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ABSTRACT

The concept of cosparsity has been recently introduced in the arena
of compressed sensing. In cosparse modelling, theℓ0 (or ℓ1) cost of
an analysis-based representation of the target signal is minimized un-
der a data fidelity constraint. By taking benefit from recent advances
in proximal algorithms, we show that it is possible to efficiently
address a more general framework where a convex block sparsity
measure is minimized under various convex constraints. Themain
contribution of this work is the introduction of a new epigraphical
projection technique, which allows us to consider more flexible data
fidelity constraints than the standard linear or quadratic ones. The
validity of our approach is illustrated through an application to an
image reconstruction problem in the presence of Poisson noise.

Index Terms— Signal restoration, compressed sensing, itera-
tive methods, optimization methods, wavelet transforms.

1. INTRODUCTION

The tremendous research activity in the field of sparse modelling and
compressed sensing [1, 2] has been at the root of novel signal/image
processing concepts. Among the most appealing ideas, the concept
of cosparsity has been introduced [3] to extend the standardapproach
where theℓ0 cost (or itsℓ1 convex relaxation) of the target signal is
minimized under a linear constraint accounting for the observation
model. In cosparse modelling, a sparsity measure of a lineartrans-
formationFx of the sought signalx is minimized subject to a linear
constraint. In the presence of noise this constraint is usually replaced
by a quadratic one of the form

‖Tx− z‖2 ≤ η (1)

wherez is the vector of observations,T is the linear operator mod-
elling the observation process andη is a positive bound related to the
variance of the noise. Instead of considering a standardℓ0 or ℓ1 cost
function, it may be fruitful to consider more general block or group
sparsity measures [4, 5, 6, 7] for which appropriate algorithmic tools
can also be developed.

For a long time in signal and image processing, it has been rec-
ognized that incorporating as many available information as possible
on the sought solution to an inverse problem is beneficial to the es-
timation performance. POCS algorithm [8] and its extensions have
been developed to iteratively compute the solution to a convex ad-
missibility problem, where the target signal is known to belong to
the intersection of a finite number of convex constraint sets. Recent
offsprings of these methods and their applications in learning are
discussed in [9].

This work was supported by the Agence Nationale de la Recherche under
grant ANR-09-EMER-004-03.

A natural extension of the notion of projection is provided by
the proximity operator [10]. This tool constitutes the cornerstone of
many convex optimization algorithms offering the ability to tackle
nonsmooth functions (e.g. convex sparsity measures) and tosplit the
optimized criterion in a sum of simpler terms onto which parallel
processing can be performed.

Our objective in this paper is to provide efficient solutionsto a
convex formulation of cosparse modelling problems by taking ben-
efit from recent advances in proximal algorithms. One of the main
advantages of our proposed approach is that it allows us to address
more flexible data fidelity constraints than (1) as well as additional
convex constraints modelling prior information. It is worth empha-
sizing that the proposed method does not require to formulate the
problem through its Lagrange dual, which would necessitateto de-
termine the associated Lagrange multipliers. The flexibility of our
approach is obtained by introducing a new epigraphical projection
technique which is the main contribution of this work.

The paper is organized as follows. In Section 2, we formulate
the considered problem. We motivate the choice of proximal tools
in Section 3. In order to efficiently deal with a general data fidelity
constraint, a splitting approach involving an epigraphical projection
is proposed. This projection is described in Section 4 and its appli-
cation is the topic of Section 5. Experiments in the context of an
image reconstruction problem where the data are corrupted with a
Poisson noise are presented in Section 6. Finally, some conclusions
are drawn in Section 7.

2. PROBLEM STATEMENT

Let H be a real Hilbert signal space. We will denote byΓ0(H) the
class of lower-semicontinuous functions fromH to ]−∞,+∞]. For
simplicity, the norm of a Hilbert space is denoted by‖ · ‖ without
specifying the underlying space. LetF be a bounded linear operator
fromH to ℓ2(K) with K ⊂ N,1 which corresponds to some analysis
transform, e.g. the decomposition onto some analysis frame. Let T
be a linear operator fromH toR

K modelling an observation process
and letz be the associated observed vector inR

K . We will further
assume that the observation model yields an inequality of the form

g(Tx, z) ≤ η (2)

wherex ∈ H is the signal to be determined,g(·, z) ∈ Γ0(R
K) and

η ∈ R. For example, when the observation is generated through a
linear additive noise model with log-concave noise probability den-
sity function∝ exp

(
− Ψ(·)

)
, we can chooseg(·, z) = Ψ(· − z)

and the upper boundη can be fixed based on some given confidence
level. We will also consider a nonempty closed convex setC ⊂ H

1ℓ2(K) denotes the space of square summable sequences indexed onK.



modelling some prior knowledge (e.g. range value constraints) one
may have on the sought signalx.

The objective of this paper is to find an estimate ofx by solving
the following optimization problem

minimize
x

‖Fx‖2,1 subject to

{
x ∈ C

g(Tx, z) ≤ η.
(3)

Hereabove,‖ · ‖2,1 corresponds to a block (or group) sparsity mea-
sure taking the form

(
∀y ∈ ℓ

2(K)
)

‖y‖2,1 =
∑

b∈L

‖Bby‖ (4)

whereL ⊂ K and, for everyb ∈ L, Bb is someblock selection
transform. A linear transformB from ℓ2(K) to R

L will be said to
be a block selection transform if it allows us to select a block of L
data from its input vector. This means that there exist distinct in-
dicesk1, . . . , kL in K such that, for everyy = (y(k))k∈K ∈ ℓ2(K),
By = (y(k1), . . . , y(kL)). Note that the operators(Bb)b∈L may cor-
respond to overlapping blocks having different sizes. However, for
computational reasons, it will be assumed that these blockscan be
regrouped intoS sets of non-overlapping blocks. (This assumption
is always satisfied whenL is finite.) In other words, we assume that
there exists a partition ofL in S subsets(Ls)1≤s≤S such that

(
∀y ∈ ℓ

2(K)
)

‖y‖2,1 =
S∑

s=1

fs(y) (5)

where, for everys ∈ {1, . . . , S}, the functionfs is defined as

(
∀y ∈ ℓ

2(K)
)

fs(y) =
∑

b∈Ls

‖Bby‖ (6)

and(Bb)b∈Ls
select disjoint blocks. In the particular case whenS =

1, L = L1 = K and, for everyb ∈ L, Bb : (y
(k))k∈K 7→ y(b), the

classicalℓ1-norm is obtained.
It is then useful to note that the considered minimization prob-

lem (3) can be reformulated more concisely as follows:

minimize
x∈H

S∑

s=1

fs(Fx) + ιC(x) + ιD(Tx) (7)

whereιC is the indicator function ofC, which is equal to 0 onC
and+∞ onH\C. ιD is the indicator function of the closed convex
setD corresponding to the lower level set ofg(·, z) at heightη:

D =
{
u ∈ R

K
∣∣ g(u, z) ≤ η

}
= lev≤η g(·, z). (8)

3. PROXIMAL TOOLS

Problem (7) corresponds to the minimization of a sum ofS+2 lower-
semicontinuous convex functions composed with linear operators. It
can thus be efficiently solved by proximal methods [10] (see also
[11] for related augmented Lagrangian techniques). If we donot
impose specific assumptions on the operatorsF andT , primal-dual
proximal approaches [12, 13, 14, 15] appear as appealing methods
to solve the problem. These methods have become popular recently
due to the fact that they do not require operator inversions whose
computational cost may be high. In order to apply these methods,
we need however to compute the proximity operators of the involved
functions in Problem (7).

Recall that the proximity operator of a functionϕ in Γ0(H) is
defined as

proxϕ : H → H : x 7→ argmin
p∈H

1

2
‖p− x‖2 + ϕ(p). (9)

The computation of the proximity operators of block sparsity mea-
sures has been investigated in [6]. Based on basic properties of prox-
imity operators, it can be shown that, for everys ∈ {1, . . . , S} and
for everyy ∈ ℓ2(K), p = proxγfs

y with γ > 0 is given by the
following block thresholding rule:

(∀b ∈ Ls) Bbp =






(
1−

γ

‖Bby‖

)
Bby if ‖Bby‖ > γ

(0, . . . , 0) otherwise.
(10)

The proximity of the indicator function ofC reduces to the projec-
tion PC onto this closed convex set. In the following, it will be
assumed that the projection ontoC has a closed form expression.

In turn, we will be interested in the case wheng does not nec-
essarily takes a simple form (e.g. a quadratic one), so that the pro-
jection ontoD cannot be calculated in an explicit manner. In the
next section, we describe a method allowing us to circumventthis
difficulty.

4. EPIGRAPHICAL PROJECTION

Let us now see how to handle a convex constraintD̃ of the form

D̃ =
{
v ∈ R

KM
∣∣ h(v) ≤ η

}
(11)

whenh is a function inΓ0(R
KM ) having the following separable

form:

(∀v ∈ R
KM ) h(v) =

K∑

r=1

hr(v
(r)). (12)

Hereabove, the generic vectorv has been decomposed intoK blocks
of coordinates as follows

v
⊤ = [(v(1))⊤︸ ︷︷ ︸

sizeM

, . . . , (v(K))⊤︸ ︷︷ ︸
sizeM

] (13)

and, for everyr ∈ {1, . . . , K}, v(r) ∈ R
M andhr is a function in

Γ0(R
M ).

By defining an auxiliary vectorζ ∈ R
K , the components of

which are denoted by
(
ζ(r)

)
1≤r≤K

. The inequality in (11) can be
equivalently rewritten as

K∑

r=1

ζ
(r) ≤ η (14)

(∀r ∈ {1, . . . ,K}) hr(v
(r)) ≤ ζ

(r)
. (15)

The latter inequality means that, for everyr ∈ {1, . . . ,K},
(v(r), ζ(r)) belongs to the so-called epigraphepihr of hr. Let
us now introduce the closed half-space ofR

K defined as

V =
{
ζ ∈ R

K
∣∣ 1⊤Kζ ≤ η

}
, with 1K = (1, . . . , 1)⊤ ∈ R

K ,

(16)
and the closed convex set

E = {(v, ζ) ∈ R
KM × R

K |

(∀r ∈ {1, . . . ,K}) (v(r), ζ(r)) ∈ epihr}. (17)



Then, Constraint (14) means thatζ ∈ V , whereas Constraint (15) is
equivalent to(v, ζ) ∈ E. In other words, the constraint set̃D can
be split into the two constraint setsV andE provided thatK ad-
ditional scalar variables(ζ(r))1≤r≤K are introduced. Dealing with
extra constraints in the original problem is not a problem for the
proximal algorithms we employ, as far as the projections onto the
associated constraint sets can be easily computed.

In the present case, the projection ontoV is simply given by

(∀ζ ∈ R
K) PV (ζ) =

{
ζ if µ ≥ 0

ζ + µ1K otherwise,
(18)

whereµ = 1
K

(
η − 1⊤Kζ

)
. On the other hand, the projection ontoE

is given by

(∀(v, ζ) ∈ R
KM × R

K) PE(v, ζ) = (p, θ) (19)

whereθ = (θ(1), . . . θ(K))⊤, vectorp ∈ R
KM is blockwise decom-

posed asp⊤ =
(
(p(1))⊤, . . . , (p(K))⊤) similarly to (13), and

(∀r ∈ {1, . . . ,K}) (p(r), θ(r)) = Pepihr
(v(r), ζ(r)). (20)

So, the problem reduces to the lower-dimensional problem ofthe
determination of the projection onto the convex subsetepihr of
R

M ×R, for eachr ∈ {1, . . . ,K}. These projections have a closed
form expression in a number of cases of interest an example ofwhich
is given below.

Proposition 4.1 Assume that

(
∀v(r) = (v(r,1), . . . , v(r,M))⊤ ∈ R

M
)

hr(v
(r)) = max{v(r,j) + η

(r,j) | 1 ≤ j ≤ M} (21)

where r ∈ {1, . . . , R} and (η(r,1), . . . , η(r,M))⊤ ∈ R
M . For every

v(r) ∈ R
M , let (ν(r,j))1≤j≤M be a sequence obtained by sorting

(v(r,j) + η(r,j))1≤j≤M in ascending order, and set ν(r,0) = −∞

and ν(r,M+1) = +∞. Then, for every ζ(r) ∈ R, (p(r), θ(r)) =

Pepihr
(v(r), ζ(r)) is such that p(r) = (p(r,1), . . . , p(r,M))⊤ where,

for every j ∈ {1, . . . ,M},

p
(r,j) =

{
v(r,j) if v(r,j) ≤ θ(r) − η(r,j)

θ(r) − η(r,j) otherwise,
(22)

θ(r) = 1
M−+2

(
ζ(r) +

∑M

j=
ν(r,j)

)
and  is the unique integer in

{1, . . . ,M + 1} such that

(M − + 2)ν(r,−1)
< ζ

(r) +
M∑

j=

ν
(r,j) ≤ (M − + 2)ν(r,)

.

As will be shown in the next section, this result will play a central
role in the solution of Problem (7) for non-trivial forms of functiong.

5. ALGORITHMIC SOLUTION

Let us come back to the original problem formulated in Section 2 in
the case when, for everyu = (u(1), . . . , u(K))⊤ ∈ R

K ,

g(u, z) =
K∑

r=1

gr(u
(r)

, z
(r)). (23)

In the above expression,(z(r))1≤r≤K are the components ofz, and,
for everyr ∈ {1, . . . , K}, gr(·, z(r)) is a one-variable function in
Γ0(R). For example, such a separable functiong may correspond
to the negative-log-likelihood of an independent noise model. Let
r ∈ {1, . . . ,K} and leta(r)

1 , . . . , a
(r)
M be given distinct elements of

the domaingr(·, z(r)). For everyu(r) ∈ R, the following inequality
holds:

gr(u
(r)

, z
(r)) ≥ gr(a

(r)
j , z

(r)) + δ
(r)
j (u(r) − a

(r)
j ) (24)

where, for everyj ∈ {1, . . . ,M}, δ(r)j ∈ R is any subgradient of

gr(·, zr) ata(r)
j . A lower approximation ofgr(·, z(r)) is then given

by hr ◦ ∆(r) where∆(r) = [δ
(r)
1 , . . . , δ

(r)
M ]⊤ andhr satisfies (21)

with
η
(r,j) = gr(a

(r)
j , z

(r))− δ
(r)
j a

(r)
j . (25)

By defining

∆ =




∆(1) 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0

0 . . . 0 ∆(K)



∈ R

KM×K (26)

we have then
g(u, z) ≃ h(∆u) (27)

where the approximation can be as close as desired by choosing M

large enough.
Using the notations of Section 4, Problem (7) can then be recast

as the following optimization problem in the product spaceH×R
K :

minimize
(x,ζ)∈H×R

K

ιC(x) + ιV (ζ) + ιE(∆Tx, ζ) +
S∑

s=1

fs(Fx). (28)

The projection ontoV is given by (18), the projection ontoE by
Proposition 4.1 and the proximity operator of the functionsfs by
(10). In addition, the projection ontoC has been assumed to take an
explicit form. As mentioned in Section 3, various proximal methods
can thus be applied to solve this nonsmooth optimization problem. In
this work, we will employ the Monotone+Lipschitz Forward Back-
ward Forward (M+LFBF) algorithm which was recently proposed
in [15] offering both good performance and robustness to numerical
errors. The convergence of this algorithm to a solution to (28) is
guaranteed (under weak conditions) and its structure makesit easily
implementable on highly parallel architectures.

6. SIMULATION RESULTS

Deriving performance bounds in compressed sensing in the presence
of Poisson noise has been recently shown to be a challenging prob-
lem [16]. We subsequently provide some experiments in the Poisson
context.

Figure 1 shows the reconstruction results for an electron mi-
croscopy image of sizeN = 128 × 128 (H = R

N ) degraded by
a randomly decimated blur (uniform blur of size3× 3 and approxi-
mately 40% of missing data, that leads toK = 9829) and by Poisson
noise with scaling parameter0.5. We aim at evaluating the recon-
struction results obtained whenC = [0, 255]N , and the data fidelity
constraint related to the Poisson likelihoodg is approximated as de-
scribed in Section 5 withM = 9.



Original Degraded Restored 1
SNR = 3.87 dB SNR = 18.0 dB

Restored 2 Restored 3 Restored 4
SNR = 19.3 dB SNR = 19.4 dB SNR = 19.6 dB

Fig. 1. Reconstruction results.

TheRestored 1 image displays the results we obtain whenF is
a wavelet transform using symmlet filters of length 6 appliedover
2 resolution levels and the classicalℓ1 criterion is employed. The
images in the second row present the obtained results whenF is a
dual-tree transform (DTT) [17] using symmlet filters of length 6 ap-
plied over 2 resolution levels. Not only the use of a redundant frame
allows us to reach higher SNR values, but the visual quality is sig-
nificantly improved.Restored 2 corresponds to the classicalℓ1 cost
function. Restored 3 results from the minimization of a block spar-
sity measure for blocks gathering primal and dual DTT coefficients.
Restored 4 shows the good performance of the proposed approach
when spatially overlapping blocks of size2 × 2 are employed for
each tree (primal or dual) separately

7. CONCLUSION

In this paper, we have proposed a convex optimization approach
for solving cosparse modelling problems under flexible convex con-
straints. Our method is grounded on the use of recent proximal al-
gorithms and a novel epigraphical projection technique. Inthe pre-
sented simulation results, this approach has been applied to a re-
construction problem involving data corrupted with Poisson noise.
Other applications can be considered where the ability to take into
account an arbitrary convex data fidelity constraint may be fruitful.
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