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Abstract. We aim at optimally combining air quality computations, from3

the Gaussian model ADMS Urban, and ground observations at urban scale.4

An ADMS simulation generated NO2 concentration fields across Clermont-5

Ferrand (France) down to street level, every three hours for the full year 2008.6

A monitoring network composed of nine fixed stations provided hourly ob-7

servations to be assimilated. Every three hours, we compute the so-called BLUE8

(best linear unbiased estimator), which is a concentration field merging ADMS9

outputs and ground observations. Its error variance is supposed to be min-10

imal under given assumptions regarding the errors on observations and model11

simulations. A key step lies in the modeling of error covariances between the12

computed NO2 concentrations across the city. We introduce a parameterized13

covariance which heavily relies on the road network. The covariance between14

two locations depends on the distance of each location to the road network15

and on the distance between the locations along the road network. Efficient16

parameters for the covariances are primarily chosen according to prior as-17

sumptions, χ2 diagnosis and leave-one-out cross-validations. According to18

the cross-validations, the improvements due to the assimilation seem mod-19

erate far from the observation network, but the root mean square error roughly20

decreases by 30% to 50% in the main city where the station density is high.21

The method is computationally tractable for the generation of improved con-22

centration fields over a long period, or for day-to-day forecasts.23
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1. Introduction

Drivers, cyclists and pedestrians are mainly exposed to nitrogen dioxide and particles,24

especially originating from traffic exhausts. The nitrogen dioxide is a strong oxidizer25

which can lead to harmful effects on airways. The exceedance of given thresholds can26

raise problems for asthmatics. The particles have short term and long term effects on27

respiratory and cardiovascular systems, especially on children, asthmatics and old people.28

In recent years, there has been a growing interest for the numerical simulation of air29

quality at urban scale, aiming at the estimation of atmospheric pollutant concentrations30

in all urban areas, down to street level. One motivation is to improve the evaluation of31

exposure of the considerable urban population.32

In order to estimate the concentrations of main urban pollutants, one can rely on both33

field observations and model simulations. Air quality monitoring stations provide accurate34

information at a few locations over a city and for a few pollutants, while the numerical35

simulations deliver less accurate concentrations at virtually any outdoor place and for a36

range of pollutants. Data assimilation can be employed to combine these two sources of37

information in order to better estimate the chemical state of the atmosphere.38

Data assimilation has been applied in the air quality community, mostly at large scale39

and with Eulerian chemistry-transport models [e.g., Elbern and Schmidt , 2001; Segers ,40

2002; Chai et al., 2007; Wu et al., 2008]. In this paper, we address the assimilation of41

observations of an urban monitoring network in order to correct the concentrations of42

nitrogen dioxide computed by a Gaussian urban air quality model (ADMS Urban). A key43

step of the assimilation procedure is to model the error variance of the NO2 concentration44
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field. It means specifying the variance of the error at all computed locations and specifying45

the correlation between errors at different locations. The urban air quality model is static46

so that it is not possible to apply a filter, like a Kalman filter, that would propagate the47

error variance. In this paper, the error variance for the concentration fields is therefore48

prescribed, through a specific parameterization that takes into account the road network.49

The so-called best linear unbiased estimator (BLUE) is then computed for every available50

date of the model simulation.51

The concentration fields for nitrogen dioxide are computed by ADMS across the city52

of Clermont-Ferrand, France, every three hours for the whole year 2008. The air quality53

monitoring network is composed of nine fixed stations — two traffic stations, four urban54

stations and three peri-urban stations. Details about the model, its computations and the55

case study may be found in Section 2. The assimilation method is described in Section 3,56

and the Section 3.3 details the parameterization of the error variance for the concentration57

fields. The choice of the assimilation parameters is discussed in Section 4.1. The results58

are analyzed in Sections 4.2 and 4.3.59

2. Urban Air Quality Modeling over Clermont-Ferrand

2.1. ADMS Urban

ADMS Urban [D.J. Carruthers and Singles , 1998] is an air quality model for the dis-60

persion in the atmosphere of continuous releases from the full range of emission sources61

including road traffic, industrial, commercial and domestic emissions. This static model62

estimates the stationary solution of the dispersion equation, using a three dimensional63

quasi-Gaussian formulation. It requires input meteorological data, background concen-64
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trations and detailed emission inventories. The output simulation mesh is subdivided in65

a coarse regular grid and a high-resolution mesh in the vicinity of main emission sources.66

A meteorological pre-processor calculates the required boundary layer parameters from67

a variety of input data. The wind speed and the cloud cover enable to determine the68

surface heat flux through a surface radiation budget [Holtslag and Ulden, 1983]. A two-69

equation system, composed of a surface layer wind profile equation and a Monin Obukhov70

length equation, enables to estimate the friction velocity and the Monin Obukhov length.71

These two parameters are used to compute the boundary layer height in stable condi-72

tions as described by Nieuwstadt [1981]. In convective atmosphere, the boundary layer73

height evolves according to an unstationary integral model [Tennekes , 1973; Tennekes74

and Driedonks , 1981; Driedonks , 1982]. Different profiles of the boundary layer (mean75

wind, temperature, standard deviation of wind components, etc.) are then determined76

from surface similarity theory. A topography module manages the dispersion over hills77

and over regions with surface roughness changes. In neutral or convective conditions, the78

wind and turbulence fields are calculated using linearized analytical solutions of the mo-79

mentum and continuity equations. In very stable conditions, the atmosphere is divided80

into two layers: in the layer just above the surface, the air flows around the relief; in the81

other layer, the air flows over the relief. For intermediate conditions, ADMS Urban relies82

on a weighted average of these two behaviors based on Froude number.83

From the boundary layer profiles and the mean plume height, ADMS Urban determines84

the horizontal and vertical concentration distributions, which are always Gaussian except85

in convective conditions, where the non-Gaussian vertical concentration distributions de-86

pend on the skewed vertical velocity distributions. A street canyon model enables to87
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determine the concentration field in the streets whose buildings are higher than 0.5m.88

This model is based on the Danish model Operational Street Pollution Model [Hertel and89

Berkowicz , 1989]. For this work, the chemistry is quite simple: the NO2 concentration is90

determined from the NOx concentration as described in Derwent and Middleton [1996].91

2.2. Meteorological Data, Topography and Land Use

The meteorological input data is measured at the Météo-France station Aulnat located92

in the Clermont-Ferrand airport. Wind speed, wind direction and temperature are re-93

quired along with the cloud cover.94

The Shuttle Radar Topography Mission (SRTM) data sets provide the topography data95

in case of activation of the topography module. The 3 ′′-resolution data base results from96

the collaboration between the NASA and the National Imagery and Mapping Agency,97

among others.98

We consider homogeneous land cover with constant roughness length of 0.4m but we99

use specific value (0.2m) for the site of the meteorological station : the model adjusts100

wind speed measurements to take into account this difference.101

2.3. Emissions

Emissions include main industrial sources, road sources and a grid source for poorly-102

defined sources like heating sources and minor roads. Location and width of roads and103

buildings heights are estimated from “Clermont Communauté” database.104

For road sources, the emissions in g are computed as E = AF , where A is the vehicle105

activity in vehicles km−1 and F a unitary emission factor in g kmvehicules−1. The emis-106

sions are computed using COPERT IV, the COmputer Program to calculate Emission107
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from Road Transport (http://www.emisia.com/copert/General.html), which relies on108

a database of unitary emission factors. A unitary emission factor is attributed for each109

pollutant to each vehicle category. It depends on the carburetor mode, the engine size110

and the vehicle registration date. The emission factor also depends on the vehicle speed,111

imposed by road signs, and on the traffic conditions, which depend on the month and on112

the day type (weekday, Saturday and Sunday). Traffic conditions are determined from113

past observations of traffic counters over the city. Note that the real time traffic is not114

considered. The model COPERT IV takes into account the warm emissions, the cold115

emissions and the slope-induced emissions for the heavy transport. A few corrections are116

applied for old vehicles and for fuel improvements.117

2.4. Case Study

A simulation at urban scale has been carried out over the city of Clermont-Ferrand for118

the whole year 2008. The output concentrations are computed at 30, 971 ADMS Urban119

receptors, all located at 1.5m from the ground. The concentrations of nitrogen dioxide120

have been computed at these receptors every three hours. As depicted in Figure 1, the air121

quality monitoring network is composed of nine fixed stations, with two traffic stations122

(Gare and Roussillon), four urban stations (Lecoq, Delille, Jaude and Montferrand) and123

three peri-urban stations (Gerzat, Gravanches and Royat). The stations at Roussillon,124

Gerzat, Gravanches and Royat are rather far from the group of stations located in the125

center of the city.126

The altitude of the stations varies while the computed concentrations are all located127

at 1.5m height, so as to avoid modeling the error correlations along the vertical between128

simulated concentrations (see Section 3.3). However, in order to better evaluate the model129

D R A F T May 21, 2013, 10:30am D R A F T



X - 8 TILLOY ET AL.: NO2 DATA ASSIMILATION AT URBAN SCALE

performance without assimilation, we add one ADMS receptor per station, located at the130

real stations altitudes. Note that these nine additional receptors are not used in the131

assimilation procedure.132

The performance evaluation relies on the scores shown in Table 1 and on criteria intro-133

duced by Chang and Hanna [2004]: a normalized bias between −0.3 and 0.3 is recom-134

manded and a normalized mean square error (NMSE) should be lower than 1.5 . We135

prefer to define the limit NMSE as 0.5 and we target a correlation higher than 0.6 . The136

actual values for our full-year simulation are given in Table 2. For all the stations, the137

normalized bias is between −0.3 and 0.25 . The correlation and the NMSE are out of138

these criteria only for the station Royat, with a correlation of 0.59 and a NMSE of 1.03 .139

At this station, the dispersion model overestimates the concentrations. Royat is located140

on the Clermont-Ferrand heights and the relief is rugged around this station, so the wind141

field is hard to simulate and ADMS Urban does not succeed in it. The scores at the other142

stations are significantly better, except for the station Jaude whose NMSE is almost equal143

to the limit value.144

3. Assimilation Method

3.1. Problem Statement

The model produces the state vector cb (b stands for background). The concentration145

field is observed at given locations, which gives an observation vector o. A data assimi-146

lation algorithm will produce a new state vector ca (a stands for analysis) based on the147

model state cb and the observation o.148

Each observation location matches on the horizontal with an ADMS Urban receptor. We149

consider that the concentration simulated by ADMS at these receptors is our estimation150
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of the true concentration at the station location, even though there may be a difference151

of altitude between the station and the ADMS receptor. We introduce the so-called152

observation operator H which maps from the state space to the observation space, so that153

Hcb is the simulated counterpart of o. The operator H is therefore a matrix in which each154

row i is full of zeros except at the the column j that corresponds to the receptor located155

at observation station i. The elements Hij are equal to one if and only if the j-th receptor156

corresponds to the i-th observation station. The discrepancy between the observations157

and the simulated concentrations, o−Hcb, is called the innovation.158

Let ct be the real atmospheric concentrations that at the ADMS receptors. We assume159

that the computed concentrations cb have an unbiased error cb − ct with variance B. We160

assume that the observation vector o has an unbiased error o−Hct with variance R. Note161

that the observational error depends on H. If the true concentrations at the observed162

locations are ot, the observational error o − Hct can be decomposed in an instrumental163

error o − ot and a representativeness error ot − Hct. In our case, the latter is due to164

altitude difference between the observation station and the ADMS receptor.165

3.2. Best Linear Unbiased Estimator (BLUE)

Based on cb, B, o and R, the analysis state vector is computed as the so-called “Best166

Linear Unbiased Estimator” which is linearly dependent on cb and o, has unbiased error167

ca − ct and has a variance with minimum trace [see, e.g., Bouttier and Courtier , 1999].168

This estimator is uniquely defined as169

ca = cb +K(o−Hcb) ,
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where

K = BHT (HBHT +R)−1 .

For data assimilation at larger scale, the state error covariances can be reasonably pa-170

rameterized as a function of the geographical distance, e.g., with a decreasing exponential.171

At urban scale, our state error variances do not only depend on the distance, but also on172

the road network.173

3.3. Modeling of the Covariance Matrices

The observational error covariance matrix is taken diagonal, hence assuming no corre-

lation between the observational errors at two different stations. The observational errors

covariance matrix is therefore

R = voI ,

where vo is the observational error variance.174

For nitrogen dioxide, we assume that an important part of the state errors originates175

from the traffic emissions. As a consequence, we assume high error correlations between176

receptors on the same road or on connected roads. Also, a receptor on a road should show177

a lower error correlation with a receptor in the background than with another (equally178

distant) receptor on the road.179

We introduce the distance dij along the road between two receptors indexed by i and180

j. The distance along the road is defined as the smallest distance it takes to travel on the181

road network between the two receptors. If the two receptors i and j are not located on182

a road, they are first orthogonally projected on the road network, and dij is taken as the183

distance along the road between the projections. We also introduce the distance Pi of the184

receptor i to the road network, that is the geographic distance to the closest road.185
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We define Bij, the covariance between the state errors at receptors i and j, as

Bij = vc exp

(

−
dij
Ld

)

exp

(

−
|Pi − Pj|

Lp(i, j)

)

,

with

Lp(i, j) = Lp + αmin(Pi, Pj) ,

where Ld and Lp are characteristic distances, strictly positive, respectively along the road186

network and transverse to the road network, α a scaling coefficient without dimension and187

vc a variance. The covariance is assumed to decrease exponentially against the distance188

along the road and in the direction transverse to the road. The correction αmin(Pi, Pj) is189

added so that the decorrelation length is increased with the distance to the network: while190

the error correlation with a road receptor is assumed to decrease fast in the vicinity of the191

road, the errors correlation between two background receptors should remain significant192

across a larger distance. The Figure 2 illustrates the state error covariances modeling:193

the first figure shows the error correlations (Bij/vc) with a receptor located on the road194

network, whereas the second figure shows the error correlations with a receptor located195

out of the road network.196

The error covariances are constant in time. In particular, they do not depend on traffic197

conditions. This is surely an approximation which should be addressed by uncertainty198

quantification studies on urban models. Such study would propagate in the model the199

uncertainties originating from traffic emissions. It would require prior uncertainty quan-200

tification on traffic assignment (and corresponding emissions), which would in turn require201

the availability of traffic observations for the evaluation of the traffic model. In this paper,202

the proposed covariance model is parameterized so that it can be applied in the absence203

of a reliable uncertainty quantification study.204
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3.3.1. Specific examples205

Between two receptors on the road network (Pi = Pj = 0), the state error covariance206

is equal to 1
2
vc when the distance between the receptors is dij = 0.7Ld. Between two207

receptors on the same normal to the road network (dij = 0) and on the same side,208

the state error covariance is equal to 1
2
vc when the distance between the receptors is209

0.7(Lp + αmin(Pi, Pj)). By definition, this distance increases for background receptors.210

Between two receptors so that Pi = Pj, not necessarily on the road network, the covariance211

highly depends on the distance along the road network. Their errors correlation is equal212

to 1 if dij = 0: we assume that these two receptors are subject to the same errors.213

Note that state error covariance matrix B is a covariance matrix, hence symmetric214

and positive semi-definite. The matrix is not positive definite because we can found two215

distinct receptors with the same distance to the road network and the same projection on216

the road network; hence several columns (or rows) of B are identical.217

3.3.2. Implementation218

ComputingB requires the evaluation of the distance along the road between all receptors219

projections on the road network. In order to carry out these computations, we represent220

the road network as a non-oriented graph: each road portion without any crossroad is an221

edge and each crossroad is a node. In the graph, we also add as new nodes the projections222

of the receptors on the road network. We then add the corresponding edges, which223

represent the road portions between all nodes (i.e., the projections and the crossroads).224

The weight of an edge is the length of the road portion.225

The celebrated Dijkstra’s algorithm may be applied to find the shortest path between226

two nodes in the graph. If V is the number of vertices and E is the number of edges, the227
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complexity of an efficient implementation of the algorithm is O(E+V log V ). This should228

be applied to each pair of nodes, hence resulting in a complexity of O(EV 2 + V 3 log V ).229

This is intractable in our case where E = 44, 242 and V = 35, 413.230

We thus apply Johnson’s algorithm which is designed to efficiently compute the shortest231

paths between all pairs of nodes. This algorithm uses Dijkstra’s algorithm, but its overall232

time complexity is O(V E log(V )) in the Boost implementation. The shortest path al-233

gorithm is fully described on the page http://www.boost.org/doc/libs/1_40_0/libs/234

graph/doc/johnson_all_pairs_shortest.html.235

4. Application

4.1. Determination of Assimilation Parameters

4.1.1. Observations and their Error Variances236

We do not have access to detailed information on observation errors over Clermont-237

Ferrand, but we have access to the mean observation variance over the monitoring network238

of Paris metropolitan area. Based on Airparif [2007], the air quality association for Paris239

area, Airparif, evaluates the uncertainty of the observations of its monitoring network.240

The uncertainty is computed as a sum of variances which correspond to different error241

sources (instrument calibration, temperature and pressure conditions, data processing,242

etc.). We analyzed the uncertainties evaluated by Airparif for the full year 2009. On243

average, the uncertainty decreases with the concentration. For nitrogen dioxide, the244

mean concentration measured over Paris is 40.7µgm−3 whereas it is only 25.4µgm−3
245

over Clermont-Ferrand. Consequently, the mean uncertainty value obtained over Paris246

cannot be directly applied to Clermont-Ferrand. A way around the problem is to remove247
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the highest concentrations from the database in order to reduce the mean concentration248

down to 25.4µgm−3. The corresponding error variance is then 5.96µg2 m−6.249

The concentrations are simulated at 1.5m from the ground, but they are measured250

at higher altitude. This difference is taken into account in the representativeness error,251

which is part of the observational error. We approximate the representativeness error252

based on model simulations which are available both at the station height and at 1.5m.253

The mean empirical variance of the differences between the simulated concentrations at254

the two altitudes is 1.75µg2 m−6. The observational error variance is roughly estimated255

by the sum of the measure error variance and the representativeness error variance; we256

finally set it to 8µg2 m−6.257

4.1.2. State Error Variance: χ
2 Diagnosis258

The state error variance is determined using a χ2 diagnosis. The diagnosis enables to

check the consistency between the available innovations

on −Hnc
b
n

and their variances

Sn = Rn +HnBnH
T
n ,

where n represents the time step. The scalar

χ2
n = (on −Hnc

b
n)

TS−1
n (on −Hnc

b
n)

is expected to be equal to the number Fn of observations. And therefore, we should have

T
∑

n=1

χ2
n

Fn

≃ T .
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Hereafter, we consider the value

A =
1

T

T
∑

n=1

χ2
n

Fn

,

where T is the total number of steps. This value of A should be 1.259

The χ2 diagnosis is carried out for several values of (vc, Ld, Lp, α). The Table 3 reports260

a few tests, and supports the choice (vc, Ld, Lp, α) = (220µg2 m−6, 3000m, 200 , 1 ), which261

we define as the reference configuration. The impact on the value of A of the decorrelation262

length transverse to the road network and of α is lower than the impact of the state error263

variance and of the decorrelation length along the road network.264

4.2. Results

The assimilation is carried out every three hours, when new simulated concentrations265

are available.266

The analyzed concentration at a station location is almost equal to the observation (see267

Figure 3), which is partly expected because the ratio between the state error variance and268

the observation error variance is very low.269

Before assimilation, the model often computes too low concentrations at urban stations.270

The assimilation of the observations efficiently corrects this problem, as depicted in Fig-271

ure 3. After assimilation, the road network remains clearly visible and the concentrations272

are higher in the immediate vicinity of the road. At peri-urban stations, the model may273

simulate too high concentrations, which is also corrected by data assimilation. The an-274

alyzed values lead to a reduced background pollution in a large perimeter around the275

peri-urban stations while the pollution over the roads in this area is almost not impacted.276

As the data assimilation strongly corrects the concentrations in the vicinity of the277

stations and may not correct the concentrations further, the concentration maps can278
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show some spatial inconsistencies, even if every point concentration of these maps is likely279

to be closer to its true value. The main scenarios, when inconsistencies can occur, are of280

two kinds. In the first scenario, the model overestimates the concentrations in urban area.281

The assimilation of the observations at traffic stations decreases the concentrations on the282

road network, while the background concentrations may remain essentially unchanged,283

and possibly with higher values. In this case, the concentrations in one road may be lower284

than the concentrations in the background. In the second scenario, the observations at285

a peri-urban stations are strongly higher than the simulated concentrations. Then again,286

the corrected concentrations in the background can become higher than the concentrations287

along the roads. However these scenarios seldom occur.288

Note that the reference values (vc, Ld, Lp, α) = (220µg2 m−6, 3000m, 200m, 1 ) were289

selected not only on the basis of the χ2 diagnosis (which can be satisfied with other290

values), but also on the basis of the output maps. The physical inconsistencies previously291

mentioned especially occur when the value chosen for Lp is too low compared to Ld and292

when α is lower than 1.293

4.3. Performance Evaluation with Leave-One-Out Cross-Validation

The leave-one-out cross-validation consists in removing the observations of a given sta-294

tion from the data assimilation process. Only the observations from the other stations are295

used to correct the concentrations. This procedure is carried out for all stations, one by296

one: only one station is removed at a time. At the removed station, the model performance297

at 1.5m height is compared to the performance after assimilation of the observations of298

the other stations. This enables to check whether the assimilation properly distributes299

D R A F T May 21, 2013, 10:30am D R A F T



TILLOY ET AL.: NO2 DATA ASSIMILATION AT URBAN SCALE X - 17

in space the corrections that originate from the observed locations. The cross-validation300

evaluates the effects of the data assimilation method at locations without any observation.301

4.3.1. Scores302

The cross-validation was carried out for the reference values (vc, Ld, Lp, α) =303

(220µg2 m−6, 3000m, 200m, 1 ) from Section 4.1.2. The performance before assimilation304

is given in Table 4. The results after assimilation are given in Table 5. The largest305

improvements occur in urban area (at the station Jaude, the improvement is of 46%),306

compared to peri-urban area (at the stations Gravanches and Royat, the improvements307

are respectively of 17% and 5%). It is likely that the distance between the peri-urban308

stations makes it difficult to obtain enough information to compute strong and reliable309

corrections from one station to the other. Another possible explanation may be an un-310

satisfactory modeling of the error covariances between peri-urban receptors or between311

urban and peri-urban receptors. In some cases, the absolute bias increases but remains312

inside the interval recommanded in Chang and Hanna [2004] (see the first two columns313

of Table 5).314

Figure 4 shows the RMSE for the months of the year, at all stations and at Jaude.315

Note that the largest improvements are found at Jaude (see Figure 5), which is close to316

the road network and in the vicinity of three other stations. The distance to the other317

stations plays an important role, as shown in Figure 5. The largest improvements are318

found at stations close to the rest of the network.319

We finally consider all discrepancies between observations and simulated concentrations.320

Figure 6 shows the relative frequency distribution of the discrepancies, before and after321
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assimilation. After assimilation, the discrepancy distribution is significantly narrowed322

around 0. The largest discrepancies have a much lower frequency after assimilation.323

4.3.2. Sensibility to the Parameters of the State Error Covariance Matrix324

First, several values of the scalar α are tested, whereas the characteristic decorrelation325

lengths Ld and Lp remain constant and equal respectively to 3000m and 200m. The326

Table 6 shows that the global RMSE decreases when α increases, but the sensitivity is327

very low. This parameter essentially plays a role in the vicinity of peri-urban stations, but328

there is no pair of close peri-urban stations that could help to evaluate the real impact of329

α. It is set to 1 in the rest of the study.330

The assimilation performance significantly increases with the characteristic decorrela-331

tion length along the road network, Ld. Table 7 reports the performance for several values332

of Ld, with Lp set to 200m. The best performance is achieved for Ld = 5000m and slight333

performance variations occur for lengths greater than 4000m. As the values vc that sat-334

isfy the χ2 diagnosis increase with Ld, the value of the characteristic length is limited335

by the range of variances vc which are consistent with the model performance. Finally,336

we selected the intermediate value Ld = 3000m, for which the correlation between errors337

drops down to 0.5 at a distance of 2100m along the road network. It gives good re-338

sults for a moderate decorrelation length and variance. There is a clear need for research339

on uncertainty estimation at urban scale in order to decide which values may be more340

adapted.341

The impact of the decorrelation length transverse to the road network, Lp, is much more342

limited. The optimal value of Lp is not clearly determined by the Figure 7. With Ld =343

3000m, the RMSE is almost identical for Lp equal to 200m or 300m. The RMSE at peri-344
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urban stations is better with Lp = 300m than with Lp = 200m. On contrary, at traffic345

and urban stations, the RMSE is lower with Lp = 200m than with Lp = 300m. Finally,346

we recommend a moderate length Lp = 200m which leads to same global performance.347

5. Conclusions

The paper demonstrates the efficiency of data assimilation at urban scale for the im-348

provement of NO2 concentration fields using fixed monitoring stations. Computing the349

best linear unbiased estimator (BLUE) has proved to be efficient for the correction of prior350

concentrations computed by the urban Gaussian model ADMS. Despite the low number351

of stations available in the simulation domain, strong improvements (30% to 50%) were352

found at urban monitoring stations excluded from the assimilation procedure, in a leave-353

one-out cross-validation. This shows that, in the part of the domain where the station354

density is high, large improvements are likely to occur at non-observed locations.355

However, in the background, far from the monitoring network, the improvements are356

low. It is not clear whether these low improvements at rural locations is due to lack357

of information from the observation network or to shortcomings in the error covariance358

modeling. In the algorithm, a key variable is indeed the error covariance matrix B that359

determines the spatial distribution of the corrections. The proposed covariance matrix is360

motivated by the prominent role of traffic emissions in urban NO2 concentrations, but it361

surely misses significant error correlations.362

The parameters of the error covariance matrix are constant in time and in space, whereas363

the characteristic lengths can depend on traffic and the variance surely depends on the364

concentration levels. A future work on traffic model evaluation, using observations from365

traffic counters, is essential to improve the parameterization. Involving the concentration366
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field in the variance vc or more generaly in the covariance formula is also the next step.367

One option is to follow Riishøjgaard [1998] to model the term transverse to the road368

network.369

Future work on uncertainty estimation at urban scale should be a key step for better370

uncertainty estimation, and therefore a better modeling of the error covariance matrix B.371

There is a need for the generation of ensembles of urban simulations that would properly372

sample the concentrations uncertainties. Classical approaches based on Monte Carlo sim-373

ulations or multimodel ensembles should be investigated at urban scale, although they374

require so tremendous computational resources that model reduction may be needed.375

Uncertainty estimation for the concentrations after assimilation should also be investi-376

gated. The error covariance matrix for the analysis, i.e., (I − KH)B for BLUE, should377

show much lower eigenvalues than B. For instance, one objective would be to provide378

some confidence interval on the population exposure.379

Another direction is inverse modeling. One may want to correct the input emissions380

which are known to be an important source of uncertainty. Such approach often has high381

computational costs. It is however difficult to anticipate whether the resulting air con-382

centrations would be closer to the real concentrations than those of our current approach.383

At the time this paper is written, the assimilation as previously detailed has been384

applied operationally for a year on the prototype “Votre Air” (operated by Airparif; see385

http://votreair.airparif.fr/). The prototype computes in near real-time the air386

quality over a part of Paris, and it assimilates the observations from eight fixed stations387

[Pradelle et al., 2011]. This justifies that the approach, proved to be computationally388

tractable even for real-time computations, is currently integrated in the platform Urban389

D R A F T May 21, 2013, 10:30am D R A F T



TILLOY ET AL.: NO2 DATA ASSIMILATION AT URBAN SCALE X - 21

Air System [Pradelle et al., 2010]. With the deployment of such systems, new questions390

will arise, such as the assimilation of observations from mobile sensors (e.g., embedded in391

public buses).392
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the model on data from st olavs street in oslo, Tech. rep., DMU Luft, 1989.419

Holtslag, A., and A. V. Ulden, A simple scheme for daytime estimates of the surface420

fluxes from routine weather data, Journal of Applied Meteorology and Climatology, 22,421

517–529, 1983.422

Nieuwstadt, F., The steady-state height and resistance laws of the nocturnal boundary423

layer : Theory compared with cabauw observations, Boundary-Layer Meteorology, 20,424

3–17, 1981.425

Pradelle, F., A. Armengaud, C. Pesin, M. N. Rolland, J. Virga, G. Luneau, C. Schillinger,426

and D. Poulet, Urban air system: an operational modelling system for survey and427

forecasting air quality at urban scale, 13th international conference on harmonisation428

within atmospheric dispersion modelling for regulatory purposes, Paris, France, 2010.429

Pradelle, F., F. Brocheton, B. Chabanon, C. Honoré, F. Dugay, K. Léger, F. Dambre,430
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Figure 1. The modeled road network of the city of Clermont-Ferrand and the location of

the observation stations: GAR stands for Gare, ROU for Roussillon, COQ for Lecoq, DEL for

Delille, JAU for Jaude, MFD for Montferrand, GER for Gerzat, GAR for Gravanches and ROY

for Royat. The coordinate projection system is the Lambert II extended.
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Figure 2. The state error correlations (Bij/vc) between the receptor located at (a) the station

Gare or at (b) the station Montferrand and the other receptors. This corresponds to one row of

the state error covariance matrix divided by vc. Notice that the figures do not correspond to the

same domain areas.
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Figure 3. Maps of nitrogen dioxide concentrations over the city of Clermont-Ferrand on 10

July 2008 at 6 UTC, in µgm−3. The data assimilation parameters are Ld = 3000m, Lp = 200m

and α = 1 . The disks represent the concentrations measured at stations.
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Figure 4. Monthly RMSE in µgm−3 of the model in blue and after data assimilation in cyan,

for (a) all stations and at (b) Jaude.
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Figure 5. Improvement of stations RMSE in % (see Table 5), against the distance (m) to the

rest of the network. See Figure 1 for the position of the stations.
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Figure 6. In blue the dispersion of the innovations, in cyan the dispersion of the discrepancy

to observations after data assimilation (in leave-one-out cross-validation). The abscissa is a

concentration discrepancy in µgm−3 and the ordinate is the relative occurrence frequency.
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Figure 7. The RMSE in µgm−3 over all stations for several pairs of parameters Ld and Lp.
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Table 1. Scores for the performance evaluation of a model. (ci)i is the simulated temporal

sequence. (oi)i is the corresponding observed sequence. n is the total number of elements in the

sequence. c̄ and ō are respectively the mean of (ci)i and (oi)i.

Score Formula

Bias
1

n

n
∑

i=1

(ci − oi)

Normalized bias
1

n

n
∑

i=1

(ci − oi)

ō

Correlation

∑n

i=1 (ci − c̄) (oi − ō)
√

∑n

i=1 (ci − c̄)2
√

∑n

i=1 (oi − ō)2

Mean absolute error
1

n

n
∑

i=1

|ci − oi|

Normalized mean absolute error
1

n

n
∑

i=1

|ci − oi|

ō

Normalized mean square error
1

n

n
∑

i=1

(ci − oi)
2

c̄ō

Root mean square error

√

√

√

√

1

n

n
∑

i=1

(ci − oi)
2
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Table 2. Model performance. The simulation values are computed at measurement height. The concentration, the bias

and the MAE are in µgm−3, the other indicators are without units. All the indicators formulae are defined in Table 1.

Observation Simulation Normalized Correlation MAE Normalized RMSE NMSE
mean mean bias MAE

Traffic stations
Gare 49.5 37.0 -0.3 0.69 18.0 0.42 25.5 0.36
Roussillon 37.6 29.1 -0.26 0.69 14.6 0.44 19.8 0.36
Urban stations
Lecoq 25.7 25.9 0.01 0.74 10.6 0.41 15.1 0.34
Delille 27.7 28.0 0.01 0.73 11.1 0.40 15.0 0.29
Jaude 27.2 21.0 -0.25 0.73 11.0 0.46 16.7 0.49
Montferrand 25.9 25.1 -0.03 0.73 10.3 0.41 14.5 0.32
Peri-urban stations
Gerzat 23.1 19.5 -0.17 0.75 8.8 0.41 12.5 0.35
Gravanches 23.6 22.3 -0.06 0.73 9.5 0.41 13.6 0.35
Royat 12.5 16.1 0.25 0.59 10.0 0.70 14.4 1.03
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Table 3. The value of A for several choices of parameters (vc, Ld, Lp, α). The state error

variance is in µg2 m−6, the characteristic lengths in m and α without units.

State error Ld Lp α A
variance
200 3000 200 1 1.10
215 3000 200 1 1.03
220 3000 200 1 1.01
230 3000 200 1 0.97
220 4000 200 1 1.06
220 3000 200 1 1.01
220 5000 200 1 1.13
220 6000 200 1 1.20
220 3000 100 1 0.98
220 3000 200 1 1.01
220 3000 300 1 1.03
220 3000 200 0 1.01
220 3000 200 1 1.01
220 3000 200 2 1.01
220 3000 200 3 1.02

Table 4. Model performance at 1.5m. Contrary to Table 2, the simulation values are

computed at 1.5m whereas the stations can be at higher altitude. The bias and the RMSE are

in µgm−3, the correlation and the normalized mean square error are indicators without units.

All the indicators formulae are defined in Table 1.

.

Observation Bias Correlation RMSE NMSE
mean

Traffic stations
Gare 49.5 -10.7 0.68 24.7 0.32
Roussillon 37.6 -7.5 0.69 19.5 0.34
Urban stations
Lecoq 25.7 0.8 0.74 15.1 0.33
Delille 27.7 0.5 0.72 15.1 0.29
Jaude 27.2 -3.0 0.72 16.0 0.39
Montferrand 25.9 -0.5 0.73 14.5 0.32
Peri-urban stations
Gerzat 23.1 -3.4 0.75 12.4 0.34
Gravanches 23.6 -1.2 0.74 13.6 0.35
Royat 12.5 3.9 0.59 14.5 1.02
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Table 5. Scores of the cross validation for the configuration (Ld = 3000m, Lp = 200m, α = 1 ).

The simulation values are computed at 1.5m height whereas the stations can be at higher altitude.

The “improvement” is the relative change in % of the RMSE before and after assimilation of

observations at the other stations.
Bias Correlation RMSE NMSE Improvement

Traffic stations
Gare -9.4 0.87 17.9 0.36 28%
Roussillon -5.5 0.74 17.6 0.47 10%
Urban stations
Lecoq 4.3 0.95 8.4 0.33 44%
Delille 3.3 0.93 8.6 0.31 43%
Jaude -0.2 0.92 8.6 0.32 46%
Montferrand 0.6 0.91 9.0 0.35 38%
Peri-urban stations
Gerzat -3.1 0.86 9.9 0.43 33%
Gravanches -0.9 0.83 11.3 0.48 17%
Royat 3.6 0.65 13.8 1.10 5%

Table 6. The RMSE in µgm−3 over all stations against the scalar α.

α 0 0.5 1 2 3 4
RMSE 12.28 12.25 12.23 12.20 12.19 12.18

Table 7. The RMSE in µgm−3 over all stations against the decorrelation length Ld, in m. Lp

and α are set respectively to 200m and to 1 . The variance vc is determined by the χ2 diagnosis.

Ld 2000 3000 4000 5000 6000 7000
vc 218 220 235 250 265 280
RMSE 12.80 12.23 12.01 11.95 11.96 12.01
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