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recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal-enpc.archives-ouvertes.fr/hal-00834926


Hierarchical shape-based surface reconstruction

for dense multi-view stereo

Patrick Labatut Jean-Philippe Pons Renaud Keriven

IMAGINE

ENPC/CSTB, LabIGM, Université Paris-Est
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Abstract

The recent widespread availability of urban imagery has

lead to a growing demand for automatic modeling from

multiple images. However, modern image-based modeling

research has focused either on highly detailed reconstruc-

tions of mostly small objects or on human-assisted simpli-

fied modeling. This paper presents a novel algorithm which

automatically outputs a simplified, segmented model of a

scene from a set of calibrated input images, capturing its

essential geometric features.

Our approach combines three successive steps. First, a

dense point cloud is created from sparse depth maps com-

puted from the input images. Then, shapes are robustly ex-

tracted from this set of points. Finally, a compact model

of the scene is built from a spatial subdivision induced by

these structures: this model is a global minimum of an en-

ergy accounting for the visibility of the final surface.

The effectiveness of our method is demonstrated through

several results on both synthetic and real data sets, illus-

trating the various benefits of our algorithm, its robustness

and its relevance for architectural scenes.

1. Introduction

Reconstruction of 3D models from urban imagery has

long been an active topic of research in computer vision

and photogrammetry. Applications such as Google Earth

or Microsoft Virtual Earth have allowed a broad audience

to visualize large-scale models of cities with superimposed

street level or aerial imagery. Still, the models are mostly

handmade and automatic generation from images of such

content is clearly desirable. Several methods for automatic

or guided image-based modeling have been developed and

the following sections give an overview of these various at-

tempts.

1.1. Dense multiview stereo

Dense multi-view stereo has received a lot of atten-

tion since the comparison of [26]. While the accuracy of

the latest results is now challenging range data, few dense

multi-view methods are appropriate for large scenes taken

in a general setting and without silhouette information (e.g.

large-scale outdoor scenes), see [31] for a recent evalua-

tion. These approaches tend to produce overly complex

meshes and trade a highly detailed reconstruction for the

loss of characteristic geometric features of the scenes. The

proposed approach is applicable to such scenes and directly

outputs a simple shape-based model.

1.2. Geometry processing

While geometry processing techniques could be applied

to simplify the output meshes of dense multi-view stereo

pipelines, such combination is not only less efficient than

the presented method, it is also less powerful and not ad-

equate. First, mesh simplification (we refer the reader to

[23]) is mainly suited to perfectly meshed, almost noise-

free surfaces far from the typical output of multi-view re-

construction algorithms. Besides, simplification often re-

quires user intervention for quality inspection. Recently,

more involved mesh segmentation methods have appeared

and demonstrated impressive results as a preliminary step to

guide subsequent remeshing or simplification (see [27] for

a survey). These techniques face the same problems with

imperfect inputs. Our method implicitly combines segmen-

tation and shape-based simplification during surface recon-

struction. The acquisition process is accounted for through-

out the pipeline while the mentioned post-processings are

more likely to worsen initial reconstruction errors.

1.3. Automatic urban modeling

Dedicated methods such as [34] and [10] have been elab-

orated for architectural scenes. A few dominant planes

are detected in a sparse Structure-from-Motion (SfM) point



cloud. These planes are used as a coarse shell on which

parametrized models of architectural elements are then fit-

ted. In contrast with general purpose dense multi-view

stereo methods, these approaches depends on strong archi-

tectural cues and are limited to reconstruction of scenes

where their numerous assumptions are practically verified.

1.4. Humanassisted image modeling

Human-assisted reconstruction was pioneered by [9]:

from edges marked in the images by a user and selected

simple primitives, the interface aligns the primitives with

the edges. This initial effort was a source of inspiration for

the development of commercial products such as Autodesk

ImageModeler [1] and Google Sketchup [3] that exploits

photometric cues to guide a simplified model reconstruction

from images. [28] presented an easier approach for archi-

tectural scenes with abundant parallel lines, helping the user

and constraining optimizations thanks to extracted lines and

vanishing points. These methods do not require calibrated

images and includes either a manual, an assisted or an auto-

matic SfM step often relying again on strong architectural

cues. In our case, if such information is unavailable, it can

be recovered using a combination of computer vision tech-

niques similar to [29].

1.5. Toward automatic compact modeling

Few authors have tried to address a similar problem as

this paper, most of them dealing only with piecewise-planar

scenes. [14] and [5] focus on the robust extraction of mul-

tiple planes applied to sparse SfM point clouds, extract

a limited number of planes and are not designed to out-

put simplified piecewise-planar dense reconstructions. On

the other hand, [17] and [4] both output such reconstruc-

tions but have major restrictions. The former proposes a

visibility-consistent interpolatory reconstruction from SfM

clouds but can not deal with outliers. The latter exploits

extracted edges but its mesh reconstruction uses less robust

heuristics and only seems applicable to scenes with similar

points of view.

In light of the previous analysis, we draw the conclusion

that no satisfying, general enough method exists to auto-

matically build compact shape-based models of scenes from

images. Applications would include not only image-based

compact modeling as demonstrated in this paper, but also

reverse-engineering or shape and scene recognition, inter-

pretation and indexing.

We propose a new surface reconstruction algorithm with

strong shape priors, applicable to dense multi-view stereo.

The presented approach combines three successive steps.

First, a dense point cloud of the scene is generated from

merged depth maps. Then, multiple shapes (of a prede-

fined set of shapes) are robustly extracted from this point

cloud and a hierarchical description of the scene is built.

Finally, a partition of space induced by this scene descrip-

tion is computed. This subdivision of space has a number of

desirable properties for our problem. By labeling the cells

of this subdivision as inside or outside of the scene, a mesh

representing the scene can be extracted as a subset of the

subdivision facets. To this end, we define an energy on the

space of such labelings that only accounts for the visibility

of the fitted points. This energy is suitable to minimum s-t

cuts optimization allowing a globally optimal surface to be

generated from the space subdivision and the fitted points.

We show how to extend the final step to output partly shape-

based (hybrid) reconstructions combining shape elements

in some areas with non-shape based parts. Finally, note that

our approach is different from range segmentation methods

[18], not applicable here: most techniques are limited to

2.5D data, can not deal with the amount of noise and out-

liers generated by dense stereo matching, and above all, do

not reconstruct a piecewise-primitive surface mesh.

The paper is organized as follows: section 2 provides

background on the required material to understand our con-

tributions, section 3 describes our shape-based reconstruc-

tion pipeline, section 4 deals with implementation details

and finally, in section 5, results on both synthetic and real

data are shown and discussed.

2. Background

2.1. Robust regression

A large body of work has been dedicated to robust re-

gression. Most techniques widely used in computer vision

can be seen as optimizing some objective function (num-

ber of bin votes for the Hough transform and number of

inliers inside a band for RANSAC [12]) with an appropriate

sampling of the model parameters (by discretizing the pa-

rameters space or by randomly sampling models supported

by a minimal set of points). [30] points out the limitations

of RANSAC when applied to data with multiple structures.

While the Hough transform naturally handles such data, the

bin size adjustment is delicate and the method faces inher-

ent difficulties on noisy data. Extending random sampling

methods for multiple structures regression is challenging:

it requires dealing with other structures as outliers. While

we do not pretend to solve the general problem of extract-

ing multiple structures from noisy point cloud with outliers

([8, 32] are some recent attempts), in 3.2, we show how-

ever that exploiting additional information from our specific

problem (the acquisition process and the geometry of the

extracted shapes) improves the robustness of existing ap-

proaches beyond their traditional limits.

2.2. Generalized binary space partitioning trees

Originally developed to address the hidden-surface prob-

lem [15], a binary space partitioning tree (BSP tree for
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Figure 1: Generalized BSP trees for hierarchical clustering

of point clouds and boundary representation of piecewise-

primitive surfaces.

short) is a versatile structure widely used both for spatial

partitioning and boundary representation with particular ap-

plications in rendering, robot motion and path planning. A

BSP tree is a binary tree defining a recursive partition of

space into pairs of subspaces w.r.t. planes at arbitrary posi-

tions and orientations. Instead of planes only, any oriented

hypersurface may be used to split the space into a negative

and a positive half. Each node in the tree corresponds to a

splitting hypersurface and each leaf to an unpartitioned area

of space.

In section 3.2, a BSP tree will be used as a data parti-

tioning structure to hierarchically cluster a point cloud into

sets of shapes while in section 3.4, it will serve as a bound-

ary representation for surface reconstruction. As shown in

Fig. 1, a BSP tree induces a cell complex (a partition of

space into cells). Each cell of this complex corresponds to

a leaf of the BSP tree but one leaf of the tree may give rise

to several cells1. Each facet of this complex is contained

in one of the splitting surfaces. Two different cells may be

linked by more than one facet since they may not be convex.

By labeling each cell of this complex as inside or outside,

a surface can be directly extracted from the complex (see

Fig. 1(f)) and this surface is an assembly of patches from the

various splitting surfaces of the BSP tree. The reconstruc-

tion of such piecewise-primitive surfaces and the implicit

recovery of shape boundaries and vertices motivate this par-

ticular choice of spatial subdivision. Other advantages in-

clude the extension of detected shapes to less textured areas

allowing the reconstruction to capture areas possibly missed

by the depth maps generation. Finally, wrongly detected

shapes do not significantly affect the complex (and the re-

construction) as they only split facets and cells.

1The space between two close parallel planes split by a large sphere

corresponds to two leaves but three cells, for instance.

2.3. Surface reconstruction with minimum st cuts

Let G = (V, E) be a directed graph with vertices V and

edges E with non-negative weights. Two special vertices,

the source s and the sink t are distinguished as the termi-

nals of this network graph. A s-t cut (S, T ) is a partition of

V into two disjoints sets S and T such that s ∈ S and t ∈ T .

The cost of an s-t cut is the sum of the weights of the edges

from S to T : c(S, T ) =
∑

(p,q)∈S×T
wpq. According to

the Ford-Fulkerson theorem [13], finding an s-t cut with

minimum cost is the same as computing the maximum flow

from the source to the sink. Efficient algorithms with low-

polynomial complexity exist to solve this problem. With an

adequate graph construction, many segmentation problems

in computer vision can be solved by global minimization of

the corresponding functional c(S, T ), provided the energy

of the problem may be expressed in this framework [20].

While the optimization domain in computer vision has tra-

ditionally been a regular subdivision of some space, min-

imum s-t cuts on complexes were first introduced in [19]

to globally optimize surface functionals. The use of sparse

random complexes was proposed for their adaptivity over

uniform grids. In 3.4 and 3.5, our optimization domain is a

sparse graph derived from the adjacency graph of the cells

of a complex, adaptive to point samples, and embedding the

recovered shapes. Furthermore, in contrast with the graph

cuts minimal surfaces of [7], our optimization problem is

intrinsically discrete.

3. Reconstruction algorithm

This section details the different steps involved in our

method: the dense point set generation, the extraction

of shapes and corresponding hierarchical clustering of the

point cloud, and the final piecewise-primitive surface recon-

struction. In this paper, the considered classes of shapes are

limited to planes, spheres, cones and cylinders but the over-

all algorithm may be generalized to any classes of oriented

surfaces instantiable from a small number of points and for

which point distances and local normals can be computed

approximately.

3.1. Dense point cloud from depth maps

Initial sparse and downscaled depth maps are computed

between pairs of input images: a simple geometric plane

sweeping is used with a thresholded (multi-level) normal-

ized cross-correlation matching score. The different points

from all the depth maps are clustered according to their po-

sitions in the different camera frustums and in the images.

The positions of the points are then locally refined to op-

timize their photo-consistency scores. The final result is a

set of points each carrying a tuple of views where they were

seen. Obviously, this step still generates a noisy point cloud

with a decent amount of outliers. The next two steps of our



pipeline are designed to robustly handle this kind of input.

(a) Original

mesh

(b) Noisy input

point cloud

(c)

Reconstruction

result of a

variant of [21]

(d) Sequential

MSAC shape

detection result

(e) Our shape

detection result:

12 shapes

(f) Our

reconstruction

result

(uncolored)

(g) Our

reconstruction

result (colored

by shapes)

(h) Result of

Fig. 2(e) with

one of the

detected shapes

purposely

removed

(i) Shape-based

reconstruction

result

(j) Hybrid

reconstruction

result, high

λhybrid

(k) Hybrid

reconstruction

result, low

λhybrid

Figure 2: block data set and results.

3.2. Hierarchical detection of shapes

3.2.1 Single shape robust extraction

Our shape detection and fitting is based on the RANSAC

framework of [12]: random shapes supported by minimal

sets of points are enumerated to optimize an objective func-

tion counting the number of points (the shape inliers) inside

a band around a shape instance. As recalled in 2.1, plain

RANSAC is not suited for robust regression in data with

multiple structures: Fig. 2(d) shows the catastrophic result

of a sequence of successive shape extractions with a slight

variant of RANSAC.

One of our contributions is to demonstrate that a com-

bination of significant alterations to this shape optimization

via random sampling (including geometric priors and ex-

ploiting the density of the point cloud near the surface) can

make the approach robust to challenging point clouds es-

pecially from passive stereo. Before any shape detection

occurs, a 3D k-D tree of the point cloud is computed to ef-

ficiently find the k nearest neighbors (k-NN for short) and

estimate an oriented normal for each point by fitting a plane

to these k-NN. For a densily sampled surface, the k-NN of a

point near the surface are likely to also lie near the surface,

leading to a more reliable normal estimation. The k-NN of

an outlier point, however, are much more spatially spread

and its normal will likely be incoherent with its neighbors’.

First, the random sampling of shapes is modified as fol-

lows to draw meaningful shapes: 1. The closer the points

the higher the chance they are inliers to the same shape. Of

the few points to be randomly selected to create a shape in-

stance, the first one is drawn uniformly in the point cloud,

while the next are uniformly drawn but only within a ball

of small radius (a fixed multiple of the maximum inlier dis-

tance). This geometric ball search query can effectively be

answered as a range query in the k-D tree of the points. This

localized sampling follows NAPSAC [24] developed for

high-dimensional robust estimation where an assumed dis-

tribution of inliers and outliers lead to this idea. 2. The point

cloud from 3.1 is still noisy and random shapes supported

by minimal sets of point may lead to systematic wrong hy-

potheses (with consequently a wrong optimal shape). An

improved estimate of the instantiated random shape is ob-

tained by locally refitting it to all the inlier points within the

band restricted to the ball used to search for a minimal set.

The objective function to be minimized over all the enu-

merated shapes is changed in the following ways: 1. It is

based on the MSAC variant [33] of RANSAC and penal-

izes inliers according to their distances to the instantiated

surface. 2. The acquisition process intervenes in the inliers

counting procedure (and in the shape sampling): a point (or

one of the points to instantiate a shape) is considered an

inlier only if its visibility information agrees with the in-

stantiated shape, i.e. if the local normal to this shape does

not make a wide angle with any of the lines of sight of the

point. 3. The surface orientation is similarly considered in

the inliers counting procedure (and in the shape sampling):

a point is an inlier only if its normal is close to the local nor-

mal of the instantiated shape. 4. Finally, the inlier counting

procedure exploits the graph induced by the k-NN relation

to count the number of inliers in the largest connected re-

gions from the seed points (that instantiated the surface)

and inside the inliers band. Not only such a combination

of RANSAC and region growing helps avoid the so-called

“hallucination” problem of RANSAC variants (artificially

finding structure by relating small clusters), but it is also

more efficient (only a subset of the points are visited).

Shapes of the different classes (planes, spheres, cylinder

and cones here) are tentatively extracted from the point set,

and the best fitting shape is selected (provided there is one).

3.2.2 Hierarchical extraction

Instead of repeatedly applying the single shape extraction

by sequentially removing fitted point from the point set (as

depicted in Fig. 2(d)), the detection is guided towards inter-

esting shapes to simultaneously build the BSP tree required



for the surface reconstruction step. From a previously built

BSP tree, a restricted shape extraction is tried in each active

leaf. If no shape can be extracted from a leaf, the leaf is

marked as unactive and will not be explored again. After a

successful extraction and before splitting the point cloud of

the leaf, a few steps are followed. Large enough connected

sets of inliers (as in 3.2.1) are found in the band around the

detected surface. The surface is refitted to all these new in-

liers points which are now excluded from the point cloud.

Outliers lying in the band are however kept for further shape

sampling. Finally, a new node corresponding to the shape

is created along with two leaves and points are reassigned

to the leaves where they are located2. The whole process is

iterated until no further shape extraction is possible.

3.3. Approximation of the induced cell complex

Practical exact computation of complexes whose cells

are delimited by general second order surfaces is still the

subject of active research [16, 11], not to mention the

queries required by our surface reconstruction step. To cir-

cumvent this major problem, an approximation of the cell

complex induced by the BSP tree is computed by using an

adaptive multi-domain volume mesh generator [25] which

extends the surface meshing algorithm of [6]. This algo-

rithm works by refining a 3D Delaunay triangulation and

only requires as input an oracle answering for a point which

domain it is associated with (in our case, the leaf of the BSP

tree where the point is located). The output is a labeled

Delaunay triangulation, which approximates the interfaces

between the distinct valued domains: each tetrahedron of

this triangulation is labeled according to its domain. The

cells of our approximated BSP complex are then found as

the connected components of identically labeled tetrahedra.

The facets of the complex (and the whole adjacency graph)

are found as the connected components of triangle facets

between two tetrahedra with the same labels pairs.

s

t

αvis

αvis αvis

  αvis

Figure 3: Visibility. A fitted point (red circled dot) affects the

oriented facets (darker green) and cells (darker blue) weights

along one of its lines of sight (red dotted line).

2A variant consists in identifying shape inliers in the whole point cloud

to then split all the intersected leaves and not only the current one.

3.4. Surface reconstruction

Once a BSP tree of surfaces has been extracted from the

point cloud and the original points clustered (one cluster per

extracted shape abd one for points not fitted), the complex

induced by this BSP tree can be computed. As previously

announced in 2.2, the reconstructed surface S is sought as a

particular subset of the BSP complex facets, which bounds

the interior of the scene: the output surface is a labeled tri-

angulated mesh with or without boundaries whose facets are

labeled with their supporting shapes. It is also guaranteed

to be watertight and intersection-free.

An energy is defined on the space of all such surfaces

(or equivalently the space of all inside/outside labelings of

cells). This energy only consists of a term Evis′(S) ensuring

the visibility-consistency of the surface :

E(S) = Evis′(S)

3.4.1 Network graph

The network graph considered for the cut is straightfor-

wardly derived from the BSP complex. Its set of vertices

stands for the cells of the complex, augmented with the

source s and the sink t terminal vertices. The edges of the

graph correspond to the oriented facets of the complex (its

2D faces) which are shared by adjacent cells: an edge from

from a vertex vi to a vertex vj is the oriented facet from

the cell ci to the cell cj of the complex. Moreover each

non-terminal vertex/cell is linked to the sink and the source

vertices. Out of the common trend in computer vision, our

network graphs have a spatially varying connectivity. More-

over they may be multigraphs, as two cells could be ad-

jacent through different facets (this only means that these

facets are coupled in the optimization).

3.4.2 Surface visibility

The visibility term of our energy is a variant of the one

designed in [21] which penalizes mis-alignments and mis-

orientations of the surface w.r.t. the lines of sight of the fitted

points. While we are also given a point cloud with lines of

sight, a subtle difference with [21] exists: here, the points

conveying visibility information do not coincide with the

vertices of our complex, but are instead located inside cells,

near some facet contained in one of the fitted shapes.

The corresponding visibility construction is adapted as

shown in Fig. 3: the oriented facets crossed by a line of sight

(darker green) get a weight of αvis (the confidence in the

fitted point, derived from its matching score), while the cell

(darker blue) where the camera optical center lies is linked

to the source s with an αvis weight and the cell behind the

shape of the fitted point (darker blue) is linked to the sink

t with a weight αvis. These weights for cells being inside



(a) Original mesh (b) Noisy input

point cloud

(c) Reconstruction

result of a variant of

[21]

(d) Our shape

detection result: 32

shapes

(e) Our

reconstruction result

(uncolored)

(f) Our reconstruction result (colored by

shapes)

Figure 4: fandisk data set and results.

or outside and for facets being part of the reconstruction are

accumulated for all the available lines of sight.

3.5. Hybrid surface reconstruction

The above reconstruction works well for scenes or for

objects that can be easily decomposed in surfaces from the

set of shapes and when no severe occlusion hinders some

parts of the scenes from being sampled by the depth maps.

Since the above reconstruction relies on a boundary rep-

resentation, missing surface patches required to close the

object volume can lead to gross error in the reconstruction

(see Fig. 2(h) and 2(i)). To capture most of the geometry of

the object, we propose to compute a hybrid reconstruction

combining shape elements as before with some points of the

depth maps to recover a faithful reconstruction of the whole

scene. This is achieved as follows: instead of restricting

the optimization domain to the approximated BSP complex,

the whole triangulation is used, augmented with points that

were not fitted to the detected shapes. This is done without

altering the meshing of the shapes, by first computing the

Delaunay triangulation of the points that were not fitted and

then refining this triangulation (without modifying the posi-

tions of the vertices) using the multi-domain volume mesh

generator (and recovering approximated BSP complex cells

and facets as above). This way, the optimization domain is

now embeds both the shapes and the points likely to reside

in fine or uncaptured details of the scene. The output surface

is still a triangulated mesh but whose facets are either unla-

beled or labeled with their supporting shapes. The discrete

energy used in the optimization is modified as follows:

E(S) = Evis′(S) + Evis(S) + λhybrid Ehybrid(S)

where λhybrid is a positive weighting constant.

The term Evis′(S) penalizes visibility inconsistencies

w.r.t. the fitted points and is the same term as previously

but on the triangulated domain instead (all triangular facets

crossed by a line-of-sight are penalized, and as before, the

(a) Point cloud from depth

maps (top view)

(b) Our shape detection

result: 14 shapes (top view)

(c) Our shape-based

reconstruction result (top

view)

Figure 5: Results on the castle-P30 data set of [31].

ray is extended to cross the corresponding fitted shape).

The term Evis(S) refers to points not fitted to shapes and

is exactly the same as the visibility term of [21]. Finally,

the term Ehybrid(S) is the surface quality term of [22] pe-

nalizing only triangular facets that do not belong to facets

of the BSP complex (i.e. facets not belonging to recov-

ered shapes). As shown in Fig. 2(j) and 2(k), adjusting the

weight λhybrid allows switching from a purely shape-based

reconstruction to a hybrid reconstruction with finer details

(apart from Fig. 2(j), all the presented hybrid reconstruction

results used the same value of λhybrid).

4. Implementation details

Our prototype implementation of the described algo-

rithm extensively uses the Computational Geometry Algo-

rithms Library (CGAL) [2] for the various geometric com-

putations it needs. CGAL offers excellent and robust im-

plementations of all the needed constructions and queries

for k-D trees used in 3.2 and Delaunay triangulations and

Delaunay-based volume and surface mesh generation used

in 3.3, 3.4 and 3.5.

Fitting of second order surfaces is done with standard

least-squares of the Euclidean distance to the shape and is

implemented with Levenberg-Marquardt optimization.

5. Experiments3

We compared our approach with a variant of the surface

reconstruction step of [21] including only its visibility term

complemented with the surface quality term of [22] (the in-

put point cloud is the same as the one computed in 3.1).

While [21] does not output high precision reconstructions,

it is most similar to our final reconstruction step and is able

to cope with the difficult open scenes of [31].

5.1. Synthetic data

Fig. 2 and 4 evaluate the last two steps of our shape-

based segmentation and reconstruction pipeline (which con-

stitutes the major contributions of this paper) on synthetic

3Additional images and quantitative results are contained in the supple-

mental material.



(a) Point cloud from depth

maps

(b) Reconstruction result of

a variant of [21]

(c)

Reconstruction

result of a

variant of [21]

(side view)

(d) Our shape detection

result: 63 shapes

(e) Our hybrid

reconstruction result

(f) Our hybrid

reconstruction

result (side

view)

Figure 6: Results on the fountain-P11 data set of [31].

data. In each case, the input point cloud was generated

from the vertices of a mesh of the object. The associated

visibility information was determined with ray casting and

occlusion computation using 64 virtual cameras around the

object. Some amount of isotropic Gaussian noise was added

to the locations of the points (with a std. dev. representing

0.2% of the maximum dimension of the bounding box). In

these synthetic experiments, our purely shape-based recon-

struction works extremely well and automatically outputs

a faithful representation of the original object. Note how

the fandisk back, which is not exactly a cylinder is approx-

imated with several cylindric patches.

5.2. Real data

We tested our algorithm on several scenes from the pub-

licly available benchmark of [31]. These large-scale out-

door open scenes are quite difficult data sets, and few tra-

ditional multi-view stereo algorithms can cope with them.

The castle-P30 scene is an ideal candidate for our purely

shape-based reconstruction as it features large facades,

ground and roof planes. Our result shown in Fig. 5 is

a concise description and simplified model of the scene.

The fountain-P11 and Herz-Jesu-P25 scenes of Fig. 6 and

7 combine easily identifiable shapes with very fine details

making them suitable to challenge our hybrid surface recon-

struction. The result of [21] in Fig. ?? is noisy but contains

most of the details of the fountain. Our reconstruction auto-

matically extends the wall and ground, identifies the planar

(a) Point cloud from depth maps (b) Our shape detection result: 139

shapes

(c) Reconstruction result of a variant

of [21]

(d) Our hybrid reconstruction result

(e) Reconstruction result of a variant

of [21] (side view)

(f) Our hybrid reconstruction result

(side view)

Figure 7: Results on the Herz-Jesu-P25 data set of [31].

parts of the fountain base and approximates sculptures with

small decorations with smooth second order patches. The

results of Fig. 7 on the Herz-Jesu-P25 scene are even more

striking. While [21] outputs a very noisy model, note how

the staircases of our reconstruction are perfectly straight

(noisy staircases are typical cases of failure of RANSAC

methods), the columns and archways are smooth and the fa-

cades and the ground (which produces lots of mismatches)

have been replaced by planes.

6. Conclusion

We have presented a novel dense multi-view stereo

method with strong shape priors that directly outputs a com-

pact segmented model of the scene, contrasting with tradi-

tional approaches aiming at overly detailed models. Our

approach encompasses clustering, multiple structures de-

tection in noisy point clouds with outliers and shape-based

surface reconstruction. We have shown encouraging results

on both synthetic and challenging real-world data which

clearly demonstrate the benefits of our approach.

Future work involves improving the shape class selection

of 3.2.1 to include an MDL or MML-inspired criterion for

instance. Extending our reconstruction pipeline to other,

more complex, shapes would allow our simplified model-

ing technique to better capture more general scenes. Fi-



nally, a local refinement could be applied as a lightweight

post-processing to our hybrid reconstructions to improve

the transitions between fine details and shapes. Apply-

ing our shape-based surface reconstruction pipeline to more

data sets and especially range scan data is also expected.
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