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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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Abstract. We provide an algorithm for the exact computation of the
lattice width of an integral polygon K in linear-time with respect to the
size of K. Moreover, we describe how this new algorithm can be extended
to an arbitrary dimension thanks to a greedy approach avoiding complex
geometric processings.

1 Introduction

Integer Linear Programming is a fundamental tool in optimization, in operation
research, in economics... Moreover, it is interesting in itself since the problem
is NP-Hard in the general case. Several works were done for the planar case
[18,25,14] before Lenstra [21] proved that Integer Linear Programming can be
solved in polynomial time when the dimension is fixed. Faster and faster al-
gorithms are nowadays developed and available making the use of Integer Lin-
ear Programming reliable even for high dimensional problems. The approach of
Lenstra uses the notion of lattice width for precise lattice definition to detect
directions for which the polyhedron of solutions is thin. In polynomial time, the
problem is then reduced to a feasibility question: given a polyhedron P , deter-
mine whether P contains an integer point. To solve it, Lenstra approximates
the width of the polyhedron and gives a recursive solution solving problems of
smaller dimension. The approximate lattice width is also used in the recent algo-
rithms of Eisenbrand and Rote [9] and Eisenbrand and Laue [8] for the 2-variable
problem.

Not surprisingly, following the arithmetical approach of Reveillès [23] [6], the
lattice width is also a fundamental tool in digital geometry since it corresponds
to the notion of width for digital objects [10]. Moreover, as an application of the
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lattice width computation, we mention the intrinsic characterization of linear
structures [11]. Indeed, the lattice width can be computed for any digital set but
it does not correspond to a direct measure of linearity. However, when combining
the lattice width along a direction and along its orthogonal, it can be used
as a linearity measure. The work in [11] is currently extended, by the third
author of the present paper, to higher dimensions for detecting either linear or
tubular structures. A preliminary algorithm dealing with the two-dimensional
case was given in [10] with a geometrical interpretation. It has the advantage to
be extensible to the incremental and to the dynamic case but it seems difficult
to extend it to an arbitrary dimension. Thus, in the present paper, we propose
a totally new algorithm which is efficient for any dimension and which runs in
linear time for the two-dimensional case.

The paper is organized as follows. In Sect. 2, the main definitions and tools
are presented. Then, we present the two-dimensional algorithm introduced in
[10] in Sect. 3. As this method cannot be easily extensible to higher dimension,
we introduce in Sect. 4 a new geometric method to estimate the lattice width
in any dimension. This approach is based on the computation of a particular
surrounding polytope which is used to bound the set of candidate vectors to
define the lattice width. In Sect. 5, we describe geometrical methods to compute
such a polytope. We first focus on the two-dimensional case and we provide two
deterministic approaches. Then, since these geometric constructions might be
difficult to extend in arbitrary dimension, we provide a greedy algorithm which
runs in any dimension. Some conclusions and perspectives end the paper.

2 Definitions

In this section, we review some definitions from algorithmic number theory and
we provide a precise formulation of the problem we solve. Definitions are taken
from [2,9,26].

Let K be a set of n points of Z
d. Moreover, we suppose that all numbers

appearing in the points and in the vectors coordinates have their bit size bounded
by log s. The width of K along a direction c 6= 0 in R

d is defined as:

ωc(K) = max
{

cT x | x ∈ K
}

−min
{

cT x | x ∈ K
}

(1)

Geometrically, if a set K has a width of l along the direction c then any
integer point which lies on K also lies on a hyperplane of the form cT x = λ
where λ corresponds to an integer value between min{cT x | x ∈ K} and
max{cT x | x ∈ K}. We say that K can be covered by these ⌊l⌋+1 parallel
hyperplanes. It is straightforward to see that ω(K) = ω(conv(K)) where conv(K)
denotes the convex hull of K.

Let Z
d∗ = Z

d \ {0} denote the set of integer vectors different from zero. The
lattice width of K is defined as follows:

ω(K) = min
c∈Zd∗

ωc(K) (2)



We notice that the lattice width is an integer value. We briefly recall some
basic and important properties about inclusion and translation:

Lemma 1. For any sets of points A and B, such that conv(A) ⊂ conv(B) and

for any vector c ∈ Z
d∗, we have ωc(A) ≤ ωc(B). Thus, it follows that ω(A) ≤

ω(B).

Lemma 2. Suppose that A′ corresponds to the points of A translated in the

same direction. By definition, we know that for any c ∈ Z
d∗, ωc(A) = ωc(A

′)
and so we have ω(A) = ω(A′).

The problem we would like to solve is the following one:

Problem (Lattice Width)
Given a set of integer points K ⊂ Z

d, find its lattice width ω(K) as well as all
vectors c ∈ Z

d such that ωc(K) = ω(K).

It is known [21] that the lattice width of a convex set K is obtained for the
shortest vector with respect to the dual norm whose unit ball is the polar set
of the set 1

2
(K + (−K)). In the general case, computing the shortest vector is

NP-hard. Thus, approximations of the solution can be computed via standard
arguments [26,17,24], but it does not lead us to an easy exact algorithm in
arbitrary dimension.

3 Planar case

We recall in this part, the result obtained in [10] via connections with the notion
of digital straightness and more precisely with the notion of arithmetical digital
lines [23]. As this two-dimensional algorithm requires a convex polygon as input,
we have to compute the convex hull H of K in O(n) time ([16]).

The idea in [10] is based on the principle that the lattice width of H is nec-
essarily reached for two opposite vertices of H . To define the notion of opposite,
we rely on the notion of supporting lines well known in computational geometry
[5]. A supporting line of H is a line D such that D ∩ K 6= ∅ and H is con-
tained entirely in one of the half-planes bounded by D. For each supporting line
D, there exists at least one vertex v of H such that the parallel line Dv to D
passing through v is such that H entirely lies in the strip bounded by D and
Dv. If s denotes a vertex of H belonging to D then s and v are called opposite

(see Fig. 1, left). Opposite pairs are also called antipodal pairs. Note that in
general, a supporting line intersects H at only one point. The supporting line D
intersecting H along an edge is called principal supporting line.

We now suppose H to be oriented counter clockwise. As in the classical Rotat-
ing Calipers algorithm of Toussaint [15], we can rotate the principal supporting
lines D around the right vertex of D ∩H . Dv is also rotated around v to keep
it parallel to D. This rotation can be pursued until D or Dv corresponds to an-
other principal supporting line. Note that D and Dv are simply supporting lines
during the rotation. At each position of the rotation s and v form an opposite
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Fig. 1. (left) Supporting lines and width ωc(K) (right) Cone of rotations

pair of points which exactly define ωc(H) where c is the normal direction to D.
Hence, as depicted in Fig. 1 (right), s and v exactly define ωc(H) for all D in
a cone whose apex is v. The point r is such that the segment from v to r has
exactly the same length than the opposite edge of H and the point u is either
the next vertex of H after v or the point on the parallel of the line (st) such that
the length of [st] equals the length of [vu].

After one turn around H , we have constructed at most 2n opposite pairs
and associated cones. Hence, the number of cones is O(n). Moreover, the se-
ries of cones forms a partition of all possible directions of computation for the
lattice width taking into account that ωc(H) = ω−c(H). Hence, as previously
announced, the computation of the lattice width is reduced to the computation
of the minimal value of ωc(H) for each cone.

In each cone C, the computation of the minimal value of ωc(H) is the com-
putation of the shortest vectors for the dual norm. They are thus located at the
vertices of the border of the convex hull of integer points except v inside the cone
[17]. This set is also known as Klein’s sail [19,20,1]. Note that to allow the possi-
bility to find all solution vectors, repetitions in the convex hull must be kept. To
compute Klein’s sail, we use an adapted version of the algorithm of Harvey [13]
whose complexity is O(log s) arithmetic operations for each sail computation.
To bound the complexity of the search, we could also rely on the general theo-
rem of Cook et al [4] which says that there exists at most O((log s)d−1) vertices
in dimension d, a result also shown by Harvey [13] with an explicit example
of the worst case in two dimension. Thus, the complexity of the lattice width
computation is O(n + n log s).



4 A new algorithm

The geometric approach of the previous algorithm appears as a major drawback
for an arbitrary dimension. Hence, we propose a new geometric method based
on the possibility of bounding the set of candidate directions used to compute
the lattice width. We introduce the new method in the d-dimensional case.

Let (aj)1≤j≤d denote a sequence of d vectors in Z
d such that for any j, 1 ≤ j ≤

d, there exist two points uj and vj of K satisfying aj = uj − vj . Let us consider
a surrounding polytope Γ = conv((γi)1≤i≤m) such that Γ contains conv(K) and
such that each of its vertices γi, 1 ≤ i ≤ m, satisfies γi = p +

∑

1≤j≤d αijaj . We
present our core idea. If we can compute such a surrounding polytope such that
the values |αij |, 1 ≤ i ≤ m, 1 ≤ j ≤ d are bounded by a constant α, then we can
determine a set of candidate vectors C satisfying these properties: the cardinality
of C is bounded by a constant and the set C contains all the solution vectors of
our lattice width problem. Thus, by computing all the ωu(K),u ∈ C, in O(dn)
time, we determine ω(K) and the associated solution vectors. Moreover, the
constant which bounds the cardinality of C is independent from K and depends
only on d and α.

Let c denote a vector in Z
d∗. By definition of width, we know that:

ωc(Γ ) = max
u∈Γ
{cT u} −min

u∈Γ
{cT u}

As the lattice width is translation invariant, we obtain the following inequality:

ωc(Γ ) ≤ 2 max
1≤i≤m

{|cT
∑

1≤j≤d

αijaj |}

As the values |αij |, 1 ≤ i ≤ m, 1 ≤ j ≤ d are bounded by α, we obtain:

ωc(Γ ) ≤ 2αd
∑

1≤j≤d

|cT aj |

Let A denote the matrix whose rows correspond to the aT
j , 1 ≤ j ≤ d, we can

rewrite the previous expression:

ωc(Γ ) ≤ 2αd||AT c||∞ (3)

As conv(K) is included in conv(Γ ), we immediately know:

ω(K) ≤ ω(Γ ) ≤ ωc(Γ )

Thus, for a given vector c, we obtain an upper bound for ω(K). For solving our
problem, it is sufficient to test only the vector u in Z

d∗ satisfying:

ωu(K) ≤ 2αd||AT c||∞

Let us try to determine a lower bound for the term ωu(K). For any j, 1 ≤
j ≤ d, there exists two points uj and vj in K such that ak = uk− vk. As for any



j, 1 ≤ j ≤ d, conv({uj, vj}) is included in conv(K), we have for any u ∈ Z
d∗,

ωu({uj, vj}) ≤ ωu(K). Thus, by definition of the lattice width along a direction
u ∈ Z

d∗, we obtain:

|uT ai| ≤ ωu(K) for 1 ≤ i ≤ d

Then, it follows for any u ∈ Z
d∗:

||AT u||∞ ≤ ωu(K)

Thus, we can conclude that it is sufficient to test only the vector u in Z
d∗

satisfying :

||AT u||∞ ≤ 2αd||AT c||∞ (4)

As the right term is fixed for a given c, we can compute a vector c with some
interesting properties. The more natural approach is to compute the shortest
vector v in the lattice given by A and to choose c such that AT c = v. Hence the
upper bound becomes a bound independent on the direction c and we get:

‖v‖∞ ≤ ‖A
T u‖∞ ≤ 2αd‖v‖∞

It follows that the set of tested vectors is contained in a ball with a radius
independent of the set K. Since there is a constant number of points in the ball,
all points can be tested to extract the lattice width. Of course, an approximation
of the shortest vectors can be used in place of v to avoid the difficulty of its
computing in arbitrary dimension.

5 Surrounding Polytope Computation

Let K denote a set of n points in Z
d. We look for a sequence of d vectors

(aj)1≤j≤d such that for any j, 1 ≤ j ≤ d, there exists two points uj and vj of K
satisfying aj = uj − vj . From this sequence of vectors, we must be able to build
a surrounding polytope Γ = conv((γi)1≤i≤m) such that Γ contains K and such

that each γi, 1 ≤ i ≤ m satisfies γi =
∑d

j=1
αijaj . An implicit goal is to obtain

the smallest possible upper bound for the |αij |, 1 ≤ i ≤ m, 1 ≤ j ≤ d values in
order to improve the performance of the algorithm. We show afterwards that, in
the two-dimensional case, we can compute such a surrounding polygon in O(n)
time. The corresponding approaches become too difficult to extend to the three-
dimensional case. So, we present a simpler and more efficient approach that can
be used in any dimension.

5.1 Deterministic Approaches

Existing Approach. We first find in the literature the work of Fleischer et
al. [12] that confirms that such a polytope exists. We recall this result in the
two-dimensional case:



Theorem 1. For any convex body P , let t denote a greatest area triangle con-

tained in P . The convex body P is contained in the dilatation of t by an expansion

factor of at most 9/4.

From [16], we know that the convex hull of the set of integer points in the
plane can be computed in linear time. Thus, we can operate on conv(K) without
damaging the overall time complexity. Moreover, we know from [7] that there
exists a greatest area triangle included in K whose vertices correspond to vertices
of K. So, let T denote the dilatation of a maximal area triangle t = ABC of K
by a factor of 9/4. The triangle T corresponds to a solution of our surrounding
polygon problem. Indeed, if we set the origin at the point A, its three vertices
are of the form αi1AB + αi2AC with |αi1| and |αi2| bounded by 1 for 1 ≤
i ≤ 3. So, the first approach we propose consists in computing a maximum
area triangle of K and then consider its dilatation with a factor 9/4. Boyce et
al. propose an overall method to compute a greatest area k-gon which runs in
O(kn log n + n log2 n) time and in O(n log n) time when k = 3 (see [3]). Dobkin
et al. focus on the two-dimensional case and they show that the computation
of a greatest area triangle runs in linear time performing at most 10n triangle
area computations (see [7]). Their method consists in “walking”along the convex
polygon K and determining for each vertex v two other vertices a and b such that
the triangle abv has a maximal area. Their method runs in linear time because
the three vertices move in clockwise order and they never have to backtrack
during the traversal (see [7] for more details).

A Simpler Approach. We introduce a simpler approach to compute a sur-
rounding polygon that only requires 2n distance computations. Moreover, it does
not need the computation of the convex hull of K. This method consists in com-
puting a surrounding parallelogram. Let A and B denote the leftmost and the
rightmost point of K respectively according to the x-axis. Let N denote the nor-
mal vector of AB with positive y-coordinate. Let C and D denote the extremal
point of K in the direction N and −N respectively. We show afterwards that the
set K is contained in a parallelogram of sides CD and 2AB. This parallelogram
corresponds to a solution of our problem because its vertices can be expressed as
α1CD +α2AB where |α1| and |α2| does not exceed 1 if the origin is well chosen.

Let EFGH denote the parallelogram bounded by the two vertical straight
lines passing through A and B and bounded by the two straight lines of direction
vector AB passing trough C and D. By construction, the set K is included in
the parallelogram EFGH , but the vertical sides of this parallelogram cannot be
expressed using vectors rooted in points of K. As a result, we try to minimize δ
such that EFGH is contained in a parallelogram of side CD and of side δAB.
We show that δ equals 2. Indeed, the points A and B may not be extremal
according to the normal vector of CD and in this case, δ is strictly greater than
1 (see Fig. 2.a). The “worst case” happens when the points C and D coincide
with opposite vertices of the parallelogram EFGH , (as in Fig. 2.b). In this case,
we notice that half of the parallelogram EFGH is included in a parallelogram



of side AB and CD. As a consequence, it is sufficient to double the side AB of
the parallelogram such that the new parallelogram becomes large enough.
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Fig. 2. Construction of the parallelograms

These two methods run in linear time. Unfortunately, they are not easily
extensible to the three-dimensional case (see [22]). As a result, we describe
in the next section a greedy method to compute a surrounding tetrahedron.
This method can be extended to higher dimension but we focus on the three-
dimensional case for convenience of presentation.

5.2 A Greedy Approach

We introduce the following definition:

Definition 1. Let K denote a three-dimensional set of points. A tetrahedron G
whose vertices belong to K is a maximal growing tetrahedron relative to K if

for each face f of G, the furthest point from f in the set K corresponds to a

vertex of G.

Notice that a maximal growing tetrahedron does not always correspond to
a greatest volume tetrahedron. Such a tetrahedron can be stated using three
vectors a1, a2 and a3, each generated by two points of K. We show afterwards
that we can compute a surrounding parallelepiped Γ of K such that each vertex
γi of Γ satisfies γi =

∑

1≤j≤3
αijaj where the values |αij | are bounded by 1 when

the origin is well chosen.
First, we compute a maximal growing tetrahedron G using a non-deterministic

but efficient approach. Moreover, this method easily extends to the d-dimensional
case contrary to the previous deterministic approaches. Let (fl)1≤l≤4 and (vl)1≤l≤4

denote the faces and the vertices of G respectively such that the vertex vl is op-
posite to the face fl for 1 ≤ l ≤ 4. We first initialize G using four non-coplanar



points of K. Our method consists in “pushing” the vertices of G among the
points of K until G corresponds to a maximal growing tetrahedron. Repeatedly,
for each face fl of G, the algorithm tries to grow the tetrahedron G by moving
the current vertex vl to a point of K which is the furthest point from fl. The
method stops when no more growing can be done. This approach always finds
a valid solution because at each step the volume of the current tetrahedron in-
creases at least by one and this value is bounded by the volume of conv(K). An
overview of the method follows:

MAXIMAL GROWING TETRAHEDRON ALGORITHM:

Entries: K = {k1, k2, ..., kn}, G = (v1, v2, v3, v4)
1 DO

2 STABLE ← true; l← 1;
3 WHILE STABLE AND l ≤ 4
4 IF (FurthestPoint(K, fl) = vl)
5 THEN l ← l + 1
6 ELSE STABLE ← false;

7 UNTIL STABLE = true

Let us move the origin O to v1, this transformation is always possible because
the lattice width is invariant under translation. Let (aj)1≤j≤3 denote the three
vectors defined by vj+1 − v1 where (vj)1≤j≤4 denote the vertices of a maximal
growing tetrahedron G of K. We show that the set K is contained in a paral-
lelepiped Γ whose vertices (γi)1≤i≤8 are of the form γi =

∑

1≤j≤3
αijaj where

each |αij | is bounded by 1. As the maximal growing tetrahedron we use is non-
flat by definition, any point kl of K can be written as kl = O +

∑

1≤j≤3
δljaj .

Let us show that we have |δij | ≤ 1 for 1 ≤ i ≤ n, 1 ≤ j ≤ d. Indeed, suppose that
there exists an index i and a index j such that a |δij | is strictly greater than 1. It
would contradict the fact that G corresponds to a maximal growing tetrahedron
because the vertex vj+1 would not be extremal. As a result the set K is contained
in a parallelepiped Γ whose vertices (γi)1≤i≤8 are of the form γi =

∑

1≤j≤3
αijaj

where each |αij | is bounded by 1. Fig. 3 and Fig. 4 show examples in the plane
and in the three-dimensional space respectively: G corresponds to a maximal
growing triangle (resp. a maximal growing tetrahedron) and Γ corresponds to
a surrounding parallelogram (resp. a surrounding parallelepiped). This method
can be extended to higher dimension.

6 Conclusion

We have described in this paper a new algorithm to compute the lattice width.
It runs in linear time relative to the size of K, which is optimal. Moreover,
its principle is directly extensible to an arbitrary dimension even if intermediate
constructions become more complex in that case. Our greedy approach simplifies
greatly the application of this algorithm to an arbitrary dimension since it avoids
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the computation of an inscribed d−simplex of greatest volume which is a problem
in O(n4) at least in the three-dimensional case for the best known algorithm
[22]. This problem is an interesting problem in itself and will be the subject of
future research since it is known that the dilation constant of this d-simplex is
independent of K and thus it guarantees the smallest possible space search in
any case. We also plan to extend the definition of linearity given in [11] to an
arbitrary dimension. Moreover, we intend to test our method in order to describe
its numerical behaviour. The optimal complexity of our new algorithm is a key
point in that construction.
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23. J.-P. Reveillès. Géométrie discrète, calcul en nombres entiers et algorithmique.
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