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Abstract

The numerical simulation of three-dimensional dam break flows is
discussed. A non-hydrostatic numerical model for free-surface flows is
considered, which is based on the incompressible Navier-Stokes equa-
tions coupled with a volume-of-fluid approach. The numerical results
obtained for a variety of benchmark problems show the validity of the
numerical approach, in comparison with other numerical models, and al-
low to investigate numerically the non-hydrostatic three-dimensional ef-
fects, in particular for the usual test cases where hydrostatic approxi-
mations are known analytically. The numerical experiments on actual
topographies, in particular the Malpasset dam break and the (hypotheti-
cal) break of the Grande-Dixence dam in Switzerland, also illustrate the
capabilities of the method for large-scale simulations and real-life visu-
alization. Keywords: Free-surface hydrodynamical flows, Hydraulic en-
gineering, Volume-of-fluid modeling, Three-dimensional non-hydrostatic
model, Dam breaks, Finite-element method.

1 Introduction and Motivations

One essential feature of dam break studies consists in accurately forecasting the
fast floods that are incurred in the area (valleys) below a dam by the failure of
the dam structure. The determination of the potential consequences of a dam
break requires the spatial location of the flood, as well as the time evolution of
the flow in terms of fronts speed and water height.

Physical models have been used for a long time to predict the impacts of
dam breaks, but they are costly and not always accurate enough because of the
limited measurability of some quantities and a scale that is smaller than real-life
situations.

Numerical models on the contrary have now proved quite accurate and of
reasonable cost in a number of studies, see the numerous references below. Fur-
thermore, in comparison with physical models, they can provide details at any
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point of the flow. Though, a careful and accurate validation of numerical so-
lutions remains difficult. On the one hand, because of an uncomplete math-
ematical theory, and on the other hand, because of computational time and
memory limitations, in particular as concerns the full 3D models that compute
numerical approximations of the solutions to the non-hydrostatic (“full”) three-
dimensional (3D) Navier-Stokes equations with free-surface (and possibly open)
boundary conditions.

In fact, the question of the design of an accurate simplified model dedicated
to the dam break problem is recurrent in the literature, see, e.g., [4, 17, 18, 33].
Several simplified models with a much more reasonable cost than full 3D models
have indeed succeeded in exhibiting numerical results that are in adequation
with experimental results, see, e.g., [1]. But the simplified models are inherently
biased, and the accurate quantification of the model error compared with a full
3D model remains a well-known mathematical challenge. Simplified models
are mainly hydrostatic models [1, 18, 35], possibly with only a one-dimensional
description of the front propagation, while the non-hydrostatic effects become
not negligible over rough topographies e.g. in dam break flows 1, let alone 3D
effects.

Since it has recently become possible to carry out 3D numerical simulations,
see e.g. [3, 9, 10, 21, 29, 36], the goal of this article is thus two-fold, with a view
to overcoming some of the modeling errors that necessarily arise in simplified
models [23, 26, 27].

First, to highlight the consequences of non-hydrostatic, three-dimensional
effects (through computer analyses), we discuss numerical solutions to the full
3D Navier-Stokes equations with free-surface boundary conditions for the usual
benchmark problems where simplified hydrostatic 1D flows are known exactly
and which have been used extensively in the past for validating the specific sim-
ulation of dam break flows. Indeed, without a complete mathematical theory,
but with a view to building it, we believe it useful to numerically investigate the
essential features of full 3D models in simple benchmark situations. Generaliza-
tion is achieved via some classical test cases such as the asymmetric dam breach
or the constriction of a flow in a channel, in order to highlight non-hydrostatic
effects.

Second, we illustrate the interest of large-scale real-life simulations with that
full 3D model for the industry and land-planners. It seems indeed desirable, not
only for an accurate mathematical understanding, but also for a fast and sys-
tematic planning procedure, that generic (full, 3D) numerical models can easily
reproduce correctly the essential features of a dam break flows without any
tuning or parametrization in most situations. The introduction of additional
physical features requiring the tuning of parameters, such as friction boundary
conditions or turbulence models, could be considered in future works. Such
parametrized dissipation models are useful when the numerical diffusion is too

1Formally, non-hydrostatic effects are expected to be small compared to the hydrostatic
mainstream approximation, provided the bottom topography is flat enough [15]. The hydro-
staticity assumption is also famously not adequate when trying to reproduce some surface
waves [5].
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small compared to the physical one. However, numerical results show that it is
not a problem for the test cases considered in this work. Since 3D models are
naturally more dissipative than reduced 1D or 2D models, it is actually remark-
able to observe that our numerical results are comparable to those obtained
with reduced models.

The article is organized as follows. In the next section, the mathematical
and physical models are presented. The numerical algorithms are then briefly
described. (The numerical method presented in this article for the full 3D
numerical simulation of dam break flows is based on a Volume-Of-Fluid (VOF)
modeling of free surfaces and has already been used in the past for several
situations where free-surface flows occur [6, 8, 25].) Numerical experiments are
illustrated in the last section.

Benchmark problems have been considered first in order to validate the nu-
merical simulation of flooding waves (simple dam break flows where data for ap-
proximations of the water height and mean velocity are available, either analyti-
cal expressions that are exact solutions to simplified models or well-documented
numerical solutions). The method is numerically demonstrated to converge in
test cases that are exactly solvable for the well-known hydrostatic model based
on the inviscid Saint-Venant equations for shallow water (the Ritter test case
[30] and the Stoker test case [34], where the velocity is one-dimensional). The
same 3D non-hydrostatic features as in [15] appear, even if small, in a thin-layer
regime when the Navier-Stokes equations formally reduce to the Saint-Venant
equations. This is a clear manifestation of the modeling error.

We also compare with numerical solutions to reduced shallow-water models
in a well-documented test case [4, 12, 35] that consists of a simplified dam
breach over a wet bed (a 3D asymmetric extension of the Stoker test case).
Non-hydrostatic 3D features similar to the previous test cases also exist.

Last, we tackle two real-life situations in large geometrical domains (up to
20000 [m] long). The test cases use real topologies and are computational chal-
lenges when using a 3D approach due to the large scales. We insist on the fact
that the real topographies are handled naturally without any parametrization,
contrary to most simplified models where a non-smooth topography implies dif-
ficulties both on the numerical and modelling viewpoints. In addition to show
the capabilities of our numerical method, such simulations also show that real-
istic results can be achieved with a model using as few parameters as possible:
we use neither friction nor turbulence model (and thus do not tune any physical
or numerical parameters).

The first example is the Malpasset dam break, which has been used exten-
sively in the past for the validation of numerical models, see e.g. [2, 14, 17, 32].
To the best of our knowledge, only qualitative results of the Malpasset dam
break have been presented when using numerical simulation in three dimensions.
Here, we aim at quantifying the three-dimensional approach. The final exam-
ple (Grande-Dixence dam break) illustrates the potentialities of the numerical
approach in real topographies and large computational domains, in particular
for policy makers to forecast floods and protect cities and inhabitants.

The Malpasset test case allows to discuss the importance of the non-flat
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bottom on the non-hydrostatic features of the flow. The Grande-Dixence test
case shows the potential importance of such simulations for disaster predictions,
together with the need for an appropriate visualization of the simulation for
industrial partners.

Finally, our results show that, although 3D numerical simulations remain
computationally very expensive, so simplified models in turn remain useful for
a number of “real-time” and “optimization” purposes in particular, full 3D
models should definitely be used, either to help designing appropriate simplified
models in specific situations that remain an actual challenge to model reduction,
or at least as benchmarks to be compared with various simplified models as long
as they are practicable.

2 A VOF Approach to Free Surfaces Flows

Let us define T > 0 as the final time of simulation and consider a bounded
computational domain Λ ⊂ R

3 in which the fluid remains confined for all times
t ∈ [0, T ]. The domain actually occupied by the water at any given time t
is denoted by Ωt ⊂ Λ and the free surface between the water and the air by
Γt = ∂Ωt\∂Λ. Let QT denote the space-time domain containing the water,
that is QT = {(x, t) : x ∈ Ωt, 0 < t < T }. The velocity field v : QT → R

d and
the pressure field p : QT → R shall satisfy the incompressible Navier-Stokes
equations in QT :

ρ
∂v

∂t
+ ρ(v · ∇)v − 2∇ · (µD(v)) +∇p = f , (1)

∇ · v = 0, (2)

where D(v) = 1/2(∇v + ∇vT ) is the symmetric deformation rate tensor, ρ
the constant density of water, µ the constant molecular viscosity of the water
and f denotes the external forces (that is the gravitational forces f = ρg here,
with g the gravity acceleration vector). At any given time t, slip or no-slip
boundary conditions are enforced on the boundary of the water domain Ωt that
is in contact with the boundary of the computational domain viz. ∂Λ ∩ ∂Ωt.
On the water-air interface Γt, we require free-surface forces:

−pn+ 2µD(v)n = 0 on Γt, t ∈ (0, T ), (3)

where n is the unit normal of the water-air free surface oriented toward the air
domain.

With a view to numerical computation, we model the free-surface following
the VOF approach [25]. The position of the water at time t is tracked by a
characteristic function ϕ : Λ × (0, T ) → R. The function ϕ equals one if water
is present, zero if it is not. Initial conditions are given for ϕ to define the initial
water region Ω0 = {x ∈ Λ : ϕ(x, 0) = 1}, as well as for the velocity field
v (initially prescribed in Ω0). The kinematics of the free surface is that of a
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material surface so that ϕ satisfies

∂ϕ

∂t
+ v · ∇ϕ = 0 in Λ× (0, T ), (4)

where v outside QT can be any continuous extension of v inside QT . (Note that
ϕ(X(t), t) = ϕ(X(0), 0) is uniquely defined whenever the trajectories X(t) of
fluid particles at position X(0) at time t = 0, thus such that X′(t) = v(X(t), t),
do not collide.)

For future reference, let us briefly recall how (1)–(4) can be formally re-
duced to a shallow-water model (see e.g. [15, 24] for more details). The goal of
the model reduction is to derive a closed set of equations simpler than (1)–
(4) for (approximations of) v and ϕ, when the free surface is supposed to
be “non-folded” over a similarly non-folded topography. That is, assuming
Λ = {(x, y, z) ∈ S × (0, Z)} is a cylinder with base S ⊂ R

2 and axis directed
along the gravity acceleration vector, the free surface is required to be a piece-
wise smooth manifold with equation z = b(x, y) + h̄(t, x, y) while z = b(x, y) is
the given topography equation (think of rivers and lakes). Using scaling assump-
tions in a thin-layer regime with slip boundary conditions on a slowly varying
topography (|∇b| ≪ 1), one can show formally that v ≈ (u, v, 0) and p ≈ ρgh̄
where (h̄, u, v) satisfy the viscous Saint-Venant equations in S × (0, T ):

∂h̄

∂t
+

∂h̄u

∂x
+

∂h̄v

∂y
= 0, (5)

h̄
∂u

∂t
+ h̄u

∂u

∂x
+ h̄v

∂u

∂y
+ gh̄

∂h̄

∂x
= kx − gh̄

∂b

∂x

−

µ

ρ

(

∂

∂x

(

h̄

[

3
∂u

∂x
+

∂v

∂y

])

+
∂

∂y

(

h̄
∂v

∂x
+ h̄

∂u

∂y

))

, (6)

h̄
∂v

∂t
+ h̄u

∂v

∂x
+ h̄v

∂v

∂y
+ gh̄

∂h̄

∂x
= ky − gh̄

∂b

∂y

−

µ

ρ

(

∂

∂y

(

h̄

[

∂u

∂x
+ 3

∂v

∂y

])

+
∂

∂x

(

h̄
∂u

∂y
+ h̄

∂v

∂x

))

. (7)

Considering the smaller number of unknowns, it is a priori computationally
less costly to solve the Saint-Venant system (5)–(7) than the full 3D Navier-
Stokes equations. Note that the viscous terms in (5)–(7) are very small for
water (ρ|v||Λ|1/3/µ ≫ 1) and occur only in the “second-order” approximation
to (1)–(4), but their importance arises through the determination of a unique
entropic solution to the inviscid Saint-Venant system of balance laws obtained
in the vanishing viscosity limit µ

ρ → 0, recall, e.g., [15, 24]. (At the numerical

level, one can either solve a variational formulation of (5)–(7) like [21], or more
commonly capture entropic solutions to the inviscid limit of (5)–(7) and next
add viscous perturbations like, e.g., [32].) The force term (fx, fy) is typically
parametrized to account for friction and turbulence at the bottom topography.

The main limitations of the reduced model are a hydrostatic pressure, which
is consistent with small vertical velocities and a horizontal motion “by slices”
(where a given velocity profile is imposed all along horizontal directions), and
a non-folded description of the free surface, which is consistent with a non-
breaking flow attached to the topography.
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Although the latter consistency assumptions seems reasonable in a number of
applications to geophysical flows, which explains why the shallow-water reduced
model has proved useful to many applications in hydraulics (see the discussion
about dam break flows in Section 1), they are not satisfied in general and may
locally induce strong inaccuracies, in particular where the bottom topography
b varies fast. Then, a full 3D modeling of dam break flows may be useful, at
least for benchmarking purposes.

3 Numerical Discretization

The advocated numerical algorithm relies on a time splitting method to decou-
ple advection and diffusion phenomena and a two-grid approach for the space
discretization. It is straightforwardly adapted from [25] and only briefly de-
scribed hereafter. We recall that one goal of this work is to validate the method
for dam break simulations.

3.1 Time Splitting Scheme

Let τ > 0 be a given time step and tn = nτ , n ≥ 0, be a sequence of discrete
times. Let ϕn, vn, Ωn be approximations of ϕ, v, Ω respectively at time tn.
The approximations ϕn+1, vn+1, Ωn+1 at time tn+1 are computed by a splitting
algorithm illustrated in Figure 1.

v
n, pn

ϕn

Ωn

Time tn

v
n+1/2

ϕn+1ϕn+1

Ωn+1Ωn+1

Advection

v
n+1, pn+1

Diffusion

Time tn+1

Figure 1: The splitting algorithm (from left to right) for a dam break flow (col-
lapse of a column of water initially located on the left of the domain). Two
advection problems are solved to determine the new approximation of the char-
acteristic function ϕn+1, the new liquid domain Ωn+1 and the predicted velocity
vn+1/2. Then, a time dependent Stokes problem is solved to obtain the velocity
vn+1 and the pressure pn+1 in the new liquid domain Ωn+1.

First two advection problems are solved, that lead to the new approximation
of the characteristic function ϕn+1 together with a prediction vn+1/2 of the new
velocity in the new water domain Ωn+1 with free surface Γn+1. (The domain
Ωn+1 is defined as the set of points such that ϕn+1 equals one.) This advection
step consists in solving, with an (explicit) forward characteristics method, four
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transport equations between tn and tn+1:

∂ϕ

∂t
+ v · ∇ϕ = 0,

∂v

∂t
+ (v · ∇)v = 0, (8)

with initial conditions given by the values of the functions ϕ and v at time tn.
The solutions read ϕn+1(x+τvn(x)) = ϕn(x) and vn+1/2(x+τvn(x)) = vn(x)
for all x ∈ Ωn.

Then, a time dependent Stokes problem is solved in Ωn+1 × (tn, tn+1) using
the predicted velocity vn+1/2 as initial condition. We use an (implicit) backward
Euler scheme. The velocity vn+1 and the pressure pn+1 are thus solution to a
boundary value problem in Ωn+1:

ρ
vn+1 − vn+1/2

τ
− 2∇ ·

(

µD(vn+1)
)

+∇pn+1 = fn+1,

∇ · vn+1 = 0,

(9)

with boundary condition (4) on Γn+1 and slip or no-slip elsewhere (recall Sec-
tion 2).

Two different spatial discretizations are used for the advection problems and
for the Stokes problem, as illustrated in Figure 2. A regular grid of square cells
Ch is used to solve the advection problems, while the Stokes problem is solved
on a coarser unstructured tetrahedral finite element mesh TH .

Figure 2: Two-grid method in the two-dimensional case for a dam break flow
(collapse of a column of water initially located on the left of the domain): struc-
tured grid of small square cells Ch (left) and unstructured finite element mesh
of triangles TH (right).

3.2 Advection Step

The cavity Λ is embedded into a box that is meshed into a structured grid
denoted by Ch, made of cubic cells of size h. We label each cell Cijk by the
multi-index (ijk), where the indices i, j, k vary respectively only in each one of
the three spatial directions of a Cartesian frame. All advection steps are solved
on the same structured grid Ch with a forward characteristics method detailed
in [25], using, at any time tn, piecewise constant approximations of ϕn and vn

on Ch (hence a collection of values ϕn
ijk , v

n
ijk indexed by their cell label (ijk)).

The algorithm consists in moving the cell (ijk) in the direction τvn
ijk and next
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conservatively distributing the transported quantities ϕn
ijk and vn

ijk into the
overlapped cells (with ratio the area intersected by the transported cell divided
by the area of the transported cell). Yet, the repeated projection of a cell onto
the structured grid is an overly diffusive procedure for accurate propagation of
a front like Γn.

We use a variation of the heuristic SLIC algorithm developed in [25] and
inspired by [28] to reduce the numerical diffusion of the front. The cells where
ϕn
ijk = 1 are advected first. Next, in the cells (ijk) where 0 < ϕn

ijk < 1, a square
subcell is defined within (ijk), with center such that some of its edges coincide
with an edge of the cell (ijk), on the other side of which the approximation
of ϕn is also non-uniformly 0, if possible. After pushing this way the fluid
along the faces of the cell, the subsequent translation and the projection of
those latter subcells follow the same characteristic method as for completely
filled cells. Once advected, the corresponding quantity is redistributed to the
underlying cells of Ch proportionally to the volume of the intersection. The cell
advection and projection with SLIC algorithm are presented in Figure 3, for a
two-dimensional grid Ch for the sake of simplicity.

0 0

0

1

1

16

1

4

9

16

1

4

3

16

1

4

3

16

1

4

ϕ
n

=
1

4

1

4
1

Figure 3: Effect of the SLIC algorithm on numerical diffusion. An example of
two dimensional advection and projection when the volume fraction of liquid
in the cell is ϕn

ij = 1

4
. Left: without SLIC, the volume fraction of liquid is

advected and projected on four cells, with contributions (from the top left cell
to the bottom right cell) 3

16

1

4
, 1

16

1

4
, 9

16

1

4
, 3

16

1

4
. Right: with SLIC, the volume

fraction of liquid is first pushed at one corner, then it is advected and projected
on one cell only, with contribution 1

4
.

Last, to avoid ϕn+1

ijk > 1 for some (ijk), a post-processing technique redis-
tributes the excess of water from over-filled cells to cells (ijk) where 0 < ϕn

ijk <
1. Related to global repair algorithms [31], this technique produces final values
ϕn+1

ijk which are between zero and one, even when the advection of ϕn gives
values strictly larger than one. The technique consists in moving the fraction
of liquid in excess in the cells that are over-filled to receiver cells in a global
manner by sorting the cells according to ϕn+1. Details can be found in [25].
In most of our computations, only a small amount of excess water cannot be
redistributed (the so-called numerical compression in [25]).
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3.3 Diffusion Step

Let TH be a tetrahedral discretization of the cavity Λ satisfying the usual com-
patibility conditions between tetrahedra to define a FE mesh (see e.g. [16]).
The maximal diameter of the elements is denoted by H (typically H is of the
order 5h to 10h). We denote by Pℓ the nodes of the FE mesh.

Once values ϕn+1

ijk and v
n+1/2
ijk have been computed on Ch, one computes con-

tinuous piecewise linear approximations of ϕn+1

H and v
n+1/2
H on TH by assigning

to each mesh node Pℓ an average value in a patch of neighboring cells (a local
L2-projection with mass lumping):

ϕn+1

Pℓ
=

∑

K∈TH ,K∋Pℓ

∑

ijk, Cijk⊂K

αijkℓ ϕ
n+1

ijk , (10)

with

αijkℓ =
ψPℓ

(Cijk)
∑

K∈TH ,K∋Pℓ

∑

i′j′k′, Ci′j′k′⊂K

ψPℓ
(Ci′j′k′)

, (11)

where ψPℓ
, ℓ = 1, . . . , N denotes the continuous piecewise linear functions defin-

ing a FE basis with non-zero value only at node Pℓ. Here K denotes an element
(tetrahedron) of the finite element mesh TH , and N denotes the total number
of vertices of TH . The notation PK ∋ℓ means that the node Pℓ is one of the
vertices of the element (tetrahedron) K. The notation Cijk ⊂ K means that
the center of mass of the cell Cijk is located in the finite element K. The same
kind of formula is used to obtain the values of the predicted velocity vn+1/2 at
the vertices Pℓ. Moreover, note that there is no need to interpolate the pressure
on the grid Ch as it does not appear in the advection problems.

We denote by Ωn+1

H the approximation of the water domain Ωn+1 defined
as the union of all elements of the finite element mesh such that one of their
vertices P has a value ϕn+1

P > 0.5, and by Γn+1

H the approximation of the water-
air interface Γn+1, thus an error of order O(H) (an adaptive mesh algorithm
for the improvement of that projection error has been discussed in [7].)

Let us denote by vn+1

H (resp. pn+1

H ) the piecewise linear approximation
of vn+1 (resp. pn+1). The Stokes problem is solved with a stabilized discrete
variational formulation (Galerkin Least Squares method) and consists in finding
the velocity vn+1

H and pressure pn+1

H such that:

∫

Ω
n+1

H

vn+1

H − v
n+1/2
H

τ
·wdx + 2µ

∫

Ω
n+1

H

D(vn+1

H ) : D(w)dx

−
∫

Ω
n+1

H

fn+1 ·wdx−
∫

Ω
n+1

H

pn+1

H ∇ ·wdx −
∫

Ω
n+1

H

q∇ · vn+1

H qdx

−
∑

K⊂Ω
n+1

H

αK

∫

K

(

vn+1

H − v
n+1/2
H

τ
+∇pn+1

H − fn+1

)

· ∇qdx

= 0, (12)
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for all w and q, the velocity and pressure test functions compatible with the
boundary conditions on ∂Λ. The value of the stabilization parameter αK (a
function of the local Reynolds number) has been discussed in [25]. The cor-
responding linear system is solved with a standard GMRES method without
restarting technique (from the library SparseLib++), with an ILU precondi-
tioner.

The continuous piecewise linear approximation of the velocity vn+1

H on TH is
finally restricted at the center of each cell Cijk to obtain the values vn+1

ijk on the
structured grid Ch for the next advection step. This is an interpolation from the
finite elements to the grid of small cells that is the reverse of (10)(11). When
the center of mass of the cell Cijk belongs to the element K, the new velocity
is given by the linear interpolation, based on the finite element basis functions:

vn+1

ijk =
∑

Pℓ∈K

vn+1

Pℓ
ψPℓ

(Cijk).

4 Numerical Experiments

The results of several numerical experiments are presented in this section. We
present first the classical Ritter [30] and Stoker [34] test cases, when a one-
dimensional (1D) dam breaks over a dry or wet bed respectively. Since the
proposed numerical method has already been validated in the past for free-
surface flows, see e.g. [25], the goal of our first examples is to evaluate the
impact of a full 3D model compared with a reduced 1D hydrostatic model in
standard benchmarks for dam break flows. In those cases, the water level and
the depth-averaged velocity solution to the Navier-Stokes equations can be ap-
proximated by the solution to the inviscid Saint-Venant equations (5)–(7), a sim-
plified 1D model for shallow-water flows whose solution is analytically known
here. Numerical convergence is observed toward a solution close to the ana-
lytical formula, as expected for high Reynolds numbers and flat topographies.
But (admittedly small) 3D non-hydrostatic effects are also clearly character-
ized and we briefly discuss them via our computer analyses. In a second step,
comparisons with well-documented examples are presented (asymmetric dam,
Malpasset dam break). Again, our numerical results are close to the numerous
(numerical and physical) data available in the literature, but also show some dis-
tinctive features of the 3D non-hydrostatic effects. We end this section with the
new real-life simulation of the (hypothetical) break of a large dam in Switzer-
land, to show how large-scale numerical results can be coupled with efficient
visualization techniques. All computations in this Section are achieved on an
Intel Xeon (2.93GHz) with 8GB memory.

4.1 The Ritter Test Case

The Ritter test case consists of a 1D channel with a flat horizontal bottom
(oriented along Ox). The dam is vertical and breaks instantaneously at initial
time. The initial conditions for the water height are:

10



h0(x) =

{

h0, x < a,
0, x ≥ a.

(13)

with zero initial velocity; h0 is the initial height of the water and a is the initial
location of the dam. Relationship (13) implies that, downstream of the dam,
the domain is assumed to be dry, while the fluid upstream is initially at rest.
This is a Riemann problem for the inviscid Saint-Venant equations (µρ = 0) and

one exact solution is a rarefaction wave, see, e.g., [11], with fan:

h̄(x, t) =

(

2
√
gh0 −

x− a

t

)2

9g
,

u(x, t) =
2

3

(

√

gh0 +
x− a

t

)

,

(14)

if −1 < x/(t
√
gh0) < 2 (elsewhere, the solution is equal to the initial condition).

Numerical simulations can be done using Navier-Stokes equations and a 3D
velocity in the same setting after extruding the computational domain into a
transverse direction (hence in a pseudo 2D configuration consisting of a channel
with a rectangular cross-section).

We consider the geometry described in [15], namely a channel defined by
the domain (−50, 50) × (0, 2) × (0, 3). The initial height is h0 = 2 [m] and
the dam is initially located at abscissa a = 0 [m]. The liquid properties are
µ = 10−3 [kg/(ms)] and ρ = 103 [kg/m3] (water). Slip boundary conditions are
imposed at the bottom of the channel. The computational cost of the numerical
simulations is between 10 minutes (h = 8 · 10−2, H = 3/5, τ = 0.1), to 12 hours
(h = 4 · 10−2, H = 3/14, τ = 0.025). As the mesh size and time step are divided
by two (in each direction), one can see that the numerical algorithms scale
appropriately.

Figure 4 visualizes the profile of the numerical solution (water height) after
reconstruction on several FE meshes (coarse to fine) and its comparison with
(14) at times t = 0, 3 and 5 [s]. (The CFL number is smaller than one.) One
can see that the numerical simulations converge to a Navier-Stokes solution close
to the rarefaction wave predicted by the Saint-Venant equations. Yet, differ-
ences between the Navier-Stokes and the Saint-Venant predictions are localized
close to regions where the derivatives are discontinuous. First, Navier-Stokes
equations tend to regularize this singular behavior. Second, the Navier-Stokes
front speed seems to slightly slow down as time goes on, in comparison with the
Saint-Venant prediction. Of course, this sounds natural in a simulation where
the kinetic energy is dissipated because of viscous effects. But this is especially
true at the front of the wave. Note indeed that the front shapes are slightly dif-
ferent close to the vacuum. This is not a pure artifact due to the reconstruction
on the FE mesh, insofar as the wave tip decreases as the mesh is refined, but also
a natural effect at a point where pure-slip and no surface tension boundary con-
ditions should match. So viscous dissipation and 3D geometry effects especially
affect the tip of the wave, where a “thin-layer” approximation has no meaning
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(since ∂u/∂x jumps). Then, the inertial terms in the momentum balance pro-
jected along the gravity direction may not be negligible, a local manifestation
of the 3D non-hydrostatic effects, and the limit angle of the free surface at the
tip of the wave may not be zero (contrary to the hydrostatic case).
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Figure 4: Ritter analytical test case: comparison with analytical solution at
times t = 0, 3 and 5 [s]. Left: coarse mesh (h = 8 · 10−2, H = 3/5, τ = 0.1);
middle: middle mesh (h = 6 · 10−2, H = 3/8, τ = 0.05); right: fine mesh
(h = 4 · 10−2, H = 3/14, τ = 0.025). All the grid points on the free surface are
represented, including those in the transverse direction.

4.2 The Stoker Test Case

In the Stoker test case, the water released as the dam breaks flows over a wet
bed instead of a dry bed. We consider the same channel and the same fluid
properties as in the previous section, with initial conditions

h0(x) =

{

hl, x < a,
hr, x ≥ a.

(15)

for the water height, together with zero initial velocity; hl and hr are the initial
heights of the water on the left and right sides of the dam, and a is the initial
location of the dam on the Ox direction. Stoker’s exact solution to the inviscid
Saint-Venant equations is the superimposition of two waves (see, e.g., [21]):
one up-going rarefaction wave and one down-going shock wave connected by a
medial zone with a constant depth hm and constant velocity um. Let us define
cl =

√
ghl, cr =

√
ghr and cm =

√
ghm, then analytical formulas read,
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Figure 5: Ritter analytical test case: Visualization of the velocities at time
t = 5 [s] next to the liquid front. Top: coarse mesh; middle: middle mesh;
bottom: fine mesh. Results magnified by a factor 5 in the vertical direction.

h̄(x, t) =



























hl if x− a < −clt,
(

2
√
ghl−

x− a

t

)2

9g , if − clt < x− a < (um − cm)t,

hm if (um − cm)t < x− a < Wt,
hd if Wt < x− a,

(16)

where W is the speed of the hydraulic jump given by the Rankine-Hugoniot

relation as W =
hmum
hm − hr

. Note that cm (and thus hm) is actually the solution

of a polynomial equation of degree 6 corresponding to the conservation of the
Riemann invariant on the rarefaction wave, and um is given by the Rankine-
Hugoniot relation at the shock wave.

Let us consider initial heights given by hl = 2 [m] and hr = 1 [m]. Figure 6
visualizes the profile of the numerical solution, computed on the fine grid of small
cells Ch and its comparison with (16) at times t = 0, 3 and 5 [s]. Three mesh sizes
and time steps are considered. (The CFL number is smaller than one.) One can
see that the numerical simulations again converge to a Navier-Stokes solution
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close to the one predicted by the Saint-Venant equations, and compare well with
other 3D simulations like [15]. The front speeds again clearly agree, and the
main differences between the Navier-Stokes and the Saint-Venant predictions
are again localized close to the discontinuities only. Navier-Stokes equations
not only tend to regularize the fronts. But 3D (non-hydrostatic) effects are also
clearly seen close to each front. Compared with the exact Saint-Venant solution,
an overshoot occurs around the shock wave, together with an oscillation close to
the rarefaction wave. Figure 7 shows that the Navier-Stokes solutions (reached
in the limit of numerical convergence) includes a significant non-zero vertical
component close to the shock wave. These features are not numerical artefacts.
They do not completely vanish as the discretization parameters are refined, and
they also show up in [15] where the discretization method is quite different.
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Figure 6: Stoker analytical test case: comparison with analytical solution at
times t = 0, 3 and 5 [s]. Left: coarse mesh (h = 8 · 10−2, H = 3/5, τ = 0.1);
right: middle mesh (h = 6 · 10−2, H = 3/8, τ = 0.05); right: fine mesh (h =
4 · 10−2, H = 3/14, τ = 0.025). All the grid points on the free surface are
represented, including those in the transverse direction.

In order to emphasize the three-dimensional character of the computational
solver, let us extend this Stoker test case to a full three-dimensional situation,
following [1, 22]. The dimensions of the computational domain are 20 × 20 ×
3 [m3]. A cylindrical column of water of height wl = 2.5 [m] and radius r =
2.5 [m] is initially located at the center of the domain. The rest of the domain
is filled (wet bed) with water up to an height of wr = 0.5 [m]. The column
of water is released at time t = 0 [s]. The finite element mesh TH contains
1323720 elements, which corresponds to H = 0.1 [m]. The size of the cells in
Ch is h = 0.01 [m]. The time step is τ = 0.01 [s]. Figure 8 shows the magnitude
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Figure 7: Stoker analytical test case: Visualization of the velocities at time
t = 5 [s] next to the liquid front. Top: coarse mesh; middle: middle mesh;
bottom: fine mesh. Results magnified by a factor 3 in the vertical direction.

of the water velocity field at different times. The radial invariance of the front
is well-preserved, showing that the wave propagation is not influenced by the
Cartesian grid Ch for the advection that is aligned with the coordinates axes.

Figure 8: Axisymmetric Stoker test case: visualization of the velocity magnitude
of the water surface at times 0, 0.5, 1.0 and 2.5 [s] (left to right).
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4.3 Dam breach over a flat wet bed

This benchmark problem is a popular test case of a dam break over a wet bed
[4, 12, 35]. The dam is partially, instantaneously, broken at time t = 0 [s], in
an asymmetric manner, as only a non-central part of the dam is removed – the
dam breach.

The computational domain is constructed by vertical extrusion on 20 [m] of a
2D unstructured mesh of the domain (0, 200)×(0, 200) [m2]. Specific dimensions
of the dam can be found, e.g., in [4]. The 3D finite element mesh is composed
of 567364 elements and 97146 vertices, for a mesh size H ≃ 2 [m]. The size of
the small structured grid of cells is h = 0.5 [m]. The time step is τ = 0.05 [s],
implying that the CFL number is close to 0.5. While slip boundary conditions
are still enforced on the lateral walls, we imposed no-slip boundary conditions
on the (flat) bottom for this test case, in contrast with the Ritter and Stoker
test cases where slip boundary conditions were used. Note that slip and no-
slip boundary conditions are the two limits between which the whole range of
boundary conditions with a friction term like Manning in shallow-water models
varies. The location of the liquid at initial time consists of two layers of water
at rest (zero initial velocity) with respective heights of h1 = 10 [m] (on the left
side of the dam) and h2 = 5 [m] (on the right side of the dam). At time t = 0 [s],
the non-central part of the dam is removed.

Figure 9 visualizes the water height at times t = 0.0, 2.5, 5.0, 7.5, 10.0 and
12.5 [s]. Results can be easily compared with those of the literature (in particular
in [4, 12] and references therein). One can observe that the shape of the contours
are very comparable to the existing results of the literature, while the amount
of the overshoot of the advancing front is slightly reduced. While the presence
of an overshoot at the front is again a manifestation of non-hydrostatic effects,
it is significantly reduced here, probably due to the modeling (no-slip boundary
conditions) and numerical artifacts inherent to 3D methods (3D diffusion, maybe
further increased here because of the rather coarse mesh we use for efficient 3D
velocity approximations).

4.4 Dam break with constriction : comparison with ex-

perimental results

We consider a dam break wave in a channel with a rectangular section, similar
to the Ritter test case. The channel has a constriction approximately 12 [m]
away from the left extremity of the domain. The experimental conditions, as
well as the geometrical quantities, are fully described in [19, 20] and illustrated
in Figure 10. The finite element mesh used has 286398 nodes and 1569600 ele-
ments, with typical size H = 0.006 [m]. The structured grid contains 106246000
cells, with typical size h = 0.002 [m]. The bottom of the domain is dry and
flat, and the water is initially at rest, with height 0.3 [m] ahead of the dam. At
initial time, the dam breaks entirely.

This test case is highly non-hydrostatic, since the constriction induces large
vertical velocities, as illustrated by snapshots of the numerical solution on the
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Figure 9: Partial dam break over a flat wet bed at times t = 0.0, 2.5, 5.0, 7.5, 10.0
and 12.5 [s]. Top: water height (in meters); bottom: contours of water height
(in meters).

finite element mesh in Figure 11. It is thus a good benchmark to validate the
use of 3D simulations and compare with simplified models or experimental data.
Measured values of the water level are available at four given points, labeled S1

through S4, and illustrated in Figure 10. Figure 12 visualizes a comparison of
the time evolution of the water level at these four markers with experimental
data [19, 20]. The approximation of the water height is computed on the grid
of small cells. Simulation results of the water depth are in agreement with
the experimental data for all the four markers. Actually, results at the third
marker S3 are significantly better than those given, e.g., in [19] when using an
hydrostatic simplified model. On the other hand, results at the fourth marker
S4 are less accurate due to the very shallow behavior of the water after the
constriction (meaning shallow water-like models are more adapted here).

Remark that, the narrower the constriction, the slowlier the liquid goes into
the channel, as the backward wave becomes stronger. Numerical investigations
have shown precisely that, if the channel is 10 [cm] wide instead of 25 [cm], the
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behavior of the water level for marker S1 is unchanged, but the water does not
reach the marker S4 in the time interval considered.

Dam

0.5 m 0.25 m

6.1 m 8.7 m 0.2 m 1.0 m 0.2 m 4.3 m

5.1 m 7.1 m 2.5 m 1.9 m

S1 S2
S3 S4

Figure 10: Dam break with constriction. Notation, dimensions and location of
the markers.

Figure 11: Dam break with constriction; visualization of the mesh near the
constriction and snapshots of the solution at times t = 0.4, 0.6 [s].
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Figure 12: Dam break with constriction. Time evolution of the water height at
the markers S1, S2, S3 and S4, and comparison with experimental data [19].

4.5 Malpasset dam break

The Malpasset dam break is a real-life test case. The Malpasset dam was lo-
cated approximately 12000 [m] upstream of Frejus on the French Riviera. The
maximum reservoir capacity was meant to be 55106 [m3]. The dam failed explo-
sively on December 2, 1959, and the flood wave ran along the valley to Frejus.
The evolution of the water front and water height has been well-documented
via data collection and measurement, or reproduction with a physical model or
computations.
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The breakage of the Malpasset dam has been widely treated in the literature,
see, e.g., [2, 13, 17, 18]. This test case has also been a benchmark model for
Electricité de France (EDF) for several years, in order to validate simplified 1D
or 2D models based on shallow water equations. 3D simulations of the Malpasset
dam break are less frequent and can be found, for instance, in [3, 21].

The Malpasset test-case allows one to compare a full 3D model with simpli-
fied 1D or 2D models with a view to reproducing experimental results. First,
the friction at bottom in Navier-Stokes equations can be simply modelled by a
no-slip boundary condition (the singular limit of the Navier friction boundary
condition) and does not necessarily require tuning a parameter like in Saint-
Venant equations. Second, the non-hydrostatic features of the flow in the pres-
ence of a non-trivial topography can be discussed. To the best of our knowledge,
only qualitative results of the Malpasset dam break have been presented when
using 3D numerical simulations. Here, we aim at quantifying some effects of the
3D approach.

The 3D computational domain is constructed by extrusion. The 2D map
of the topography has been digitized from ancient topographical maps (see [17]
and references therein). The overall dimensions of the domain are 17500 [m]
× 9000 [m]. Elevation of the valley ranges from −20 [m] (below sea level) to
+100 [m] (above sea level); this latter value is an estimation of the initial free
surface elevation in the reservoir. The 2D mesh contains 13541 points and 39541
triangles. It is illustrated in Figure 13 (top), as actually available in the public
domain. This mesh is then extruded over 10 layers of prisms, each of them cut
into six tetrahedra, to form a 3D finite element mesh TH of 311443 vertices and
1716000 elements, with resolution H = 5 [m]. The cell size of the structured
mesh is h = 2 [m].

The dam structure is following a straight line between the points of coor-
dinates: (4701 [m], 4143 [m]) and (4655 [m], 4392 [m]). The reservoir level is
located behind the dam, at a constant water level equal to 100 [m]. The level
of the Mediterranean sea is constant and equal to zero. Initial conditions are
also represented in Figure 13 (bottom). The remaining part of the bottom of
the domain is dry. At time t = 0, the dam is completely and instantaneously
removed; the water therefore flows down the valley. Recall that no-slip bound-
ary conditions are enforced on the bottom topography (unlike published results
we do not calibrate any friction coefficient). Several points of given coordinates
(gauge points) have been measured thanks to a reduced-scale physical model.
They can be used for comparison with the numerical results. The coordinates
of these particular points can be found, e.g. in [17, 21].

Figure 14 shows snapshots of the solution at times t = 0, 100, 200, 300, 400
and 500 [s], together with a visualization of the velocity field. Each time step,
corresponding to one second of simulation, takes approx. 10 minutes of CPU
time.

Figure 15 shows a comparison between the numerical results and physical
results obtained with the reduced scale model or computational results using
simplified models [21]. The comparison focuses on the maximal water height
(left) and the arrival time of the first water wave (right) at the gauge points.
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Figure 13: Malpasset test case: Two-dimensional mesh of the topography (top)
and initial position of the liquid – the lake behind the dam and the sea –
(bottom).

Figure 14: Malpasset dam break: snapshots of the 3D solution at times t =
0, 100, 200, 300, 400 and 500 [s].

Figure 15 (right) shows that the computed arrival times of the water wave at
these given points is larger than the ones of the physical model. This means that
the wave calculated with the 3D numerical simulation actually travels slowlier
than the physical one. This is not surprising and is a consequence of i) the
inherent numerical diffusion of a three-dimensional model due to a relatively

20



large mesh size; ii) the no-slip boundary conditions on the topography that slow
the water evolution.

On the other hand, Figure 15 (left) shows the maximal water level at these
gauge points, when the overshoot observed for instance in Figure 6 for the
Stoker test case is smoothed. We observe that numerical results are rather
close to existing results. Little oscillations on the water levels happen usually
on one time step. They originate mostly at the forefront of a shock wave,
when the topography of the bedrock varies quite fast below the markers or
when the markers are physically located at the intersection of valleys where
interacting waves may amplify the shock. These oscillations are inherent to the
3D character of the model, and reveal some local non-hydrostatic features that,
compared with the Stoker test case, are amplified by the topography.
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Figure 15: Malpasset dam break: maximum water level (top) and wave arrival
times (bottom) at the gauge points. Comparison between numerical results,
results from [21] and results from the reduced-scale physical model.

4.6 Grande-Dixence dam break

The last numerical experiment tackles the hypothetical dam break of the Grande-
Dixence dam located in Switzerland, and the resulting flood in the valley Val
d’Hérens. It illustrates the capability to perform large-scale simulations in real-
life topographical geometries, and the interest in visualizing 3D simulations, but
has no validation purposes.

The Grande-Dixence dam is the tallest dam in Switzerland. Opened in 1965,
it is 285 [m] high and the lake created behind the dam (Lac des Dix) contains
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400 [mio m3] of water. It is located at the top of a 30000 [m] long valley leading
to the river Rhone and directly above the city of Sion.

The computational domain is constructed as follows. A two-dimensional
elevation map is obtained from Swiss topographical data. The resolution of
the structured two-dimensional mesh is 25 [m]. The 3D finite element mesh
is generated by extrusion of the 2D map on 10 layers of prisms, split into six
tetrahedra each, leading to a finite element mesh composed of 13876525 elements
and 2057005 vertices with resolution H = 50 [m]. The computational domain
is thus 5750 [m] wide, 28900 [m] long and 400 [m] high. On the other hand, the
structured grid of small cells has a resolution of h = 10 [m]. No-slip boundary
conditions are imposed on the bottom topography. The dam of height 285 [m]
is initially assumed filled with 400 [mio m3] of water at rest.

Figure 16 illustrates the location of the liquid front at several times of the
simulation and the flooding areas in the valley. Figure 17 illustrates snapshots of
the water domain colored according to the instantaneous liquid velocity, which
ranges from 0 to 120 [m/s]. Finally, Figure 18 illustrates the water height at
several time steps. The water height ranges from 0 to 200 meters outside the
initial lake reservoir.

Figure 16: Numerical solution of the Dixence dam break. Snapshots of the
liquid domain (top view) at times t = 0, 2, 4, 6, 8, 10 [min].
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Figure 17: Numerical solution of the Dixence dam break. Snapshots of the
liquid domain with fluid velocity at times t = 1, 2, 4, 6, 8, 10 [min].
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Figure 18: Numerical solution of the Dixence dam break. Snapshots of the
water level (top view) at times t = 0, 2, 4, 6, 8, 10 [min].

Conclusions and Further Comments

A numerical method for the simulation of full three-dimensional free-surface
flows has been presented. The proposed computational framework has been
successful in solving a variety of test cases (from simple benchmarks to real-life
situations) with a view to simulating dam breaks. In particular, the numerical
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results show the capability of a full 3D model based on the Navier-Stokes equa-
tions at satisfactorily capturing the hyperbolic behavior of water waves while
showing non-hydrostatic features that are not present in most reduced models.
The non-hydrostatic features of the full 3D modeling of dam breaks flows could
be investigated on the basis of these numerical experiments.

Such computational results can thus be very useful to policy makers when
delimiting flooding areas and drawing flooding maps, as well as to the hydraulic
engineers that are constantly looking for more accurate numerical results of
dam break flows (an everlasting major challenge in the hydraulic engineering
community). Further work includes the application of the numerical method
presented in this article to other practical problems in hydraulic situations,
such as the modeling and assessment of spillways discharge capacity or that of
the sediment transport.
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