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ABSTRACT

The concept of cosparsity has been recently introducedeitbna
of compressed sensing. In cosparse modelling{gHer ¢1) cost of
an analysis-based representation of the target signahismizied un-
der a data fidelity constraint. By taking benefit from recahizances
in proximal algorithms, we show that it is possible to effitig

address a more general framework where a convex block gparsi

measure is minimized under various convex constraints. rmaie
contribution of this work is the introduction of a new epighécal
projection technique, which allows us to consider more filexdata
fidelity constraints than the standard linear or quadratieso The
validity of our approach is illustrated through an appilicatto an
image reconstruction problem in the presence of Poiss@enoi

A natural extension of the notion of projection is provided b
the proximity operator [10]. This tool constitutes the angtone of
many convex optimization algorithms offering the ability tackle
nonsmooth functions (e.g. convex sparsity measures) asplitéthe
optimized criterion in a sum of simpler terms onto which fiata
processing can be performed.

Our objective in this paper is to provide efficient solutidas
convex formulation of cosparse modelling problems by tghien-
efit from recent advances in proximal algorithms. One of tfaénm
advantages of our proposed approach is that it allows usdressl
more flexible data fidelity constraints than (1) as well asitémithl
convex constraints modelling prior information. It is woempha-
sizing that the proposed method does not require to formutet
problem through its Lagrange dual, which would necessttatde-

Index Terms— Signal restoration, compressed sensing, iteratermine the associated Lagrange multipliers. The flexjbof our

tive methods, optimization methods, wavelet transforms.

1. INTRODUCTION

The tremendous research activity in the field of sparse nindelnd
compressed sensing [1, 2] has been at the root of novel figagke
processing concepts. Among the most appealing ideas, tieepb
of cosparsity has been introduced [3] to extend the starajgpbach

where thely cost (or its¢; convex relaxation) of the target signal is

minimized under a linear constraint accounting for the olzeon
model. In cosparse modelling, a sparsity measure of a limaas-
formation F'z of the sought signat is minimized subject to a linear
constraint. In the presence of noise this constraint isllysteplaced
by a quadratic one of the form

1Tz — 2| <n @)

wherez is the vector of observationg; is the linear operator mod-

approach is obtained by introducing a new epigraphicalegtan
technique which is the main contribution of this work.

The paper is organized as follows. In Section 2, we formulate
the considered problem. We motivate the choice of proximalst
in Section 3. In order to efficiently deal with a general dadelity
constraint, a splitting approach involving an epigraphprajection
is proposed. This projection is described in Section 4 andppli-
cation is the topic of Section 5. Experiments in the contéxro
image reconstruction problem where the data are corrupttdar
Poisson noise are presented in Section 6. Finally, somdusions
are drawn in Section 7.

2. PROBLEM STATEMENT

Let H be a real Hilbert signal space. We will denotelty(*) the
class of lower-semicontinuous functions frégto |—oo, +oc]. For
simplicity, the norm of a Hilbert space is denoted |py || without

specifying the underlying space. LEtbe a bounded linear operator
from A to £(K) with K C N,* which corresponds to some analysis
transform, e.g. the decomposition onto some analysis framel’

elling the observation process ands a positive bound related to the
variance of the noise. Instead of considering a stan@lacd ¢; cost
function, it may be fruitful to consider more general bloeckgooup
sparsity measures [4, 5, 6, 7] for which appropriate alponit tools ~ be a linear operator frori to RX modelling an observation process
can also be developed. and letz be the associated observed vectoRifi. We will further
For a long time in signal and image processing, it has been re@ssume that the observation model yields an inequalityeofatm
ognized that incorporating as many available informat®passible @

on the sought solution to an inverse problem is beneficiaheces-
whereZ € H is the signal to be determinegl(-, z) € I'o(R¥) and

timation performance. POCS algorithm [8] and its extersibave
n € R. For example, when the observation is generated through a

been developed to iteratively compute the solution to a eomad-
missibility problem, where the target signal is known todgj to / - . i ) )

linear additive noise model with log-concave noise proligtden-
sity functionoc exp ( — ¥(-)), we can choosg(:,z) = ¥(- — z)

the intersection of a finite number of convex constraint.seecent
offsprings of these methods and their applications in legrare i i :

and the upper boung can be fixed based on some given confidence
level. We will also consider a nonempty closed convex(set H

9(Tz,2) <

discussed in [9].
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modelling some prior knowledge (e.g. range value condspime
may have on the sought signal

The objective of this paper is to find an estimatedfy solving
the following optimization problem

rzeC

9(Tx,2) <n. @)

minimize [|[Fzl|j2,1 Subjectto {
xT

Recall that the proximity operator of a functignin T'o(#) is
defined as

1
prox,: H — H: x — argming|p — || + o(p). 9)
peH 2
The computation of the proximity operators of block sparsiea-

sures has been investigated in [6]. Based on basic propeftox-
imity operators, it can be shown that, for everg {1,...,5} and

Hereabovel|| - 2,1 corresponds to a block (or group) sparsity mea-for everyy e ¢*(K), p = prox. ; y With v > 0 is given by the

sure taking the form

(Vy € 2(K)  lyllza = [Boyll (4)

bel

wherellL. C K and, for everyb € L, B, is someblock selection
transform. A linear transformB from £2(K) to R” will be said to
be a block selection transform if it allows us to select a blot L
data from its input vector. This means that there exist mistin-
dicesk, ..., k. in K such that, for every = (y*))rex € £2(K),
By = (y*), ..., y*L)). Note that the operatofsB; )1, may cor-
respond to overlapping blocks having different sizes. Hasefor
computational reasons, it will be assumed that these bloakshe

following block thresholding rule:

¥ .
——— B if |B >
(Vb € Ls) Byp = ( IIBbyH) w Bl > (10)
0,...,0) otherwise.

The proximity of the indicator function af’ reduces to the projec-
tion Pc onto this closed convex set. In the following, it will be
assumed that the projection ontbhas a closed form expression.

In turn, we will be interested in the case whemloes not nec-
essarily takes a simple form (e.g. a quadratic one), so ligapito-
jection ontoD cannot be calculated in an explicit manner. In the
next section, we describe a method allowing us to circumtkast

regrouped intdS' sets of non-overlapping blocks. (This assumptiondifficulty.

is always satisfied wheh is finite.) In other words, we assume that
there exists a partition df in S subsetgLL,):<s<s such that

S
(Vy € £(K)) lyllza = fo(v) ()
s=1
where, for every € {1,..., S}, the functionf; is defined as
(e P(K)  foly)=>_ IIBuyl (6)

bels

and(Bs)seL, select disjoint blocks. In the particular case wites:
1,L =1L; = Kand, foreveryp € L, By: (4" )rex — 3, the
classicall!-norm is obtained.

It is then useful to note that the considered minimizatioobpr
lem (3) can be reformulated more concisely as follows:

s
migé%ize Z fs(Fz)+ic(x) +ep(Tx)

s=1

@)

where.c is the indicator function of”, which is equal to O or”
and+oco onH \ C. vp is the indicator function of the closed convex
setD corresponding to the lower level setgf, z) at heighty:

D = {u c RX | g(u,z) < 77} =lev<y g(+, 2). (8)

3. PROXIMAL TOOLS

Problem (7) corresponds to the minimization of a surf ¢ lower-
semicontinuous convex functions composed with linearatpes. It
can thus be efficiently solved by proximal methods [10] (Skse a
[11] for related augmented Lagrangian techniques). If wendb
impose specific assumptions on the operafo@ndT’, primal-dual
proximal approaches [12, 13, 14, 15] appear as appealingotet
to solve the problem. These methods have become populatiece
due to the fact that they do not require operator inversiohese
computational cost may be high. In order to apply these naistho
we need however to compute the proximity operators of thelvied
functions in Problem (7).

4. EPIGRAPHICAL PROJECTION
Let us now see how to handle a convex constrainif the form
h(v) < n}

whenh is a function inI'o(R¥*) having the following separable
form:

D= {ver™

11)
K

(Vo e R"M)  h(v) =" he(v). (12)
r=1

Hereabove, the generic vectohas been decomposed ikoblocks
of coordinates as follows

ol = (v, )T (13)
—— ———
size M sizeM
and, for everyr € {1,..., K}, v("” € R™ andh, is a function in

Lo(RM).
By defining an auxiliary vectot € R¥, the components of
which are denoted by¢ ") The inequality in (11) can be

equivalently rewritten as

1<r<K"'

K
> o<y (14)
(vVrefl,... K} he(v)<¢0. (15)

The latter inequality means that, for every € {1,...,K},
(v(™,¢™) belongs to the so-called epigrappih, of h,.. Let
us now introduce the closed half-spacé®df defined as

V={CeR"|1x¢<n}, withlx=(1,...,1)7 € R¥,

(16)
and the closed convex set
E={(v,¢) e R*M x R¥ |
(vre{l,...,K}) v, ¢y cepih.}. (A7)



Then, Constraint (14) means that V', whereas Constraint (15) is
equivalent to(v, () € E. In other words, the constraint sEt can
be split into the two constraint set$ and E' provided thatK ad-
ditional scalar variableg( ("), <, < x are introduced. Dealing with
extra constraints in the original problem is not a problemtfe
proximal algorithms we employ, as far as the projection®dhe
associated constraint sets can be easily computed.
In the present case, the projection oftas simply given by

¢ ifp=>0

18
¢+ pulix otherwise, (18)

(VCeR™)  Py(¢)= {

wherep = - (7 — 15¢). On the other hand, the projection orffo
is given by

(V(v,¢) e RFM xRF)  Pp(v,) = (p,0)  (19)

wheref = (01, .. REM

posedap’ = ((p™M)7,...,

0N T vectorp € is blockwise decom-
(P T) similarly to (13), and
(Vref{l,.... K} (p",07) = Pepin, (v, ¢7). (20)

So, the problem reduces to the lower-dimensional problerhef
determination of the projection onto the convex suhgsth, of

RM x R, for eachr € {1,..., K'}. These projections have a closed

form expression in a number of cases of interest an exammlbich
is given below.

Proposition 4.1 Assume that

(VV(T) _ (V(r,l)7 e V(T,JVI))T c R]M)

hr(v(r)) = maX{v(m) + n(m) [1<j<M} (21)

wherer € {1,..., R} and (n™, ..., n"M)T ¢ RM. For every
v e RM et (1)< be a sequence obtained by sorting

(v 4 p(m3)y, o ps in ascending order, and set (™ = —oco
and "M+ — 400, Then, for every ¢ € R, (p(,0) =
Pepin, (v, ¢M)issuchthat p™ = (p™ ... p"™M)T where,

forevery j € {1,..., M},

if vm) <) — pnd)

(r,3) V() 29
P 700 — D) otherwise, (22)

0" = 2 (C(” + 30 y‘“j)) and 7 is the unique integer in

{1,..., M + 1} such that

M
(M _ j + 2)1/(7"77_1) < C(T) + Z V(’",j) S (M _ j + 2)1/(7"77).
J=7
As will be shown in the next section, this result will play antral
role in the solution of Problem (7) for non-trivial forms afifctiong.

5. ALGORITHMIC SOLUTION
Let us come back to the original problem formulated in Secfion
the case when, for every= (v, ... v T ¢ RE,

K

g(u,z) = Z gr(u™, 2.

r=1

(23)

In the above expressioﬁz;(”)lgrSK are the components ef and,
for everyr € {1,..., K}, g-(-,2(")) is a one-variable function in
I'o(R). For example, such a separable functipmay correspond
to the negative-log-likelihood of an independent noise ehod.et

re{l,...,K}and IetaY), ey a&? be given distinct elements of
the domairy,.(-, 2("). For everyu(") € R, the following inequality
holds:

(@, 20) > g,(al, 20) + 60 @™ — ) (24)

where, for everyj € {1,...,M}, 6;” € Ris any subgradient of
gr(+, zr) at a§”"). A lower approximation of,.(-, (™) is then given

by k. o A whereA™) =[5 ... 67T andh, satisfies (21)
with

1" = go(al”,27) — 67al". (25)
By defining
AY 0 ..o
A=Y T eREME ()
: . . 0
0 ... 0 A®
we have then
g(u, 2) = h(Au) (27)

where the approximation can be as close as desired by clgobsin
large enough.

Using the notations of Section 4, Problem (7) can then besteca
as the following optimization problem in the product spate RX:

S

o (@) + v (Q) + 1e(ATz,¢) + > fo(Fz). (28)

s=1

minimize
(z,Q)eH xRK

The projection ontd/ is given by (18), the projection ont&' by
Proposition 4.1 and the proximity operator of the functighsby
(20). In addition, the projection ont@ has been assumed to take an
explicit form. As mentioned in Section 3, various proximatthods
can thus be applied to solve this nonsmooth optimizatioblpro. In
this work, we will employ the Monotone+Lipschitz Forward da
ward Forward (M+LFBF) algorithm which was recently proptse
in [15] offering both good performance and robustness toerical
errors. The convergence of this algorithm to a solution ®) (8
guaranteed (under weak conditions) and its structure nmakasily
implementable on highly parallel architectures.

6. SIMULATION RESULTS

Deriving performance bounds in compressed sensing in tsepce
of Poisson noise has been recently shown to be a challengifg p
lem [16]. We subsequently provide some experiments in tligsBo
context.

Figure 1 shows the reconstruction results for an electron mi
croscopy image of siz&/ = 128 x 128 (H = RY) degraded by
a randomly decimated blur (uniform blur of si2e< 3 and approxi-
mately 40% of missing data, that leadsio= 9829) and by Poisson
noise with scaling parametér5. We aim at evaluating the recon-
struction results obtained whei = [0, 255]", and the data fidelity
constraint related to the Poisson likelihogds approximated as de-
scribed in Section 5 wit/ = 9.



4

Degraded

Restored 1

SNR =3.87dB SNR =18.0dB
DL} w D1 ¥

Restored 3 Reétored 4

SNR=19.3dB SNR =19.4dB SNR =19.6 dB

Fig. 1. Reconstruction results.

The Restored 1 image displays the results we obtain wheris
a wavelet transform using symmlet filters of length 6 appledr
2 resolution levels and the classidal criterion is employed. The  [6]
images in the second row present the obtained results \whisna
dual-tree transform (DTT) [17] using symmlet filters of I&m® ap-
plied over 2 resolution levels. Not only the use of a redunft@me [7]
allows us to reach higher SNR values, but the visual quaitsig-
nificantly improved.Restored 2 corresponds to the classidal cost
function. Restored 3 results from the minimization of a block spar- (8]
sity measure for blocks gathering primal and dual DTT coieffits.
Restored 4 shows the good performance of the proposed approach

when spatially overlapping blocks of sizex 2 are employed for (9]
each tree (primal or dual) separately
[10]
7. CONCLUSION
In this paper, we have proposed a convex optimization approa
for solving cosparse modelling problems under flexible earson- 1)

straints. Our method is grounded on the use of recent prdxta
gorithms and a novel epigraphical projection techniquethénpre-
sented simulation results, this approach has been apmiedré-
construction problem involving data corrupted with Poissmise. [12]
Other applications can be considered where the abilityke tato
account an arbitrary convex data fidelity constraint mayrbifél.

[13]
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