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Mickaël Péchaud, Renaud Keriven, Maxime Descoteaux

To cite this version:
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Brain Connectivity using Geodesics in HARDI
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Abstract. We develop an algorithm for brain connectivity assessment
using geodesics in HARDI (high angular resolution di�usion imaging).
We propose to recast the problem of �nding �bers bundles and connectiv-
ity maps to the calculation of shortest paths on a Riemannian manifold
de�ned from �ber ODFs computed from HARDI measurements. Several
experiments on real data show that our method is able to segment �bers
bundles that are not easily recovered by other existing methods.

Introduction

Di�usion MRI and �ber tractography have gained importance in the med-
ical imaging community for the last decade. Many new di�usion models and
�ber tracking algorithms have recently appeared in the literature always seek-
ing better brain connectivity assessment, in particular regarding complex �ber
con�guration such as crossing, branching or kissing �bers. Clinical applications
are also asking for robust tractography methods, as they are the unique in vivo

tool to study the integrity of brain connectivity.
The most commonly used model is the di�usion tensor (DT), which is only

able to characterize one �ber compartment per voxel. Several alternatives have
been proposed to overcome this limitation of DTI, mainly using high angular res-
olution di�usion imaging (HARDI). Several competing HARDI reconstruction
technique exist in the literature, which all have their advantages and disadvan-
tages. Nonetheless, the community seems to now agree that a sharp orientation
distribution function (ODF), often called �ber ODF or �ber orientation density
function (fODF) [1�4], able to discriminate low angle crossing �bers needs to be
used for �ber tractography.

Three classes of algorithms exist: deterministic, probabilistic and geodesic. A
large number of tractography algorithms have been developed for DTI, which are
limited in regions of �ber crossings. While HARDI-based extensions of stream-
line deterministic [5�7, 4] and probabilistic [8�13, 4] tracking algorithms have
�ourished in the last few years (the list is not exhaustive), [14] was the only
attempt to generalize DTI geodesic tracking [15, 16] for HARDI measurements.

In this paper, we develop an algorithm for brain connectivity assessment using
geodesics in HARDI. We propose to recast the problem of �nding connectivity
maps in the white matter to the calculation of shortest paths on a Riemannian
manifold. This Riemannian manifold is de�ned from �ber ODFs computed from
HARDI measurements.



1 Method

Firstly, let us provide some basics de�nitions about Riemannian manifolds.

De�nitions: Let (M, g) be a Riemannian manifold i.e.

• M is a n-dimensional manifold
• for all x ∈ M , g(x) is a symmetric positive de�nite n × n matrix inducing a

metric ||y||x
def.

=
√

yT g−1(x)y over that manifold.

The length of a smooth curve γ : [0, 1] → M is then de�ned as

L(γ)
def.

=

∫ 1

0

||γ′(t)||γ(t)dt
def.

=

∫ 1

0

√

γ′(t)T g−1(γ(t))γ′(t)dt. (1)

Given a set A ⊂ M of seeds points and a set B ⊂ M of ending points, a geodesic

γ∗(t) ⊂ M joining A to B is de�ned as a curve with minimal length between A
and B:

γ∗(A,B)
def.

= argmin
γ∈π(A,B)

L(γ), (2)

where π(A,B) is the set of curves γ such that γ(0) ∈ A and γ(1) ∈ B. The

corresponding geodesic distance is d(A,B)
def.

= L(γ∗(A,B)).
Let us also de�ne the Euclidean length of the curve γ

Leuc(γ)
def.

=

∫ 1

0

||γ′(t)||dt. (3)

and

Lsq(γ)
def.

=

∫ 1

0

||γ′(t)||2γ(t)dt. (4)

Following [15] if we interpret the metric induced by g as a �speed� over M ,
for any smooth curve γ, L(γ)/Leuc(γ) can be thought of as the average of inverse
speed along the curve, while

√

Lsq(γ)/Leuc(γ) − (L(γ)/Leuc(γ))2 represents the
standard deviation of this quantity.

Connectivity measures. Considering A and B two subset of M we de�ne

C(A,B)
def.

=
L(γ∗(A,B))

Leuc(γ∗(A,B))
, Cmax(A,B)

def.

= max
t∈[0..1]

||(γ∗(A,B))′(t)||γ(t)

Cσ(A,B)
def.

=

√
(

L(γ∗(A,B))

Leuc(γ∗(A,B))

)2

−
Lsq(γ∗(A,B))

Leuc(γ∗(A,B))

(5)

γ∗(A,B) being a geodesic between A and B, C(A,B), Cσ(A,B) and Cmax(A,B)
are respectively measures of average inverse speed, inverse speed standard devi-
ation, and worst inverse speed to reach B from A. They can thus be interpreted
as three di�erent connectivity measures between A and B.



1.1 HARDI Riemannian manifold

We now explain how we recast the �bers bundles tracking problem from
HARDI data to the calculation of connectivity maps on a Riemannian manifold.

Let us denote E ⊂ R
3 the white matter volume, S = {eθ,ϕ | θ ∈ [0, 2π), ϕ ∈

[0, π)} the unit sphere and M
def.

= E × S. Using such a 5-dimensional space
can disambiguate crossing con�gurations since in such a space (x, y, z, eθ,ϕ) and
(x, y, z, eθ′,ϕ′) are completely di�erent points. The idea was introduced [17], but
the authors proposed to segment rather than track bundles using level-sets, which
is time-consuming and less accurate.

At every point (x, y, z) ∈ E, we can compute the fODF fxyz : eθ,ϕ ∈ S →
fxyz(eθ,ϕ) ∈ R

+.The full data can thus be naturally modelled as a mapping f

from M to R
+ : f : (x, y, z, eθ,ϕ) ∈ M 7→ fxyzθϕ

def.

= fxyz(eθ,ϕ) ∈ R
+.

Let us de�ne the metric g at any point (x, y, z, eθ,ϕ) of M as

gxyzθϕ
def.

=












E
︷ ︸︸ ︷

S
︷ ︸︸ ︷

ρ(fxyzθϕ) 0 0 0 0
0 ρ(fxyzθϕ) 0 0 0
0 0 ρ(fxyzθϕ) 0 0
0 0 0 α 0
0 0 0 0 α












=

(
ρ(fxyzθϕ)I3 0

0 αI2

)

where ρ is an increasing function from R
+ to R

+∗ and α is a parameter controlling
the speed on the angular space S w.r.t. the speed on the E volume. Such a metric
�favors� paths going through areas of high di�usion.

Recasting the problem in the white matter volume, let us consider two
points (x1, y1, z1) and (x2, y2, z2) ∈ E between which one wishes to estimate
the connectivity. Let us denote A = {x1, y1, z1, eθ,ϕ | eθ,ϕ ∈ S} and B =
{x2, y2, z2, eθ,ϕ | eθ,ϕ ∈ S} ⊂ E × S.

C(A,B), Cσ(A,B) and Cmax(A,B) are then natural measures of connectivity
between (x1, y1, z1) and (x2, y2, z2). Furthermore, let us denote π : E × S → E
the projection such that π(x, y, z, eθ,ϕ) = (x, y, z). To the geodesic γ∗(A,B) in
E×S then corresponds a projected path π(γ∗(A,B)) in E ⊂ R

3. Since γ∗(A,B)
follows a high di�usion trajectory, π(γ∗(A,B)) is likely to follow an actual �ber
bundle in the volume. With this point of view, α can be seen as a smoothing
parameter of the angular variations of the �bers.

However, among the paths γ : [0, 1] → M , one would like to favor the ones
such that at every point t0, π(γ(t0)) follows the corresponding direction in S :

if we denote (x0, y0, z0, eθ0,ϕ0
)

def.

= γ(t0), one would like to have

(π(γ)x(t0), π(γ)y(t0), π(γ)z(t0)) ≈ ±eθ0,ϕ0
||(π(γ)x(t0), π(γ)y(t0), π(γ)z(t0))||

In order to encourage these paths, we propose the following approach : let us
consider a point (x, y, z, eθ,ϕ). Instead of using an isotropic metric ρ(fxyzθϕ)I3

in the �rst three directions, one would like to favor propagation along the eθ,ϕ



direction. In order to do so, ρ(fxyzθϕ)I3 is replaced by the following matrix:

(Rθ,ϕ)T





ρ(fxyzθϕ) 0 0
0 min(ε, ρ(fxyzθϕ)) 0
0 0 min(ε, ρ(fxyzθϕ))



 Rθ,ϕ

where Rθ,ϕ is a rotation which maps the �rst axis to the eθ,ϕ direction, and ε
is some constant. As long as ρ(fxyzθϕ) > ε, this tensor favors propagation in
the eθ,ϕ direction. However if ρ(fxyzθϕ) 6 ε (i.e. if the di�usion is small at this
point), this does not make sense, and we keep the isotropic tensor de�ned by
ρ(fxyzθϕ)I3.

The choice of this metric is a natural way of handling the 5-dimensional
HARDI data and to obtain connectivity maps and �bers. It ensures that (i) the
full HARDI angular information is used, (ii) geodesics go through areas of high
di�usion, (iii) geodesics travel in those areas in the correct directions and (iv)
crossing con�gurations are disambiguated.

2 Implementation

2.1 Djikstra and Fast-Marching algorithms

Two algorithms can be used to compute connectivity measures on discretized
Riemannian manifolds (M, g). Assuming an initial seed A ⊂ M , they both con-
sist in successive evaluations of geodesic distances d(A, {x}) and connectivity
measures from each point x ∈ M to A. For one point x, d(A, {x}) is iteratively
evaluated from the {d(A, {y})}y∈N(x), where N(x) is the set of neighbors of x in
the chosen discretization. This calculation is called local update step. Only this
local update step di�ers between the two following methods.

• Djikstra algorithm�initially designed to compute distances and shortest paths
in graphs�can be used to approximate connectivity maps and geodesics on
Riemannian manifolds. While this algorithm is fast, paths are constrained
to be on the edges on the discretization, which limits its accuracy.

• Fast-Marching algorithm [18, 19] and its variants can be view as a re�ne-
ment of Djikstra algorithm in which the paths are not constrained anymore.
However, while being of same asymptotic complexity, it is much slower than
Djikstra algorithm, and thus can not be directly applied to our problem.

In most tracking methods, connectivity measures are obtained explicitly from
�bers computed from deterministic or probabilistic streamlines. However, in
Djikstra and Fast-Marching algorithms, the connectivity measures are computed
intrinsically without the actual computation of any �ber, although the geodesics
� i.e. the �bers � can be retrieved from the output of the algorithm by performing
a gradient descent on the distance map.



2.2 Our implementation

For our problem, E was discretized as a subset of a 3-dimensional grid, at the
HARDI measurement spatial de�nition. S was meshed in such a way that every
vertex of the mesh corresponds to a direction of HARDI measurements. Further-
more, in order to achieve good precision, we chose to use a 26-neighborhood in
the discretization of E. Since we are mainly interested in precision in the high
di�usion directions, we propose to compute d(A, {x}) at each point by using
Djikstra local update step. The Fast-Marching local update step is then only
applied for neighbors near to the current eθ,ϕ direction, and only if the di�usion
is important enough (i.e. ρ(fxyzθϕ) > ε) at current point. This lead to signi�-
cant speed-up (∼ ×50 w.r.t the full Fast-Marching computation) of the method,
while the precision in the �bers direction is preserved.

3 Experimental results

3.1 Real HARDI data

We use a human brain dataset obtained on a Siemens 3T Trio scanner, with
isotropic resolution of 1.7mm3, 60 gradient directions, a b = 1000 s/mm2, seven
b = 0 s/mm2 images, TE = 100 ms and TR = 12s, GRAPPA factor of 2 and a
NEX of 3. The data is corrected to subject motion.

From these HARDI measurements, the �ber ODF was reconstructed. As
mentioned in the introduction, several �ber ODF reconstruction algorithm ex-
ist [1�4]. Here, we used the analytical spherical deconvolution transform of the
q-ball ODF using spherical harmonics [4]. We used an order 4 estimation with
symmetric deconvolution �ber kernel estimated from the real data, resulting in
a pro�le with FA = 0.7 and [355, 355, 1390] × 10−6mm2/s.

The geodesic tracking is performed within a white matter mask was obtained
from a minimum fractional anisotropy (FA) value of 0.1 and a maximum ADC
value of 0.0015. These values were optimized to produce agreement with the
white matter mask from the T1 anatomy. The mask was morphologically checked
for holes in regions of low anisotropy due to crossing �bers.

3.2 Geodesic connectivity results

For each bundle except the Superior Longitudinal Fasciculus (SLF), experi-
ments were carried out with ρ(f) = ln(f)/ln(2), ε = 1 and α = 2 after thresh-
olding values of the fODF under 1 to avoid negative values. Our method however
demonstrates robustness w.r.t the exact choice of these parameters. Since SLF
has high curvature, we set angular speed α = 8 in order to favor tracking of
actual SLF rather than projections on the occipital cortex. Runtime was about
90min for each bundle. It can be further reduced by computing only some of
the connectivity maps, or by computing them only on a subset of white matter.
While results presented below show connectivity maps on the full maps, exper-
iments show that the bundles can be retrieved by stopping the algorithm when
20% of the mask has been visited. The runtime is then reduced to about 14min.
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Fig. 1. Geodesic tracking results on �ve major �bers bundles. From left to right, C,
Cmax, Csigma and some geodesics superimposed over the FA.



Fig. 2. Geodesic tracking results on major �bers bundles. We show isosurfaces of the
connectivity measures of each bundle in a di�erent color. In yellow, the CST; in blue,
the Cg; in red, the IFO; in orange, the SLF; in green, the ATR; in dark blue, a small
part of the CC projections to the superior cortex.

Figure 1 shows connectivity measures and some geodesics obtained from dif-
ferent seeds manually placed into major �bers bundles, which agree with our
knowledge of the white matter anatomy. Notice the correctness of the maps
on Corticospinal Tract (CST), which does not spread into the Corpus Callo-
sum (CC). Also, the Cingulum (Cg), which is a thin structure close to CC is
correctly handled by our method. This clearly shows the advantage of using a
5D space: since �bers in Cg and CC are perpendicular, these two bundles are
very distant in our 5D space, while they are extremely close in 3D. Other �bers
bundles are also correctly retrieved, such as the Inferior Fronto-Occipital (IFO)
fasciculus and the Anterior Thalamic Radiations (ATR). Furthermore, coherent
results are obtained by the three proposed connectivity measures.

On �gure 2 isosurfaces of the connectivity maps are shown for all the previous
�bers bundles, as well as a small part of CC projections. Notice that CC is not
segmented by our method. Rather, �bers are tracked from the given seed.

4 Conclusion

We presented a geodesic based tracking algorithm on HARDI data. Our
method rapidly estimates connectivity maps inside a white matter mask from
seed points, without the need for an explicit computation of �bers. Its versatility
allows simultaneous computation of several di�erent connectivity measures. Our
experiments plaid for the use of a 5D space and show that our method is able
to recover complex �ber bundles, which are often di�cult to track.

References

1. Jansons, K.M., Alexander, D.C.: Persistent angular structure: new insights fom
di�usion magnetic resonance imaging data. Inverse Problems 19 (2003) 1031�1046

2. Tournier, J.D., Calamante, F., Connelly, A.: Robust determination of the �bre
orientation distribution in di�usion mri: Non-negativity constrained super-resolved
spherical deconvolution. NeuroImage 35(4) (2007) 1459�1472



3. Jian, B., Vemuri, B.C.: A uni�ed computational framework for deconvolution to
reconstruct multiple �bers from di�usion weighted mri. IEEE Transactions on
Medical Imaging 26(11) (2007) 1464�1471

4. Descoteaux, M., Deriche, R., Knösche, T.R., Anwander, A.: Deterministic and
probabilistic tractography based on complex �bre orientation distributions. IEEE
Transactions in Medical Imaging 28(2) (2009) 269�286

5. Kreher, B.W., Schneider, J.F., Mader, J., Martin, E., J, H., Il'yasov, K.: Multiten-
sor approach for analysis and tracking of complex �ber con�gurations. Magnetic
Resonance in Medicine 54 (2005) 1216�1225

6. Bergmann, Ø., Kindlmann, G., Peled, S., Westin, C.F.: Two-tensor �ber tractog-
raphy. In: ISBI, Arlington, Virginia, USA (2007) 796�799

7. Wedeen, V., Wang, R., Schmahmann, J., Benner, T., Tseng, W., Dai, G., Pandya,
D., Hagmann, P., D'Arceuil, H., de Crespigny, A.: Di�usion spectrum magnetic
resonance imaging (dsi) tractography of crossing �bers. NeuroImage 41(4) (2008)
1267�1277

8. Parker, G.J.M., Alexander, D.C.: Probabilistic anatomical connectivity derived
from the microscopic persistent angular structure of cerebral tissue. Philosophical
Transactions of the Royal Society, Series B 360 (2005) 893�902

9. Perrin, M., Poupon, C., Cointepas, Y., Rieul, B., Golestani, N., Pallier, C., Riviere,
D., Constantinesco, A., Bihan, D.L., Mangin, J.F.: Fiber tracking in q-ball �elds
using regularized particle trajectories. In: IPMI. (2005) 52�63

10. Seunarine, K.K., Cook, P.A., Embleton, K., Parker, G.J.M., Alexander, D.C.: A
general framework for multiple-�bre pico tractography. In: Medical Image Under-
standing and Analysis. (2006)

11. Behrens, T.E.J., Johansen-Berg, H., Jbabdi, S., Rushworth, M.F.S., Woolrich,
M.W.: Probabilistic di�usion tractography with multiple �bre orientations. what
can we gain? NeuroImage 34(1) (2007) 144�155

12. Savadjiev, P., Campbell, J.S.W., Descoteaux, M., Deriche, R., Pike, G.B., Siddiqi,
K.: Labeling of ambiguous sub-voxel �bre bundle con�gurations in high angular
resolution di�usion mri. NeuroImage 41(1) (2008) 58�68

13. Zhang, F., Hancock, E.R., Goodlett, C., Gerig, G.: Probabilistic white matter
�ber tracking using particle �ltering and von mises-�sher sampling. Medical Image
Analysis 13(1) (2008) 5�18

14. Melonakos, J., Mohan, V., Niethammer, M., Smith, K., Kubicki, M., Tannenbaum,
A.: Finsler tractography for white matter connectivity analysis of the cingulum
bundle. In: MICCAI (1). (2007) 36�43

15. Lenglet, C., Prados, E., Pons, J., Deriche, R., Faugeras, O.: Brain connectivity
mapping using riemannian geometry, control theory and pdes. SIAM Journal on
Imaging Sciences 2(2) (2009) 285�322

16. Jbabdi, S., Bellec, P., Toro, R., Daunizeau, J., Pelegrini-Issac, M., Benali, H.:
Accurate anisotropic fast marching for di�usion-based geodesic tractography. In-
ternational Journal of Biomedical Imaging 2008 (2008) 1�12

17. Jonasson, L., Bresson, X., Hagmann, P., Thiran, J., Wedeen, V.: Representing
Di�usion MRI in 5D Simpli�es Regularization and Segmentation of White Matter
Tracts. IEEE Transactions on Medical Imaging 26 (2007) 1547�1554

18. Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge Uni-
versity Press (1999)

19. Deschamps, T., Cohen, L.: Fast extraction of minimal paths in 3D images and
applications to virtual endoscopy. Medical Image Analysis 5(4) (2001) 281�299


