
Sampling different kinds of acyclic automata using

Markov chains

Vincent Carnino, Sven De Felice

To cite this version:

Vincent Carnino, Sven De Felice. Sampling different kinds of acyclic automata us-
ing Markov chains. Theoretical Computer Science, Elsevier, 2012, 450 (1), pp.31-42.
<10.1016/j.tcs.2012.04.025>. <hal-00841870>

HAL Id: hal-00841870

https://hal-upec-upem.archives-ouvertes.fr/hal-00841870

Submitted on 6 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Ecole des Ponts ParisTech

https://core.ac.uk/display/48330684?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal-upec-upem.archives-ouvertes.fr/hal-00841870

Sampling Different Kinds of Acyclic Automata Using

Markov Chains

Vincent Carninoa, Sven De Felicea,∗

aLIGM, UMR 8049, Université Paris-Est et CNRS, 77454 Marne-la-Vallée, France.

Abstract

We propose algorithms that use Markov chain techniques to generate acyclic
automata uniformly at random. We first consider deterministic, accessible and
acyclic automata, then focus on the class of minimal acyclic automata. In each
case we explain how to define random local transformations that describe an er-
godic and symmetric Markov chain: the distribution of the automaton obtained
after T random steps in this Markov chain tends to the uniform distribution as
T tends to infinity.

1. Introduction

In language theory, acyclic automata are exactly the automata that recognize
finite languages. For this reason, they play an important role in some specific
fields of applications, such as the treatment of natural languages. From an
algorithmic point of view, they often enjoy more efficient solutions than general
automata; a famous example is the linear minimization algorithm proposed by
Revuz for deterministic acyclic automata [17]. They also appear as first steps in
some algorithms, two examples of which are related to Glushkov construction [3,
4, 5] and an extension of Aho-Corasick automaton [16].

In the design and analysis of algorithms it is of great use to have access to
exhaustive and random generators for the inputs of the algorithm one wants to
study: the exhaustive generator is used to analyze the behavior of the algorithm
for small inputs, but cannot be used for large inputs since there are too many
of them; the number of size-n inputs typically grows at least exponentially in n.
Those generators can be used either to test the correctness and the efficiency
of an implementation, or to help the researcher while establishing theoretical
results about the average case analysis of the algorithm.

An exhaustive generator for minimal deterministic acyclic automata has
been given by Almeida, Moreira and Reis [1], and in this paper we propose an
algorithm to generate at random deterministic, accessible and acyclic automata

∗The second author was supported by ANR MAGNUM - project ANR-2010-BLAN-0204.
Email addresses: vcarnino@univ-mlv.fr (Vincent Carnino), defelic@univ-mlv.fr

(Sven De Felice)

Preprint submitted to Elsevier April 10, 2012

and minimal acyclic automata, with a distribution that is almost uniform, using
Markov chain techniques. The idea is to start with a n-state acyclic automaton
(or minimal acyclic automaton), then to perform a certain amount T of mu-
tations of this automaton, a mutation being a small local transformation that
preserves the required properties (deterministic, accessible and acyclic with the
same number of states, or minimal with the same number of states). Since each
mutation is performed in time O(n), the complexity of our algorithm is O(nT).
The bigger T , faster the output distribution approaches the uniform distribu-
tion. For a given distance to uniformity, it is a generally difficult problem to
give a good estimation of a corresponding value of T ; this is directly related to
the mixing time of the Markov chain, which is generally a difficult problem [11].
We do not address this problem in this article, but the simulations that we
performed seem to indicate that a choice of T polynomial in n gives a correct
random generator, at least for most applications.

Note that the other generic methods to generate combinatorial structures
uniformly at random seem to fail here. For instance, recursive methods [8] or
Boltzmann samplers [7], which have been used for deterministic automata [6,
2, 9], rely on a good recursive description of the input, which is not known for
acyclic automata. To our knowledge, the only combinatorial result on acyclic
automata is due to Liskovets [13], who gave a closed-form formula for the number
of acyclic automata; unfortunately this formula cannot be directly translate into
a tractable recursive description.

Related work: as mentioned above, our algorithm is a complement of
the exhaustive generator of Almeida, Moreira and Reis [1] for testing con-
jectures and algorithms based on deterministic acyclic automata or minimal
acyclic automata. The idea of using Markov chains for that kind of objects
starts with works on acyclic graphs, which has been done for graph visualiza-
tion purposes [14, 15]. Though using the same general idea, deterministic acyclic
automata do not resemble acyclic graphs that much, mainly because they only
have a linear number of edges (transitions). In particular, the diameter of the
Markov chain, which is a lower bound for the mixing time, is quadratic for
acyclic graphs but linear in our case. Moreover, automata considered in this ar-
ticle must be accessible, which is not a natural condition for graphs (there is no
notion of distinguished initial vertex); Melançon and Philippe considered simply
connected acyclic graphs in [15], but this is not the same notion as accessibility.
For instance, they use a nice optimization based on reversing an edge, which
preserves connectedness but not accessibility; hence it cannot be used here.

The paper is organized as follows. In Section 2, we recall basic notations
about automata; and in Section 3 classical Markov chain concepts are detailed.
The generator of acyclic automata is described in Section 4, and its correctness
is given in Section 5. The algorithm on minimal acyclic automata is described
in Section 6, and its correctness is given in Section 7. Finally, in Section 8,
we explain how to adapt the second algorithm to handle the case of generating
minimal acyclic automata with some constraints on the set of final states.

2

2. Definitions and Notations

For more information about classical automata theory, the reader is referred
to the book of Hopcroft and Ullman [10].

2.1. Automata

Throughout this paper, a deterministic finite automaton is a tuple A =
(Q,A, δ, {i0}, F), where Q is a finite set of states, A is a finite set of letters
called the alphabet, δ : Q×A→ Q is the (partial) transition function, i0 ∈ Q is
the initial state and F ⊆ Q is the set of final states.

If p is a state of A we denote by Ap the set of letters a ∈ A such

that δ(p, a) is defined. For any state q ∈ Q, the transition function δ(q, ·)
is inductively extended to the set A∗ of all finite words over A: δ(q, ε) = q,
where ε is the empty word, and for all w ∈ A∗ such that w = w1w2 . . . wn, then
δ(q, w) := δ(δ(. . . δ(δ(q, w1), w2) . . .), wn), when each of them is defined, and is
undefined otherwise.

A state q ∈ Q is accessible (resp. co-accessible) when there exists w ∈ A∗

such that δ(i0, w) = q (resp. δ(q, w) ∈ F). An automaton is accessible (resp. co-
accessible) when all its states are accessible (resp. co-accessible). An automaton
is trim when it is both accessible and co-accessible.

A state q ∈ Q is transient if for all w ∈ A+, δ(q, w) 6= q. A state that is
not transient is called recurrent. An automaton is acyclic when every state is
transient. Another definition of acyclic automata is that the underlying directed
graph is an acyclic graph. Note that it is impossible for a complete automaton
to be acyclic.

For a given acyclic automaton, a path from a state q to a state p is a word
w such as δ(q, w) = p. The length of a path w is its size. If there exists a path
from a state q to a state p and p 6= q, we call p an ancestor of q and q a successor
of p. If there is a path of length 1 from p to q, we say that p is a direct ancestor
of q and that q is a direct successor of p.

In the sequel, without loss of generality, the set of states Q of an n-state de-
terministic automaton will always be {1, . . . , n} and 1 will always be the initial
state. The size of an automaton is its number of states, and we furthermore
assume from now on that n ≥ 2. Moreover, since we always consider determinis-
tic, accessible and acyclic automata in this article, we shall just denote them by
“acyclic automata” for short. The set of all n-state acyclic automata is denoted
by An. We also assume from now on that |A| ≥ 2, the case |A| = 1 being trivial
for the questions considered in this article.

2.2. Hammock automata

The notion of Hammock automata will be specially useful in the second part
of the paper when we focus on minimal acyclic automata.

Definition 1. An acyclic automaton A is called a hammock automaton if it
has exactly one state with no outcoming transition, called the target state.

3

Proposition 1. Let A = (Q,A, δ, {1}, F) be a hammock automaton and let
s ∈ Q be a state of A. Then there exists a path from s to the target state.

Proof. Since A is acyclic any path of A is upper bounded by n − 1. Let t
denote the target state. Let w be a path such that δ(s, w) is defined and such
the length of w is maximal amongst the paths starting at s. By contradiction
suppose that δ(s, w) = r 6= t. Then r has a transition labeled by a letter a.
Thus δ(s, wa) is defined and |wa| = |w|+ 1 > |w|. That is impossible since the
length of w is maximal amongst the paths starting at s. Then δ(s, w) = t. �

2.3. Minimal automata

The Nerode equivalence is the equivalence relation ∼ defined on the states
of a given automaton A as follow:

p ∼ q ⇐⇒ FutA(p) = FutA(q),

where FutA(p) = {w ∈ A∗ | δ(p, w) ∈ F} denotes the future of a state p.
If an automaton is deterministic this equivalence satisfies the following prop-

erty.

p ∼ q ⇐⇒

p ∈ F ⇐⇒ q ∈ F,

Ap = Aq,

∀a ∈ Ap, δ(p, a) ∼ δ(p, b).

A deterministic automaton is minimal if it is trim1 and every equivalence
class is reduced to a singleton. Every regular language L is recognized by a
unique minimal automaton (up to labelling), which is called the minimal au-
tomaton of L, and which is the smallest deterministic automaton that recognizes
L. The classical way to define minimal automata is to use quotients, see [10]
for more details.

The Nerode equivalence can be used to compute the minimal automaton of
L starting from a deterministic automaton that recognizes L: repeatedly merge
two states that are equivalent until the equivalence relation is the equality. The
automaton obtained is exactly the minimal automaton of the language, and
most minimization algorithms proceed this way.

As we shall see in Section 7, minimal acyclic automata are always hammock
automata. It is convenient, as we asked for the initial state to be labelled by 1,
to choose a fixed label for it target state too: in the sequel we denote by Mn

the set of all minimal acyclic automata with n states, whose initial state is 1
and whose target state is n.

1In the literature the minimal automaton is either defined as a complete automaton or as
a trim automaton. We use the later definition here.

4

1 2 3

a
a

a

Figure 1: A deterministic automaton which is not accessible. Note that its group of au-
tomorphism is not trivial: if we permute the label 2 with the label 3 we obtain the same
automaton.

1 2 3
a a

Figure 2: An accessible deterministic automaton. Unlike the previous automaton, any non
trivial permutation of the label leads to a different automaton.

2.4. Automorphism of automata

Let A = (Q,A, δ, {1}, F) be a deterministic automata. A one-to-one map-
ping φ from Q to Q is an automorphism when

• φ(1) = 1,

• ∀p ∈ Q, Ap = Aφ(p),

• ∀p ∈ Q, ∀a ∈ Ap, δ(φ(p), a) = φ(δ(p, a)),

• ∀p ∈ Q, p ∈ F ⇐⇒ φ(p) ∈ F .

As remarked by Liskovets [12], the only automorphism of an accessible and
deterministic automaton is the identity. This has the important combinato-
rial consequence that there are exactly (n − 1)! distinct ways of labelling with
{1, . . . , n} the states of such a size-n automaton, with the convention that 1 is
the initial state. In particular, for a family Fn of size-n accessible and deter-
ministic automata, stable by relabelling, the process of generating uniformly at
random a labelled element of Fn, then removing the labels (formally: consider-
ing its equivalence class up to labelling) introduce no bias in uniformity.

For elements of Mn, since we required that 1 is the initial state and n is the
target state, the same result holds, but there are now exactly (n− 2)! elements
in each equivalence class, up to labelling.

3. Markov Chains and Random Generation

In this section we describe the Markov chain used for generating almost
uniformly at random elements of An, for any fixed n ≥ 2. In the process, we

5

recall the basic notion of Markov chain that we shall need in the sequel. More
information on Markov chain for random generation can be found in [11].

The input of the algorithm consists of two positive integers: the number of
states n, and the number of iterations T . The algorithm relies on a Markov
chain process: it randomly moves in the set An and returns the automaton
reached after T steps.

The Markov chain of the algorithm can be seen as a directed graph whose
vertices are elements of An. An edge from an automaton A to another automa-
ton B is labelled by a real r ∈ [0, 1], which represents the probability to move
from automaton A to automaton B in one step. For two automata A,B ∈ An

we denote by PA,B the label of the edge from A to B, if it exists, otherwise we
set PA,B = 0. Since it is a probability, we have:

∀A ∈ An,
∑

B∈An

PA,B = 1.

A distribution on An is a mapping p from An to [0, 1] such that
∑

A∈An

p(A) =
1. A stationary distribution π of a Markov chain is a distribution that remains
globally unchanged after each random move, that is,

∀B ∈ An, π(B) =
∑

A∈An

π(A)× PA,B.

A Markov Chain is called irreducible when its graph is strongly connected.

For i ∈ N, let P
(i)
A,B be the probability to move from A to B in i steps of the

algorithm. We define the period of a vertex A as the gcd of the lengths of all

circuits on A: gcd({i ∈ N | P
(i)
A,A > 0}). If there is a loop of length 1 on A, the

period of A is 1 by definition. A vertex is aperiodic if its period is 1. A Markov
chain is aperiodic when all its states are aperiodic. A Markov chain is ergodic
when it is both irreducible and aperiodic.

A famous property of ergodic Markov chains with a finite number of vertices
is that they have a unique stationary distribution and that starting at any vertex
the distribution obtained after T steps tends to this stationary distribution as
T tends to infinity [11]. This gives a general framework to build a random
generator on a non-empty finite set E: design an ergodic Markov chain whose
set of vertices is E and such that the stationary distribution is the uniform
distribution. Start from any vertex, then move randomly for a long enough
time to obtain a random element of E almost uniformly.

This is exactly what we do in this article. A small part of the Markov chain
that is behind our algorithm is depicted in Figure 3. Each step consists either
in doing nothing or in making a transition. The complete description of the
algorithm is done in Section 4. Our main result, which is proved in Section 5 is
the following:

Theorem 1. For any n ≥ 2, the Markov chain for An is ergodic and its sta-
tionary distribution is the uniform distribution.

6

1

2

3

1

2

3

1

2

3

1

2

3

a

b

b

a

b

a, b

a

b

a, b

b

2
a
−→ 3

2
b
−→
3

1
b−→

2
3

a
−→ 2

1
a
−→ 2

Figure 3: Part of the Markov chain: at each iteration an element p
a
−→ q of Q×A×Q is chosen

randomly. If it corresponds to a transition of the automaton, as 2
b
−→ 3, then it is removed. If

there is no transition labelled by a and starting at p, it is added; this is the case for 2
a
−→ 3.

When there already is a transition labelled by a and starting at p, it is redirected to q; this

is the case for 1
b
−→ 2. The mutation is not done if the automaton is not acyclic anymore

(3
a
−→ 2) or if it is not accessible anymore (1

a
−→ 2).

7

Since the isomorphism classes of n-state automata have the same cardinality,
our uniform random generator on An yields a generator on isomorphic classes
of automata which is also uniform (see Section 2.4).

Note that the number of iterations T must be large enough in order to
approach closely the uniform distribution. The choice of T is a difficult prob-
lem [11] and it is not cover in this paper. The diameter of the Markov chain’s
graph is a lower bound for T , and we will show in Section 5 that this diameter
is linear in our case.

4. Algorithm for acyclic automata

AcyclicAutomatonGeneration(n, T)

A ← any deterministic, accessible and acyclic automaton with n states1

i← 02

while i < T do3

p← Uniform(Q), a← Uniform(A), q ← Uniform(Q \ {p})4

if δ(p, a) is undefined then5

if IsAcyclic(A⊕ p
a
−→ q) then A = A⊕ p

a
−→ q6

else if δ(p, a) = q then7

if IsAccessible(A⊖ p
a
−→ q) then A = A⊖ p

a
−→ q8

else9

r ← δ(p, a)10

if IsAccessible(A⊖ p
a
−→ r) then11

A = A⊖ p
a
−→ r12

if IsAcyclic(A⊕ p
a
−→ q) then13

A = A⊕ p
a
−→ q14

else15

A = A⊕ p
a
−→ r16

i← i+ 117

Randomly choose the set of final states of A18

return A19

We represent a transition δ(p, a) = q, with (p, q) ∈ Q2 and a ∈ A, by

p
a
−→ q. The notation A⊕p

a
−→ q represents the automaton A with the additional

transition p
a
−→ q. Similarly, the notation A⊖ p

a
−→ q represents the automaton

A where the transition p
a
−→ q has been removed, if it exists.

The algorithm has two arguments: the number n of states and a value T
which indicates the desired number of iterations (it is quite difficult to know
when the uniform distribution is reached so it is convenient to specify it). After
choosing any acyclic automaton A ∈ An to start with, the algorithm repeats
the following steps T times: choose uniformly a labelled edge p

a
−→ q with p 6= q

(p = q is not interesting since we are considering acyclic automata). Then there
are three possible cases:

8

• There is no transition starting from p and labelled with a. In such a case,
we try to add p

a
−→ q to A and test if it is still acyclic. The transition is

added only if it is.

• There already is a transition p
a
−→ q in A. In that case, we test if A is

still accessible if we remove it. If it is, the transition is removed, else A
remains unchanged.

• There is a transition starting from p, labelled with a and reaching a state
r, with r 6= q. In this last case, we first test whether A is still accessible if
we redirect δ(p, a) to q. If it is, we do the redirection, otherwise A remains
unchanged.

In this process, we need to check regularly the accessibility and the acyclicity
of A.

The accessibility test is implemented the following way. We keep up-to-date,
for each state q, a counter that indicates the total number of transitions ending
in q. Each time we add or remove such a transition, this counter is increased
or decreased. Thus, to test the accessibility, we just have to check, after the
transition has been removed, whether the counter on the state that ends the
transition reaches 0 or not; this is a consequence of Lemma 1 (see Section 5).
It clearly has a O(1) time complexity.

The acyclicity is tested by the classical algorithm, using a depth-first-search
algorithm which runs in time O(n), since the number of transitions is linear in
a deterministic automaton.

We therefore get the following result.

Proposition 2. Each iteration of the algorithm is performed in time O(n). The
worst case time complexity of the algorithm is O(Tn) and its space complexity
is O(n).

5. Proofs

In this section, we prove the main facts that are used for the first algorithm
to correctly generate an acyclic automaton with almost uniform distribution,
and with the announced complexity.

An operation which consists of removing, adding or changing a transition is
called an elementary operation.

Lemma 1. Let A be an acyclic automaton of size n and B = A⊖p
a
−→ q, where

q 6= 1 and p
a
−→ q is any transition of A. If there is at least one transition that

ends in q in B then B is accessible.

Proof. B is clearly acyclic. B has a transition r
b
−→ q, for some state r and

some letter b. The state r is accessible in A, and r 6= q. Since A and B only
differ by a transition that ends in q, r is also accessible in B. Therefore, q is
accessible in B because one can follow a path from 1 to r, then use the transition

9

r
b
−→ q. Since all other states remain accessible for the same reason as r, B is

accessible. �

Note that the result of Lemma 1 does not hold for automata that are not
acyclic.

Lemma 2. The Markov chain of the algorithm is symmetric, that is, for all
A,B ∈ An, PA,B = PB,A.

Proof. Recall that the probability to draw a given triplet (p, a, q) with p ∈ Q,
q ∈ Q\{p}, and a ∈ A is 1

n(n−1)|A| . Let A, B be in An such that PA,B > 0.

Then there exists an elementary operation that transforms A into B. Suppose
B = A⊕ p

a
−→ q. The probability to draw the triplet (p, a, q) is 1

n(n−1)|A| . Now

from B the only possible elementary operation to reach A is to remove the
transition p

a
−→ q. Thus, we need to draw the triplet (p, a, q) and the probability

of this event is 1
n(n−1)|A| too. If B = A ⊖ p

a
−→ q then A = B ⊕ p

a
−→ q thus we

are in the same case as above and PA,B = PB,A.
Suppose the elementary operation that transforms A to B is to redirect the

transition p
a
−→ q of A to obtain p

a
−→ s in B. To get this, we need to draw

the triplet (p, a, s) and the probability of this event is 1
n(n−1)|A| = PA,B. The

only possible elementary operation to reach A from B is to redirect the new
transition p

a
−→ s to p

a
−→ q which has the same probability, for the same reasons.

Hence PA,B = PB,A in this case too. �

Lemma 3. The Markov chain of the algorithm is ergodic.

Proof. We need to prove that it is both irreducible and aperiodic.
To prove the irreducibility, we show that, in the Markov chain, there is a

path from any acyclic automaton A ∈ An to an automaton Sn ∈ An, where Sn is
the acyclic automaton whose only transitions are i

a
−→ i+1, for i ∈ {1, . . . , n−1}

and for all a:

1 2 n− 1 n
a a a a

Let A be any acyclic automaton and let a be a letter in A. Let E be the set
of states that are accessible from the initial state by reading only the letter a.
E is not empty since it contains at least the initial state 1. Repeatedly remove
every transition p

α
−→ q where q ∈ E and p /∈ E. Then repeatedly remove every

remaining transition p
α
−→ q where p, q ∈ E and α 6= a. These actions are valid

moves in the Markov chain by Lemma 1 since we always keep the transitions
p

a
−→ q with p, q ∈ E. Let ℓ be the only state in E with no outgoing transition

labelled with a.
If |E| < n, choose a state s of A that is not in E and add a transition ℓ

a
−→ s.

Since there is no path between s and a state of E, this operation cannot create
a cycle. Repeatedly remove all transitions directed toward s except ℓ

a
−→ s. Add

10

s to E, the set E is one state bigger. The size of E being finite, this operations
can be repeated until E contains all states of A.

Hence, at some point |E| = n and A is isomorphic to Sn, since every state
but the initial one has exactly one incoming transition, which is labelled by a.
The only difference with Sn is that the states are not necessarily in the correct
order. We now explain how they can be re-ordered.

Let b ∈ A, b 6= a, for each transition p
a
−→ q of A, we add to A the transition

p
b
−→ q by elementary operations, which do not create any cycle. Now we remove

all transitions labelled by a, A remains accessible because of the transitions
labelled by b. We are in the case |E| < n above, where the set E only contains
the state 1. To reach the automaton Sn, it is sufficient to choose the new states
added to E in the order of their label. After removing all transitions labelled
by b, we finally obtain the automaton Sn.

Hence for every A ∈ An, there exists a path from A to Sn in the Markov
chain. By Lemma 2 there also exists a path from Sn to A: the Markov chain
is therefore irreducible. For every automaton A ∈ An and any state p 6= 1 and

any letter a ∈ A, if the edge chosen by the algorithm is (p, a, 1) then A remains
the same: adding the transitions would make A cyclic. Hence every vertex has
a loop of length 1 in the Markov chain, it is therefore aperiodic. �

Lemma 4. The diameter of the Markov chain is in Θ(n).

Proof. Using the construction proposed in the proof of Lemma 3, every A ∈
An is at distance at most (|A|+5)n of Sn. The diameter of the Markov chain is
thus at most 2(|A| + 5)n, which is O(n). The lower bound in Ω(n) is obtained
by considering the distance from Sn to an acyclic automaton whose edges are
all labelled by a letter b 6= a. �

Theorem 1 is a consequence of the lemmas above: by Lemma 3 the Markov
chain of the algorithm is ergodic and by Lemma 2 it is symmetric. According
to a classical result in Markov chain theory [11], its stationary distribution is
the uniform distribution on An.

11

6. Algorithm for Minimal Acyclic Automata

MinimalAcyclicAutomatonGeneration(n, T)

A ← any minimal and acyclic automaton of Mn1

i← 02

while i < T do3

x← Uniform({0, 1})4

if x = 0 then5

p← Uniform(Q), a← Uniform(A), q ← Uniform(Q \ {p})6

if δ(p, a) is undefined then7

if IsAcyclic(A⊕ p
a
−→ q) and IsMinimal(A⊕ p

a
−→ q) then8

A = A⊕ p
a
−→ q

else if δ(p, a) = q then9

if IsTrim(A⊖ p
a
−→ q) and IsMinimal(A⊖ p

a
−→ q) then10

A = A⊖ p
a
−→ q

else11

r ← δ(p, a)12

if IsTrim(A⊖ p
a
−→ r) then13

A = A⊖ p
a
−→ r14

if IsAcyclic(A⊕ p
a
−→ q) and IsMinimal(A⊕ p

a
−→ q) then15

A = A⊕ p
a
−→ q16

else17

A = A⊖ p
a
−→ r18

else19

p← Uniform(Q)20

if IsMinimal(A⊕ p) then21

A = A⊕ p22

i← i+ 123

return A24

This second algorithm is quite similar to the previous one. It has two ar-
guments, n the number of states and T the desired number of iterations. The
algorithm start from a minimal acyclic automaton of size n and randomly move
T times in a Markov chain on Mn, the set of n-size minimal acyclic automata.
Then it returns the last automaton reached.

A move in the Markov chain consists in performing one of the two following
cases, each with probability 1

2 :

• Uniformly draw a state p ∈ Q and change its final status (this operation
is represented by p). This means that if p is a final state, we make it non
final, and if it is not we make it final.

• Uniformly draw two states p, q ∈ Q and a letter a ∈ A. Then we have

12

the same three cases as in the previous algorithm except that here we also
need to check if the resulting automaton is still minimal. Furthermore,
we do not only check for accessibility but also for co-accessibility, which
means that the automaton must be trim.

Note that in this algorithm, we use three tests to decide whether or not the
automaton is acyclic, trim and minimal.

In order to know if the automaton is acyclic, we use the same depth-first-
search algorithm as before running in time O(n). We still need to check acces-
sibility but we also need to check co-accessibility because we need the resulting
automaton to be trim. So we use the same principle as for accessibility and
apply it to co-accessibility by counting output transitions of each state. The
demonstration of the correctness of this test is done in the Section 7. It is still
clear that this test runs in constant time. For the minimality test, we can use
the Revuz’ algorithm [17] which specifically deals with acyclic automata and
whose running time is linear in the number of states.

For each move the algorithm performs at most four tests, the accessibility
test, the co-accessibility test, the acyclicity test and the test of minimality.
The time complexity of each test is in O(n) (except the accessibility and co-
accessibility tests which both run in constant time) and because we do T moves
in the algorithm, we obtain the following result.

Proposition 3. The worst time complexity of the algorithm that generates min-
imal acyclic automata is in O(nT) and its space complexity is O(n).

The following property proves the effectiveness of the algorithm.

Theorem 2. The Markov chain of the algorithm that generates minimal acyclic
automata is ergodic and its stationary distribution is the uniform distribution
on Mn.

Our proof of Theorem 2 also gives informations on the diameter of the un-
derlying Markov chain.

Proposition 4. The diameter of the Markov chain that generates minimal
acyclic automata is in Θ(n).

7. Proofs

This section is devoted to the proof of the Theorem 2 and to the estimation
of the diameter of the underlying Markov chain.

Since a hammock automaton is acyclic, the length of a path from any state
to the state n is upper bounded by n− 1. We use this remark in order to define
the rank of a state in a hammock automaton.

Definition 2. Let A be a hammock automaton. For each state p of A, the
rank of p, denoted by ηA(p) (or η(p) if there is no ambiguity), is the length of
the path of maximal length among all paths from p to the target state n.

13

rank = 0

rank = 1

rank = 2

rank = 3
1

2 3

45

6

c

a

b

a c

b

a

b a

Figure 4: A hammock automaton with 6 states. The states have been organized to emphasize
the value of their rank.

Since two equivalent states have the same future, they have the same rank.
Note also that if p is an ancestor of q then η(p) > η(q). Moreover if p is not the
target state, then it has a direct successor q such η(p) = η(q) + 1.

Definition 3. Let A = (Q,A, δ, {1}, F) be an acyclic automaton. Two states
p and q are directly equivalent if they satisfy the following properties.

• p ∈ F ⇐⇒ q ∈ F ,

• Ap = Aq,

• ∀a ∈ Aq, δ(p, a) = δ(q, a).

Observe that two states directly equivalent are Nerode equivalent.

Lemma 5. Let A = (A,Q, δ, {1}, F) be an acyclic automaton such that state
n has no transition. A is a minimal automaton if and only if n ∈ F , A is a
hammock automaton and such that two distinct states of A are never directly
equivalent.

Proof. Assume first that A is a minimal acyclic automaton. Let t and r be
two states of A with no outgoing transition. The states t and r must be final
states, otherwise A is not trim. Thus t ∈ F and r ∈ F and Ar = At = ∅.
Therefore t ∼ s and since A is minimal, then t = s. This proves that n is
the only state with no outcoming transition and that n ∈ F . Hence A is a

14

hammock automaton. Let p and q be two states which are directly equivalent
and therefore equivalent. Since A is minimal p = q.

Assume now that A is a hammock automaton of target state n, which is final,
and such that two different states are never directly equivalent. There is a path
from any state to state n, which is in F . This means that A is co-accessible, and
therefore A is trim. Since A is a hammock automaton we can use the notion of
rank (see Definition 2) to prove that A is minimal. By contradiction, suppose
that A has two different states that are equivalent, we are going to prove that
they are directly equivalent. The set E = {s ∈ Q | ∃s′,s 6= s′, s ∼ s′} is not
empty. Let s ∈ E be an element of minimal rank η(s). Since s ∈ E, there
exists s′ 6= s such that s ∼ s′, and therefore η(s) = η(s′). For every a ∈ As,
δ(s, a) ∼ δ(s′, a), thus η(δ(s, a)) = η(δ(s′, a)) < η(s). But η(s) is minimal in E,
so that δ(s, a) is not in E and therefore δ(s, a) = δ(s′, a). This means that s
and s′ are directly equivalent, which is a contradiction: A is minimal. �

Lemma 6. The Markov chain of the algorithm that generates minimal acyclic
automata is irreducible.

Proof. In order to prove that the Markov chain is irreducible, we need to show
that for any two minimal acyclic automata there exists a path from one to the
other in the Markov chain. Since the Markov chain is symmetric it is sufficient to
prove that from any automaton A, there exists a path to a specific automaton.
We start from A = (Q,A, δA, {1}, F) in Mn and prove that we can reach the line
automaton D = (Q,A, δD, {1}, FD), where FD = {n}, ∀p ∈ Q \ {n}, Ap = {a}
and δ(p, a) = p+1. Since we consider hammock automata only (see Proposition
5), we can use the notion of rank for the states.

First, we assume that ηA(1) = n − 1 and show that we can reach the line
automaton from A by making moves in the Markov chain of Mn. Since ηA(1) =
n − 1, all states have different ranks, which range from 0 to n − 1. Any state
s has at least one transition directed towards the state of rank η(s) − 1. For
each state s 6= n, we remove all transitions starting from this state except one
directed towards the state of rank η(s)−1 (these are valid moves in the Markov
chain). We then remove all states from the set F of final state, except state
n. This results in a line automaton B where the states are not necessarily in
order and where the transitions are not necessarily labeled by the letter a. Note
that after each modification the states keep their rank, therefore the automaton
remains minimal and acyclic.

Since |A| ≥ 2, then for each state s in B there is a letter b such as δB(s, b)
is not defined. Now we will show that for two states p and q such as p is an
ancestor of q, q 6= n, we can reorder the state using Markov chain moves, in
a way that p becomes a direct ancestor of q without changing the order of p’s
ancestors. When all states will be in order we can replace each transition by a
transition labelled by a, reaching the automaton D. The process, depicted in
Figure 7 is the following. Add a transition from p to q, using a remaining letter.
Make q final. Note that until now the rank of the states have not changed, and
the automaton is still a minimal acyclic automaton. Let s be the direct ancestor

15

of q and r be the direct successor of q. Redirect the transition between s and
q towards r. Notice that the automaton remains a hammock automaton, and
that except state r and state 1, all states have only one incoming transition.
Moreover q and s are not directly equivalent because q is a final state and s is
not. Hence the automaton is still a minimal acyclic automaton. Let t be the
direct successor of p. Since q is only accessible from p, t is not an ancestor of q.
Redirect the transition of q towards t. p is an ancestor of q then p and q cannot
be directly equivalent. Now remove the transition between p and t and remove
q from the set of final state. We have changed the direct successor of p. The
order of all ancestor of p have not change.

Using the process repeatedly, we can reorder the states to obtain the au-
tomaton D.

Assume now that ηA(1) < n− 1. Using moves in the Markov chain, we will
change A into an automaton B, where the rank of 1 in B is greater than the
rank of 1 in A. After less than n−1 moves in the Markov chain we will reach an
automaton where the rank of 1 is n− 1, so that we can apply the construction
just above.

For all state s ∈ Q we have 0 ≤ ηA(s) ≤ ηA(1) ≤ n− 2. Since |Q| = n there
exist two states p, p′ such that ηA(p) = ηA(p

′).
Let p be a state such that ηA(p) is minimal and there exists another state

p′ such that ηA(p) = ηA(p
′). Let q 6= p be another state, such that ηA(q) is

maximal in the set of states that are not an ancestor of p (this set is not empty
since it contains at least p′). State p has at least one transition directed towards
a state r of rank ηA(r) = ηA(p)− 1. Let B be the automaton obtained from A
by redirecting this transition towards q.

We now prove that B is minimal and acyclic. It is clear that B is determinis-
tic, and, since the redirection is performed toward q, which is not an ancestor of
p in A, B is also acyclic. The state p′ has a transition directed towards a state
r′ such as ηA(p

′) − 1 = ηA(r
′). Therefore ηA(r

′) = ηA(r) < ηA(p). Therefore
r = r′, since there cannot be two distinct states of same rank strictly smaller
than ηA(p), by definition of p. As a consequence there is a transition from p′ to
r in B, and B is accessible. Since the only state of A with no outgoing transi-
tion is n, n is also the only state with no outgoing transition in B. Thus B is a
hammock automaton. We denote by ηB the rank of the states of B and by δB
its transition function. Note that ηA(p) < ηB(p) since ηA(q) ≥ ηA(p

′) = ηA(p),
and since there is a transition form p to q in B.

By contradiction, suppose that B is not minimal; then there exist two states
o and o′, o′ 6= o, that are directly equivalent in B (see Lemma 5). Notice that
o = p or o′ = p, otherwise the transitions of o and o′ would be the same in both
A and B, thus o and o′ would be directly equivalent in A, which is not possible.
Without loss of generality we suppose that p = o′. Since o is directly equivalent
to p in B, then o is not an ancestor of p in B and o is an ancestor of q in B.
The transitions of o are the same in both A and B. As a consequence o is not
an ancestor of p in A and is an ancestor of q in A. Thus ηA(q) < ηA(o), which
is a contradiction since ηB(q) is maximal amongst states that are not ancestor

16

1 2 5 3 4 6
b a a a b

1 2 5 3 4 6
b a

b

a a b

1 2 5 3 4 6
b a

b

a a b

1 2 5 3 4 6
b a

b

a

a b

1 2 5 3 4 6
b a

b

a

a b

1 2 5 3 4 6
b

b

a

a b

1 2 5 3 4 6
b

b

a

a b

Figure 5: Different moves in a Markov chain to position the state 3 after the state 2. At the
beginning only states 2,6 and 1 are correctly ordered. Then after five moves the state 1,2,6
and 3 are in order

17

of p in A. Therefore B is minimal.
We now prove that the rank of every ancestor s of p has increased: ηA(s) <

ηB(s). By contradiction, suppose that the set J = {j ∈ Q | j is an ancestor of
p in B and ηB(j) ≤ ηA(j)} is not empty. Let s be a state of J such that ηA(s)
is minimal. Let t be a direct successor of s such that ηA(t) = ηA(s) − 1 in A.
Three cases occur.
• there is no path from t to p in A: since s is an ancestor of p in both B

and A then ηB(p) < ηB(s). Moreover s ∈ J , therefore ηB(s) ≤ ηA(s), so that
ηB(p) ≤ ηB(s)−1 ≤ ηA(s)−1 = ηA(t). Since p is a direct ancestor of q in B, by
definition of the transformation leading to automaton B, then ηB(q) < ηB(p),
thus ηB(q) < ηA(t). Since by construction there is no path from q to p in A,
the rank of q is not changed during the transformation: ηB(q) = ηA(q). Hence
ηA(q) < ηA(t). This is not possible since q was chosen as a state of maximal
rank in A amongst those that are not an ancestor of p, and t is such a state.
• t = p: then we have ηA(t) < ηB(t), since the rank of p has increased. Then

ηA(t) + 1 = ηA(s) ≤ ηB(t). But since s is in J , ηB(s) ≤ ηA(s), and therefore
ηB(s) ≤ ηB(t). This is also a contradiction since s is an ancestor of t in B.
• t is an ancestor of p: since s is an ancestor of t in A then ηA(t) < ηA(s).

By hypothesis, the rank of s in A is minimal amongst the states of J , therefore
t /∈ J . Since t /∈ J and t is an ancestor of p, we have ηA(t) < ηB(t). Then
ηA(t) + 1 = ηA(s) ≤ ηB(t). Since s is in J , ηB(s) ≤ ηA(s). Therefore ηB(s) ≤
ηB(t). This is another contradiction, since s is an ancestor of t in B.

Hence, J is empty and for any ancestor s of p, we have proved that ηA(s) <
ηB(s). This is in particular true for the initial state 1, whose rank has increased
during the transformation from A to B, B still being a minimal acyclic automa-
ton. Repeating this construction leads to a minimal automaton whose initial
state has rank n − 1, which has been analyzed in the first part of the proof:
starting from any minimal acyclic automaton A, there is a path in the Markov
chain that reaches D. �

We have all the elements to prove Theorem 2.

Proof (of Theorem 2). To show the ergodicity of the Markov chain we have
to prove that it is irreducible and aperiodic. The irreducibility of the Markov
chain is proved in Lemma 6. Observe that in the algorithm, from any minimal
automaton we have a nonzero probability to choose a triplet (p, a, q) which lead
to stay at the same place in the chain. All vertices of the Markov chain are
therefore aperiodic and the Markov chain is aperiodic too. Then the Markov
chain is ergodic, and it has only one stationary distribution, with convergence
to it. And since the Markov chain is symmetric by construction, the stationary
distribution is the uniform distribution on Mn. �

An estimation of the diameter of the Markov chain can be deduced from the
proof of Lemma 6.

Proof (of Proposition 4). Let A be any minimal acyclic automaton of Mn.
In the proof of Lemma 6 we used at most n− 1 moves in the Markov to change

18

A into a minimal automaton B such that ηB(1) = n−1. Then for each state we
remove at most |A| transitions to obtain a line automaton, hence at most n|A|
globally. We then reordered the states labels, using at most 6 moves for each
state, as depicted in Figure 7, which corresponds to at most 6n moves globally.
We replace each transition by another transition labeled by the letter a, taking
at most 2n moves in the Markov chain. Finally, using at most n moves, we can
remove all final states but the last one, leading to automaton D with a path of
at most O(n) moves. The lower bound of Ω(n) is easily obtained, starting with
a line automaton having no a-transition.

Hence the farthest automaton from D is at distance Θ(n) and the diameter
of the chain is therefore also Θ(n). �

8. Conclusion

In this article we have seen on two instances how to build Markov chains
for the purpose of generating deterministic and accessible acyclic automata,
either in general, or restricted to the class of minimal acyclic automata. These
techniques can easily be adapted to many other families of deterministic acyclic
automata: simple constraints, for instance, can easily be handled by slightly
changing the algorithm. Such a simple constraint could be “the initial state has
no outgoing transition labelled by a” or “the word ab is not recognized”, for
example.

More interestingly, the Markov chain for generating minimal acyclic au-
tomata can be tuned to consider minimal acyclic automata having a fixed num-
ber of final states. The possibility of changing one state from final to non-final or
from non-final to final must be removed, replaced by the possibility of exchang-
ing the final status of two random states (to keep the number of final states
constant). The proof of ergodicity can readily be adapted and the diameter is
roughly the same as in the article. This may be useful to avoid producing min-
imal automata with a large number of final states with high probabilities, as it
is the case for the uniform distribution on the set of minimal acyclic automata.

The main remaining question, which seems to be quite challenging, is to ob-
tain interesting upper bounds on the mixing time of the Markov chains described
in this article.

Acknowledgement: we would like to thanks Cyril Nicaud for his precious help
in most stages of this work.

[1] Marco Almeida, Nelma Moreira, and Rogério Reis. Exact generation of
minimal acyclic deterministic finite automata. Int. J. Found. Comput. Sci.,
19(4):751–765, 2008.

[2] Frédérique Bassino and Cyril Nicaud. Enumeration and random generation
of accessible automata. Theor. Comput. Sci., 381(1-3):86–104, 2007.

[3] Pascal Caron, Jean-Marc Champarnaud, and Ludovic Mignot. Small ex-
tended expressions for acyclic automata. In Sebastian Maneth, editor,

19

CIAA, volume 5642 of Lecture Notes in Computer Science, pages 198–207.
Springer, 2009.

[4] Pascal Caron, Jean-Marc Champarnaud, and Ludovic Mignot. Acyclic
automata and small expressions using multi-tilde-bar operators. Theor.
Comput. Sci., 411(38-39):3423–3435, 2010.

[5] Pascal Caron and Djelloul Ziadi. Characterization of glushkov automata.
Theor. Comput. Sci., 233(1-2):75–90, 2000.

[6] Jean-Marc Champarnaud and Thomas Paranthoën. Random generation of
DFAs. Theor. Comput. Sci., 330(2):221–235, 2005.

[7] Philippe Duchon, Philippe Flajolet, Guy Louchard, and Gilles Schaeffer.
Boltzmann samplers for the random generation of combinatorial structures.
Combinatorics, Probability & Computing, 13(4-5):577–625, 2004.

[8] Philippe Flajolet, Paul Zimmermann, and Bernard Van Cutsem. A calculus
for the random generation of labelled combinatorial structures. Theor.
Comput. Sci., 132(2):1–35, 1994.

[9] Pierre-Cyrille Héam, Cyril Nicaud, and Sylvain Schmitz. Parametric ran-
dom generation of deterministic tree automata. Theor. Comput. Sci.,
411(38-39):3469–3480, 2010.

[10] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, 1979.

[11] David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. Markov Chains
and Mixing Times. AMS, 2008.

[12] Valery A. Liskovets. The number of initially connected automata. Cy-
bernetics, 4:259–262, 1969. English translation of Kibernetika (3) 1969,
16-19.

[13] Valery A. Liskovets. Exact enumeration of acyclic deterministic automata.
Discrete Applied Mathematics, 154(3):537–551, 2006.

[14] Guy Melançon, Isabelle Dutour, and Mireille Bousquet-Mélou. Random
generation of directed acyclic graphs. Electronic Notes in Discrete Mathe-
matics, 10:202–207, 2001.

[15] Guy Melançon and Fabrice Philippe. Generating connected acyclic digraphs
uniformly at random. Inf. Process. Lett., 90(4):209–213, 2004.

[16] Mehryar Mohri. String-matching with automata. Nord. J. Comput.,
4(2):217–231, 1997.

[17] Dominique Revuz. Minimisation of acyclic deterministic automata in linear
time. Theor. Comput. Sci., 92(1):181–189, 1992.

20

