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Alexandre Bergé, Mathieu Cladière, Johnny Gasperi, Bruno Tassin, Régis

Moilleron, Annie Coursimault

To cite this version:
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émanant des établissements d’enseignement et de
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Abstract 

Introduction: Phthalate Acid Esters (PAE), commonly named Phthalates, are toxics classified as 

endocrine-disrupting compounds; they are primarily used as additives to improve the flexibility in 

polyvinyl chloride.  

Occurrence: Many studies have reported the occurrence of phthalates in different environmental 

matrices, however none of these studies has yet establish a complete overview for those 

compounds in the water cycle within an urban environment. This review summarizes PAE 

concentrations for all environmental media throughout the water cycle, from atmosphere to 

receiving waters. Once the occurrences of compounds have been evaluated for each environmental 

compartment (urban wastewater, wastewater treatment plants, atmosphere and the natural 

environment), data are reviewed in order to identify the fate of PAE in the environment and 

establish whether geographical and historical trends exist. Indeed, geographical and historical 

trends appear between Europe and other countries such as USA/Canada and China, however they 

remain location-dependent.  

Discussion: This study aimed at identifying both the correlations existing between environmental 

compartments and the processes influencing the fate and transport of these contaminants into the 

environment. In Europe, the concentrations measured in waterways today represent the 

background level of contamination, which provides evidence of a past diffuse pollution. In 

contrast, an increasing trend has actually been observed for developing countries, especially for 

China. 

Keyword: phthalates, DEHP, review, state-of-the-art. 

Introduction 

Most of studies, published during the last three decades, have reported several 

categories of man-made chemicals, classified as “endocrine-disrupting 
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compounds” (EDCs). Among the most frequently cited EDCs, phthalates are of 

particular concern due to their ubiquity and generally higher levels found in 

environment comparatively to other EDCs (Sanchez-Avila et al. 2009; Fauser et 

al. 2003; Staples et al. 1997; Fatoki and Mathabatha 2001). The predominant use 

of Phthalic Acid Esters (PAE) is for improving flexibility in polyvinyl chloride 

(PVC) (Giam et al. 1984). For instance, the amount of DEHP in PVC depends on 

plastic composition. Some products can contain up to 50%, but typically there will 

be approximately 30% DEHP in most PVC products (Ranke 2005). Moreover, 

their applications extend to industrial and/or domestic sectors, depending on their 

molecular weight (Table 1). Low molecular weight, especially Dimethyl phthalate 

(DMP) and Diethyl phthalate (DEP) have therefore been incorporated into 

cosmetics, fragrance and other personal care-products. Besides, Di-n-butyl 

phthalate (DnBP) is also used in epoxy resins, cellulose esters and special 

adhesive formulations. Additionally, high molecular weight and branching alkyl 

chain PAEs, primarily Butylbenzyl phthalate (BBP), Di-n-octyl phthalate (DnOP) 

and Di-(2-ethylhexyl) phthalate (DEHP) are being incorporated into food-

packaging, building materials, home furnishing, clothing and medical products 

(Liu et al. 2010; Staples et al. 1997; Jackson and Sutton 2008; Cespedes et al. 

2004). Despite their various uses, PAE have in recent studies leveled off in 

American, Canadian and European production, mainly as a result of highly 

restrictive regulations (EU 2005, 2004, 2007, 2008; CPSI 2008), while worldwide 

output has been stagnating to 6,000,000 tons in 2006 (Peijnenburg and Struijs 

2006). This difference may stem from the increase in consumption from emerging 

nations, such as Brazil, Russia, India and China. The European and North 

American productions have however evolved because of the replacement of 

DEHP by heavier and more stable phthalates (Di-iso-nonyl phthalate and Di-iso-

decyl phthalate) therefore less subject to release into the environment. 

Despite their societal and economical benefits, PAE consumption has lead to the 

release of PAE into the environment, where they are now ubiquitous and can be 

found in air, water, sediments and soils. This study focuses more specifically on 6 

most commonly studied congeners of this family (Table 1): Dimethyl phthalate 

(DMP), Diethyl phthalate (DEP), Di-n-butyl phthalate (DnBP), Butylbenzyl 

phthalate (BBP), Di-n-octyl phthalate (DnOP) and Di-(2-ethylhexyl) phthalate 

(DEHP). Most studies in the literature examine the occurrence and behavior of 

these six compounds in various environmental matrices (surface water, 

wastewater, atmosphere and treated water) given that these compounds are 

regularly found in urban and environmental compartments at significant levels 

(tens or more µg.l
-1

) (Peijnenburg and Struijs 2006; Vethaak et al. 2005; Cespedes 

et al. 2004; Fauser et al. 2003; Abb et al. 2009). 

Strategy of this review 

Most of the literature on PAEs in the environment, as published since 1990 

(Staples et al. 1997; Vethaak et al. 2005; Deblonde et al. 2011) have been 

concerned with one or more compartments, primarily downstream compartments 

such as WWTP effluent and receiving waters, but none of these works has dealt 

with all environmental compartments, in particular urban wastewater, nor with 

PAE behavior throughout the whole water cycle. As similarly done for the meta-

analysis of environmental contamination by alkylphenols (Bergé et al. 2012a), the 
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purpose of this review is to collect a substantial dataset for all compartments (Fig. 

1) from the atmosphere (gaseous phase and rain water) and extending to urban 

areas (industrial, residential and man-made wastewater, WWTP influent and 

effluent, WWTP sludge and stormwater) and the natural environment (surface 

water, sediments and soils). Unfortunately, the set of congeners reported in the 

various papers has not been consistent and equivalent between compartments. 

Some papers have reported on as few as one or two congeners (DEHP, DnBP or 

DEP), while others have reported on four or six (DMP, DEP, DnBP, BBP, DEHP 

and DnOP). In this review, PAE refers systematically to the sum of these six 

congeners. From the database we built, statistical calculations have been derived 

for certain sample sets. The year of sample extraction was not specified in all 

references, so it was assumed that the samples were extracted on the article 

publication date. It was also decided that this review focused exclusively on 

environmental contamination and not on biota or bioaccumulation processes. 

Moreover, the concentration ranges reported in all tables correspond to minimal 

and maximal concentrations of each compound for each compartment. The other 

values represent median concentrations calculated by authors. This review is also 

aimed at determining whether temporal and/or geographical trends can be drawn 

in PAE contamination as observed for alkylphenols (Bergé et al. 2012a). To 

achieve this objective, the data were examined from geographical perspective. 

Recommendations for further research will also be provided. 

ATMOSPHERE 

Air contamination 

PAE in the atmosphere or in urban areas are generated by various emission 

sources, including volatilization from materials, industrial processes, waste 

combustion and wastewater treatment processes (Salapasidou et al. 2011). It has 

been calculated that approximately 4% of the quantity of DEHP can evaporate 

from materials such as floorings, rain clothes, toys, soles of shoes (Ranke 2005). 

DEHP was indeed detected in aerosols emitted from the aeration tank of a WWTP 

ranging from 71.1 to 228 ng/m
3
 (Lepri et al. 2000). As shown in Table 2, a small 

number of air samples (10 references in all) has been reported for PAE. From data 

collected, PAE contamination globally lies in the 1-50 ng.m
-3

 range for all 

congeners, except for DEHP presenting higher levels (up to 3,640 ng.m
-3

). The 

analysis of this database reveals that European samples were consistently above 

the values reported in the world (USA, China, etc.), and DEHP was the most 

abundant phthalate in air, with concentrations ranging from 0.08 to 3,640 ng/m
3 

(Müller et al. 2003). Recent studies conducted by Tlili et al. (2010) and Teil et al. 

(2006), in the Parisian area (France), underscored that phthalates are preferentially 

associated with the gaseous phase rather than aerosols. For instance, Tlili et al. 

(2010) reported that between 60% to 70% against 40% to 30%, respectively, of 

phthalates are associated to gaseous phase. In addition, the same authors reported 

that the phthalates exhibiting short alkyl chains and high vapor pressures 

(especially, DMP and DEP) are predominant in the gaseous phase and inversely 

for the others compounds. Study conducted by Xie et al. (2005) showed that the 

air-sea exchange was preferentially dominated by the deposition, especially for 

DnBP (-60 to -686 ng/m²/d) and BBP (-4 to -28 ng/m²/d). Additionally to this 
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latter point, the fluxes calculated for DEHP (-95 to 686 ng/m²/d) highlighted a 

more complicated mechanism. Moreover, DnBP and DEHP total (dry and wet) 

depositions, to the Great Lakes (Canada), provided by Eisenreich et al. (1981) 

were estimated at 3.7 and 16 tons per year, respectively. This indicates that the 

atmosphere could be one of the major contamination sources of PAEs. However, 

according to Staples et al. (1997) and, more recently to Xie et al. (2007), 

phthalates are subject to photo-degradation, and therefore generally do not persist 

in the atmosphere. Authors reported photo-degradation half-lives of common 

phthalates ranging from 0.3 to 15 days. A study led by Salapasidou et al. (2011) 

underlined that concentrations of DEHP were significantly higher on urban-traffic 

areas (4.63 to 45.0 ng/m
3
; median 19.4 ng/m

3
) than on urban-industrial site (up to 

6.50 ng/m
3
; median 2.80 ng/m

3
) implying generally an input from vehicular 

emissions. Similarly, Wang et al. (2008) reported that concentrations were about 

3.5 higher above urban sites than above suburban sites. These authors attributed 

this difference to both many point-sources and environmental recycling. 

Additionally, Dargnat (2008) underlined the presence of seasonal variability 

above the Parisian area, with smaller concentrations for spring and during 

summer. This was previously observed by Guidotti et al. (2000) in Italy and Teil 

et al. (2006) in France above the same area. Due to the limited number of studies 

available, no distinct temporal or geographical trend could be drawn. 

Rain water 

A few measurements of PAE in rain water have been undertaken (see Table 3, 10 

references in all). Outdoor levels of DEHP lie on the order of 0.02 to 39.0 µg.l
-1

 

and 0.03 to 11.0 µg.l
-1

 for DnBP. At the scale of Europe, data have shown that 

PAE concentrations in rain water seem to decline, which implies that the 

environment in European countries is exposed to decreasing contamination. In 

addition, data show that PAE concentrations in rain water are more important in 

Northern European countries than Southern European countries, which implies 

that the fate of PAE in the atmosphere could be governed by atmospheric currents. 

A similar phenomenon has been reported for alkylphenols (Bergé et al. 2012a). 

Dargnat (2008) emphasized that passive volatilization from buildings, in urban 

areas, was the prevailing source of phthalate in rain water. Author therefore 

concluded that phthalate uses in building materials constitutes a significant source 

of contamination. Finally, Vethaak et al. (2005), in the Netherlands, reported that 

most of phthalates present in rain water were at concentrations comparable to 

those in surface water.  

URBAN AREAS 

Sewer contamination 

Industrial, man-made and residential wastewater 

As reported in Table 4 and Figure 2, only a few measurements of PAE have been 

performed in wastewater (4-5 references for each type of wastewater). Industrial 
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DEHP levels were in the 0.01 to 4,400 µg.l
-1

 range (median: 34.6 µg.l
-1

), i.e. twice 

as low as levels in residential wastewater (3.30-160 µg.l
-1

; median: 61.3 µg.l
-1

) 

and in man-made wastewater (0.60-470 µg.l
-1

; median: 66.0 µg.l
-1

). In Europe and 

North America, it has been reported that high DEHP and other phthalate 

concentrations were measured in industrial wastewater. In the USA, for instance, 

DEHP levels of 4,400 µg.l
-1

 were measured in untreated industrial wastewater 

(Clark et al. 2003). Similarly, Jackson and Sutton (2008) quoted DEHP, DEP and 

DnBP levels reaching 2,700, 100 and 120 µg.l
-1

 in industrial laundry and adhesive 

manufacturer wastewaters. Both studies led by Vethaak et al. (2005) and Sanchez-

Avila et al. (2009) showed that levels between 45 and 100 µg.l
-1

 have also been 

measured in residential wastewater in the Netherlands and Spain. Some authors 

mentioned that the high concentrations measured in Maresme wastewater 

(Catalonia, Spain) and Parisian sewer network (France) would point out that PAE 

are still being produced and used in industrial, household and agricultural 

formulations despite the implementation of European regulations (EU 2005, 2004, 

2007) restricting their use within the EU to levels < 0.1% (Sanchez-Avila et al. 

2009; Bergé et al. 2012c). 

Wastewater Treatment Plant Influent 

As opposed to industrial, man-made and residential wastewater, a large number of 

WWTP samples have been analyzed for PAEs (see Table 5, i.e. 13 references). 

Moreover, according to these concentrations, the PAE median levels reported for 

WWTP influent were in the same order of magnitude than residential and man-

made wastewater but in the lower range of industrial wastewater (PAE: 50.7 µg.l
-1

 

in WWTP influent vs 72.6, 42.8 and 139.9 µg.l
-1

 in these types of wastewater, 

respectively, Fig. 2) (Jackson and Sutton 2008; Sanchez-Avila et al. 2009; Bergé 

et al. 2012b). The variations in PAE concentrations among WWTP influent have 

been further investigated using published data, which have provided sufficient 

data for geographical areas including Europe and North America (Fig. 3). 

Surprisingly, no data was available for Chinese plants. This figure also points out 

the 10
th

 and 90
th

 percentiles (i.e. “the whiskers”) as well as the 25
th

 and 75
th

 

percentiles (“boxes”); the medians are also highlighted. PAE median 

concentrations in samples from North America and Europe were quite similar: 

49.5 and 51.8 µg.l
-1

, respectively. It is also interesting to note that European 

countries display only a few outliers to the high side (see Table 5). In Spain and 

France, these outlier concentrations typically exceed 160 and 100 µg.l
-1

, i.e. 2-3 

times the average level, respectively. These outliers are not yet explained, 

although the presence of untreated loaded industrial effluent could be 

hypothesized. Additionally, the database analysis indicates that the PAE 

concentrations measured in French influent were quite similar to those measured 

in Europe except in Spain, where DEHP concentrations in influent were 

significantly lower: i.e. 5 times the average level (Reyes-Contreras et al. 2011; 

Martin-Ruel et al. 2010; Bergé et al. 2012b). This difference could be due to the 

lower DEHP consumptions in Spain where this congener was found in lower 

levels than in other European countries. 
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Wastewater Treatment Plant Effluent 

Understanding the biodegradation processes of phthalic compounds proves to be a 

critical factor in predicting the fate of these compounds in the environment. From 

an overall standpoint, the removal of PAE by conventional activated sludge 

WWTPs has been well documented (Dargnat et al. 2009; Tan et al. 2007; Barnabé 

et al. 2008; Marttinen et al. 2003). Most of studies reported removal up to 90%. 

Additionally, recent studies conducted by Bergé et al. (2012b) and Gasperi et al. 

(2010) explained that biofiltration coupled to physicochemical lamellar 

clarification could be a promising alternative to activated sludge tanks for today 

plant built in large urbanized areas where the building pressure makes available 

land scarce. A large number of samples from WWTP effluent have been analyzed 

with respect to PAE (see Table 6). Generally speaking, effluent concentrations lie 

in the range of 0.02-49.9 µg.l
-1

 (mean: 0.80 µg.l
-1

) for DEP and 0.02-69.0 µg.l
-1

 

(mean: 2.44 µg.l
-1

) for DEHP, with PAE ranges extending from 0.07 to 108 µg.l
-1

. 

As with WWTP influents, no clear difference has been observed for PAE 

concentrations in final effluent whatever the location (Fig. 3). Median PAE 

concentrations in the samples from North America and Europe were quite similar, 

lying in the 4.85-5.35 µg.l
-1

 range. As previously mentioned for WWTP influent, 

European effluent has exhibited a few high outliers. In Spain, these outlier 

concentrations typically exceeded 50 µg.l
-1

; i.e. 10 times the average level. The 

little availability of phthalate data before 2000 does not allow defining a trend of 

these compounds in the discharges of WWTP. Surprisingly, the PAE median 

concentration measured in Spanish WWTP effluent exceeded that in WWTP 

influent (de los Rios et al. 2012; Bizkarguenaga et al. 2012; Sanchez-Avila et al. 

2009; Sanchez-Avila et al. 2012). However, no explanation could be brought by 

authors to elucidate this difference, but the WWTP efficiency could however be 

subject to questioning. 

According to our review, PAE can display moderate (50%) to high (94%) removal 

rates. In addition, a study conducted by Vogelsang et al. (2006) explained that 

chemical and biological treatment eliminates from 50-60% of phthalates in a 

Norwegian WWTP. In Spain, Sanchez-Avila et al. (2009) reported PAE removal 

efficiency of 68%. Finally, a study led by Marttinen et al. (2003) explained that 

DEHP has been removed from wastewater with an efficiency of 94%. In addition, 

both studies conducted by Fauser et al. (2003) and in EU (2008) reported similar 

removal efficiencies for DEHP. Ordinarily, phthalates are removed by different 

processes occurring within WWTP, including solid settlement, sorption to sludge, 

volatilization, biodegradation, hydrolysis and/or photolysis (Rogers 1996). 

Sorption on sludge is considered to be one of the major pathways for PAE 

removal in WWTP. Moreover, even if DEHP may be considered inherently 

biodegradable under aerobic conditions (Staples et al. 1997), it was not removed 

by the biological pathway. A study conducted by Gavala et al. (2004) showed that 

enzymatic pretreatment increased DEHP biodegradation rate in secondary sludge. 

Furthermore, it was showed that recirculating sludge and thus retaining specific 

micro-organisms could stabilize removal capacity up to 86% whereas continuous 

flow had a varying removal of 77-88% (Oliver et al. 2007, 2005). Alternatively, 

Vogelsang et al. (2006) and Staples et al. (1997) reported that DEP, a soluble and 

biodegradable compound under aerobic conditions, has been removed during 

biological treatment process, although it has not been significantly eliminated by 
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any chemical or mechanical sedimentation processes. As a general rule, in WWTP 

effluent, DEHP is expected to be the most abundant congener. Phthalates’ 

distribution is however lightly different, compared to WWTP effluents, with a 

higher proportion of DnBP and DEP (Fig. 4). 

Wastewater Treatment Plant Sludge 

As mentioned above, sorption on sludge is considered to be one of the major 

pathways for PAE removal in WWTP (Kinney et al. 2006; Cai et al. 2007; 

Barnabé et al. 2008; Clara et al. 2010) (Fig. 5). A large number of samples have 

been analyzed for PAEs (see Table 7, i.e. 30 references). In accordance with its 

predominance in wastewater, Harrison et al. (2006) and Tan et al. (2007) showed 

that DEHP was the most abundant phthalate in sludge (Fig. 4). In addition, most 

studies have reported significant DEHP levels in sludge, i.e. in the range of 150-

600 mg/kg.dw. For example, levels up to 3,514 mg/kg.dw in digested sludge from 

Spain (Abad et al. 2005), 661 mg/kg.dw in digested sludge from Sweden 

(Sweetman 1994) and 578 mg/kg.dw in digested sludge from USA (Staples et al. 

1997) have been recorded. Additionally, a recent study conducted by Clara et al. 

(2010) explained that PAE sorption importance and phthalate removals via sludge 

increased with the molecular weight, and is therefore depending on the molecular 

weight (Table 1). As a complement, authors reported that proportional mass 

fraction removed with the sludge amounts to 3% for DMP, 1% for DEP, 76% for 

DnBP, 21% for BBP and 78% for DEHP. Generally speaking, sludge contents lie 

in the range of 0.02-2.00 mg/kg.dw (mean: 0.19 mg/kg.dw) for DMP, 0.01-11.0 

mg/kg.dw (mean: 0.45 mg/kg.dw) for DEP and 0.32-3,514 mg/kg.dw (mean: 60.3 

mg/kg.dw) for DEHP. It is interesting to note that certain phthalates display only a 

few outliers to the high side. For DnBP and BBP, the outlier contents typically 

exceed 260 and 35 mg/kg.dw, respectively, i.e., 490 and 150 times the average 

level (0.53 and 0.23 mg/kg.dw, respectively). The little availability of phthalate 

removal efficiencies in biosolids suggested that heat drying and anaerobic 

digestion were less effective at reducing phthalates, particularly DEHP, than 

composting. As a complement, both studies conducted by Gibson et al. (2005) and 

Williams (2007) reported that composting removes between 64 and 70% of 

DEHP, respectively. Based on our database, PAE contents are statistically close 

regardless of the location considered, especially between European and Chinese 

samples, and moreover DEHP contents have been decreasing in both 

anaerobically-digested sludge and final sludge. 

Stormwater 

Although it has been established that stormwater is responsible for the spread of 

pollutants, especially in urban areas, data concerning the emission, occurrence and 

fate of PAE in stormwater remains poorly reported (Björklund et al. 2009; Rule et 

al. 2006; Makepeace et al. 1995; Clara et al. 2010; Pitt et al. 1999; Zgheib et al. 

2012). According to these authors, phthalates in stormwater originated from 

plasticizers in PVC, paints, building materials, etc. For instance, wastewater from 

car washes can also make a significant contribution to the emission of DEHP 

(Vikelsoe et al. 1998). Interestingly, PAEs are not chemically bound to the 

material and may migrate from products during use and disposal (Cadogan et al. 
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1993). DEHP has been measured at concentrations between 0.45 and 24.0 µg.l
-1

 in 

urban stormwater in Austria (Clara et al. 2010). DEHP was also measured in all 

urban and suburban samples between 3 and 58 µg.l
-1

 (Zgheib et al. 2012). Such 

levels were higher to those previously reported for stormwater in Sweden (5 µg.l
-

1
, (Björklund et al. 2009)) and in London (0.75 to 1.25 µg.l

-1
, (Rule et al. 2006)). 

Finally, screening performed in the 1990s revealed higher concentrations of 

phthalates in stormwater compared to results from studies performed in 2000s, 

from less than ten times higher for DnOP and DEHP (Makepeace et al. 1995) up 

to 140 times higher for BBP (Pitt et al. 1999; Björklund et al. 2009). The higher 

concentrations measured in previous studies may be explained by the difference 

between phthalate uses a decade ago and the current situation. 

NATURAL ENVIRONMENT 

Surface water 

Surface water is commonly considered as the natural compartment most affected 

by human pressures, since this water is subjected to the discharges of treated 

and/or untreated wastewater and/or stormwater (Lin et al. 2009). Therefore, 

throughout the world, the occurrence and fate of PAE in surface water have been 

well documented, as demonstrated by the 28 references pertaining to surface 

water contamination (see Table 8). First, close attention must be paid when 

comparing concentrations reported in literature, since industrialized and urbanized 

watershed have been monitored (Vitali et al. 1997; Tan 1995; Yuan et al. 2002; 

Long et al. 1998; Sha et al. 2007; Zhu and Qiu 2011; Dargnat 2008). Globally and 

at the world scale, PAE contamination in surface water varies from few µg.l
-1

 to 

several tens of µg.l
-1

. The variations in PAE concentrations in surface water can 

be examined using published data, which provide sufficient details for 

determining the statistical distribution of concentrations. Figure 3 summarizes 

data for three geographical areas, namely Europe, North America and China. The 

median DEHP concentrations for Europe and China are very similar, i.e. 1.05 and 

1.11 µg.l
-1

, respectively; the median concentration in the North American samples 

is relatively lower (0.27 µg.l
-1

). Moreover, median PAE concentrations in the 

North American samples (0.29 µg.l
-1

) are notably lower than the Chinese (1.24 

µg.l
-1

) and European samples (1.18 µg.l
-1

). It is also interesting to note that all 

geographical areas displayed a few high outliers. In United Kingdom (Long et al. 

1998), these outlier concentrations typically exceeded 15 µg.l
-1

 (i.e., 12 times the 

average level). In addition, in China (Sha et al. 2007), they were above 28 µg.l
-1

 

(i.e., 20 times the average level). 

It is obvious from the database that PAE concentrations in European surface water 

first increased before exhibiting a decrease due to tighter regulations (EU 2005, 

2004, 2007). It would be appropriate to treat these datasets as two separate time 

series (Fig. 6). The first series contains the samples from European countries 

before adoption of the Water Framework Directive (Thüren 1986; Ernst et al. 

1988; Fatoki and Vernon 1990; Law et al. 1991; Vitali et al. 1997; Long et al. 

1998; Belfroid et al. 1999), all of them exhibit PAE concentrations from 0.04 to 

15.8 µg.l
-1

. The second series is composed of samples from European countries 

after the WFD implementation (Penalver et al. 2001; Fromme et al. 2002; Vethaak 
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et al. 2005; Bendz et al. 2005; Prieto et al. 2007; Sanchez-Avila et al. 2012), 

revealing lower concentrations, i.e. of about 1.16 µg.l
-1

 for the sum of PAE. The 

PAE concentrations plotted as a function of time for these two series are shown in 

Figure 6. In contrast, concentrations measured in the Chinese surface water have 

been increasing for the last decade (see Table 8). This is the result of the constant 

increase of industrialization, consumptions of phthalates and absence of regulation 

in China and more generally in developing countries (Zhu and Qiu 2011; Zeng et 

al. 2008; Sha et al. 2007; Li et al. 2006; Chen et al. 2012). 

Most studies focusing on surface water analyze only the dissolved phase, hence 

only a few results are available for suspended solids (Table 9; four references 

available). According to these four studies, levels of phthalates in suspended 

solids range from a few to 630 mg/kg.dw (Table 9). Such contamination levels 

may be explained by the high hydrophobicity of DEHP and DnBP (with respect to 

their Log Kow; see Table 1), which leads to sorption and accumulation of these 

compounds on suspended solids (Gounaris et al. 1993; Sha et al. 2007). For less 

hydrophobic compounds, contents are lower, i.e. about between 0.05 and 0.20 

mg/kg for all compounds, except DEHP (0.70-630 mg/kg). Finally, suspended 

solids may, however, play a key role in aquatic systems since, under low-flow 

conditions, particles can settle and contribute to sediment formation, thus yielding 

contaminant stocks (Fig. 1 and Fig. 5). This phenomenon has been demonstrated 

for some heavy metals, pesticides and PCBs by Zgheib et al. (2012).  

Sediments 

Several sediment samples have been collected from rivers and lakes across 

Europe, North America and developing countries (particularly China and India) 

(Vitali et al. 1997; Fromme et al. 2002; Yuan et al. 2002; Vethaak et al. 2005; Sha 

et al. 2007; Zeng et al. 2008; Liu et al. 2010). The amount of DnBP and DEHP 

measured in these samples (see Table 10; 23 references) varied from 0.01 to 115 

mg/kg.dw (median, 0.44 and 1.90 mg/kg.dw, respectively). Generally speaking, 

DMP and DEP were not detected in sediments (Fig. 4), mainly due to their low 

hydrophobicity. In addition, a recent study led by Liu et al. (2010) reported that 

DEP is easily degraded in top material and cannot be eluted in deep sediments. 

Moreover, under anaerobic conditions, DnBP and BBP are easily degraded 

whereas DEP and DEHP were poorly removed (Yuan et al. 2002). From the 

exhaustive data in literature, it is clear that PAE are often present in sediment 

regardless of the location (Fig. 2). The variation in phthalate contents among 

sediments was examined using published data, which provided sufficient details 

for determining the statistical distribution of these concentrations. Huang et al. 

(2005) examined the evolution of DEHP sediment content along a river transects 

densely populated. They revealed the existence of dynamic processes occurring in 

surface water, such as sorption to settleable particles and atmospheric 

volatilization governing the fate of phthalates in the environment and could lead 

to the formation of sinks in sediments and atmospheric compartment. 

A comparison between Tables 9 and 10 indicates that the PAE contents found in 

sediments are close to those found in suspended solids (Fig. 5). As previously 

mentioned and highlighted in Figure 1, sediments and suspended solids are linked 

through sedimentation during low-flow periods and through re-suspension during 

high-flow periods (Mitsunobu and Takahashi 2006). Presumably, the high Kow of 
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certain phthalates explains their sorption to particles in water, which in turn settle 

to form sediment (Staples et al. 1997). Additionally, this phthalate accumulation 

in sediments is fed and promoted by anthropogenic suspended solids, such as 

particles released by municipal WWTP and untreated water (Srivastava et al. 

2009; Huang et al. 2005). 

Soils 

Several measurements of phthalates in soils have been undertaken (see Table 11, 

12 references); these have mainly concerned agricultural and urban soils. DEHP 

and DnBP levels ranged, respectively, from 0.02 to 264 mg/kg.dw (median: 3.33 

mg/kg.dw) and 0.01 to 30.1 mg/kg.dw (median: 0.96 mg/kg.dw) for both types of 

soils. A study performed by Michael et al. (1984) highlighted that these two 

compounds could enter soils via irrigation and pesticide application. In addition, 

both studies conducted by Wang et al. (2003) and Dolgen et al. (2007) reported 

that sewage sludge application could also lead to soil contamination, 

phytotoxicity, and could cause the accumulation of phthalates in the food supply. 

Some studies have observed high biodegradation rates of DnBP and DEHP in 

soils (Juneson et al. 2001; DiGennaro et al. 2005). Biodegradation however is not 

the only pathway for eliminating DEHP and DnBP in soils. Other processes, such 

as hydrolysis and photolysis may affect DEHP and DnBP concentrations and 

occurrence rates. These processes however are recognized to be less important 

than biodegradation (Yan et al. 1995). A study led by Chang et al. (2004) 

explained that optimal PAE degradation is enhanced when DnBP and DEHP are 

present simultaneously. It may be due to the large carbon source and energy 

provided by both compounds. In addition, in specific physicochemical conditions, 

DEP biodegradation can lead to the formation of DMP and its monoester 

(Cartwright et al. 2000). Interestingly and according to the available literature on 

soils (Table 11), similar contents for agricultural and urban soils have been 

observed. This homogeneity is quite surprising but could be explained by a global 

contamination through atmospheric deposits (Fig. 1). Nonetheless, a direct 

comparison of soil contamination is rather difficult and subtle, since various 

processes may be occurring. The differences or homogeneity observed can in fact 

reflect different inputs, environmental factors, including oxygen availability and 

nutrient amounts in soil, and sources or either different dynamic pollutants in the 

soils (Semple et al. 2001; Namkoong et al. 2002). 

Compost particle sizes have been investigated by several studies (Amellal et al. 

2001; Delhomenie et al. 2002; Chang et al. 2009). Authors explained that the 

smaller the particle was, the higher the specific surface was and the lower the 

porosity was. This favored the microorganism settlement and therefore promoted 

microbial degradation activity. Finally, the use of straw compost in remediating 

contaminated soil by phthalates is therefore effective to solid wastes recycling. 

The variation in PAE contents among soils was examined using published data, 

which provided sufficient details for determining the statistical distribution of 

these contents. Figure 3 shows the data from Europe and China. Soils in China 

(3.09 mg/kg.dw) seem to be slightly more contaminated than European soils (0.17 

mg/kg.dw). This difference may be linked to several factors: i) greater use or 

consumption of phthalate-containing goods in China; ii) a higher contamination of 

air in China, and iii) an absence of pertinent regulations on sludge amendment. 
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DISCUSSION AND RECOMMENDATIONS FOR 

FURTHER STUDY 

It is now obvious from the concentrations and contents measured in the different 

environmental compartments that phthalates are ubiquitous environmental 

contaminants. Their concentrations and trends in most environmental 

compartments however remain location-dependent. This review has highlighted 

some geographical disparities, especially between Europe, North America and 

China. In Europe, historical trends were also highlighted. In pursuit of the WFD 

implementation, more specific data for most congeners are needed in upstream 

compartments to enable source elucidation and to elaborate potential source 

control action. It is obviously important to measure all industrially-significant 

phthalates across all samples. It is also important to monitor chemicals used to 

replace phthalates after the implementations of restrictive regulations worldwide, 

such as Di-iso-nonyl phthalate (DiNP) and Di-iso-decyl phthalate (DiDP). Finally, 

phthalate metabolites have to be investigated, which are supposed to be the active 

molecule of the estrogenic effect (Rais-Bahrami et al. 2004). 

As mentioned above, DEHP is always present in all environmental compartments. 

It is moreover the abundant phthalate in all matrices, particularly in solid matrices, 

such as sludge and suspended solids (Fig. 4). The result is that what is left over 

from many industrial and commercial products of this compound leads to the 

contamination of the wastewater of urban areas. 

In Europe, regulations banning products containing certain phthalates (DEHP, 

DnBP and BBP) have been implemented since 2000. It is therefore relevant to 

evaluate the effectiveness of these regulations by means of reliable and accurate 

measurements of the PAE contamination levels for sediments, soils and surface 

water as a function of time. Indeed, each day without consistent restrictions means 

that phthalates are produced in huge quantities and it can subsequently result on a 

widespread use in a lot of products leading to uncontrolled environmental 

discharges and dissemination. Recent observations in Europe have however 

shown that PAE concentrations have not been increasing. Moreover, a decreasing 

trend has actually been observed just over the last few years. Nevertheless, it is 

important to track these changes closely. As previously noted however, sediments 

and atmosphere behave like major sinks for PAE in the environment. The role of 

atmosphere has to be better understood since atmosphere seems to play a key role 

in PAE widespread. Recent measurements in China, whatever the media, have 

indicated increasing phthalate contents and concentrations. In addition, the 

environmental data exhibit a large spatial variability, reflecting differences in 

phthalate contaminations in various areas of China, which might be caused by 

uneven development of heavy industry, the imbalance of enforcement or the 

specific geographical location. Finally, even if trends show decreases across 

industrialized countries, especially in Europe and North America, the levels being 

recovered are still significant (up to 100 µg.l
-1

) and still contribute to build the 

background level. A similar trend has been observed for alkylphenols (Bergé et al. 

2012a). In addition, and based on the data collected, there are a few samples with 

very high levels as compared to the average (see the high outliers in all 

environmental media). A closer attention needs to be paid to these data – why are 
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these few samples so highly contaminated? Is it related to industrial activities or 

to unknown diffuse sources? Understanding these outliers may contribute to 

elucidate the mechanisms by which these samples have become contaminated. 

The mechanisms involving these contaminants between the environmental 

compartments cannot be easily distinguished; possibilities include: 

biodegradation, volatilization, sorption to biomass, and particle sedimentation. 

The three latter mechanisms may be important in explaining the distribution 

changes throughout the whole water cycle from wastewater to the natural 

environment.  This change is featured by an increase of DnBP and a decrease of 

DEHP and DEP (Fig. 4). Research on these mechanisms, particularly the 

processes acting in WWTP, is required in order to improve better understanding 

and to quantify what proportion is being volatilized into the atmospheric 

compartment and how much is adsorbed to biomass. The latest research on 

WWTP has shown high efficiency of the processes acting on sewage treatment 

plants as well as an insignificant contribution from discharges (Dargnat et al. 

2009; Bergé et al. 2012b; Martin-Ruel et al. 2010). Additionally, latest research 

showed that DEHP removal was dependent on various parameters, but that the 

type of biomass could significantly enhance removal (Oliver et al. 2007, 2005). 

The removal of phthalates from wastewater can, however, be improved by adding 

tertiary treatment such as nanofiltration, reverse osmosis, ozone oxidation, UV 

irradiation or activated carbon filters to existing processes, in spite of the high cost 

of  these processes (Bodzek et al. 2004; Agenson et al. 2003; Verliefde et al. 

2007; Oh et al. 2006). 

A serious element dictating the fate of micro-pollutants in urban areas is their 

release into the environment during storms. During wet-weather periods, the 

operations of wastewater treatment plants are modified and may influence the 

quality of effluent discharged into the environment (Bergé et al. 2012a; Gilbert et 

al. 2011; Bergé et al. 2012b). Additionally, combined sewer overflow discharges 

can happen (Zgheib et al. 2012; Gasperi et al. 2008). During wet-weather events, 

the re-suspension of in-sewer deposits provides for additional pollution at the 

WWTP. This additional contamination can then increase the load of phthalates 

and disturb usual plant operations and, in return, efficiency. Finally, nowadays, no 

information is available to evaluate the runoff contribution to wastewater. 
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Figure 1: Interactions between the various environmental compartments – Cited from Bergé et al. 

(2012a) 
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Figure 2: Total PAE (DMP + DEP + DnBP + BBP + DEHP + DnOP) concentrations (in µg.l
-1

) in 

liquid matrices (WWTP: Wastewater Treatment Plant - global scale) 
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Figure 3: Distributions of total PAE (DMP + DEP + DnBP + BBP + DEHP + DnOP) 

concentrations (µg.l
-1

) and contents (mg/kg.dw) in WWTP influent and effluent, surface water, 

sediments, sludge and soils from various locations (WFD: Water Framework Directive; North Am: 

North America) 
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Figure 4: Evolution in the distribution of DMP, DEP, DnBP, BBP, DEHP and DnOP through the 

environmental cycle (WWTP: Wastewater Treatment Plant) 
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Figure 5: Total PAE (DMP + DEP + DnBP + BBP + DEHP + DnOP) contents (in mg/kg.dw) in 

solids matrices - global scale 
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Figure 6: Historical trend lines for the median total PAE (DMP + DEP + DnBP + BBP + DEHP + 

DnOP) concentrations (in µg.l
-1

) in European surface water. The dots represent samples collected 

before implementation of the Water Framework Directive, whereas the squares depict samples 

collected after its implementation 
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Table 1: Physicochemical properties of PAE 

Compound Formula 
MW 

(g/mol) 

Water 

solubility 

at 20 °C 

(mg/l) 

Log Kow Log Koc Log Kd 
H 

(Atm.m3/mol) 

DMP C10H10O4 194.2c 4,20c 1.61c 

1.74c 

1.90-

2.56b 

 1.22 E-07c 

DEP C12H14O4 222.2c 1,10c 

2.42c 

2.47-

2.51b 

1.84c 

2.85-

3.24b 

 
2.66 E-07c 

7.80 E-07b 

DnBP C16H22O4 278.4c 11.2c 4.57c 
3.14c 

4.17b 
 8.83 E-07c 

BBP C19H20O4 312.4c 2.70c 4.84c 
4.23c 

3.95b 
3.55c 7.61 E-07c 

DEHP C24H38O4 390.6c 0.003c 7.50c  
4.12c 

4.18a 
1.71 E-05c 

DnOP C24H38O4 390.6c 0.0005c 8.06c 

4.94c 

5.68b 

5.71a 

4.46c 1.03 E-04c 

a: (Lützhoft et al. 2008); b: (IPCS 2003); c: (Staples et al. 1997) 

 

Table



2 

 

Table 2: Atmospheric contamination by PAE (in ng/m
3
) 

Location DMP DEP DnBP BBP DEHP DnOP Reference 

USA   0.60-5.00    (Atlas and Giam 1988) 

Sweden   0.23-49.9  0.28-77.7  (Thüren and Larsson 1990) 

China  56.0 32.0 1,910 550  (Wang et al. 2002) 

China   224  56.0  (Wang et al. 2002) 

USA     5.00-132  (Clark et al. 2003) 

Denmark   1.50-2,480  5.30-3,640  (Müller et al. 2003) 

France 0.10-21.2 1.70-24.6 2.90-59.3 0.50-12.2 3.40-25.7 <loq-1.10 (Teil et al. 2006) 

Netherlands   2.00-70.0  0.70-333  (Peijnenburg and Struijs 2006) 

Norwegian Sea 0.01-0.22 0.18-0.90 0.16-0.43 0.02-0.07 0.08-0.46  (Xie et al. 2007) 

France 1.11 3.53 1.09 0.21 1.66 0.08 (Tlili et al. 2010) 

Greece   1.20-3.36 0.11-0.80 <loq-6.50 <loq-0.11 (Salapasidou et al. 2011) 

Greece   0.43-2.40 0.04-0.98 4.63-45.0  (Salapasidou et al. 2011) 

Min 0.01 0.18 0.16 0.02 0.08 0.08 

n = 10 Max 21.2 56.0 2,480 1,910 3,640 1.10 

Med 2.93 8.70 2.50 0.48 19.7 0.24 
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Table 3: Rain water concentrations of PAE (in µg.l
-1

) 

Location DMP DEP DnBP BBP DEHP DnOP Reference 

USA  0.02-0.10 0.03-0.06 0.02-0.07 0.02-0.10  (Ligocki et al. 1985) 

Sweden   <loq-0.50  0.01-0.43  
(Thüren and Larsson 

1990) 

Canada   0.50-11.0  7.00-39.0  (Makepeace et al. 1995) 

Denmark   1.30  32.0  (Kjohlholt et al. 1997) 

Denmark   <loq-1.60  1.30-30.0  
(Boutrup and Plesner 

2001) 

Netherlands 0.01-0.02 0.24-0.43 0.28-0.88 0.14-0.26 0.69-1.70 0.04-0.25 (Vethaak et al. 2005) 

France 0.12 0.33 0.59 0.08 0.42 0.01 (Teil et al. 2006) 

France 0.07-0.11 0.14-0.25 0.10-0.16 0.02-0.06 0.36-0.85 <loq-0.03 (Dargnat 2008) 

Norway     5.00  (Björklund et al. 2009) 

Min 0.01 0.02 0.03 0.02 0.02 0.01 

n = 9 Max 0.12 0.43 11.0 0.26 39.0 0.25 

Med 0.06 0.33 0.61 0.16 0.77 0.05 
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Table 4: Industrial, man-made and residential wastewater concentrations (in µg.l
-1

) 

Location Type DMP DEP DnBP BBP DEHP DnOP Reference 

USA Textile  3.20     (IPCS 2003) 

France Textile     282  
(INERIS 

2007) 

France Laundry     470  
(INERIS 

2007) 

USA Diaper service  <loq-1.00 12.0 0.20 0.63 <loq-0.15 
(Jackson and 
Sutton 2008) 

USA Pet wash  1.30 0.76 2.30 6.50 1.60 
(Jackson and 

Sutton 2008) 

USA Veterinary clinic  <loq-51.0 <loq-18.0 <loq-7.10 
<loq-
11.0 

<loq-7.70 
(Jackson and 
Sutton 2008) 

USA Hospital  <loq-1.00 <loq-0.36 0.82 2.70 <loq-0.15 
(Jackson and 

Sutton 2008) 

USA Medical clinic  <loq-0.98 0.66 0.74 1.00 <loq-0.15 
(Jackson and 
Sutton 2008) 

Spain 
Industrial-

Residential 
0.28-4.94 27.5-192 <loq-33.6 <loq-5.70 9.88-287  

(Sanchez-

Avila et al. 

2009) 

Netherland

s 
Residential 0.39-6.20 4.10-44.0 0.38-51.0 0.56-4.90 13.0-100 0.26-2.40 

(Vethaak et 

al. 2005) 

USA Residential  4.00 <loq-0.36 0.76 9.10 0.60 
(Jackson and 
Sutton 2008) 

USA Residential  9.10 <loq-0.34 1.00 3.30 <loq-0.14 
(Jackson and 

Sutton 2008) 

Spain Residential 0.45-1.12 44.0-45.9  0.23-0.29 
19.5-

20.2 
 

(Sanchez-
Avila et al. 

2009) 

France Sewer network  5.23-17.7 0.60-3.31 0.46-3.91 
39.48-

161 
 

(Bergé et al. 

2012c) 

USA 
Industrial 

activities 
    

0.01-

4,400 
 

(Clark et al. 

2003) 

USA 
Manufactured 

factory 
 60.0     (IPCS 2003) 

Netherland

s 

Industrial 

efluents 
<loq-1.30 0.35-5.20 0.69-21.0 0.17-1.30 1.00-150 0.01-2.80 

(Vethaak et 

al. 2005) 

France Paper pulp     61.0  
(INERIS 

2007) 

France Dyeing     41.0  
(INERIS 

2007) 

France Leather     68.0  
(INERIS 

2007) 

France Painting     1,300  
(INERIS 

2007) 

France Chemistry     280  
(INERIS 

2007) 

USA 
Plastic 

manufacturer 
 <loq-1.00 0.36 2.30 49.0 10.0 

(Jackson and 

Sutton 2008) 

USA 
Paper 

manufacturer 
 <loq-1.00 <loq-0.36 0.14 6.80 <loq-0.15 

(Jackson and 
Sutton 2008) 

USA 
Beverage 

manufacturer 
 <loq-20.0 <loq-7.1 <loq-2.70 

<loq-

4.10 
<loq-2.90 

(Jackson and 

Sutton 2008) 

USA 
Adhesive 

manufacturer 
 <loq-100 120 39.0 47.0 <loq-15.0 

(Jackson and 
Sutton 2008) 

USA 
Industrial 

laundry 
 <loq-24.0 86.0 95.0 2,700  

(Jackson and 

Sutton 2008) 

USA 
Residential 

laundry 
 16.0 <loq-3.6 <loq-1.40 66.0 13.0 

(Jackson and 
Sutton 2008) 

Spain 
Industrial 
effluents 

0.15-7.05 22.2-53.6  <loq-10.0 
8.00-
36.4 

 

(Sanchez-

Avila et al. 

2009) 

Man-made 

wastewater 

Min 0.28 1.30 0.76 0.20 0.63 0.15 

n = 4 Max 4.94 192 33.6 5.70 470 7.70 

Med 2.61 3.20 6.90 1.50 66.0 1.60 

Residential 

wastewater 

Min 1.00 0.35 0.34 0.23 3.30 0.07 

n = 4 Max 1.12 45.0 51.0 4.90 161 2.40 

Med 1.06 9.48 1.29 1.57 61.3 0.60 

Industrial 
Min 0.15 0.35 0.36 0.14 0.01 0.01 

n = 5 Max 7.05 100 120 95.0 4,400 15.0 



5 

wastewtaer Med 1.96 10.0 2.20 1.83 34.6 0.80 
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Table 5: WWTP influent concentrations of PAE (in µg.l
-1

) 

Location DMP DEP DnBP BBP DEHP DnOP Reference 

Finland <loq-1.00 6.00-11.0 6.00-8.00 3.00-5.00 28.0-66.0 <loq-1.00 (Marttinen et al. 2003) 

Finland <loq-1.00 5.00-74.0 3.00-9.00 <loq-3.00 28.0-122 <loq-2.00 (Marttinen et al. 2003) 

Finland  <loq-10.0 4.00-6.00 <loq-2.00 83.0 <loq-1.00 (Marttinen et al. 2003) 

Denmark   <loq-1.03 0.05-0.97 13.1-44.3 0.22-0.79 (Fauser et al. 2003) 

Sweden  0.19 0.15  0.27  (Bendz et al. 2005) 

Australia  0.39 0.14 0.06 20.3  (Tan et al. 2007) 

France     55.0  (INERIS 2007) 

Spain  0.68 0.62  1.90  (Regueiro et al. 2008) 

USA  <loq-10.0 <loq-3.60 14.0 33.0 4.20 (Jackson and Sutton 2008) 

USA  <loq-10.0 <loq-3.60 1.90 9.20 <loq-1.5 (Jackson and Sutton 2008) 

Denmark     8.10-31.0  (Seriki et al. 2008) 

Canada     70.0  (Barnabé et al. 2008) 

Canada     41.0  (Barnabé et al. 2008) 

France 0.82 7.71 1.10 1.12 22.5 0.10 (Dargnat et al. 2009) 

Spain 0.60 50.7 46.8 0.67 47.9  (Sanchez-Avila et al. 2009) 

Austria <loq-2.40 0.77-9.20 <loq-8.70 0.31-3.20 3.40-34.0 <loq-1.10 (Clara et al. 2010) 

Austria 0.26-0.41 1.20-2.00 <loq-0.47 <loq-0.11 4.40-8.80  (Clara et al. 2010) 

Austria 0.43-0.81 2.20-2.70 0.15-0.41 0.11-0.26 4.10-13.0 <loq-0.10 (Clara et al. 2010) 

France     52.8  (Martin-Ruel et al. 2010) 

Spain  1.05-2.59 0.20-0.55  4.23-4.65  
(Reyes-Contreras et al. 

2011) 

Spain 
 1.90-3.98 0.12-0.20  7.50-9.91  

(Reyes-Contreras et al. 

2011) 

Spain <loq-7.47 2.11-5.76 0.23-1.99 0.25-0.31  0.24-5.91 (Bizkarguenaga et al. 2012) 

Spain 0.31-9.13 0.14-5.91 <loq-0.76   0.27 (Bizkarguenaga et al. 2012) 

Spain 0.36-93.3 0.12-4.34 0.59-2.24   0.22-0.25 (Bizkarguenaga et al. 2012) 

Spain 3.94-10.6 <loq-0.96 0.23-1.54   <loq-3.54 (Bizkarguenaga et al. 2012) 

France  7.00-36.0 1.86-6.01 0.97-2.29 32.4-71.9  (Bergé et al. 2012b) 

Min 0.26 0.19 0.14 0.06 0.27 0.10 

n = 16 Max 93.3 74.0 46.8 14.0 122 5.91 

Med 0.89 9.81 1.86 1.29 38.10 0.50 
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Table 6: WWTP effluent concentrations of PAE (in µg.l
-1

) 

Location DMP DEP DnBP BBP DEHP DnOP Reference 

Finland   2.00  2.00 <loq-1.00 (Marttinen et al. 2003) 

Finland <loq-1.00 <loq-4.00 <loq-6.00 <loq-1.00 2.00-8.00  (Marttinen et al. 2003) 

Finland     4.00  (Marttinen et al. 2003) 

Denmark   0.18-2.50 0.06-0.27 0.11-2.65 0.01-0.03 (Fauser et al. 2003) 

Netherlands <loq-032 0.30-0.93 0.42-0.84 0.07-0.29 0.47-2.40 <loq-0.02 (Vethaak et al. 2005) 

Sweden  0.02 0.03  0.02  (Bendz et al. 2005) 

Norway  7.90-9.90   0.50  (Vogelsang et al. 2006) 

Australia  0.02 0.05 0.02 0.36  (Tan et al. 2007) 

France  0.43   0.55  (INERIS 2007) 

Spain  <loq-1.0 <loq-0.36 0.84 2.90  (Regueiro et al. 2008) 

USA  <loq-1.0 0.57 0.74 1.00  
(Jackson and Sutton 

2008) 

USA  <loq-1.0 5.50 <loq-0.14 0.21  
(Jackson and Sutton 

2008) 

Denmark     0.30-6.10  (Seriki et al. 2008) 

Canada     54.0  (Barnabé et al. 2008) 

France 0.08 0.78 0.15 0.30 5.42 0.02 (Dargnat et al. 2009) 

Spain 0.13 49.8  0.01 9.43  
(Sanchez-Avila et al. 

2009) 

Austria <loq-0.19 <loq-1.10 <loq-2.40 0.09-1.40 0.08-6.60 <loq-0.26 (Clara et al. 2010) 

Austria  <loq-0.10   <loq-0.28  (Clara et al. 2010) 

Austria     <loq-1.30  (Clara et al. 2010) 

France     4.20  (Martin-Ruel et al. 2010) 

Spain <loq-7.18 0.23-0.40 0.22-7.92  0.39-0.41 0.21-30.8 
(Bizkarguenaga et al. 

2012) 

Spain 
6.25-11.7 0.20-1.02 <loq-10.9   0.22-0.27 

(Bizkarguenaga et al. 

2012) 

Spain 
2.07-11.2 0.36-1.06 0.21-1.34  0.31 0.23-0.29 

(Bizkarguenaga et al. 

2012) 

Spain 
7.97-13.4 0.15-0.51 0.20-1.90 1.14  3.26-9.06 

(Bizkarguenaga et al. 

2012) 

Austria     <loq-6.60  (Clara et al. 2012) 

Spain  15.7-40.9 3.33-58.9  4.17-69.0  (de los Rios et al. 2012) 

Spain  0.03-3.21   1.72-9.22  
(Sanchez-Avila et al. 

2012) 

France  0.46-6.77 0.01-0.93 0.01-0.21 0.95-6.43  (Bergé et al. 2012b) 

Min 0.08 0.02 0.01 0.01 0.02 0.01 

n = 20 Max 13.4 49.8 58.9 1.40 69.0 30.8 

Med 0.34 0.80 0.57 0.18 2.44 0.24 
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Table 7: PAE in WWTP sludge contents (in mg/kg.dw) 

Location Type DMP DEP DnBP BBP DEHP DnOP Reference 

Canada 
Final 

    3.00-176  
(Webber and 

Lesage 1989) 

Canada 
Final 

    1.60-245  
(Webber and 

Nichols 1995) 

Germany 
Final 

  9.70  8.00  
(Petrovic and 

Barcelo 2000) 

Austria 
Final 

  <loq-0.69  <loq-47.0  
(Gangl et al. 

2001) 

China Final 0.02-2.00 0.01-11.0 0.04-3.70 0.02-35.0 <loq-108 <loq-6.60 (Cai et al. 2007) 

Norway Final     27.0-115  (Jaganyi 2007) 

Sweden Final     25.0-661  (Jaganyi 2007) 

Denmark Final     3.90-170  (Jaganyi 2007) 

Denmark 
Final 

    3.46-40.6  
(Seriki et al. 

2008) 

Australia Primary     134  (Tan et al. 2007) 

Austria 
Primary 

0.07-0.09 0.04-0.09 0.27-0.85 0.14-0.38 20.0-27.0 0.13-0.26 
(Clara et al. 

2010) 

USA 
Secondary 

    3.46-31.7  
(Kinney et al. 

2006) 

Sweden Digested     25.0-661  (Sweetman 1994) 

Finland 
Digested 

    163  
(Marttinen et al. 

2003) 

USA 
Digested 

    3.33  
(Kinney et al. 

2008) 

USA 
Amended 

    163-578  
(Staples et al. 

1997) 

Denmark 
Amended 

  0.02-260  3.00-170  
(Torslov et al. 

1997) 

Germany 
Amended 

    170  
(Schnaak et al. 

1997) 

Germany 
Amended 

    1.50-5.10  
(Schaecke and 

Kape 2003) 

UK 
Amended 

0.30 0.02 0.39 0.20 0.32-0.55 0.57 
(Gibson et al. 

2005) 

Spain 
Amended 

    2.00-3,514  
(Abad et al. 

2005) 

Denmark 
Amended 

 1.52 1.30 1.17  1.24 
(Laturnus and 

Gron 2007) 

Denmark 
Amended 

 0.91 0.56    
(Laturnus and 
Gron 2007) 

Spain 
Amended 

    13.0-345  
(Aparicio et al. 

2009) 

Norway 
Compost 

    1.00-140  
(Paulsrud et al. 

2000) 

Taiwan 
Aerobically 

    143  
(Cheng et al. 

2001) 

Taiwan Anaerobical
ly 

    105-153  
(Cheng et al. 

2001) 

Germany 
Spin-dried 

  0.20-1.70  28.0-154  
(Fromme et al. 

2002) 

France 
Spin-dried 

    72.1  
(Dargnat et al. 

2009) 

Austria 
Excess 

<loq-0.06 0.06-0.13 0.64-1.20 0.12-0.25 22.0-29.0 0.06-0.12 
(Clara et al. 

2010) 

Canada 
Press-
filtered 

    80.0-90.0  
(Barnabé et al. 

2008) 

USA 
 

    <loq-58.3  
(Clark et al. 

2003) 

Germany 
 

    0.90-110  
(Fragermann 

2003) 

USA      <loq-310  (EPA 2009) 

Min 0.02 0.01 0.04 0.02 0.32 0.08 

n = 29 Max 2.00 11.0 260 35.0 3,514 6.60 

Med 0.19 0.45 0.53 0.23 60.3 0.20 
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Table 8: Surface water concentrations of PAE (in µg.l
-1

) 

Location Type DMP DEP DnBP BBP DEHP DnOP Reference 

USA River     0.50-1.00  
(Sheldon and 

Hites 1979) 

USA Estuary     0.21-0.77  (Ray et al. 1983) 

USA River     0.01-0.70  
(DeLeon et al. 

1986) 

Sweden River     0.30-1.80  (Thüren 1986) 

Germany River     0.03-0.04  (Ernst et al. 1988) 

UK River     0.40-1.90  
(Fatoki and 

Vernon 1990) 

UK Bay     0.98-2.20  (Law et al. 1991) 

Malaysia Estuary     3.10-64.3  (Tan 1995) 

Italy River     0.30-31.2  (Vitali et al. 1997) 

UK River     0.74-18.0  (Long et al. 1998) 

Netherlands Estuary    <loq-0.50 0.04-1.90  
(Belfroid et al. 

1999) 

Spain River  0.60 0.40  1.10  
(Penalver et al. 

2001) 

Spain 
Fishing 

port 
1.60 1.40 1.30 0.50 2.10  

(Penalver et al. 

2001) 

Spain 
Industrial 

port 
2.10 1.80 1.90 1.10 3.20  

(Penalver et al. 
2001) 

Japan Bay 0.01-0.09 <loq-0.31 0.01-0.54 <loq-0.06   
(Suzuki et al. 

2001) 

Taiwan Bay  <loq-2.50 1.00-13.5  <loq-18.5  (Yuan et al. 2002) 

Germany River   0.50  0.08-10.0  
(Fromme et al. 

2002) 

Netherlands River    0.01-1.00   
(Vethaak et al. 

2002) 

Netherlands Sea    0.01-1.80   
(Vethaak et al. 

2002) 

China River   3.39-12.6  <loq-1.90  
(Zhang and Chen 

2003) 

Netherlands River 0.01-0.19 0.07-2.30 0.07-3.10 0.01-1.80 0.90-5.00 
<loq-

0.08 

(Vethaak et al. 

2005) 

Sweden River  0.01-0.03 0.02-0.06  0.01-0.04  
(Bendz et al. 

2005) 

China River <loq-1.40 0.26-1.28 0.05-3.91   
0.10-

0.80 
(Li et al. 2006) 

Spain Estuaries 0.01-0.18 0.31-1.31 0.25-0.58 0.01-0.03 0.32-0.46 
0.08-

0.09 
(Prieto et al. 2007) 

Spain Sea 0.01 0.03 0.08 0.01 0.06  (Prieto et al. 2007) 

China River 0.10-0.25 0.16-0.44 4.28-21.0  0.34-24.0 
<loq-

0.79 
(Sha et al. 2007) 

China Tributaries <loq-0.58 0.01-1.09 9.24-26.0  3.91-31.8 
<loq-
7.10 

(Sha et al. 2007) 

USA River   0.14-4.14 0.04-0.35   (Solis et al. 2007) 

USA River   0.16-1.36 0.07-0.14   (Solis et al. 2007) 

Spain Estuary 0.21-0.28 0.07 1.25-1.26 0.05 0.22 0.03 (Prieto et al. 2008) 

Spain Sea 0.22-0.25 0.04 0.25-0.40 0.06 0.17 0.03 (Prieto et al. 2008) 

China River <loq-0.09 0.02-0.32 0.94-3.60    (Zeng et al. 2008) 

France River  0.07-0.18 0.07-0.32  0.16-0.31  
(Dargnat et al. 

2009) 

China River     0.62-15.2 
0.04-
0.21 

(Zhu and Qiu 
2011) 

Iran River 0.87 0.67     
(Hadjmohammadi 

et al. 2011) 

Iran Sea 0.49 0.52     
(Hadjmohammadi 

et al. 2011) 

Canada Sea   0.18-3.00  0.01-0.95  (Keil et al. 2011) 

USA Sea     0.06-0.64  (Keil et al. 2011) 

China River   0.11-0.29  <loq-0.84  (He et al. 2011) 

Spain 
Sea 

<loq-0.14 0.02-0.48  <loq-0.10 0.03-0.62  (Sanchez-Avila et 

al. 2012) 



10 

Spain 
Port 

<loq-0.01 0.02-0.87  <loq-0.80 0.06-5.97  (Sanchez-Avila et 

al. 2012) 

Spain 
River-sea 

 0.07-0.16  <loq-0.08 0.02-0.21  (Sanchez-Avila et 

al. 2012) 

Spain 
River 

 0.05-0.28  <loq-0.02 0.12-4.98  (Sanchez-Avila et 

al. 2012) 

China 
River 

0.03-1.45 0.03-0.71 0.02-1.35 0.01-0.86 0.02-5.58 0.04-

0.12 
(Shi et al. 2012) 

China 
River 

0.02-0.13 0.01-0.09 0.06-7.19 0.02-0.07 0.23-28.4 0.01-

0.34 

(Zhang et al. 

2012) 

Min 0.01 0.01 0.01 0.01 0.01 0.01 

n = 33 Max 2.10 2.50 26.0 1.80 64.3 7.10 

Med 0.05 0.11 0.37 0.04 1.00 0.04 
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Table 9: PAE contents in suspended solids (in mg/kg.dw) 

Location DMP DEP DnBP BBP DEHP DnOP Reference 

Netherlands <loq-16.0 <loq-2.69 <loq-4.10 <loq-3.00 <loq-19.0  (Vethaak et al. 2005) 

Netherlands     0.79-11.4  (Peijnenburg and Struijs 2006) 

Netherlands     0.70-14.6  (Peijnenburg and Struijs 2006) 

Netherlands     0.97-19.3  (Peijnenburg and Struijs 2006) 

China 0.49-3.01 <loq-0.13 17.6-57.8  5.40-630  (Sha et al. 2007) 

France     0.91-25.1  (Gasperi et al. 2008) 

Min     0.70  

n = 4 Max 16.0 2.69 57.8 3.00 630  

Med 0.22 0.04 0.09 0.02 4.23  
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Table 10: PAE contents in sediments (in mg/kg.dw) 

Location Type DMP DEP DnBP BBP DEHP DnOP Reference 

USA River     0.04-16.0  
(Ray et al. 

1983) 

UK River     1.20  

(Preston and 

Al-Omran 

1989) 

Malaysia River   0.25  0.49-15.0  (Tan 1995) 

Singapore Bay     0.89-2.79  
(Chee et al. 

1996) 

Italy River   <loq-0.03  0.06-0.49  
(Vitali et al. 

1997) 

UK River     0.84-115  
(Long et al. 

1998) 

Germany River   0.45  0.21-8.44  
(Fromme et 

al. 2002) 

Taiwan River  0.10-1.10 0.30-30.3 <loq-1.80 0.50-23.9  
(Yuan et al. 

2002) 

China River   0.02-0.05  0.03-0.05  
(Zhang and 

Chen 2003) 

Netherlands River <loq-2.50 0.07-1.20 0.03-1.00 <loq-0.06 0.10-7.60 <loq-0.55 
(Vethaak et 

al. 2005) 

Spain River  <loq-0.24 0.02-0.79 0.50-0.95 10.1-16.8  
(Cortazar et 

al. 2005) 

France River     0.55  
(Quenea et al. 

2005) 

Taiwan River     <loq-8.25  
(Huang et al. 

2005) 

Japan River     1.00-2.00  
(Yuwatini et 

al. 2006) 

Netherlands River   0.09  4.30  
(Peijnenburg 
and Struijs 

2006) 

China River 0.14-0.42  18.1-34.1  9.29-50.7  
(Sha et al. 

2007) 

China Tributaries <loq-1.04 <loq-0.01 3.63-72.2  5.35-259  
(Sha et al. 

2007) 

China Urban lake 0.04 0.13 0.28 0.03 1.30 0.02 
(Zeng et al. 

2008) 

Taiwan River  0.60 0.40  <loq-46.5  
(Huang et al. 

2008) 

Taiwan River   0.04-1.88    
(Huang et al. 

2008) 

China River 0.01-0.41 0.55-6.81 0.50-155  0.40-324 0.01-1.19 
(Wang et al. 

2008) 

India Urban River <loq-0.02  <loq-0.02  <loq-0.02  
(Srivastava et 

al. 2009) 

India Rural River <loq-0.01 <loq-0.01 <loq-0.02  <loq-0.01  
(Srivastava et 

al. 2009) 

India Urban River <loq-0.05 <loq-0.04 <loq-0.04  <loq-0.32 <loq-0.05 
(Srivastava et 

al. 2009) 

Taiwan River     0.10-20.2  
(Lin et al. 

2009) 

France River     0.91-26.6  
(Gasperi et 
al. 2009) 

China River 0.02 0.18 0.10 0.02 0.39  
(Liu et al. 

2010) 

China River 0.03 0.26 0.04 0.01 0.22  
(Liu et al. 

2010) 

Min 0.01 0.01 0.02 0.01 0.01 0.02 

n = 23 Max 2.50 1.20 72.2 1.80 115 0.55 

Med 0.02 0.20 7.45 0.02 10.2 0.04 
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Table 11: PAE contents in soils (in mg/kg.dw) 

Location Type DMP DEP DnBP BBP DEHP DnOP Reference 

USA Urban     nd-1.20  
(Russel and Mc 

Duffie 1986) 

Denmark Amended     0.03-0.04  
(Vikelsoe et al. 

2002) 

China Urban <loq-0.20 <loq-2.61 <loq-1.66  0.20-7.11  (Hu et al. 2003) 

China Urban <loq-0.02 <loq-0.05 0.34-1.66  0.22-0.74 0.09 (Ma et al. 2003) 

UK Rural   0.01  0.02-0.08 0.01 
(Gibson et al. 

2005) 

UK Amended   0.01  0.32-0.55  
(Gibson et al. 

2005) 

China Vegetable <loq-0.07 <loq-1.77 <loq-20.6 <loq-1.48 2.82-25.1 <loq-0.92 (Cai et al. 2005) 

Netherlands    0.01  0.03  

(Peijnenburg 

and Struijs 

2006) 

China Urban <loq-0.07 <loq-0.25 0.28-3.82 <loq-0.06 0.17-6.49 <loq-0.17 (Li et al. 2006) 

Denmark Agricultural  0.01 0.07  0.18  
(Laturnus and 

Gron 2007) 

Denmark Compost  0.46 0.29  12.2 1.24 
(Laturnus and 
Gron 2007) 

China Agricultural   2.75-29.4  0.49-7.99  (Xu et al. 2008) 

China Agricultural <loq-0.16 <loq-0.18 <loq-2.74 <loq-1.58 0.11-29.4 <loq-0.08 
(Zeng et al. 

2008) 

China Roadsides 0.02-0.35 0.01-0.20 0.29-30.1 <loq-1.58 1.41-264 <loq-2.31 
(Zeng et al. 

2009) 

China Resident 0.01-0.13 0.01-0.10 0.21-7.49 <loq-0.16 1.40-97.2 <loq-0.08 
(Zeng et al. 

2009) 

China Parks 0.02-0.10 0.01-0.07 0.21-7.49 <loq-0.16 0.89-154 <loq-0.03 
(Zeng et al. 

2009) 

China Urban     0.04  
(Zhou and Liu 

2010) 

Min 0.01 0.01 0.01  0.02 0.01 

n = 13 Max 0.35 2.61 30.1 1.58 264 2.31 

Med 0.08 0.09 0.96 0.05 3.33 0.09 

 


