basisBorth = { ψj(ξ), 1 ≤ j }
of all the second-order random vectors with values in
R

M , such that:

η =
+∞∑

j=1

y(j)ψj(ξ). (33)

For practical purposes, this sum is truncated with
respect to two truncation parameters,N andNg, such
that:

η ≈ ηchaos(N) =
N∑

j=1

y(j)ψj(ξ1, . . . , ξNg), (34)

where projection basis{
ψ1(ξ1, . . . , ξNg), · · · , ψN (ξ1, . . . , ξNg)

}
is now

chosen as the set gathering theN polynomial
functions of total degree inferior top, which are
normalized with respect to the PDFpξ1,...,ξNg

of(
ξ1, . . . , ξNg

)
.

To identify the PDF ofηchaos(N), for given values
of N andNg, we have now to identify the values of
the PCE projection coefficients,

{
y(j), 1 ≤ j ≤ N

}
,

from the available independent realizations ofη.
From (Perrin et al. 2012a, Soize 2010b), a good

approach to identify such coefficients is to search
them as the arguments that maximize the likelihood

of random vectorηchaos(N) at the experimental points
{η1, · · · ,ηνexp

}. Advanced algorithms are also pre-
sented in (Perrin et al. 2012a, Soize 2010b) to solve
such an optimization problem.

At last, to completely identify the PDF ofηchaos(N)
the choice of the values ofN andNg has to be justified
according to a convergence analysis. To this end, a
log-error function,err(N,Ng), is introduced to quan-
tify the amplitude of the residue of the PCE trunca-
tion,η − ηchaos(N), such that:

err(N,Ng) =

Nη∑

k=1

errk(N,Ng), (35)

errk(N,Ng) =

∫

BIk

∣∣∣log10 (pηk(xk))− log10

(
pηchaos

k
(xk)

)∣∣∣dxk,
(36)

where BIk is the domain bounding the experimental
values ofηk, andpηk andpηchaos

k
are the PDFs ofηk and

ηchaos
k (N) respectively. Truncation parametersN and
Ng can therefore be identified with respect to a given
error threshold forerr(N,Ng).

Finally, once truncation parametersM , N , Ng are
identified according to convergence analysis, once
PCE projection coefficients

{
y(j), 1 ≤ j ≤ N

}
are

computed, a complete characterization of the track ir-
regularity random field is given by:

X ≈
M∑

k=1

uk

N∑

j=1

y
(j)
k ψj(ξ1, . . . , ξNg). (37)

For each realization of random vector(ξ1, . . . , ξNg),
for which PDF is known, a set of representative and
realistic track geometries of lengthS can finally be
generated, which can then be used in any railzay soft-
ware to characterize the non linear response of the
train.

4 VALIDATION OF THE METHOD AND
APPLICATION TO A TRACK DATA SET

In Sections 2 and 3, a complete parametrization of the
track geometry random field has been presented. This
section aims now at showing in what extent such an
approach, even if it is based on a relatively small set
of independent realizations, can give very relevant re-
sults when trying to generate realistic and representa-
tive track geometries, which are similar to measured
ones from a spectral and statistical point of view.

For confidentiality reasons, the value ofS is not
given in this paper, and the spatial quantities will be
normalized byS in the following.
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Figure 1: Convergence analysis for the PCE expansion ofη.

In this work,ν = 414 track sections of lengthS are
supposed to be known. The scaled KL truncation pa-
rameter,M , has to be at least equal to1900, for the
truncation error, defined by Eq. (30) to be lower than
1%. Moreover,ξ is aNg-dimension random vector,
for which components are independent and uniformly
distributed between -1 and 1. According to Figure 1,
which represents the convergence of error function
err(N,Ng) with respect toN andNg, the values ofN
andNg are chosen equal to3,276 and3 respectively.
The PCE projection coefficients have then been iden-
tified according to the advanced algorithms defined in
Perrin et al. 2012a, Soize 2010b.

Hence,5,00 track irregularities random fields of to-
tal lengthS are generated from the track stochastic
parametrization, which is characterized by Eq. (37).
For 1 ≤ i ≤ 4, let Nmes

up (Xi, u,S) andNgen
up (Xi, u,S)

be the mean numbers of upcrossings of the levelu
by Xi over the lengthS, which have been evaluated
from theν available measured track geometries and
from the 5,00 generated track geometries of length
S respectively. In the same manner, for1 ≤ i ≤ 4, let
PSDmes

i andPSDgen(Xi) be the mean power spectral
densities ofXi that have been computed from the for-
merν measured and5,00 generated track geometries
of lengthS.

Figures 2 and 3 compare these two quantities for
each track irregularity. The results shown in these fig-
ures underline therefore the relevance of the proposed
approach that is based on a double expansion to char-
acterize the spectral and statistical content of a vector-
valued random field, for which the available informa-
tion is characterized by a finite set of independent re-
alizations.

5 CONCLUSION

A method to identify the statistical characteristics of
a non-Gaussian and non-stationary vector-valued ran-
dom field has been presented in this work, when the
available information is a finite set of independent
realizations. Based on two original expansions, this
methods allows us to generate new realizations of this
random field, which are similar to the measured ones,
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Figure 2: Validation of the generation of track geometries with
respect to the number of upcrossings.
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Figure 3: Validation of the generation of track geometries with
respect to the frequency content.

from a frequency and statistical point of view. This
method has been applied to a railway track data set,
in order to make possible the stochastic analysis of
the non-linear response of the trains.
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