
Synchronous AADL and its Formal Analysis in
Real-Time Maude

Kyungmin Bae1, Peter C. Ölveczky2, Abdullah Al-Nayeem1, and
José Meseguer1

1 University of Illinois at Urbana-Champaign
2 University of Oslo

Abstract. Distributed Real-Time Systems (DRTS), such as avionics
systems and distributed control systems in motor vehicles, are very hard
to design because of asynchronous communication, network delays, and
clock skews. Furthermore, their model checking typically becomes un-
feasible due to the large state spaces caused by the interleavings. For
many DRTSs, we can use the PALS methodology to reduce the prob-
lem of designing and verifying asynchronous DRTSs to the much simpler
task of designing and verifying their synchronous versions. AADL is an
industrial modeling standard for avionics and automotive systems. We
define in this paper the Synchronous AADL language for modeling syn-
chronous real-time systems in AADL, and provide a formal semantics
for Synchronous AADL in Real-Time Maude. We have integrated into
the OSATE modeling environment for AADL a plug-in which allows us
to model check Synchronous AADL models in Real-Time Maude within
OSATE. We exemplify such verification on an avionics system, whose
Synchronous AADL design can be model checked in less than 10 sec-
onds, but whose asynchronous design cannot be feasibly model checked.

1 Introduction

Many real-time systems are distributed due to physical and fault-tolerance re-
quirements. Designing, implementing, and verifying such systems is very difficult
and costly. Due to their asynchrony, clock skews, and message delays, such sys-
tems may experience race conditions and violations of their safety properties
that can be very difficult to uncover by testing. The alternative of automated
formal verification by model checking is also unfeasible in practice. The reason is
that, due to asynchrony, there are too many interleavings, leading to a veritable
combinatorial explosion.

The above remarks apply to the verification of both designs and code. Since
design errors are much more expensive than coding errors, there is general agree-
ment that system verification should first be carried out at the level of designs by
verifying the model representing a system design. For real-time systems such as
avionics and automative systems the AADL modeling language [17] is a widely
used industrial standard. To make formal verification of AADL models possible

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4833005?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

two key problems have to be solved. The first problem is to have a formal seman-

tics of AADL models, since without such a semantics there is no mathematical

model satisfying any properties so that claims about satisfaction of such prop-
erties are literally meaningless. We have addressed this problem by providing
a formal semantics in rewriting logic for a behavioral fragment of AADL [14],
and other researchers have carried our related efforts [3, 4, 14, 2, 9]. The second
problem is the one mentioned above: since AADL models have components that
interact asynchronously with each other, their automatic model checking verifi-
cation becomes unfeasible even for simple models. To illustrate the difficulty with
a concrete example, using the tool presented in [14], we were unable to model
check the AADL model of the avionics system presented in Section 4 with the
Real-Time Maude model checker. The key point is that the inherent difficulties
of verifying a distributed real-time system (DRTS) do not disappear at the level
of models: they are common to both models and code. This leaves us with the
unsolved problem of how to formally verify AADL models in practice.

To address the problem of drastically reducing the difficulties of designing
and verifying DRTSs, we and other colleagues at Rockwell-Collins and UIUC
have proposed the PALS transformation [1, 13, 11]. The key idea behind PALS
is that the intended behavior of many DRTSs is that they should be virtually

synchronous. That is, conceptually there is a logical period during which all
components perform a transition and send data to each other. The PALS trans-
formation (summarized in Section 2) achieves this virtual synchrony by reducing
the design and verification of a DRTS of this nature to that of a much simpler
synchronous one which is semantically equivalent to it [11], both systems are
bisimilar [11] and therefore satisfy the same temporal logic properties.
Our Approach and Contributions. Motivated by the PALS ideas, our ap-
proach to solving the problem of verifying in practice AADL models that are
distributed but virtually synchronous is based on the following ideas and contri-
butions: (i) to specify a fragment of AADL called Synchronous AADL in which
synchronous models can be defined; (Section 3); (ii) to define a formal syn-

chronous semantics for this subset (Section 5); (iii) to embody this semantics in
a tool called SynchAADL2Maude (Section 8), which is an OSATE plugin and
maps models in Synchronous AADL to rewrite theories in Real-Time Maude,
where such models can be simulated and formally verified by model checking
(Section 6); (iv) to illustrate the effectiveness of the approach by modeling in
Synchronous AADL and verifying in SynchAADL2Maude the same avionics ex-
ample that we could not verify in its simplest possible asynchronous version: each
of the formal requirements for this example can now be verified in 10 seconds or
less (Section 7).

Using the PALS transformation it is then possible to transform a synchronous
AADL model into a correct-by-construction asynchronous one. In fact, an OS-
ATE implementation of PALS for AADL which can be used for this purpose has
already been developed in [1]. Although the contributions (i)–(iv) were moti-
vated by PALS, their usefulness is not restricted to PALS: they can be exploited
by similar transformations relating synchronous and asynchronous systems for

3

other distributed real-time architectures, such as the time-triggered architecture
(see, e.g., [16, 10]).

Our experience of a huge state space reduction from the verification of an
asynchronous system to that of its synchronous counterpart is not specific to
AADL models: for the same avionics example a similar drastic reduction was
reported by Darren Cofer and Steven Miller in [13] using SMV models. We con-
ducted a similar experiment modeling the same example directly in Real-Time
Maude: the number of states of the synchronous system was 185, and all prop-
erties were verified in 0.8 seconds or less, but the simplest possible asynchronous
model (no network delays, no execution time, no clock skews) had 3,047,832
states. Although it was possible to verify a property of the asynchronous system
in 2000 seconds, as soon as the possibility of a one-unit delay was allowed for
messages, all model checking verification became impossible. What this work
achieves is to make such a huge reduction possible for AADL models to support
their automatic model checking verification.

2 Preliminaries on AADL, Real-Time Maude, and PALS

AADL. The Architecture Analysis & Design Language (AADL) [17] is an in-
dustrial modeling standard used in avionics, aerospace, automotive, medical de-
vices, and robotics communities to describe an embedded real-time system as an
assembly of software components mapped onto an execution platform.

An AADL model describes a system of hardware and software components.
Hardware components include: processor components that schedule and execute
threads, memory components, device components, and bus components that
interconnect processors, memory, and devices. Software components include:
thread components modeling the application software to be executed; process

components defining protected memory that can be accessed by its thread and
data subcomponents; and data components representing data types. Thread be-
havior is described using the behavior annex [8], which models thread behaviors
as transition systems with local state variables. The OSATE modeling environ-
ment provides a set of Eclipse plug-ins for AADL. The current stable version
1.5.8 of OSATE, that also supports the behavior annex, supports version 1 of
the AADL standard; therefore, the language Synchronous AADL defined in this
paper is also based on version 1 of AADL.

In the software component subset of AADL that is the focus of this paper, a
component type specifies the component’s interface and properties, and a com-
ponent implementation specifies the internal structure of the component as a set
of subcomponents and a set of connections linking their ports. System compo-
nents are the top level components, and a set of thread components define their
dynamic behaviors. Components may have properties describing its parameters
and other information. The dispatch protocol of a thread determines when the
thread is executed. For example, a periodic thread is activated at fixed time
intervals, and an aperiodic thread is activated when it receives an event.

4

The behavior of a thread is defined by guarded state transitions. The actions
performed when a transition is applied may update local variables, generate new
outputs, and/or suspend the thread for some time. Actions are built from such
basic actions using sequencing, conditionals, and finite loops. When a thread is
activated, an enabled transition is applied; if the resulting state is not a complete

state, another transition is applied, until a complete state is reached (or the
thread is suspended).

Real-Time Maude. A Real-Time Maude [15] timed module specifies a real-

time rewrite theory of the form (Σ,E, IR,TR), where:

– (Σ,E) is a membership equational logic [5] theory with Σ a signature3 and
E a set of confluent and terminating conditional equations. (Σ,E) specifies
the system’s states as an algebraic data type.

– IR is a set of (possibly conditional) labeled instantaneous rewrite rules spec-
ifying the system’s instantaneous (i.e., zero-time) local transitions.4

– TR is a set of conditional tick rewrite rules of the form crl [l] : {u} =>

{v} in time τ if cond. Such a rule specifies a transition with duration τ

and label l from an instance of the term u to the corresponding instance of
the term v.

The Real-Time Maude syntax is fairly intuitive (see [5]). A function symbol f

is declared with the syntax op f : s1 . . . sn -> s, where s1 . . . sn are the sorts of its
arguments, and s is its (value) sort. Equations are written with syntax eq u = v,
and ceq u = v if cond for conditional equations. The mathematical variables in
such statements are declared with the keywords var and vars (see [5]). We refer
to [5] for more details on the syntax of Real-Time Maude. We make extensive use
of the fact that an equation f(t1, . . . , tn) = t with the owise (for “otherwise”)
attribute can be applied to a subterm f(. . .) only if no other equation with
left-hand side f(u1, . . . , un) can be applied.5

A class declaration class C | att1 : s1, . . . , attn : sn declares a class
C with attributes att1 to attn of sorts s1 to sn. An object of class C is represented
as a term < O : C | att1 : val1, ..., attn : valn > where O is the object’s identifier,
and where val1 to valn are the current values of the attributes att1 to attn. The
global state has the form {t}, where t is a term of sort Configuration that has
the structure of a multiset of objects and messages, with multiset union denoted
by a juxtaposition operator that is declared associative and commutative, so
that rewriting is multiset rewriting supported in Real-Time Maude. A subclass

inherits all the attributes and rules of its superclasses.

3 i.e., Σ is a set of declarations of sorts, subsorts, and function symbols
4 E is a union E�∪A, where A is a set of equational axioms such as associativity, com-

mutativity, and identity, so that deduction is performed modulo A. Operationally, a
term is reduced to its E�-normal form modulo A before any rewrite rule is applied.

5 A specification with owise equations can be transformed to an equivalent system
without such equations [5].

5

A Real-Time Maude specification is executable, and the tool offers a variety
of formal analysis methods. The rewrite command simulates one behavior of the
system, starting with a given initial state, up to a certain duration. It is written
with syntax (trew t in time <= τ .), where t is the initial state and τ is a
term of sort Time. The search command uses a breadth-first strategy to analyze
all possible behaviors of the system from an initial state, by checking whether
a state matching a pattern and satisfying a condition can be reached from the
initial state. The command which searches for n states satisfying the pattern

search criterion has syntax

(utsearch [n] t =>* pattern such that cond .)

Real-Time Maude’s linear temporal logic model checker checks whether each
behavior from an initial state, possibly up to a time bound, satisfies a linear
temporal logic formula. The time-bounded model checking command has syntax

(mc t |=t formula in time <= τ .)

for initial state t and temporal logic formula formula . State propositions, pos-
sibly parametrized, are operators of sort Prop. Their semantics should be given
by equations of the form

ceq {statePattern} |= prop = b if cond

for b a term of sort Bool, which defines the state proposition prop to hold in all
states {t} such that {t} |= prop evaluates to true.

A temporal logic formula is constructed by state propositions and temporal
logic operators such as True, False, ~ (negation), /\, \/, -> (implication), []
(“always”), <> (“eventually”), U (“until”), and O (“next”). The command (mc

t |=u ϕ .) then checks whether the temporal logic formula ϕ holds in all
behaviors starting from the initial state t.

PALS. In many systems targeted by AADL, such as avionics systems and dis-
tributed control systems in motor vehicles, the system design is essentially a
synchronous design that must be realized in an asynchronous distributed set-
ting. The design and verification of such distributed real-time systems is a chal-
lenging and error-prone task because of asynchronous communication, network
delays, clock skews, and because the state space explosion caused by the system’s
concurrency can make it unfeasible to apply model checking to verify required
properties.

The key idea of the PALS architectural pattern [11, 13, 1, 18] is to reduce the
design and verification of a distributed real-time system to that of its much sim-
pler synchronous version when the network infrastructure guarantees bounds on
the messaging delays and the skews of the local clocks. For a synchronous design
SD and network bounds Γ , PALS defines the corresponding asynchronous dis-
tributed design PALS (SD , Γ). In [11, 12] we formalize PALS and prove that the

6

typically unfeasible task of model checking the asynchronous design PALS (SD , Γ)
reduces to the feasible task of model checking the synchronous design SD .

The systems we target are made up of components that communicate asyn-
chronously and must change state and respond to environment inputs within
hard real-time bounds. The synchronous PALS model of computation is there-
fore formalized as the synchronous composition of a collection of deterministic
typed machines, a nondeterministic environment, and a wiring diagram that con-
nects the machines:

Definition 1. A typed machine M = (Di, S,Do, δM) consists of:

– Di, called the input set, a nonempty set of the form Di = Di1 × · · · ×Din ,

– S, a nonempty set, called the set of states.
– Do, called the output set, a nonempty set of the form Do = Do1×· · ·×Dom ,

– δM , called the transition function, a function δM : (Di × S) → (S ×Do).

That is, a machine has n input ports and m output ports; an input to port k is
an element of Dik , and an output from port j is an element of Doj .

Typed machines can be “wired together” into arbitrary sequential and par-
allel compositions by means of a “wiring diagram,” as shown in Fig. 1.

M1

M3

M2

Fig. 1. A machine ensemble.

Definition 2. A (typed) machine ensemble E = (J ∪ {e}, {Mj}j∈J , E, src) has:

– J , a nonempty finite set of indices, and e �∈ J the environment index.
– {Mj}j∈J , a J-indexed family of typed machines.

– E, called an environment, is an ordered pair E = (De
i , D

e
o), where De

i , the

inputs to the environment, is a nonempty set De
i = De

i1×· · ·×De
ine

and De
o,

the environment’s output set, is a nonempty set De
o = De

o1
× · · · ×De

ome
.

– src, a function that assigns to each input port (j, n) (the input port number

n of machine j) its “source” output port src(j, n). Formally, we define the

set of input ports and output ports as follows:

• InE = {(j, n) ∈ (J ∪ {e})× N | 1 ≤ n ≤ nj}, where Mj has nj inputs

• OutE = {(j, n) ∈ (J ∪{e})×N |1 ≤ n ≤ mj}, where Mj has mj outputs.

Then src is a surjective function src : InE → OutE assigning to each input

port the output port to which it is connected, and such that “the types match”.

That is, if we denote by D
j
ik

the set of data allowed as input in the kth input

port of machine Mj (resp. kth input port of the environment if j = e), and

same with output ports, then if src(j, q) = (k, l) we should have Dk
ol
⊆ D

j
iq

.

In addition, there is no self-loop from the environment to itself.

7

An ensemble E has a lock-step synchronous semantics, in the sense that the tran-
sitions of all machines are performed simultaneously, and whenever a machine
has a feedback wire to itself and/or to any other machine, then the corresponding
output becomes an input for any such machine at the next step. We assume an
environment where the constraints on the values generated by the environment

can be defined as a satisfiable predicate ce : De
o → Bool so that ce(d1, . . . , dme)

is true if and only if the environment can generate output (d1, . . . , dme). We
can associate a transition system defining the behaviors of a machine ensemble
that operates in an environment as follows.

Definition 3. Given a machine ensemble E with environment constraint ce, the

corresponding transition system is defined as a pair Ece = (SE × DE
i , −→Ece

),
where the transition relation −→Ece

is defined by (s, i) −→Ece
(s�, i�) iff a ma-

chine ensemble in state s and with input i from the environment has a transition

to state s�, and the environment can generate output i� in the next step:

(s, i) −→Ece
(s�

, i�) ⇐⇒ ∃o δE(i, s)) = (s�
,o) ∧ ce(i�).

3 Synchronous AADL

This section defines the Synchronous AADL language that can be used to model
synchronous designs in AADL, including both synchronous PALS designs and
other synchronous designs that can be mapped onto different distributed real-
time architectures, such as the time-triggered architecture [10]. We have focused
on making Synchronous AADL intuitive for the AADL expert by defining Syn-
chronous AADL as an annotated sublanguage of AADL, in which the execution
of each thread in each “round” is independent of the other threads, and where
output generated by a thread in a round is available as input at the receiving
thread exactly at the beginning at the next “round.” In AADL, such threads
would be executed asynchronously. However, since the threads are independent
of each other in each round, the “final” states in each round are the same in
both any asynchronous execution and in a synchronous execution; the latter
just ignores the “intermediate” asynchronous states. Therefore, all AADL con-
structs in the subset have the same meaning in AADL and Synchronous AADL.
Synchronous AADL also adds a property set SynchAADL to declare Synchronous
AADL-specific properties as explained below.

Since Synchronous AADL is intended to model synchronous designs, as op-
posed to their often asynchronous implementations, it ignores the hardware,
memory, and scheduling features of AADL. Synchronous AADL therefore fo-
cuses on the behavioral and structural subset of AADL, namely, hierarchical
system, process, and thread components, ports and connections, and thread be-
haviors defined in the behavior annex standard. We next discuss the definition
of Synchronous AADL. Section 3.1 discusses the design of Synchronous AADL,
and Section 3.2 explains how a Synchronous AADL model defines a PALS typed
machine ensemble.

8

3.1 The Definition of Synchronous AADL

Dispatch. The dispatch protocol is used to trigger an execution of an AADL
thread. A periodic thread is dispatched at the beginning of each new time period
of the thread. In the aperiodic, sporadic, timed, and hybrid dispatch protocols,
the thread is dispatched when it receives an event. Such event-triggered dispatch
is not suitable to define a system in which all threads (with a possible exception
for the environment thread) could be seen as executing in lock-step, since the
sending thread triggers the execution of the receiving thread, which would read in
its ith round the output generated by the sender in the same round.6 Therefore,
each thread must have periodic dispatch; furthermore, since each thread must
execute in each round, the period of all the threads must be the same.

Communication. There are three kinds of ports in AADL: data, event, and event

data ports. Event and event data ports can be used to dispatch event-triggered
threads. To have only AADL constructs that define “synchronous behaviors,” the
communication primitives must ensure that all output generated in an iteration
is available to the receiver at the beginning of the next iteration, and not earlier.

Version 1 of AADL has two kinds of semantic data connections: immediate

and delayed connections. According to [6, Section 8.1.5], an immediate connec-
tion imposes an execution order on threads with the same dispatch times: the
source thread must execute before the destination thread. Not only would this
break the intended “lock-step” synchronous execution, but it also implies that
the destination of an immediate connection uses the output that is generated in

the same round, which violates our requirements of synchronous models. For a
delayed port connection,

“the value from the sending thread is transmitted at its deadline and is
available to the receiving thread at its next dispatch. [...] If the deadline
of the sending thread and the dispatch of the receiving thread occur si-
multaneously the transmission occurs at that instant.” [6, Section 8.1.5].

In our setting, where all threads have periodic dispatch with the same period,
the deadline of the previous round and the dispatch of the next round coincide.
Therefore, the output generated in an iteration will be available to the receivers
at the start of the next iteration. Since only data ports have delayed connections,
and since event-triggered dispatches are excluded, only data ports are used in
Synchronous AADL, and all connections between non-environment threads must
be delayed.

Execution Times. Since the components execute in lock-step, it is natural to
assume that they use the same time to perform their execution. This is, however,
not strictly necessary, since their executions are independent during the period,
6 One could think of using event ports from the environment threads, but then we

would need an event connection to each other thread in the system, which is unde-
sired and therefore not included in Synchronous AADL.

9

so that they may in principle have different durations. For simplicity, and since
the PALS synchronous model is untimed, we assume that the thread executions
are instantaneous.

Deterministic Threads. In the systems targeted by PALS and Synchronous
AADL, the nodes that communicate with the environment are invariably deter-
ministic. This is reflected in Definition 1, where the behavior of a typed machine
is deterministic. We therefore assume that the transition system defining the be-
havior of a non-environment thread is deterministic, and that each such thread
has the property:

SynchAADL::Deterministic => true

Environment Thread. In PALS, the environment thread generates output non-
deterministically in each iteration. The possible outputs can often be defined by
an environment constraint ce so that ce(o) is true if and only if the environment
can nondeterministically generate output o in any iteration. The property

SynchAADL::IsEnvironment => true

denotes that the thread is an environment thread, and the property

SynchAADL::InputConstraints => ("Boolean formula ")

defines an input constraint on a set of Boolean-valued outputs. We assume that
a Synchronous AADL system has at most one environment thread.

It seems natural to regard the system as responding to the current envi-
ronment output. We therefore support only immediate connections from the
environment. According to the AADL semantics, this forces the environment to
execute before the other nodes in each round.

Declaring Synchronous Systems. The top-level system component declares the
entire system to execute synchronously by declaring the property

SynchAADL::Synchronous => true

It is also useful to declare the period of the entire system at the top level in the
component hierarchy by declaring the property

SynchAADL::SynchPeriod => p

3.2 Correspondence with the PALS Synchronous Model

Each non-environment thread T in a Synchronous AADL model defines a typed
machine MT in the expected way. Since, in contrast to a typed machine, a thread
may not always output a value to all output ports, the “state” SMT of the typed
machine MT also contains, for each input port, the value of the input that was
last received by that port, and thus has the form (s, v, inp), where s is a complete

10

state or initial state in the thread’s transition system, v is a valuation of its local
variables, and inp is a vector with the latest value received by each input port.

For each domain D of an input port, let D∗ denote the domain D extended
with an element ‘∗’ denoting “no input.” Given an ordering p1, . . . , pn of the
input ports of thread T , the input set of the typed machine MT is the corre-
sponding set D∗

i1 × · · · × D∗
in

. The output set of MT can be defined similarly.
Then, δMT (i, (s, v, inp)) = ((s�, v�, inp�),o) iff the transition system of T , when
starting from local state s with the values of local variables given by v, and hav-
ing input i in its input ports (some of these may be ‘∗’), and having stored inp
in its data input ports, can perform a series of transitions, leading to a complete
state s� and to the variables having values v�, and the output ports having been
assigned output values o, so that in the transitions performed, a complete state
was not reached in fewer steps, and where the inp� is the updated values of the
input ports (which are unchanged iff the input to that port was ‘∗’).

A Synchronous AADL model can be seen as a machine ensemble in the
obvious way, where the semantic connections define the wiring. Likewise, the
environment constraint ce is given in the input constraint property of the envi-
ronment thread. The form of the single transition of environment threads then
ensures that the appropriate values can be sent from the environment.

4 Avionics Examples

This section illustrates the use of Synchronous AADL on two related avionics
case studies.

4.1 An Active Standby System

We first exemplify Synchronous AADL with fragments of a model of an avionics
system based on a specification by Steve Miller and Darren Cofer at Rockwell-
Collins [13]. A full description of this model is given in Appendix A.

In integrated modular avionics (IMA), a cabinet is a chassis with a power
supply, internal bus, and general purpose computing, I/O, and memory cards.
Aircraft applications are implemented using the resources in the cabinets. There
are always two or more cabinets that are physically separated on the aircraft
so that physical damage does not take out the computer system. The active

standby system considers the case of two cabinets and focuses on the logic for
deciding which side is active. Each side can fail, and a failed side can recover
after failure. In case one side fails, the non-failed side should be the active side.
In addition, the pilot can toggle the active status of these sides. The full func-
tionality of each side depends on the two sides’ perception of the availability
of other system components. The architecture of the system is shown in Figure
2. Each time Environment dispatches, it nondeterministically sends 5 Boolean
values, one through each ports, with the constraint that two sides cannot fail at
the same time. Therefore, in each round, the environment can send any one of
24 different 5-tuples.

11

Fig. 2. The architecture of the active standby system.

The Synchronous AADL Model. The following top-level system component im-
plementation declares the architecture of the system, with the three subcom-
ponents sideOne, sideTwo, and env, and with immediate data connections (de-
noted by the arrow ‘->’) from the environment to the two sides, and with delayed
data connections (‘->>’) between the two sides (parts of the model are replaced
by ‘...’):

system implementation ActiveStandbySystem.impl

properties

SynchAADL::Synchronous => true;

SynchAADL::SynchPeriod => 2 ms;

subcomponents

sideOne: system Side1.impl;

sideTwo: system Side2.impl;

env: system Environment.impl;

connections

data port sideOne.side1ActiveSide ->> sideTwo.side1ActiveSide;

data port sideTwo.side2ActiveSide ->> sideOne.side2ActiveSide;

data port env.side1FullyAvail -> sideOne.side1FullyAvail;

data port env.side1FullyAvail -> sideTwo.side1FullyAvail;

...

data port env.side2Failed -> sideTwo.side2Failed;

end ActiveStandbySystem.impl;

The environment component env is an instance of the following system im-
plementation, which declares a similar process subcomponent envProcess:

system Environment

features

side1FullyAvail: out data port Behavior::boolean;

side2FullyAvail: out data port Behavior::boolean;

manualSelection: out data port Behavior::boolean;

side1Failed: out data port Behavior::boolean;

side2Failed: out data port Behavior::boolean;

end Environment;

system implementation Environment.impl

subcomponents

12

envProcess: process EnvironmentProcess.impl;

connections

data port envProcess.side1FullyAvail -> side1FullyAvail;

data port envProcess.side2FullyAvail -> side2FullyAvail;

data port envProcess.manualSelection -> manualSelection;

data port envProcess.side1Failed -> side1Failed;

data port envProcess.side2Failed -> side2Failed;

end Environment.impl;

We do not show the implementation of envProcess, which contains a thread
instance envThread, ports, and connections from the output ports of envThread
to the corresponding output ports of envProcess. The thread envThread defin-
ing the environment behavior is an instance of the following component:

thread EnvironmentThread

features

side1FullyAvail: out data port Behavior::boolean;

side2FullyAvail: out data port Behavior::boolean;

manualSelection: out data port Behavior::boolean;

side1Failed: out data port Behavior::boolean;

side2Failed: out data port Behavior::boolean;

end EnvironmentThread;

thread implementation EnvironmentThread.impl

properties

SynchAADL::InputConstraints => ("not (s1F and s2F)");

SynchAADL::IsEnvironment => true;

Dispatch_Protocol => Periodic;

Period => 2 ms;

annex behavior_specification {**

states

s0 : initial complete state;

state variables

s1FA: Behavior::boolean;

s2FA: Behavior::boolean;

mS: Behavior::boolean;

s1F: Behavior::boolean;

s2F: Behavior::boolean;

transitions

s0 -[]-> s0 {

side1FullyAvail := s1FA;

side2FullyAvail := s2FA;

manualSelection := mS;

side1Failed := s1F;

side2Failed := s2F; };

**};

end EnvironmentThread.impl;

The transition system has a single transition, that in each dispatch sends the
values of the state variables s1FA, s2FA, mS, s1F, and s2F to the corresponding
output ports. These variables can be assigned any values that satisfy the con-
straint not (s1F and s2F) that states that side 1 and side 2 cannot both fail
at the same time.

The following component defines the behavior of side 1:

thread Side1Thread

features

side2ActiveSide: in data port Behavior::integer;

13

manualSelection: in data port Behavior::boolean;

side1Failed: in data port Behavior::boolean;

side1FullyAvail: in data port Behavior::boolean;

side2FullyAvail: in data port Behavior::boolean;

side1ActiveSide: out data port Behavior::integer;

end Side1Thread;

thread implementation Side1Thread.impl

properties

SynchAADL::Deterministic => true;

Dispatch_Protocol => Periodic;

Period => 2 ms;

annex behavior_specification {**

states

preInit: initial complete state;

initState : complete state;

side1FailedState : complete state;

side2FailedState : complete state;

side1WaitState : complete state;

side1ActiveState : complete state;

side2ActiveState : complete state;

state variables

prevSide2ActiveStatus: Behavior::integer;

prevManualSwitch: Behavior::boolean;

initially

prevSide2ActiveStatus := 0;

prevManualSwitch := false;

transitions

...

side2ActiveState -[side1Failed = false and

side2ActiveSide != 0 and

side1FullyAvail = true and

((prevManualSwitch = false and

manualSelection = true)

or side2FullyAvail = false)]-> side1ActiveState {

side1ActiveSide := 1;

prevSide2ActiveStatus := side2ActiveSide;

prevManualSwitch := manualSelection; };

...

**};

end Side1Thread.impl;

We show only one of the 20 transitions in this thread. The transition takes
the thread from state side2ActiveState to state side1ActiveState if the in-
put received in the side1Failed port is false, the value received in the port
side2ActiveSide is different from 0, etc. As a result of applying the transition,
the value 1 is sent through the output port side1ActiveSide, and the local vari-
ables prevSide2ActiveStatus and prevManualSwitch are assigned the values
received in the ports side2ActiveSide and manualSelection, respectively.

4.2 A Three–Node Active Standby System

We also have modeled in Synchronous AADL another version of the active
standby example with 3 components; this system can be used to control the
aileron7 or the rudder of an aircraft. The main difference between this example
7 A hinged flight control surface attached to the trailing edge of an airplane wing,

used to control lateral balance.

14

and the above active standby system is that the 3-node system uses the syn-
chronous execution semantics to generate a consistent view of the global state.
A view is represented in this example as the active/standby status of three sides
perceived at each side. Each component then computes its active-standby status
based on the current view.

Environment

Aileron

Side1 Side2 Side3

side1Failed side2Failed side3Failed

side1ActiveSide

side2ActiveSide

side3ActiveSide

Fig. 3. The architecture of the 3-node active standby system.

The actuator, e.g. the aileron, uses the control command from an active side.
The standby sides’ commands are not used in normal condition when there is an
active side. The most important requirement in this design is to guarantee the
operational safety of the system. In order to guarantee stability, the design must
satisfy that a new active side will be selected within a small number of steps
after the failure of an active side. We also require that there will be no state at
which more than one sides are active. This requirement is needed to simplify the
logic of the actuator. Finally, this design specification requires that consistent
view of the active-standby status of 3 sides at each step.

There are a total of 5 components in the system: sideOne, sideTwo, sideThree,
environment, and aileron. The three sides (sideOne, sideTwo, and sideThree)
agree upon which side is active. They forward their outputs to aileron. Based
on these outputs, the aileron then selects the control output from the active
side. In this example, environment is the Environment that injects failure into
the components by sending 3 Boolean data nondeterministically, with the con-
straint that all sides cannot fail at the same time. Unlike the previous example,
there is no input for the availability status and manual selection.

system implementation MainSystem.impl

15

properties

SynchAADL::Synchronous => true; SynchAADL::SynchPeriod => 2 ms;

subcomponents

sideOne: system Side1::Side1.impl;

sideTwo: system Side2::Side2.impl;

sideThree: system Side3::Side3.impl;

environment: system Environment::Environment.impl;

aileron: system Aileron::IOTask.impl;

connections

data port sideOne.side1ActiveSide ->> sideTwo.side1ActiveSide;

data port sideOne.side1ActiveSide ->> sideThree.side1ActiveSide;

data port sideTwo.side2ActiveSide ->> sideOne.side2ActiveSide;

data port sideTwo.side2ActiveSide ->> sideThree.side2ActiveSide;

data port sideThree.side3ActiveSide ->> sideOne.side3ActiveSide;

data port sideThree.side3ActiveSide ->> sideTwo.side3ActiveSide;

data port environment.side1Failed -> sideOne.side1Failed;

data port environment.side2Failed -> sideTwo.side2Failed;

data port environment.side3Failed -> sideThree.side3Failed;

data port sideOne.side1ActiveSide ->> aileron.side1ActiveSide;

data port sideTwo.side2ActiveSide ->> aileron.side2ActiveSide;

data port sideThree.side3ActiveSide ->> aileron.side3ActiveSide;

end MainSystem.impl;

The active-standby logic of each side has two state transitions. We give the
specification of the behavior of Side3 and one of its state transition below. In
this design, the output of each side is determined by the local view of the ac-
tive/standby status of three sides. This local view is represented by three state
variables g_side1, g_side2, and g_side3. The synchronous behavior of this
system guarantees that the local views are identical at each side so that all sides
can be consistent. In the transition system, Side 3 becomes active (i.e. g_side1
= 3) if Side1 and Side2 are failed. We use if-elsif-endif conditionals of the be-
havior annex to simplify the logic. The ‘fresh’ values of side1ActiveSide and
side2ActiveSide are assigned to g_side1 and g_side2. The value of g_side3
is computed at the previous step.

thread implementation ActiveStandbyThread.impl

annex behavior specification {**
state variables

g side1: behavior::integer;

g side2: behavior::integer;

g side3: behavior::integer;

prev gside3: behavior::integer;

initially

g side1 := -1; g side2 := -1; g side3 := -1;

prev gside3 := -1;

states

s0 : initial complete state;

transitions

...

s0 -[on side3Failed’fresh and side3Failed = false]-> s0 {
g side3 := prev gside3;

if (side1ActiveSide’fresh)

g side1 := side1ActiveSide;

else

g side1 := -1;

end if;

if (side2ActiveSide’fresh)

16

g side2 := side2ActiveSide;

else

g side2 := -1;

end if;

if (g side3 = -1)

side3ActiveSide := 0;

prev gside3 := 0;

elsif (g side3 != (-1) and g side1 = (-1) and g side2 = -1)

side3ActiveSide := 1;

prev gside3 := 1;

else

side3ActiveSide := prev gside3;

end if;

};
**};

end ActiveStandbyThread.impl;

The behavior of the other sides is specified in a similar way; see Appendix B.

5 Real-Time Maude Semantics of Synchronous AADL

This section summarizes the Real-Time Maude semantics of Synchronous AADL.
Since we have previously defined the Real-Time Maude semantics of a subset of
standard behavioral AADL models, we also refer to [14] for details about the
Real-Time Maude representation of AADL models, and focus on Synchronous
AADL-specific features of the semantics.

We first show how Synchronous AADL models are represented in Real-Time
Maude and then formalize the synchronous behaviors of such models.

5.1 Representing Synchronous AADL Models in Real-Time Maude

The semantics of a component-based language can naturally be defined in an
object-oriented style, where each component instance is modeled as an object.
The hierarchical structure of Synchronous AADL components is reflected in
the nested structure of objects, in which an attribute of an object contains its
subcomponents as a multiset of objects. Any Synchronous AADL component
instance is represented as an object instance of a subclass of the following class
Component, which contains the attributes common to all kinds of components:

class Component | features : Configuration,

subcomponents : Configuration,

properties : Properties,

connections : ConnectionSet .

The attribute features denotes the ports of a component instance, represented
as a multiset of Port objects; subcomponents denotes the subcomponents of
the object; properties denotes its properties; and connections denotes its
connections.

In Synchronous AADL, the classes System and Process, denoting system
and process components, do not have other attributes than those they inherit
from their Component superclass. The Thread class is declared as follows:

17

class Thread | behaviorRef : ComponentRef,

variables : Valuation,

currState : Location,

completeStates : LocationSet .

subclass Thread < Component .

Since the term representing the transitions of a thread can be fairly large,
and since the transitions do not change dynamically, we do not carry them
around in the objects. Instead, a memo-ized (see [5]) function transitions :

ComponentRef ~> TransitionSet contains the transitions of each thread com-
ponent, represented as a semi-colon-separated multiset of transitions of the form
s -[guard]-> s� {actions}. The attribute behaviorRef denotes the component
of the thread; variables denotes its local variables and their values; currState
denotes the current “state” of the transition system; and completeStates de-
notes its complete states.

Data ports are represented as object instances of subclasses of the class Port,
whose content attribute denotes the current content of the port, which is either
noMsg (the port buffer is empty) or contains a data element e, in which case
the content is data(e). Thread input ports also contain a flag fresh denoting
whether the port received data in the latest dispatch:

class Port | content : MsgContent .

class InDataPort .

class OutDataPort .

subclass InDataPort OutDataPort < Port .

class InDataThreadPort | fresh : Bool .

subclass InDataThreadPort < InDataPort .

sort MsgContent .

op noMsg : -> MsgContent [ctor] .

op data : Bool -> MsgContent [ctor] . op data : Int -> MsgContent [ctor] .

A level-up connection, linking an outgoing port P in a subcomponent C to the
outgoing port P � in the “current” component, is modeled as a term C.P -->P �.
Immediate same-level and level-down connections are terms of the forms, respec-
tively, C1.P1 -->C2.P2 and P -->C.P �. Delayed connections are denoted with
the arrow -->>. A connection set is a semi-colon-separated set of connections.

For example, in our avionics example, an instance of the top-level system
component in Section 4 would be represented in Real-Time Maude by the term

< MAIN : System | features : none, properties : Synchronous(true) ; SynchPeriod(2),

subcomponents : < sideOne : System | ... > < sideTwo : System | ... >

< env : System | ... >,

connections : sideOne . side1ActiveSide -->> sideTwo . side1ActiveSide ;

sideTwo . side2ActiveSide -->> sideOne . side2ActiveSide ;

env . side1FullyAvail --> sideOne . side1FullyAvail ;

...

env . side2Failed --> sideTwo . side2Failed >

18

The instance side1Thread of the component Side1Thread.impl in a partic-
ular state is represented by the term

< side1Thread : Thread |

features : < side2ActiveSide : InDataThreadPort | content : data(2), fresh : true >

< manualSelection : InDataThreadPort | content : data(false), fresh : true >

...

< side1ActiveSide : OutDataPort | content : data(0) >,

subcomponents : none, properties : periodic-dispatch(2) ; Deterministic(true),

connections : none, behaviorRef : thread Side1Thread . impl,

variables : (prevSide2ActiveStatus |-> 2) (prevManualSwitch |-> false),

currState : side1FailedState,

completeStates : preinit initState side1FailedState ... side2ActiveState >

5.2 Formalizing the Synchronous Steps

Assuming that the system contains one environment thread and that the other
threads are deterministic, a synchronous step of the system is formalized by the
following tick rewrite rule:

var SYSTEM : Object . var VAL : Valuation . var VALS : ValuationSet .

crl [syncStepWithTime] :

{SYSTEM}

=> {applyTransitions(transferData(applyEnvTransitions(VAL, SYSTEM)))}

in time period(SYSTEM)

if containsEnvironment(SYSTEM) /\ VAL ;; VALS := allEnvAssignments(SYSTEM) .

The function allEnvAssignments uses Maude’s SAT solver to find all val-
uations of the Boolean variables in the environment thread that satisfy the
environment constraint. The union operator _;;_ is declared to be associa-
tive and commutative; therefore, any of these valuations is nondeterministi-
cally assigned to the variable VAL in the matching condition VAL ;; VALS :=

allEnvAssignments(SYSTEM). Then, the function applyEnvTransitions, which
performs the environment transition that outputs the values of the variables
given by the selected valuation VAL, is applied. The function transferData

is then applied to the entire system; this function transfers the data in the
threads’ output ports to the receiving input ports and then clears the output
ports. Finally, the function applyTransitions applies transitions in each non-
environment thread until a complete state is reached in the thread. The function
period extracts the period of the system. In case there is no environment thread
in the system, the following rule models a synchronous step:

crl [syncStepWithTimeNoEnv] :

{SYSTEM}

=>

{applyTransitions(transferData(SYSTEM))} in time period(SYSTEM)

if not containsEnvironment(SYSTEM) .

We refer to the full executable specification in Appendix C for the definition of
these functions, and only show the definition of applyTrans, which distributes

19

to the thread objects in the state, and is defined as follows for deterministic
threads:

ceq applyTransitions(

< O : Thread | properties : Deterministic(true) ; PROPS,

features : PORTS, currState : L1, completeStates : LS,

variables : VAL, behaviorRef : CR >)

= if L2 in LS then < O : Thread | features : NEW-PORTS, currState : L2,

variables : NEW-VALUATION >

else applyTransitions(< O : Thread | features : NEW-PORTS, currState : L2,

variables : NEW-VALUATION >) fi

if ((L1 -[GUARD]-> L2 {SL}) ; TRANSITIONS) := transitions(CR)

/\ evalGuard(GUARD, PORTS, VAL)

/\ transResult(NEW-PORTS, NEW-VALUATION) :=

executeTransition(L1 -[GUARD]-> L2 {SL}, PORTS, VAL) .

The thread is in local state L1, and a transition L1 -[GUARD]-> L2 {SL}, whose
GUARD evaluates to true in the current state and input port values, is applied
from the transitions in transitions(CR). The function executeTransition

executes a given transition in a state with a given set PORTS of ports and assign-
ment VAL of the state variables. The function returns a term transResult(p, σ),
where p is the state of the ports after the execution, and σ denotes the resulting
values of the state variables. If the resulting state L2 is not a complete state, the
function applyTransitions is applied again to the new state.

5.3 Correspondence with the PALS Model

As mentioned in Section 2, a transition of a machine ensemble E with environ-
ment constraint ce has the form (s, i) −→Ece

(s�, i�), where s contains the state
of each machine and the contents in the “feedback wires” of the ensemble, and i is
input from the environment, so that from state s with input i the system goes to
state s� in one synchronous step, and so that the environment generates output
i� in the next step. Let {t} −→ {t�} be a rewrite step in the Real-Time Maude
semantics. The term t contains both the states of the single threads as well as
the contents in the feedback wires (since the output ports contain the output
from the “previous” iteration of the threads), and therefore corresponds to s.
Furthermore, although the input i from the environment is generated during the
rewrite, and hence is not present in t, the resulting state t� contains the i which
brought the system from state t to state t�. This input from the environment is
present in both the appropriate input ports in t� as well as in the local variables
of the environment thread. Therefore, if we denote by t(j) a state t where we
make explicit the (previous) input j from the environment, then the transition
(s, i) −→Ece

(s�, i�) corresponds to a rewrite {t(ip)} −→ {t�(i)}, where ip was
the input in the previous round, and where stateE(t) = s and stateE(t�) = s� for
the obvious mapping stateE which maps a term to the states of E .

20

6 Formal Analysis of Synchronous AADL Models

The Real-Time Maude model that can be synthesized from a Synchronous AADL
model using the semantics described in Section 5, which is supported by the
SynchAADL2Maude tool explained in Section 8, can be formally analyzed in
different ways. This section presents some functions allowing the user to define
system properties in terms of a Synchronous AADL model without having to
understand its formal representation.

Reachability Analysis. Real-Time Maude’s search commands can be used to
analyze whether or not a state matching a state pattern with a match that
satisfies a condition can be reached from the initial state. The term

value of v in component fullComponentName in globalComponent

returns the value of the state variable v in the thread identified by the full
component name fullComponentName in the system in state globalComponent .
The full component name is a ->-separated path of component names. Likewise,
the term

location of component fullComponentName in globalComponent

gives the current location/state in the transition system in the given thread.
In our example, if MAIN is the name of the top-level component, then the

following search command checks whether we can reach a state where the side
one thread is in state side1ActiveState and the side two thread is in state
side2ActiveState:

Maude> (utsearch [1] {initial} =>* {C:Configuration}

such that

((location of component (MAIN -> sideOne -> sideProcess -> sideThread)

in C:Configuration) == side1ActiveState

and (location of component (MAIN -> sideTwo -> sideProcess -> sideThread)

in C:Configuration) == side2ActiveState) .)

LTL Model Checking. For LTL model checking purposes, our tool has useful
pre-defined parametric atomic propositions, such as

full thread name @ location

which holds when the thread is in state location, and

value of port/variable in component fullThreadName is v

that holds in a state if the value of the local variable or port of the thread is v.

7 Verifying the Active Standby System

This section show how we have verified the Synchronous AADL model of the
avionics systems in Section 4.

21

7.1 The Active Standby System

The paper [13] lists the following important properties that the active standby
system must satisfy:

R1: Both sides should agree on which side is active (provided neither side has
failed, the availability of a side has not changed, and the pilot has not made
a manual selection).

R2: A side that is not fully available should not be the active side if the other
side is fully available (again, provided neither side has failed, the availability
of a side has not changed, and the pilot has not made a manual selection).

R3: The pilot can always change the active side (except if a side is failed or the
availability of a side has changed).

R4: If a side is failed the other side should become active.
R5: The active side should not change unless the availability of a side changes,

the failed status of a side changes, or manual selection is selected by the
pilot.

We have verified all the property R1–R5 for the Synchronous AADL model using
the Real-Time Maude below. A more detailed discussion of the LTL representa-
tion of the above properties can be found in [12].

Requirement R1. Both sides should agree on which side is active (provided

neither side has failed, the availability of a side has not changed, and the pilot

has not made a manual selection).

Side i thinks that side j is active if it sends the number j to its output port
sideiActiveSide. Using the predefined proposition “value of port in thread

is v”, we can easily define the formula agreeOnActiveSide to hold when both
sides think that side 1 is active or when both sides think that side 2 is active:

op agreeOnActiveSide : -> Formula .

eq agreeOnActiveSide =

((value of side1ActiveSide in component

(MAIN -> sideOne -> sideProcess -> sideThread) is 1) /\

(value of side2ActiveSide in component

(MAIN -> sideTwo -> sideProcess -> sideThread) is 1))

\/ ((value of side1ActiveSide in component

(MAIN -> sideOne -> sideProcess -> sideThread) is 2) /\

(value of side2ActiveSide in component

(MAIN -> sideTwo -> sideProcess -> sideThread) is 2)) .

Side i has failed if it has received the value true in its sideiFailed port:

ops side1Failed side2Failed neitherSideFailed : -> Formula .

eq side1Failed

= value of side1Failed in component

(MAIN -> sideOne -> sideProcess -> sideThread) is true .

eq side2Failed

22

= value of side2Failed in component

(MAIN -> sideTwo -> sideProcess -> sideThread) is true .

eq neitherSideFailed = (~ side1Failed) /\ (~ side2Failed) .

Likewise, the proposition sideiFullyAvailable holds if side i is fully avail-
able. There is no change in availability if both sides are equally available in the
current state and in the next state:

op noChangeAvailability : -> Formula .

eq noChangeAvailability

= (side1FullyAvailable <-> O side1FullyAvailable) /\

(side2FullyAvailable <-> O side2FullyAvailable) .

We define a property that the pilot has made a manual selection, and then
define a formula that says that in the next state, the pilot has not made a manual
selection, the availability of a side has not changed, and neither side has failed:

ops manSelectPressed noChangeAssumptionNextState : -> Formula .

eq manSelectPressed

= value of manualSelection in component

(MAIN -> sideOne -> sideProcess -> sideThread) is true .

eq noChangeAssumptionNextState

= noChangeAvailability /\ (O ~ manSelectPressed) /\

(O neitherSideFailed) .

As explained in [12], the requirement R1 is not satisfied in the active standby
system; instead, we verify the following weaker property R1. For each state, if
in the next state the availability has not changed, the pilot has not pressed the
button, and neither side has failed, then the sides agree on which side is active
either in the next state, or in the state following the next state (unless a side
then has failed):

op R1 : -> Formula .

eq R1 = [] (noChangeAssumptionNextState

-> O (agreeOnActiveSide \/

O (neitherSideFailed -> agreeOnActiveSide))) .

We can then use Real-Time Maude model checking to verify the property O R1:

Maude> (mc {initial} |=u O R1 .)

rewrites: 1211549 in 9698ms cpu (9918ms real) (124918 rewrites/second)

Result Bool : true

Requirement R2. A side that is not fully available should not be the active side

if the other side is fully available (provided neither side has failed, the availability

of a side has not changed, and the pilot has not made a manual selection).

As explained in [12], this property does not hold as stated; the standby side
monitors full availability, and hence the change of active side might be delayed
by one round. Instead, we can verify the following property for side 1:

23

op R2a : -> Formula .

eq R2a

= O ([] ((noChangeAssumptionNextState /\ O side1FullyAvailable /\

O ~ side2FullyAvailable) ->

O (~ side2Active

\/ (noChangeAssumptionNextState -> O ~ side2Active)))) .

where the proposition sideiFullyAvailable holds if Side i has received the
value true in its sideiFullyAvail port:

ops side1FullyAvailable side2FullyAvailable : -> Formula .

eq side1FullyAvailable

= value of side1FullyAvail in component

(MAIN -> sideOne -> sideProcess -> sideThread) is true .

eq side2FullyAvailable

= value of side2FullyAvail in component

(MAIN -> sideTwo -> sideProcess -> sideThread) is true .

and sideiFullyAvailable holds if Side i has received the value true in its
sideiActiveSide port:

ops side1Active side2Active : -> Formula .

eq side1Active

= value of side1ActiveSide in component

(MAIN -> sideOne -> sideProcess -> sideThread) is 1 .

eq side2Active

= value of side2ActiveSide in component

(MAIN -> sideTwo -> sideProcess -> sideThread) is 2 .

Model checking shows that R2a holds in our model:

Maude> (mc {initial} |=u R2a .)

rewrites: 1145326 in 7171ms cpu (7335ms real) (159711 rewrites/second)

Result Bool : true

The symmetric property with the above for Side 2 does not hold, due to the
fact that the sides are asymmetric in their failure recovery [12]. The best we can
hope for side 2 is:

op R2b : -> Formula .

eq R2b

= [] ((noChangeAssumptionNextState /\ O side2FullyAvailable /\

O ~ side1FullyAvailable)

-> O (~ side1Active \/

(noChangeAssumptionNextState -> O (~ side1Active \/

(noChangeAssumptionNextState -> O (~ side1Active \/

(noChangeAssumptionNextState -> O (~ side1Active \/

(noChangeAssumptionNextState -> O (~ side1Active))

)))))))) .

24

Model checking this property returns true:

Maude> (mc {initial} |=u R2b .)

rewrites: 1146199 in 7146ms cpu (7161ms real) (160396 rewrites/second)

Result Bool : true

Requirement R3. The pilot can always change the active side (except if a side

is failed or the availability of a side has changed).

The following proposition expresses the situation that the pilot change the
active side:

op manSelectPressed : -> Formula .

eq manSelectPressed

= value of manualSelection in component

(MAIN -> sideOne -> sideProcess -> sideThread) is true .

Again, as explained in [12], R3 is a problematic requirement and does not
satisfied. We have verified the following variant of R3; the property says that if
the two sides are fully available and do not receive a manual switch request for
two consecutive rounds, and stay faultless and receive a manual switch request
in the third round, then the active side will switch instantaneously :

op R3g : -> Formula .

eq R3g

= []((~ manSelectPressed /\ agreeOnActiveSide /\

side1FullyAvailable /\ side2FullyAvailable /\

noChangeAssumptionNextState)

->

((side1Active -> O O ((manSelectPressed /\ side1FullyAvailable /\

side2FullyAvailable) -> side2Active)) /\

(side2Active -> O O ((manSelectPressed /\ side1FullyAvailable /\

side2FullyAvailable) -> side1Active)))) .

We can model check the property R3g as follows in Real-Time Maude:

Maude> (mc {initial} |=u R3g .)

rewrites: 1146199 in 7118ms cpu (7148ms real) (161016 rewrites/second)

Result Bool : true

Requirement R4. If a side is failed the other side should become active.

Considering the one-step communication delay, this property can be repre-
sented as follows:

op R4 : -> Formula .

eq R4

= [] (((side1Failed /\ ~ side2Failed) ->

O (~ side2Failed -> side2Active)) /\

((side2Failed /\ ~ side1Failed) ->

O (~ side1Failed -> side1Active))) .

25

This property holds in our model:

Maude> (mc {initial} |=u R4 .)

rewrites: 1145382 in 7153ms cpu (7271ms real) (161016 rewrites/second)

Result Bool : true

Requirement R5. The active side should not change unless the availability of

a side changes, the failed status of a side changes, or manual selection is selected

by the pilot.

For active side 1, this property can be defined as follows; if side 1 is active,
then it stays active forever, or until something changes [12]:

op R5side1 : -> Formula .

eq R5side1

= [] (((side1Active /\ side1FullyAvailable /\ ~ manSelectPressed) ->

(side1Active W (~ side1FullyAvailable \/ manSelectPressed)))

/\

((side1Active /\ ~ side1FullyAvailable /\ ~ side2FullyAvailable

/\ ~ manSelectPressed /\ ~ side1Failed)

->

(side1Active W

(side2FullyAvailable \/ manSelectPressed \/ side1Failed)))) .

This formula can be model checked successfully:

Maude> (mc {initial} |=u R5side1 .)

rewrites: 1146223 in 7215ms cpu (7279ms real) (158864 rewrites/second)

Result Bool : true

In the case of Side 2, the similar formula does not hold, since if side 2 is
active, it might also be inactivated when side 1 wakes up from failure, without
full availability changing, or sides failing [12]. We must therefore weaken the
property for side 2, to exclude states where side 2 sends 2 only because it is
some error recovery state, and consider the property only for when side 2 is in
state side2Active:

op s2inStateSide2Active : -> Formula .

eq s2inStateSide2Active

= (MAIN -> sideTwo -> sideProcess -> sideThread) @ side2ActiveState .

op R5side2X : -> Formula .

eq R5side2X

= [] (((s2inStateSide2Active /\ side2FullyAvailable

/\ ~ manSelectPressed /\ ~ side1Failed)

-> (s2inStateSide2Active W

(~ side2FullyAvailable \/ manSelectPressed \/

side1Failed))) /\

26

((s2inStateSide2Active /\ ~ side1FullyAvailable

/\ ~ manSelectPressed /\ ~ side2Failed /\ ~ side1Failed)

-> (s2inStateSide2Active

W (side1FullyAvailable \/ manSelectPressed

\/ side2Failed \/ side1Failed))) /\

((s2inStateSide2Active /\ ~ manSelectPressed

/\ ~ side2Failed /\ side1Failed)

-> (side2Active

W (manSelectPressed \/ side2Failed \/ ~ side1Failed)))) .

This property is also model checked successfully in Synchronous AADL model:

Maude> (mc {initial} |=u R5side2X .)

rewrites: 1211161 in 9557ms cpu (9811ms real) (126723 rewrites/second)

Result Bool : true

The interesting aspect of this verification is that it seems very hard to model
check the corresponding asynchronous design. In the paper [11] we define and
analyze Real-Time Maude models of both the synchronous and the asynchronous
design of the active standby system. It turns out that the synchronous system
has 185 reachable states, and the different properties can be model checked in 0.8
seconds. In contrast, a simplest possible asynchronous model of active standby—
with no message delays, no execution times, perfect local clocks, and optimal
periods—has 3,047,832 reachable states and model checking a simple invariant
takes 2000 seconds. If the message delay can be either 0 or 1, and everything
else is optimal, then no model checking analysis terminated in reasonable time.

7.2 The Three–Node Active Standby System

The requirements of the 3-node active standby system described in Section 4.2
can be summarized as follows:

R1: At most one side is active in any step.
R2: If there is no active side, then after some steps a side will become active.

(provided that the failure condition of some side is not flipping8).
R3: In particular, if the failure status of at most one side can be flipped, whenever

there is no active side, then in 4 steps, a side will become active.
R4 The local views of the active-standby status of 3 sides are identical at each

state.

We have also verified the above 4 properties for the Synchronous AADL model
using the Real-Time Maude.

8 The failure status of a side is flipped at a state if the side does not fail at the state
but fails at the next state, or vice versa.

27

Requirement R1. At most one side is active in any step.

Side i is active if the aileron system component receive the value 1 in its
sideiActiveSideout port:

ops side1Active side2Active side3Active : -> Formula .

eq side1Active

= value of side1ActiveSideout in component

(MAIN -> aileron -> ioProcess -> outsynchThread) is 1 .

eq side2Active

= value of side2ActiveSideout in component

(MAIN -> aileron -> ioProcess -> outsynchThread) is 1 .

eq side3Active

= value of side3ActiveSideout in component

(MAIN -> aileron -> ioProcess -> outsynchThread) is 1 .

This property can be simply represented in Real-Time Maude as follows:

op R1 : -> Formula .

eq R1

= [] (~(side1Active /\ side2Active) /\

~(side1Active /\ side3Active) /\

~(side2Active /\ side3Active))

We can model check the property R1 as follows in Real-Time Maude:

Maude> (mc {initial} |=u R1 .)

rewrites: 608387 in 5958ms cpu (5990ms real) (102105 rewrites/second)

Result Bool : true

Requirement R2. If there is no active side, then after some steps a side will

become active. (provided that the failure condition of some side is not flipping.

Side i is flipping at the current state if Side i does not fail at the next state
whenever Side i fails at this state, and vice versa:

ops flipOne flipTwo flipThree : -> Formula .

eq flipOne

= (value of s1F in component

(MAIN -> environment -> envProcess -> insynchThread) is true <->

O (value of s1F in component

(MAIN -> environment -> envProcess -> insynchThread) is false))

\/

(value of s1F in component

(MAIN -> environment -> envProcess -> insynchThread) is false <->

O (value of s1F in component

(MAIN -> environment -> envProcess -> insynchThread) is true)) .

eq flipTwo

= (value of s2F in component

28

(MAIN -> environment -> envProcess -> insynchThread) is true <->

O (value of s2F in component

(MAIN -> environment -> envProcess -> insynchThread) is false))

\/

(value of s2F in component

(MAIN -> environment -> envProcess -> insynchThread) is false <->

O (value of s2F in component

(MAIN -> environment -> envProcess -> insynchThread) is true)) .

eq flipThree

= (value of s3F in component

(MAIN -> environment -> envProcess -> insynchThread) is true <->

O (value of s3F in component

(MAIN -> environment -> envProcess -> insynchThread) is false))

\/

(value of s3F in component

(MAIN -> environment -> envProcess -> insynchThread) is false <->

O (value of s3F in component

(MAIN -> environment -> envProcess -> insynchThread) is true)) .

Then, the property R2 can be represented as follows:

op R2 : -> Formula .

eq R2 = []<> (~ flipOne /\ ~ flipTwo /\ ~ flipThree)

->

[]((~ side1Active /\ ~ side2Active /\ ~ side3Active)

->

<> (side1Active \/ side2Active \/ side3Active))

We can perform the Real-Time Maude model checking of R2 as follows:

Maude> (mc {initial} |=u R2 .)

rewrites: 357028 in 5942ms cpu (6489ms real) (60079 rewrites/second)

Result Bool : true

Requirement R3. If the failure status of at most one side can be flipped,

whenever there is no active side, then in 4 steps, a side will become active.

The antecedent of this property can be defined by the disjunction of the cases
for flipping only one side and the case for flipping no side. Then using the next
step operator O, this property can be defined as follows:

op R3 : -> Formula .

eq R3

= [] ((~ flipOne /\ ~ flipTwo /\ flipThree) \/

(~ flipOne /\ flipTwo /\ ~ flipThree) \/

(flipOne /\ ~ flipTwo /\ ~ flipThree) \/

(~ flipOne /\ ~ flipTwo /\ ~ flipThree))

->

29

[] ((~ side1Active /\ ~ side2Active /\ ~ side3Active)

->

(O (side1Active \/ side2Active \/ side3Active) \/

O O (side1Active \/ side2Active \/ side3Active) \/

O O O (side1Active \/ side2Active \/ side3Active) \/

O O O O (side1Active \/ side2Active \/ side3Active)))

The model checking result shows that the property R3 is satisfied in our model:

Maude> (mc {initial} |=u R3 .)

rewrites: 357034 in 5939ms cpu (6496ms real) (60108 rewrites/second)

Result Bool : true

Requirement R4. The local views of the active-standby status of 3 sides are

identical at each state.

In the 3-node active standby model, the local view for side i is defined by
the value of the variable gsidei. Hence, the local views for Side i are identical
when the variables gsidei in each thread has the same value, we can define the
propositions for the identical local view as follows:

ops sameOne sameTwo sameThree : -> Formula .

eq sameOne

= (value of gside1 in component

(MAIN -> sideOne -> sideProcess -> activeStandbyThread) is 0 <->

value of gside1 in component

(MAIN -> sideThree -> sideProcess -> activeStandbyThread) is 0)

/\

(value of gside1 in component

(MAIN -> sideOne -> sideProcess -> activeStandbyThread) is 0 <->

value of gside1 in component

(MAIN -> sideTwo -> sideProcess -> activeStandbyThread) is 0)

/\

(value of gside1 in component

(MAIN -> sideOne -> sideProcess -> activeStandbyThread) is 1 <->

value of gside1 in component

(MAIN -> sideThree -> sideProcess -> activeStandbyThread) is 1)

/\

(value of gside1 in component

(MAIN -> sideOne -> sideProcess -> activeStandbyThread) is 1 <->

value of gside1 in component

(MAIN -> sideTwo -> sideProcess -> activeStandbyThread) is 1) .

eq sameTwo

= (value of gside2 in component

(MAIN -> sideOne -> sideProcess -> activeStandbyThread) is 0 <->

value of gside2 in component

(MAIN -> sideThree -> sideProcess -> activeStandbyThread) is 0)

/\

30

(value of gside2 in component

(MAIN -> sideOne -> sideProcess -> activeStandbyThread) is 0 <->

value of gside2 in component

(MAIN -> sideTwo -> sideProcess -> activeStandbyThread) is 0)

/\

(value of gside2 in component

(MAIN -> sideOne -> sideProcess -> activeStandbyThread) is 1 <->

value of gside2 in component

(MAIN -> sideThree -> sideProcess -> activeStandbyThread) is 1)

/\

(value of gside2 in component

(MAIN -> sideOne -> sideProcess -> activeStandbyThread) is 1 <->

value of gside2 in component

(MAIN -> sideTwo -> sideProcess -> activeStandbyThread) is 1) .

eq sameThree

= (value of gside3 in component

(MAIN -> sideOne -> sideProcess -> activeStandbyThread) is 0 <->

value of gside3 in component

(MAIN -> sideThree -> sideProcess -> activeStandbyThread) is 0)

/\

(value of gside3 in component

(MAIN -> sideOne -> sideProcess -> activeStandbyThread) is 0 <->

value of gside3 in component

(MAIN -> sideTwo -> sideProcess -> activeStandbyThread) is 0)

/\

(value of gside3 in component

(MAIN -> sideOne -> sideProcess -> activeStandbyThread) is 1 <->

value of gside3 in component

(MAIN -> sideThree -> sideProcess -> activeStandbyThread) is 1)

/\

(value of gside3 in component

(MAIN -> sideOne -> sideProcess -> activeStandbyThread) is 1 <->

value of gside3 in component

(MAIN -> sideTwo -> sideProcess -> activeStandbyThread) is 1) .

Then, the property R4 is expressed as follws:

op R4 : -> Formula .

eq R4

= [] (sameOne /\ sameTwo /\ sameThree) .

This property can be verified in Real Time Maude as follows:

Maude> (mc {initial} |=u R4 .)

rewrites: 627563 in 6058ms cpu (6266ms real) (103577 rewrites/second)

Result Bool : true

31

8 The SynchAADL2Maude Tool

We have integrated the Real-Time Maude verification of Synchronous AADL
models into the Open Source AADL Tool Environment (OSATE), which is a
set of Eclipse plug-ins. The SynchAADL2Maude tool is an OSATE plug-in that
uses OSATE’s model traversal facility to support both checking whether a model
is a legal Synchronous AADL model and verifying Synchronous AADL models
within OSATE.

When OSATE has generated an AADL instance model from an AADL spec-
ification, we can use the SynchAADL2Maude tool to: (i) check whether the
instance model is a Synchronous AADL model, (ii) generate the corresponding
Real-Time Maude model, and (iii) model check LTL properties of the instance
model. Figure 4 shows the SynchAADL2Maude window for the active standby
example. The Constraints Check button, the Code Generation button, and Do

Verification button are used to perform, respectively, the static analysis, the
Real-Time Maude code generation, and the model checking. The corrected ver-
sions of the active standby system requirements been entered into the tool, and
are shown in the “AADL Property Requirement” table. The Do Verification

button has been clicked and the results of the model checking are shown in the
“Maude Console.”

Fig. 4. SynchAADL2Maude window in OSATE.

32

The properties to be verified are managed by the associated XML property
file. For example, to add an LTL model checking command to verify the property
R1 in Section 7, we just add the following command tag to the property file:

<command> <name>R1</name>

<value type = "ltl">

O [] (noChangeAssumptionNextState

-> O (agreeOnActiveSide \/ O (neitherSideFailed -> agreeOnActiveSide))) .

</value>

</command>

New formulas can be defined in the property file using the definition tag. For
example, the new constant side1Failed is defined as follows:

<definition> <name>side1Failed</name>

<value>

value of side1Failed in component (MAIN -> sideOne -> sideProcess -> sideThread) is true

</value>

</definition>

The OSATE’s model traversal mechanisms are based on AADL metamodel
described by the Eclipse Modeling Framework (EMF). An AADL specification
is declared in OSATE in either textual or graphical format, where the abstract
syntax tree of such a model is defined by the AADL metamodel that consists
of seven Ecore packages explaining different aspects of AADL models, such as
features, components, connections, etc. For each Ecore package, EMF provides
a switch class that contains a collection of case methods. During traversing an
AADL model object, OSATE just enumerates all syntactic object in the AADL
model, and calls an appropriate “case” method for each of them.

Both the static analysis and the code generation are implemented by over-
riding such “case” methods accordingly for each corresponding syntactic object.
For example, the Real-Time Maude specification is constructed by mapping each
object in the system instance model to the corresponding Real-Time Maude ob-
ject, as explained in Section 5, where the mapping of each component instance
is defined by overriding the caseComponentInstance method as the following
pseudo-code:

public Object caseComponentInstance(ComponentInstance c) {

output("< %s : %s |\ n", getName(c), getCategory(c))\ n");

output(" features : "); self.process(getFeatures(c)); output(",\ n");

output(" properties : "); self.process(getProperties(c)); output(",\ n");

output(" connections : "); self.process(getConnections(c)); output(",\ n");

if (isThread(c)) {

output(" behaviorRef : "); self.getComponentRef(c); output(",\ n");

output(" variables : "); self.process(getVariables(c)); output(",\ n");

output(" currState : "); self.process(getCurrentState(c)); output(",\ n");

output(" completeStates : "); self.process(getCompleteStates(c)); output(",\ n");

}

output(" subcomponents : "); self.process(getSubcomponents(c)); output(" >");

return DONE;

}

Note that the process function in the above is a basic process function of OSATE
to invoke a corresponding case method for the given syntactic object.

33

Algorithm 1 gives the pseudocode of the constraint checker that checks
whether the input system component, S, is a valid Synchronous AADL model.
The instance model of S consists of the active components (e.g. threads) and
their semantic connections, as given by threads(S) and connections(S). We use
Eclipse and OSATE support libraries for traversing through the instance model
and check if the required properties of threads and connections adhere to Syn-
chronous AADL requirements. We use two helper functions: defined and value,
to check the property association and the value at an AADL component.

Algorithm 1 Constraint Checker(S)
if (!defined(S, ‘Synchronous’) or value(S, ‘Synchronous’) != true) then

addException(exceptions, S, “not synchronous”)
return exceptions

end if

for all t ∈ threads(S) do

if (defined(t, ‘Dispatch Protocol’) and value(t, ‘Dispatch Protocol’) != ‘Periodic’)
then

addException(exceptions, t, “not periodic”)
end if

if (!defined(t, ‘synchPeriod’)) then

addException(exceptions, t, “SynchAADL::Period not defined”)
else if (defined(t, ‘Period’) and value(t, ‘Period’) != value(t, ‘synchPeriod’)) then

addException(exceptions, t, “invalid period”)
end if

if (!defined(t, ‘isEnvironment’) and value(t, ‘Deterministic’) = true) then

addException(exceptions, t, “not deterministic”)
end if

end for

for all c ∈ connections(S) do

if (type(c) != ‘data port’) then

addException(exceptions, c, “not a data port connection”)
end if

if (value(c, ‘Timing’) != ‘Delayed’ and value(src(c), ‘isEnvironment’) != true) then

addException(exceptions, t, “invalid port connection timing”)
end if

end for

return exceptions

9 Related Work

The paper [7] formalizes the AADL data port protocol in Event-B. Despite the
title of the paper, it does not define a synchronous subset of AADL and therefore
does not provide an executable formal semantics of any such subset. There exist
a number of formalizations and verification tools for different subsets of AADL

34

(see, e.g., [3, 4, 14, 2]). These approaches target ordinary (asynchronous) AADL
models and do not define synchronous subsets of AADL. In [9], the behaviors of
single AADL threads are given by synchronous Lustre programs. Since [9] also
targets “standard” asynchronous AADL models, the authors show how asyn-
chronous computation can be encoded in a synchronous language. This encoding
does of course not reduce the state space of the asynchronous system.

Our work is motivated by the PALS pattern [11, 13, 1] that reduces the design
and verification of an asynchronous system to that of its synchronous version.
There is a fair amount of work that relates synchronous and asynchronous models
in various ways; we refer to [12] for an extensive discussion on this topic.

10 Concluding Remarks

To the best of our knowledge the work we have presented is the first defining a
synchronous subset of AADL. Such a subset is essential to reduce the design and
verification complexity of distributed real-time systems that should operate in a
virtually synchronous way. The formal semantics of synchronous AADL models
we have provided is also essential for formal verification and is supported in
practice by the SynchAADL2Maude tool in a way that preserves the AADL
“look and feel” for users and minimizes the need for a detailed knowledge of
the underlying Real-Time Maude tool. In summary, our work makes possible in
practice the formal verification of asynchronous AADL models that are virtually
synchronous by supporting the definition and verification of their semantically
equivalent synchronous counterparts.

As usual much work remains ahead. One natural extension of the proposed
AADL subset and the SynchAADL2Maude tool is the simultaneous support of
synchronous subsystems with different periods and of additional AADL features.
Further experimentation and development of additional case studies will also be
important to improve the tool and its performance and to facilitate its use.

Acknowledgments. Our design of Synchronous AADL was inspired by our
previous work on PALS with Steve Miller and Darren Cofer at Rockwell-Collins
corporation, and Lui Sha at UIUC. We have also benefited from many discussions
on the design of Synchronous AADL with Lui Sha and Peter Feiler; and from
the feedback of the participants at several AADL meetings, where preliminary
versions of these ideas were presented. This work has been partially supported by
the Boeing corporation under grant C8088, by the National Science Foundation
under grants CNS 08-34709 and CCF 09-05584, and by the Research Council of
Norway.

References

1. Al-Nayeem, A., Sun, M., Qiu, X., Sha, L., Miller, S.P., Cofer, D.D.: A formal
architecture pattern for real-time distributed systems. In: Proc. RTSS’09. IEEE
(2009)

35

2. Berthomieu, B., Bodeveix, J.P., Chaudet, C., Dal Zilio, S., Filali, M., Vernadat, F.:
Formal verification of AADL specifications in the Topcased environment. In: Reli-
able Software Technologies - Ada-Europe 2009, LNCS, vol. 5570. Springer (2009)

3. Bozzano, M., Cimatti, A., Katoen, J.P., Nguyen, V., Noll, T., Roveri, M., Wimmer,
R.: A model checker for AADL. In: Proc. CAV’10, LNCS, vol. 6174. Springer (2010)

4. Chkouri, M.Y., Robert, A., Bozga, M., Sifakis, J.: Translating AADL into BIP -
application to the verification of real-time systems. In: Proc. MoDELS Workshops.
LNCS, vol. 5421. Springer (2008)

5. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework, LNCS, vol. 4350.
Springer (2007)

6. Feiler, H., Gluch, P., Hudak, J.: The architecture analysis & design language
(AADL): An introduction. Tech. Rep. CMU/SEI-2006-TN-011, Software Engineer-
ing Institute, Carnegie-Mellon University (2006)

7. Filali, M., Lawall, J.: Development of a synchronous subset of AADL. In: Proc.
ASM’10. LNCS, vol. 5977. Springer (2010)

8. França, R., Bodeveix, J.P., Filali, M., Rolland, J.F., Chemouil, D., Thomas, D.:
The AADL behaviour annex - experiments and roadmap. In: ICECCS’07. IEEE
(2007)

9. Jahier, E., Halbwachs, N., Raymond, P., Nicollin, X., Lesens, D.: Virtual exe-
cution of AADL models via a translation into synchronous programs. In: Proc.
EMSOFT’07. ACM (2007)

10. Kopetz, H., Bauer, G.: The time-triggered architecture. Proc. of the IEEE 93(1)
(2003)

11. Meseguer, J., Ölveczky, P.C.: Formalization and correctness of the PALS architec-
tural pattern for distributed real-time systems. In: Proc. ICFEM’10. LNCS, vol.
6447. Springer (2010)

12. Meseguer, J., Ölveczky, P.: Formalization and correctness of the PALS architectural
pattern for distributed real-time systems. Tech. rep., CS Dept., University of Illinois
at Urbana-Champaign (September 2010), http://hdl.handle.net/2142/17089

13. Miller, S.P., Cofer, D.D., Sha, L., Meseguer, J., Al-Nayeem, A.: Implementing
logical synchrony in integrated modular avionics. In: Proc. DASC’09. IEEE (2009)

14. Ölveczky, P.C., Boronat, A., Meseguer, J.: Formal semantics and analysis of behav-
ioral AADL models in Real-Time Maude. In: Proc. FMOODS/FORTE’10. LNCS,
vol. 6117. Springer (2010)

15. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation 20(1-2), 161–196 (2007)

16. Rushby, J.: Systematic formal verification for fault-tolerant time-triggered algo-
rithms. IEEE Trans. Software Eng. 25(5) (1999)

17. SAE AADL Team: AADL homepage (2009), http://www.aadl.info/
18. Sha, L., Al-Nayeem, A., Sun, M., Meseguer, J., Ölveczky, P.C.: PALS: Physi-

cally asynchronous logically synchronous systems. Tech. rep., Dept. of Computer
Science, Univ. of Illinois at Urbana-Champaign (2009), http://hdl.handle.net/
2142/11897

36

A Active Standby Model Specifications

In this section, we gives the entire Synchronous AADL source code of the Active
Standby examples, and the corresponding Real-Time Maude code generated by
our tool.

A.1 Synchronous AADL specification.

package MainModule

public

system ActiveStandbySystem

end ActiveStandbySystem;

system implementation ActiveStandbySystem.impl

subcomponents

sideOne: system Side1::Side1.impl;

sideTwo: system Side2::Side2.impl;

env: system Environment::Environment.impl;

connections

C1: data port sideOne.side1ActiveSide ->> sideTwo.side1ActiveSide;

C2: data port sideTwo.side2ActiveSide ->> sideOne.side2ActiveSide;

F1: data port env.side1FullyAvail -> sideOne.side1FullyAvail;

F2: data port env.side1FullyAvail -> sideTwo.side1FullyAvail;

F3: data port env.side2FullyAvail -> sideOne.side2FullyAvail;

F4: data port env.side2FullyAvail -> sideTwo.side2FullyAvail;

C3: data port env.manualSelection -> sideOne.manualSelection;

C4: data port env.manualSelection -> sideTwo.manualSelection;

C5: data port env.side1Failed -> sideOne.side1Failed;

C6: data port env.side2Failed -> sideTwo.side2Failed;

properties

SynchAADL::Synchronous => true;

SynchAADL::syncPeriod => 2 Ms;

Period => 2 Ms;

end ActiveStandbySystem.impl;

end MainModule;

package Environment

public

system Environment

features

side1FullyAvail: out data port behavior::boolean;

side2FullyAvail: out data port behavior::boolean;

manualSelection: out data port behavior::boolean;

side1Failed: out data port behavior::boolean;

side2Failed: out data port behavior::boolean;

end Environment;

system implementation Environment.impl

subcomponents

envProcess: process EnvironmentProcess.impl;

connections

C1: data port envProcess.side1FullyAvail -> side1FullyAvail;

C2: data port envProcess.side2FullyAvail -> side2FullyAvail;

C3: data port envProcess.manualSelection -> manualSelection;

C4: data port envProcess.side1Failed -> side1Failed;

C5: data port envProcess.side2Failed -> side2Failed;

end Environment.impl;

process EnvironmentProcess

37

features

side1FullyAvail: out data port behavior::boolean;

side2FullyAvail: out data port behavior::boolean;

manualSelection: out data port behavior::boolean;

side1Failed: out data port behavior::boolean;

side2Failed: out data port behavior::boolean;

end EnvironmentProcess;

process implementation EnvironmentProcess.impl

subcomponents

envThread: thread EnvironmentThread.impl;

connections

C1: data port envThread.side1FullyAvail -> side1FullyAvail;

C2: data port envThread.side2FullyAvail -> side2FullyAvail;

C3: data port envThread.manualSelection -> manualSelection;

C4: data port envThread.side1Failed -> side1Failed;

C5: data port envThread.side2Failed -> side2Failed;

end EnvironmentProcess.impl;

thread EnvironmentThread

features

side1FullyAvail: out data port behavior::boolean;

side2FullyAvail: out data port behavior::boolean;

manualSelection: out data port behavior::boolean;

side1Failed: out data port behavior::boolean;

side2Failed: out data port behavior::boolean;

end EnvironmentThread;

thread implementation EnvironmentThread.impl

properties

SynchAADL::InputConstraints =>

"(not s1F and s2F and not s2FA) or (not s2F and s1F and not s1FA)

or (not s1F and not s2F)";

SynchAADL::IsEnvironment => true;

Dispatch_Protocol => Periodic;

annex behavior_specification {**
state variables

s1FA:behavior::boolean;

s2FA:behavior::boolean;

mS:behavior::boolean;

s1F:behavior::boolean;

s2F:behavior::boolean;

initially

s1FA := true;

s2FA := true;

mS := false;

s1F := false;

s2F := false;states

s0 : initial complete state;

transitions

s0 -[]-> s0

side1FullyAvail := s1FA;

side2FullyAvail := s2FA;

manualSelection := mS;

side1Failed := s1F;

side2Failed := s2F;;

**};
end EnvironmentThread.impl;

end Environment;

package Side1

public

38

system Side1

features

side1FullyAvail: in data port behavior::boolean;

side2FullyAvail: in data port behavior::boolean;

side2ActiveSide: in data port behavior::integer;

manualSelection: in data port behavior::boolean;

side1Failed: in data port behavior::boolean;

side1ActiveSide: out data port behavior::integer;

end Side1;

system implementation Side1.impl

subcomponents

sideProcess: process Side1Process.impl;

connections

data port side1FullyAvail -> sideProcess.side1FullyAvail;

data port side2FullyAvail -> sideProcess.side2FullyAvail;

data port side2ActiveSide -> sideProcess.side2ActiveSide;

data port manualSelection -> sideProcess.manualSelection;

data port side1Failed -> sideProcess.side1Failed;

data port sideProcess.side1ActiveSide -> side1ActiveSide;

end Side1.impl;

process Side1Process

features

side1FullyAvail: in data port behavior::boolean;

side2FullyAvail: in data port behavior::boolean;

side2ActiveSide: in data port behavior::integer;

manualSelection: in data port behavior::boolean;

side1Failed: in data port behavior::boolean;

side1ActiveSide: out data port behavior::integer;

end Side1Process;

process implementation Side1Process.impl

subcomponents

sideThread: thread Side1Thread.impl;

connections

data port side1FullyAvail -> sideThread.side1FullyAvail;

data port side2FullyAvail -> sideThread.side2FullyAvail;

data port side2ActiveSide -> sideThread.side2ActiveSide;

data port manualSelection -> sideThread.manualSelection;

data port sideThread.side1ActiveSide -> side1ActiveSide;

data port side1Failed -> sideThread.side1Failed;

end Side1Process.impl;

thread Side1Thread

features

side1FullyAvail: in data port behavior::boolean;

side2FullyAvail: in data port behavior::boolean;

side2ActiveSide: in data port behavior::integer;

manualSelection: in data port behavior::boolean;

side1Failed: in data port behavior::boolean;

side1ActiveSide: out data port behavior::integer;

end Side1Thread;

thread implementation Side1Thread.impl

properties

Dispatch_Protocol => Periodic;

SynchAADL::Deterministic => true;

annex behavior_specification {**
state variables

prevSide2ActiveSide:behavior::integer;

prevmanualSelection:behavior::boolean;

39

initially

prevSide2ActiveSide := 0;

prevmanualSelection := false;states

preInit : initial complete state;

initState : complete state;

side1FailedState : complete state;

side2FailedState : complete state;

side1WaitState : complete state;

side1ActiveState : complete state;

side2ActiveState : complete state;

transitions

preInit -[]-> initState;

initState -[on side1Failed = true]-> side1FailedState {
side1ActiveSide := 0;

prevSide2ActiveSide := 0;

prevmanualSelection := false;};
initState -[on side1Failed = false]-> side2FailedState {

side1ActiveSide := 1;

prevSide2ActiveSide := 0;

prevmanualSelection := false;};
side1FailedState -[on side1Failed = false and side2ActiveSide = 0]-> side2FailedState {

side1ActiveSide := 1;

prevSide2ActiveSide := side2ActiveSide;

prevmanualSelection := manualSelection;};
side1FailedState -[on side1Failed = false and side2ActiveSide != 0]-> side1WaitState {

side1ActiveSide := 1;

prevSide2ActiveSide := side2ActiveSide;

prevmanualSelection := manualSelection;};
side1FailedState -[on side1Failed = true]-> side1FailedState {

side1ActiveSide := 0;

prevSide2ActiveSide := side2ActiveSide;

prevmanualSelection := manualSelection;};
side2FailedState -[on side1Failed = false and side2ActiveSide = 0]-> side2FailedState {

side1ActiveSide := 1;

prevSide2ActiveSide := side2ActiveSide;

prevmanualSelection := manualSelection;};
side2FailedState -[on side1Failed = false and side2ActiveSide != 0]-> side1WaitState {

side1ActiveSide := 1;

prevSide2ActiveSide := side2ActiveSide;

prevmanualSelection := manualSelection;};
side2FailedState -[on side1Failed = true]-> side1FailedState {

side1ActiveSide := 0;

prevSide2ActiveSide := side2ActiveSide;

prevmanualSelection := manualSelection;};
side1WaitState -[on side1Failed = false and side2ActiveSide != 0]-> side1ActiveState {

side1ActiveSide := 1;

prevSide2ActiveSide := side2ActiveSide;

prevmanualSelection := manualSelection;};
side1WaitState -[on side1Failed = true]-> side1FailedState {

side1ActiveSide := 0;

prevSide2ActiveSide := side2ActiveSide;

prevmanualSelection := manualSelection;};
side1WaitState -[on side1Failed = false and side2ActiveSide = 0]-> side2FailedState {

side1ActiveSide := 1;

prevSide2ActiveSide := side2ActiveSide;

prevmanualSelection := manualSelection;};
side1ActiveState -[on side1Failed = false and prevSide2ActiveSide != 2

and side2ActiveSide = 2]-> side2ActiveState {
side1ActiveSide := 2;

prevSide2ActiveSide := side2ActiveSide;

prevmanualSelection := manualSelection;};
side1ActiveState -[on side1Failed = true]-> side1FailedState {

40

side1ActiveSide := 0;

prevSide2ActiveSide := side2ActiveSide;

prevmanualSelection := manualSelection;};
side1ActiveState -[on side1Failed = false and side2ActiveSide = 0]-> side2FailedState {

side1ActiveSide := 1;

prevSide2ActiveSide := side2ActiveSide;

prevmanualSelection := manualSelection;};
side1ActiveState -[on side1Failed = false and (prevSide2ActiveSide = 2 or side2ActiveSide != 2)

and side2ActiveSide != 0]-> side1ActiveState {
side1ActiveSide := 1;

prevSide2ActiveSide := side2ActiveSide;

prevmanualSelection := manualSelection;};
side2ActiveState -[on side1Failed = false and side2ActiveSide != 0 and side1FullyAvail = true

and (prevmanualSelection = false and manualSelection = true

or side2FullyAvail = false)]-> side1ActiveState {
side1ActiveSide := 1;

prevSide2ActiveSide := side2ActiveSide;

prevmanualSelection := manualSelection;};
side2ActiveState -[on side1Failed = true]-> side1FailedState {

side1ActiveSide := 0;

prevSide2ActiveSide := side2ActiveSide;

prevmanualSelection := manualSelection;};
side2ActiveState -[on side1Failed = false and side2ActiveSide = 0]-> side2FailedState {

side1ActiveSide := 1;

prevSide2ActiveSide := side2ActiveSide;

prevmanualSelection := manualSelection;};
side2ActiveState -[on side1Failed = false and side2ActiveSide != 0 and

(side1FullyAvail = false or side2FullyAvail = true

and (prevmanualSelection = true

or manualSelection = false))]-> side2ActiveState {
side1ActiveSide := 2;

prevSide2ActiveSide := side2ActiveSide;

prevmanualSelection := manualSelection;};
**};

end Side1Thread.impl;

end Side1;

package Side2

public

system Side2

features

side1FullyAvail: in data port behavior::boolean;

side2FullyAvail: in data port behavior::boolean;

side1ActiveSide: in data port behavior::integer;

manualSelection: in data port behavior::boolean;

side2Failed: in data port behavior::boolean;

side2ActiveSide: out data port behavior::integer;

end Side2;

system implementation Side2.impl

subcomponents

sideProcess: process Side2Process.impl;

connections

data port side1FullyAvail -> sideProcess.side1FullyAvail;

data port side2FullyAvail -> sideProcess.side2FullyAvail;

data port side1ActiveSide -> sideProcess.side1ActiveSide;

data port manualSelection -> sideProcess.manualSelection;

data port side2Failed -> sideProcess.side2Failed;

data port sideProcess.side2ActiveSide -> side2ActiveSide;

end Side2.impl;

41

process Side2Process

features

side1FullyAvail: in data port behavior::boolean;

side2FullyAvail: in data port behavior::boolean;

side1ActiveSide: in data port behavior::integer;

manualSelection: in data port behavior::boolean;

side2Failed: in data port behavior::boolean;

side2ActiveSide: out data port behavior::integer;

end Side2Process;

process implementation Side2Process.impl

subcomponents

sideThread: thread Side2Thread.impl;

connections

data port side1FullyAvail -> sideThread.side1FullyAvail;

data port side2FullyAvail -> sideThread.side2FullyAvail;

data port side1ActiveSide -> sideThread.side1ActiveSide;

data port manualSelection -> sideThread.manualSelection;

data port side2Failed -> sideThread.side2Failed;

data port sideThread.side2ActiveSide -> side2ActiveSide;

end Side2Process.impl;

-- side2 failed will be assesed in the behavior annex

-- similarly, side1becomesActive will also be determined in annex;

-- change of manual selection will be determined in behavior annex;

-- does Maude care about non-complete state and complete state?

-- what about ambiguous transitions?

thread Side2Thread

features

side1FullyAvail: in data port behavior::boolean;

side2FullyAvail: in data port behavior::boolean;

side1ActiveSide: in data port behavior::integer;

manualSelection: in data port behavior::boolean;

side2Failed: in data port behavior::boolean;

side2ActiveSide: out data port behavior::integer;

end Side2Thread;

thread implementation Side2Thread.impl

properties

Dispatch_Protocol => Periodic;

SynchAADL::Deterministic => true;

annex behavior_specification {**
state variables

prevSide1ActiveSide:behavior::integer;

prevmanualSelection:behavior::boolean;

initially

prevSide1ActiveSide := 0;

prevmanualSelection := false;states

preInit : initial complete state;

initState : complete state;

side2FailedState : complete state;

side1FailedState : complete state;

side2WaitState : complete state;

side1ActiveState : complete state;

side2ActiveState : complete state;

transitions

preInit -[]-> initState;

initState -[on side2Failed = true]-> side2FailedState {
side2ActiveSide := 0;

prevSide1ActiveSide := 0;

prevmanualSelection := false;};
initState -[on side2Failed = false]-> side1FailedState {

42

side2ActiveSide := 2;

prevSide1ActiveSide := 0;

prevmanualSelection := false;};
side2FailedState -[on side2Failed = false and side1ActiveSide = 0]-> side1FailedState {

side2ActiveSide := 2;

prevSide1ActiveSide := side1ActiveSide;

prevmanualSelection := manualSelection;};
side2FailedState -[on side2Failed = false and side1ActiveSide != 0]-> side2WaitState {

side2ActiveSide := 1;

prevSide1ActiveSide := side1ActiveSide;

prevmanualSelection := manualSelection;};
side2FailedState -[on side2Failed = true]-> side2FailedState {

side2ActiveSide := 0;

prevSide1ActiveSide := side1ActiveSide;

prevmanualSelection := manualSelection;};
side1FailedState -[on side2Failed = false and side1ActiveSide = 0]-> side1FailedState {

side2ActiveSide := 2;

prevSide1ActiveSide := side1ActiveSide;

prevmanualSelection := manualSelection;};
side1FailedState -[on side2Failed = false and side1ActiveSide != 0]-> side2WaitState {

side2ActiveSide := 1;

prevSide1ActiveSide := side1ActiveSide;

prevmanualSelection := manualSelection;};
side1FailedState -[on side2Failed = true]-> side2FailedState {

side2ActiveSide := 0;

prevSide1ActiveSide := side1ActiveSide;

prevmanualSelection := manualSelection;};
side2WaitState -[on side2Failed = false and side1ActiveSide != 0]-> side1ActiveState {

side2ActiveSide := 1;

prevSide1ActiveSide := side1ActiveSide;

prevmanualSelection := manualSelection;};
side2WaitState -[on side2Failed = true]-> side2FailedState {

side2ActiveSide := 0;

prevSide1ActiveSide := side1ActiveSide;

prevmanualSelection := manualSelection;};
side2WaitState -[on side2Failed = false and side1ActiveSide = 0]-> side1FailedState {

side2ActiveSide := 2;

prevSide1ActiveSide := side1ActiveSide;

prevmanualSelection := manualSelection;};
side1ActiveState -[on side2Failed = true]-> side2FailedState {

side2ActiveSide := 0;

prevSide1ActiveSide := side1ActiveSide;

prevmanualSelection := manualSelection;};
side1ActiveState -[on side2Failed = false and side1ActiveSide = 0]-> side1FailedState {

side2ActiveSide := 2;

prevSide1ActiveSide := side1ActiveSide;

prevmanualSelection := manualSelection;};
side1ActiveState -[on side2Failed = false and side1ActiveSide != 0 and side2FullyAvail = true

and (prevmanualSelection = false and manualSelection = true

or side1FullyAvail = false)]-> side2ActiveState {
side2ActiveSide := 2;

prevSide1ActiveSide := side1ActiveSide;

prevmanualSelection := manualSelection;};
side1ActiveState -[on side2Failed = false and side1ActiveSide != 0

and (side2FullyAvail = false or side1FullyAvail = true

and (prevmanualSelection = true or manualSelection = false))]-> side1ActiveState {
side2ActiveSide := 1;

prevSide1ActiveSide := side1ActiveSide;

prevmanualSelection := manualSelection;};
side2ActiveState -[on side2Failed = true]-> side2FailedState {

side2ActiveSide := 0;

prevSide1ActiveSide := side1ActiveSide;

43

prevmanualSelection := manualSelection;};
side2ActiveState -[on side2Failed = false and side1ActiveSide = 0]-> side1FailedState {

side2ActiveSide := 2;

prevSide1ActiveSide := side1ActiveSide;

prevmanualSelection := manualSelection;};
side2ActiveState -[on side2Failed = false and prevSide1ActiveSide != 1

and side1ActiveSide = 1]-> side1ActiveState {
side2ActiveSide := 1;

prevSide1ActiveSide := side1ActiveSide;

prevmanualSelection := manualSelection;};
side2ActiveState -[on side2Failed = false and (prevSide1ActiveSide = 1 or side1ActiveSide != 1)

and side1ActiveSide != 0]-> side2ActiveState {
side2ActiveSide := 2;

prevSide1ActiveSide := side1ActiveSide;

prevmanualSelection := manualSelection;};
**};

end Side2Thread.impl;

end Side2;

A.2 Real-Time Maude specification.

(tomod MainActiveStandbySystemimplInstance is

including SYNCHRONOUS-STEP .

--- names, states, variables

ops s2F s1FA mS s1F prevmanualSelection s2FA : -> BoolVarId [ctor] .

ops prevSide2ActiveSide prevSide1ActiveSide : -> IntVarId [ctor] .

ops s0 side1WaitState side2ActiveState side1FailedState side2FailedState side1ActiveState

initState side2WaitState preInit : -> Location [ctor] .

ops impl : -> ImplName [ctor] .

ops Side1::Side1Thread MainModule::ActiveStandbySystem Side2::Side2

Environment::Environment Side1::Side1 Environment::EnvironmentThread Side2::Side2Process

Side1::Side1Process Environment::EnvironmentProcess Side2::Side2Thread : -> TypeName [ctor] .

ops side1ActiveSide side1Failed manualSelection side2ActiveSide side2Failed side2FullyAvail

side1FullyAvail : -> PortId [ctor] .

ops MainActiveStandbySystemimplInstance sideThread envProcess envThread sideOne sideTwo

env sideProcess : -> ComponentId [ctor] .

--- the initial state

op initial : -> Configuration .

eq initial = MainActiveStandbySystemimplInstance : system MainModule::ActiveStandbySystem . impl .

eq MAIN = MainActiveStandbySystemimplInstance .

--- AADL instance

var COMP : ComponentId .

eq stateVariables(thread Side1::Side1Thread . impl) =

(prevSide2ActiveSide |-> 0)

(prevmanualSelection |-> false).

eq states(thread Side1::Side1Thread . impl) =

initial: preInit

complete: preInit

complete: initState

complete: side1FailedState

complete: side2FailedState

complete: side1WaitState

complete: side1ActiveState

44

complete: side2ActiveState

.

eq transitions(thread Side1::Side1Thread . impl) =

(preInit -[]-> initState {
nil});

(initState -[(side1Failed = true)]-> side1FailedState {
(side1ActiveSide := 0);

(prevSide2ActiveSide := 0);

(prevmanualSelection := false)});
(initState -[(side1Failed = false)]-> side2FailedState {

(side1ActiveSide := 1);

(prevSide2ActiveSide := 0);

(prevmanualSelection := false)});
(side1FailedState -[((side1Failed = false) and (side2ActiveSide = 0))]-> side2FailedState {

(side1ActiveSide := 1);

(prevSide2ActiveSide := side2ActiveSide);

(prevmanualSelection := manualSelection)});
(side1FailedState -[((side1Failed = false) and (side2ActiveSide != 0))]-> side1WaitState {

(side1ActiveSide := 1);

(prevSide2ActiveSide := side2ActiveSide);

(prevmanualSelection := manualSelection)});
(side1FailedState -[(side1Failed = true)]-> side1FailedState {

(side1ActiveSide := 0);

(prevSide2ActiveSide := side2ActiveSide);

(prevmanualSelection := manualSelection)});
(side2FailedState -[((side1Failed = false) and (side2ActiveSide = 0))]-> side2FailedState {

(side1ActiveSide := 1);

(prevSide2ActiveSide := side2ActiveSide);

(prevmanualSelection := manualSelection)});
(side2FailedState -[((side1Failed = false) and (side2ActiveSide != 0))]-> side1WaitState {

(side1ActiveSide := 1);

(prevSide2ActiveSide := side2ActiveSide);

(prevmanualSelection := manualSelection)});
(side2FailedState -[(side1Failed = true)]-> side1FailedState {

(side1ActiveSide := 0);

(prevSide2ActiveSide := side2ActiveSide);

(prevmanualSelection := manualSelection)});
(side1WaitState -[((side1Failed = false) and (side2ActiveSide != 0))]-> side1ActiveState {

(side1ActiveSide := 1);

(prevSide2ActiveSide := side2ActiveSide);

(prevmanualSelection := manualSelection)});
(side1WaitState -[(side1Failed = true)]-> side1FailedState {

(side1ActiveSide := 0);

(prevSide2ActiveSide := side2ActiveSide);

(prevmanualSelection := manualSelection)});
(side1WaitState -[((side1Failed = false) and (side2ActiveSide = 0))]-> side2FailedState {

(side1ActiveSide := 1);

(prevSide2ActiveSide := side2ActiveSide);

(prevmanualSelection := manualSelection)});
(side1ActiveState -[(((side1Failed = false) and (prevSide2ActiveSide != 2))

and (side2ActiveSide = 2))]-> side2ActiveState {
(side1ActiveSide := 2);

(prevSide2ActiveSide := side2ActiveSide);

(prevmanualSelection := manualSelection)});
(side1ActiveState -[(side1Failed = true)]-> side1FailedState {

(side1ActiveSide := 0);

(prevSide2ActiveSide := side2ActiveSide);

(prevmanualSelection := manualSelection)});
(side1ActiveState -[((side1Failed = false) and (side2ActiveSide = 0))]-> side2FailedState {

(side1ActiveSide := 1);

(prevSide2ActiveSide := side2ActiveSide);

45

(prevmanualSelection := manualSelection)});
(side1ActiveState -[(((side1Failed = false) and (((prevSide2ActiveSide = 2)

or (side2ActiveSide != 2)))) and (side2ActiveSide != 0))]-> side1ActiveState {
(side1ActiveSide := 1);

(prevSide2ActiveSide := side2ActiveSide);

(prevmanualSelection := manualSelection)});
(side2ActiveState -[((((side1Failed = false) and (side2ActiveSide != 0))

and (side1FullyAvail = true)) and ((((prevmanualSelection = false) and (manualSelection = true))

or (side2FullyAvail = false))))]-> side1ActiveState {
(side1ActiveSide := 1);

(prevSide2ActiveSide := side2ActiveSide);

(prevmanualSelection := manualSelection)});
(side2ActiveState -[(side1Failed = true)]-> side1FailedState {

(side1ActiveSide := 0);

(prevSide2ActiveSide := side2ActiveSide);

(prevmanualSelection := manualSelection)});
(side2ActiveState -[((side1Failed = false) and (side2ActiveSide = 0))]-> side2FailedState {

(side1ActiveSide := 1);

(prevSide2ActiveSide := side2ActiveSide);

(prevmanualSelection := manualSelection)});
(side2ActiveState -[(((side1Failed = false) and (side2ActiveSide != 0)) and (((side1FullyAvail = false)

or ((side2FullyAvail = true) and (((prevmanualSelection = true)

or (manualSelection = false)))))))]-> side2ActiveState {
(side1ActiveSide := 2);

(prevSide2ActiveSide := side2ActiveSide);

(prevmanualSelection := manualSelection)}) .

eq COMP : thread Side1::Side1Thread . impl =

< COMP : Thread |

features :

< side1FullyAvail : InDataThreadPort | content : noMsg, fresh : false >

< side2FullyAvail : InDataThreadPort | content : noMsg, fresh : false >

< side2ActiveSide : InDataThreadPort | content : noMsg, fresh : false >

< manualSelection : InDataThreadPort | content : noMsg, fresh : false >

< side1Failed : InDataThreadPort | content : noMsg, fresh : false >

< side1ActiveSide : OutDataPort | content : noMsg >,

behaviorRef : (thread Side1::Side1Thread . impl),

variables : stateVariables(thread Side1::Side1Thread . impl),

currState : initialState(thread Side1::Side1Thread . impl),

completeStates : completeStates(thread Side1::Side1Thread . impl),

properties :

Synchronous(true) ;

syncPeriod(2) ;

Period(2) ;

DispatchProtocol(Periodic) ;

Deterministic(true),

connections :

none,

subcomponents :

none

> .

eq COMP : process Side1::Side1Process . impl =

< COMP : Process |

features :

< side1FullyAvail : InDataPort | content : noMsg >

< side2FullyAvail : InDataPort | content : noMsg >

< side2ActiveSide : InDataPort | content : noMsg >

< manualSelection : InDataPort | content : noMsg >

< side1Failed : InDataPort | content : noMsg >

< side1ActiveSide : OutDataPort | content : noMsg >,

properties :

46

Synchronous(true) ;

syncPeriod(2) ;

Period(2),

connections :

(sideThread . side1ActiveSide --> side1ActiveSide) ;

(side2ActiveSide --> sideThread . side2ActiveSide) ;

(side1FullyAvail --> sideThread . side1FullyAvail) ;

(side2FullyAvail --> sideThread . side2FullyAvail) ;

(manualSelection --> sideThread . manualSelection) ;

(side1Failed --> sideThread . side1Failed),

subcomponents :

(sideThread : thread Side1::Side1Thread . impl)

> .

eq COMP : system Side1::Side1 . impl =

< COMP : System |

features :

< side1FullyAvail : InDataPort | content : noMsg >

< side2FullyAvail : InDataPort | content : noMsg >

< side2ActiveSide : InDataPort | content : noMsg >

< manualSelection : InDataPort | content : noMsg >

< side1Failed : InDataPort | content : noMsg >

< side1ActiveSide : OutDataPort | content : noMsg >,

properties :

Synchronous(true) ;

syncPeriod(2) ;

Period(2),

connections :

(sideProcess . side1ActiveSide --> side1ActiveSide) ;

(side2ActiveSide --> sideProcess . side2ActiveSide) ;

(side1FullyAvail --> sideProcess . side1FullyAvail) ;

(side2FullyAvail --> sideProcess . side2FullyAvail) ;

(manualSelection --> sideProcess . manualSelection) ;

(side1Failed --> sideProcess . side1Failed),

subcomponents :

(sideProcess : process Side1::Side1Process . impl)

> .

eq stateVariables(thread Side2::Side2Thread . impl) =

(prevSide1ActiveSide |-> 0)

(prevmanualSelection |-> false).

eq states(thread Side2::Side2Thread . impl) =

initial: preInit

complete: preInit

complete: initState

complete: side2FailedState

complete: side1FailedState

complete: side2WaitState

complete: side1ActiveState

complete: side2ActiveState

.

eq transitions(thread Side2::Side2Thread . impl) =

(preInit -[]-> initState {
nil});

(initState -[(side2Failed = true)]-> side2FailedState {
(side2ActiveSide := 0);

(prevSide1ActiveSide := 0);

(prevmanualSelection := false)});
(initState -[(side2Failed = false)]-> side1FailedState {

(side2ActiveSide := 2);

47

(prevSide1ActiveSide := 0);

(prevmanualSelection := false)});
(side2FailedState -[((side2Failed = false) and (side1ActiveSide = 0))]-> side1FailedState {

(side2ActiveSide := 2);

(prevSide1ActiveSide := side1ActiveSide);

(prevmanualSelection := manualSelection)});
(side2FailedState -[((side2Failed = false) and (side1ActiveSide != 0))]-> side2WaitState {

(side2ActiveSide := 1);

(prevSide1ActiveSide := side1ActiveSide);

(prevmanualSelection := manualSelection)});
(side2FailedState -[(side2Failed = true)]-> side2FailedState {

(side2ActiveSide := 0);

(prevSide1ActiveSide := side1ActiveSide);

(prevmanualSelection := manualSelection)});
(side1FailedState -[((side2Failed = false) and (side1ActiveSide = 0))]-> side1FailedState {

(side2ActiveSide := 2);

(prevSide1ActiveSide := side1ActiveSide);

(prevmanualSelection := manualSelection)});
(side1FailedState -[((side2Failed = false) and (side1ActiveSide != 0))]-> side2WaitState {

(side2ActiveSide := 1);

(prevSide1ActiveSide := side1ActiveSide);

(prevmanualSelection := manualSelection)});
(side1FailedState -[(side2Failed = true)]-> side2FailedState {

(side2ActiveSide := 0);

(prevSide1ActiveSide := side1ActiveSide);

(prevmanualSelection := manualSelection)});
(side2WaitState -[((side2Failed = false) and (side1ActiveSide != 0))]-> side1ActiveState {

(side2ActiveSide := 1);

(prevSide1ActiveSide := side1ActiveSide);

(prevmanualSelection := manualSelection)});
(side2WaitState -[(side2Failed = true)]-> side2FailedState {

(side2ActiveSide := 0);

(prevSide1ActiveSide := side1ActiveSide);

(prevmanualSelection := manualSelection)});
(side2WaitState -[((side2Failed = false) and (side1ActiveSide = 0))]-> side1FailedState {

(side2ActiveSide := 2);

(prevSide1ActiveSide := side1ActiveSide);

(prevmanualSelection := manualSelection)});
(side1ActiveState -[(side2Failed = true)]-> side2FailedState {

(side2ActiveSide := 0);

(prevSide1ActiveSide := side1ActiveSide);

(prevmanualSelection := manualSelection)});
(side1ActiveState -[((side2Failed = false) and (side1ActiveSide = 0))]-> side1FailedState {

(side2ActiveSide := 2);

(prevSide1ActiveSide := side1ActiveSide);

(prevmanualSelection := manualSelection)});
(side1ActiveState -[((((side2Failed = false) and (side1ActiveSide != 0))

and (side2FullyAvail = true)) and ((((prevmanualSelection = false) and (manualSelection = true))

or (side1FullyAvail = false))))]-> side2ActiveState {
(side2ActiveSide := 2);

(prevSide1ActiveSide := side1ActiveSide);

(prevmanualSelection := manualSelection)});
(side1ActiveState -[(((side2Failed = false) and (side1ActiveSide != 0)) and (((side2FullyAvail = false)

or ((side1FullyAvail = true) and (((prevmanualSelection = true)

or (manualSelection = false)))))))]-> side1ActiveState {
(side2ActiveSide := 1);

(prevSide1ActiveSide := side1ActiveSide);

(prevmanualSelection := manualSelection)});
(side2ActiveState -[(side2Failed = true)]-> side2FailedState {

(side2ActiveSide := 0);

(prevSide1ActiveSide := side1ActiveSide);

(prevmanualSelection := manualSelection)});

48

(side2ActiveState -[((side2Failed = false) and (side1ActiveSide = 0))]-> side1FailedState {
(side2ActiveSide := 2);

(prevSide1ActiveSide := side1ActiveSide);

(prevmanualSelection := manualSelection)});
(side2ActiveState -[(((side2Failed = false) and (prevSide1ActiveSide != 1))

and (side1ActiveSide = 1))]-> side1ActiveState {
(side2ActiveSide := 1);

(prevSide1ActiveSide := side1ActiveSide);

(prevmanualSelection := manualSelection)});
(side2ActiveState -[(((side2Failed = false) and (((prevSide1ActiveSide = 1)

or (side1ActiveSide != 1)))) and (side1ActiveSide != 0))]-> side2ActiveState {
(side2ActiveSide := 2);

(prevSide1ActiveSide := side1ActiveSide);

(prevmanualSelection := manualSelection)}) .

eq COMP : thread Side2::Side2Thread . impl =

< COMP : Thread |

features :

< side1FullyAvail : InDataThreadPort | content : noMsg, fresh : false >

< side2FullyAvail : InDataThreadPort | content : noMsg, fresh : false >

< side1ActiveSide : InDataThreadPort | content : noMsg, fresh : false >

< manualSelection : InDataThreadPort | content : noMsg, fresh : false >

< side2Failed : InDataThreadPort | content : noMsg, fresh : false >

< side2ActiveSide : OutDataPort | content : noMsg >,

behaviorRef : (thread Side2::Side2Thread . impl),

variables : stateVariables(thread Side2::Side2Thread . impl),

currState : initialState(thread Side2::Side2Thread . impl),

completeStates : completeStates(thread Side2::Side2Thread . impl),

properties :

Synchronous(true) ;

syncPeriod(2) ;

Period(2) ;

DispatchProtocol(Periodic) ;

Deterministic(true),

connections :

none,

subcomponents :

none

> .

eq COMP : process Side2::Side2Process . impl =

< COMP : Process |

features :

< side1FullyAvail : InDataPort | content : noMsg >

< side2FullyAvail : InDataPort | content : noMsg >

< side1ActiveSide : InDataPort | content : noMsg >

< manualSelection : InDataPort | content : noMsg >

< side2Failed : InDataPort | content : noMsg >

< side2ActiveSide : OutDataPort | content : noMsg >,

properties :

Synchronous(true) ;

syncPeriod(2) ;

Period(2),

connections :

(side1ActiveSide --> sideThread . side1ActiveSide) ;

(sideThread . side2ActiveSide --> side2ActiveSide) ;

(side1FullyAvail --> sideThread . side1FullyAvail) ;

(side2FullyAvail --> sideThread . side2FullyAvail) ;

(manualSelection --> sideThread . manualSelection) ;

(side2Failed --> sideThread . side2Failed),

subcomponents :

(sideThread : thread Side2::Side2Thread . impl)

49

> .

eq COMP : system Side2::Side2 . impl =

< COMP : System |

features :

< side1FullyAvail : InDataPort | content : noMsg >

< side2FullyAvail : InDataPort | content : noMsg >

< side1ActiveSide : InDataPort | content : noMsg >

< manualSelection : InDataPort | content : noMsg >

< side2Failed : InDataPort | content : noMsg >

< side2ActiveSide : OutDataPort | content : noMsg >,

properties :

Synchronous(true) ;

syncPeriod(2) ;

Period(2),

connections :

(side1ActiveSide --> sideProcess . side1ActiveSide) ;

(sideProcess . side2ActiveSide --> side2ActiveSide) ;

(side1FullyAvail --> sideProcess . side1FullyAvail) ;

(side2FullyAvail --> sideProcess . side2FullyAvail) ;

(manualSelection --> sideProcess . manualSelection) ;

(side2Failed --> sideProcess . side2Failed),

subcomponents :

(sideProcess : process Side2::Side2Process . impl)

> .

eq stateVariables(thread Environment::EnvironmentThread . impl) =

(s1FA |-> true)

(s2FA |-> true)

(mS |-> false)

(s1F |-> false)

(s2F |-> false).

eq states(thread Environment::EnvironmentThread . impl) =

initial: s0

complete: s0

.

eq transitions(thread Environment::EnvironmentThread . impl) =

(s0 -[]-> s0 {
(side1FullyAvail := s1FA);

(side2FullyAvail := s2FA);

(manualSelection := mS);

(side1Failed := s1F);

(side2Failed := s2F)}) .

eq COMP : thread Environment::EnvironmentThread . impl =

< COMP : Thread |

features :

< side1FullyAvail : OutDataPort | content : noMsg >

< side2FullyAvail : OutDataPort | content : noMsg >

< manualSelection : OutDataPort | content : noMsg >

< side1Failed : OutDataPort | content : noMsg >

< side2Failed : OutDataPort | content : noMsg >,

behaviorRef : (thread Environment::EnvironmentThread . impl),

variables : stateVariables(thread Environment::EnvironmentThread . impl),

currState : initialState(thread Environment::EnvironmentThread . impl),

completeStates : completeStates(thread Environment::EnvironmentThread . impl),

properties :

Synchronous(true) ;

syncPeriod(2) ;

Period(2) ;

50

DispatchProtocol(Periodic) ;

InputConstraints((not s1F and s2F and not s2FA)

or (not s2F and s1F and not s1FA) or (not s1F and not s2F)) ;

IsEnvironment(true),

connections :

none,

subcomponents :

none

> .

eq COMP : process Environment::EnvironmentProcess . impl =

< COMP : Process |

features :

< side1FullyAvail : OutDataPort | content : noMsg >

< side2FullyAvail : OutDataPort | content : noMsg >

< manualSelection : OutDataPort | content : noMsg >

< side1Failed : OutDataPort | content : noMsg >

< side2Failed : OutDataPort | content : noMsg >,

properties :

Synchronous(true) ;

syncPeriod(2) ;

Period(2),

connections :

(envThread . side1FullyAvail --> side1FullyAvail) ;

(envThread . side2FullyAvail --> side2FullyAvail) ;

(envThread . manualSelection --> manualSelection) ;

(envThread . side1Failed --> side1Failed) ;

(envThread . side2Failed --> side2Failed),

subcomponents :

(envThread : thread Environment::EnvironmentThread . impl)

> .

eq COMP : system Environment::Environment . impl =

< COMP : System |

features :

< side1FullyAvail : OutDataPort | content : noMsg >

< side2FullyAvail : OutDataPort | content : noMsg >

< manualSelection : OutDataPort | content : noMsg >

< side1Failed : OutDataPort | content : noMsg >

< side2Failed : OutDataPort | content : noMsg >,

properties :

Synchronous(true) ;

syncPeriod(2) ;

Period(2),

connections :

(envProcess . side1FullyAvail --> side1FullyAvail) ;

(envProcess . side2FullyAvail --> side2FullyAvail) ;

(envProcess . manualSelection --> manualSelection) ;

(envProcess . side1Failed --> side1Failed) ;

(envProcess . side2Failed --> side2Failed),

subcomponents :

(envProcess : process Environment::EnvironmentProcess . impl)

> .

eq COMP : system MainModule::ActiveStandbySystem . impl =

< COMP : System |

features :

none,

properties :

Synchronous(true) ;

syncPeriod(2) ;

Period(2),

51

connections :

(sideOne . side1ActiveSide -->> sideTwo . side1ActiveSide) ;

(sideTwo . side2ActiveSide -->> sideOne . side2ActiveSide) ;

(env . side1FullyAvail --> sideOne . side1FullyAvail) ;

(env . side1FullyAvail --> sideTwo . side1FullyAvail) ;

(env . side2FullyAvail --> sideOne . side2FullyAvail) ;

(env . side2FullyAvail --> sideTwo . side2FullyAvail) ;

(env . manualSelection --> sideOne . manualSelection) ;

(env . manualSelection --> sideTwo . manualSelection) ;

(env . side1Failed --> sideOne . side1Failed) ;

(env . side2Failed --> sideTwo . side2Failed),

subcomponents :

(sideTwo : system Side2::Side2 . impl)

(env : system Environment::Environment . impl)

(sideOne : system Side1::Side1 . impl)

> .

endtom)

A.3 LTL Property Specifications in Real-Time Maude

(tomod Main_ActiveStandbySystem_impl_Instance-VERIFICATION-DEF is

including MainActiveStandbySystemimplInstance .

including LTL-MODEL-CHECK-AADL .

op side1Active : -> Formula .

eq side1Active

= value of side1ActiveSide in component (MAIN -> sideOne -> sideProcess -> sideThread) is 1 .

op side2Active : -> Formula .

eq side2Active

= value of side2ActiveSide in component (MAIN -> sideTwo -> sideProcess -> sideThread) is 2 .

op agreeOnActiveSide : -> Formula .

eq agreeOnActiveSide

= ((value of side1ActiveSide in component (MAIN -> sideOne -> sideProcess -> sideThread) is 1)

/\

(value of side2ActiveSide in component (MAIN -> sideTwo -> sideProcess -> sideThread) is 1))

\/

((value of side1ActiveSide in component (MAIN -> sideOne -> sideProcess -> sideThread) is 2)

/\

(value of side2ActiveSide in component (MAIN -> sideTwo -> sideProcess -> sideThread) is 2)) .

op side1FullyAvailable : -> Formula .

eq side1FullyAvailable

= value of side1FullyAvail in component (MAIN -> sideOne -> sideProcess -> sideThread) is true .

op side2FullyAvailable : -> Formula .

eq side2FullyAvailable

= value of side2FullyAvail in component (MAIN -> sideTwo -> sideProcess -> sideThread) is true .

op noChangeAvailability : -> Formula .

eq noChangeAvailability

= (side1FullyAvailable <-> O side1FullyAvailable)

/\ (side2FullyAvailable <-> O side2FullyAvailable) .

op manSelectPressed : -> Formula .

eq manSelectPressed

= value of manualSelection in component (MAIN -> sideOne -> sideProcess -> sideThread) is true .

op side1Failed : -> Formula .

eq side1Failed

= value of side1Failed in component (MAIN -> sideOne -> sideProcess -> sideThread) is true .

op side2Failed : -> Formula .

eq side2Failed

= value of side2Failed in component (MAIN -> sideTwo -> sideProcess -> sideThread) is true .

op neitherSideFailed : -> Formula .

eq neitherSideFailed

52

= (~ side1Failed) /\ (~ side2Failed) .

op noChangeAssumptionNextState : -> Formula .

eq noChangeAssumptionNextState

= noChangeAvailability /\ (O ~ manSelectPressed) /\ (O neitherSideFailed) .

op s2inStateSide2Active : -> Formula .

eq s2inStateSide2Active

= (MAIN -> sideTwo -> sideProcess -> sideThread) @ side2ActiveState .

endtom)

--- R1

(mc {initial} |=u O ([] (noChangeAssumptionNextState ->

O (agreeOnActiveSide \/ O (neitherSideFailed -> agreeOnActiveSide)))) .)

--- R2a

(mc {initial} |=u O ([] ((noChangeAssumptionNextState /\ O side1FullyAvailable /\

O ~ side2FullyAvailable) ->

O (~ side2Active \/ (noChangeAssumptionNextState -> O ~ side2Active)))) .)

--- R3g

(mc {initial} |=u [] ((~ manSelectPressed /\ agreeOnActiveSide /\ side1FullyAvailable /\

side2FullyAvailable /\ noChangeAssumptionNextState) ->

((side1Active -> O O ((manSelectPressed /\ side1FullyAvailable /\ side2FullyAvailable) ->

side2Active)) /\ (side2Active -> O O ((manSelectPressed /\ side1FullyAvailable

/\ side2FullyAvailable) -> side1Active)))) .)

--- R4

(mc {initial} |=u [] (((side1Failed /\ ~ side2Failed) -> O (~ side2Failed -> side2Active)) /\

((side2Failed /\ ~ side1Failed) -> O (~ side1Failed -> side1Active))) .)

--- R5side1

(mc {initial} |=u [] (((side1Active /\ side1FullyAvailable /\ ~ manSelectPressed) ->

(side1Active W (~ side1FullyAvailable \/ manSelectPressed)))

/\

((side1Active /\ ~ side1FullyAvailable /\ ~ side2FullyAvailable

/\ ~ manSelectPressed /\ ~ side1Failed)

-> (side1Active W

(side2FullyAvailable \/ manSelectPressed \/ side1Failed)))) .)

53

B 3-node Active Standby Model

This section presents the entire Synchronous AADL source code of the 3-node
Active Standby examples, and the corresponding Real-Time Maude code gener-
ated by our tool.

B.1 Synchronous AADL Specification

package MainModule

public

system MainSystem

end MainSystem;

system implementation MainSystem.impl

subcomponents

sideOne: system Side1::Side1.impl;

sideTwo: system Side2::Side2.impl;

sideThree: system Side3::Side3.impl;

environment: system Environment::Environment.impl;

aileron: system Aileron::IOTask.impl;

connections

data port sideOne.side1ActiveSide ->> sideTwo.side1ActiveSide;

data port sideOne.side1ActiveSide ->> sideThree.side1ActiveSide;

data port sideTwo.side2ActiveSide ->> sideOne.side2ActiveSide;

data port sideTwo.side2ActiveSide ->> sideThree.side2ActiveSide;

data port sideThree.side3ActiveSide ->> sideOne.side3ActiveSide;

data port sideThree.side3ActiveSide ->> sideTwo.side3ActiveSide;

data port environment.side1Failed -> sideOne.side1Failed;

data port environment.side2Failed -> sideTwo.side2Failed;

data port environment.side3Failed -> sideThree.side3Failed;

data port sideOne.side1ActiveSide ->> aileron.side1ActiveSide;

data port sideTwo.side2ActiveSide ->> aileron.side2ActiveSide;

data port sideThree.side3ActiveSide ->> aileron.side3ActiveSide;

properties

SynchAADL::Synchronous => true;

SynchAADL::syncPeriod => 2 Ms;

Period => 2 Ms;

end MainSystem.impl;

end MainModule;

package Aileron

public

-- controller input/output

system IOTask

features

-- active standby output

side1ActiveSide: in data port behavior::integer;

side2ActiveSide: in data port behavior::integer;

side3ActiveSide: in data port behavior::integer;

end IOTask;

system implementation IOTask.impl

subcomponents

ioProcess: process IOProcess.impl;

connections

data port side1ActiveSide -> ioProcess.side1ActiveSide_in;

data port side2ActiveSide -> ioProcess.side2ActiveSide_in;

data port side3ActiveSide -> ioProcess.side3ActiveSide_in;

end IOTask.impl;

54

process IOProcess

features

side1ActiveSide_in: in data port behavior::integer;

side2ActiveSide_in: in data port behavior::integer;

side3ActiveSide_in: in data port behavior::integer;

end IOProcess;

process implementation IOProcess.impl

subcomponents

outsynchThread: thread OutputSynchronizer.impl;

connections

data port side1ActiveSide_in -> outsynchThread.side1ActiveSide_in;

data port side2ActiveSide_in -> outsynchThread.side2ActiveSide_in;

data port side3ActiveSide_in -> outsynchThread.side3ActiveSide_in;

properties

Dispatch_Protocol => Periodic applies to outsynchThread;

SynchAADL::Deterministic => true applies to outsynchThread;

end IOProcess.impl;

thread OutputSynchronizer

features

side1ActiveSide_in: in data port behavior::integer;

side2ActiveSide_in: in data port behavior::integer;

side3ActiveSide_in: in data port behavior::integer;

end OutputSynchronizer;

thread implementation OutputSynchronizer.impl

annex behavior_specification {**
state variables

side1ActiveSide_out:behavior::integer;

side2ActiveSide_out:behavior::integer;

side3ActiveSide_out:behavior::integer;

initially

side1ActiveSide_out := -1;

side2ActiveSide_out := -1;

side3ActiveSide_out := -1;states

initState : initial complete state;

curState : complete state;

transitions

initState -[]-> curState {
side1ActiveSide_out := -1;

side2ActiveSide_out := -1;

side3ActiveSide_out := -1;};
curState -[]-> curState {

side1ActiveSide_out := side1ActiveSide_in;

side2ActiveSide_out := side2ActiveSide_in;

side3ActiveSide_out := side3ActiveSide_in;};
**};

end OutputSynchronizer.impl;

end Aileron;

package Environment

public

system Environment

features

side1Failed: out data port behavior::boolean;

side2Failed: out data port behavior::boolean;

side3Failed: out data port behavior::boolean;

end Environment;

system implementation Environment.impl

55

subcomponents

envProcess: process EnvProcess.impl;

connections

C4: data port envProcess.side1Failed -> side1Failed;

C5: data port envProcess.side2Failed -> side2Failed;

C6: data port envProcess.side3Failed -> side3Failed;

end Environment.impl;

process EnvProcess

features

side1Failed: out data port behavior::boolean;

side2Failed: out data port behavior::boolean;

side3Failed: out data port behavior::boolean;

end EnvProcess;

process implementation EnvProcess.impl

subcomponents

insynchThread: thread InputSynchronizer.impl;

connections

C4: data port insynchThread.side1Failed -> side1Failed;

C5: data port insynchThread.side2Failed -> side2Failed;

C6: data port insynchThread.side3Failed -> side3Failed;

end EnvProcess.impl;

thread InputSynchronizer

features

side1Failed: out data port behavior::boolean;

side2Failed: out data port behavior::boolean;

side3Failed: out data port behavior::boolean;

end InputSynchronizer;

thread implementation InputSynchronizer.impl

properties

Dispatch_Protocol => Periodic;

SynchAADL::IsEnvironment => true;

SynchAADL::InputConstraints => "not s1F or not s2F or not s3F";

annex behavior_specification {**
state variables

s1F:behavior::boolean;

s2F:behavior::boolean;

s3F:behavior::boolean;

initially

s1F := false;

s2F := false;

s3F := false;states

s0 : initial complete state;

transitions

s0 -[]-> s0 {
side1Failed := s1F;

side2Failed := s2F;

side3Failed := s3F;};
**};

end InputSynchronizer.impl;

end Environment;

package Side1

public

system Side1

features

side2ActiveSide: in data port behavior::integer;

side3ActiveSide: in data port behavior::integer;

side1Failed: in data port behavior::boolean;

56

side1ActiveSide: out data port behavior::integer;

end Side1;

system implementation Side1.impl

subcomponents

sideProcess: process Side1Process.impl;

connections

data port side2ActiveSide -> sideProcess.side2ActiveSide;

data port side3ActiveSide -> sideProcess.side3ActiveSide;

data port side1Failed -> sideProcess.side1Failed;

data port sideProcess.side1ActiveSide -> side1ActiveSide;

end Side1.impl;

process Side1Process

features

side2ActiveSide: in data port behavior::integer;

side3ActiveSide: in data port behavior::integer;

side1Failed: in data port behavior::boolean;

side1ActiveSide: out data port behavior::integer;

end Side1Process;

process implementation Side1Process.impl

subcomponents

activeStandbyThread: thread ActiveStandbyThread.impl;

connections

data port side2ActiveSide -> activeStandbyThread.side2ActiveSide;

data port side3ActiveSide -> activeStandbyThread.side3ActiveSide;

data port activeStandbyThread.side1ActiveSide -> side1ActiveSide;

data port side1Failed -> activeStandbyThread.side1Failed;

properties

Dispatch_Protocol => Periodic applies to activeStandbyThread;

SynchAADL::Deterministic => true applies to activeStandbyThread;

end Side1Process.impl;

thread ActiveStandbyThread

features

side2ActiveSide: in data port behavior::integer;

side3ActiveSide: in data port behavior::integer;

side1Failed: in data port behavior::boolean;

side1ActiveSide: out data port behavior::integer;

end ActiveStandbyThread;

thread implementation ActiveStandbyThread.impl

annex behavior_specification {**
state variables

g_side1:behavior::integer;

g_side2:behavior::integer;

g_side3:behavior::integer;

prev_gside1:behavior::integer;

initially

g_side1 := -1;

g_side2 := -1;

g_side3 := -1;

prev_gside1 := -1;states

s0 : initial complete state;

transitions

s0 -[on side1Failed’fresh and side1Failed = true]-> s0 {
if (side2ActiveSide’fresh)

g_side2 := side2ActiveSide;else

g_side2 := -1;end if;

if (side3ActiveSide’fresh)

57

g_side3 := side3ActiveSide;else

g_side3 := -1;end if;

g_side1 := prev_gside1;

side1ActiveSide := -1;

prev_gside1 := -1;};
s0 -[on side1Failed’fresh and side1Failed = false]-> s0 {

g_side1 := prev_gside1;

if (side2ActiveSide’fresh)

g_side2 := side2ActiveSide;else

g_side2 := -1;end if;

if (side3ActiveSide’fresh)

g_side3 := side3ActiveSide;else

g_side3 := -1;end if;

if (g_side2 = (-1) and g_side3 = -1)

side1ActiveSide := 1;

prev_gside1 := 1;

elsif (g_side1 = (-1) and (g_side2 != (-1) or g_side3 != -1))

side1ActiveSide := 0;

prev_gside1 := 0;

elsif (g_side1 = 0 and g_side2 != 1 and g_side3 != 1)

side1ActiveSide := 1;

prev_gside1 := 1;

else

side1ActiveSide := prev_gside1;

end if;

};
**};

end ActiveStandbyThread.impl;

end Side1;

package Side2

public

system Side2

features

side3ActiveSide: in data port behavior::integer;

side1ActiveSide: in data port behavior::integer;

side2Failed: in data port behavior::boolean;

side2ActiveSide: out data port behavior::integer;

end Side2;

system implementation Side2.impl

subcomponents

sideProcess: process Side2Process.impl;

connections

data port side3ActiveSide -> sideProcess.side3ActiveSide;

data port side1ActiveSide -> sideProcess.side1ActiveSide;

data port side2Failed -> sideProcess.side2Failed;

data port sideProcess.side2ActiveSide -> side2ActiveSide;

end Side2.impl;

process Side2Process

features

side3ActiveSide: in data port behavior::integer;

side1ActiveSide: in data port behavior::integer;

side2Failed: in data port behavior::boolean;

side2ActiveSide: out data port behavior::integer;

end Side2Process;

process implementation Side2Process.impl

58

subcomponents

activeStandbyThread: thread ActiveStandbyThread.impl;

connections

data port side3ActiveSide -> activeStandbyThread.side3ActiveSide;

data port side1ActiveSide -> activeStandbyThread.side1ActiveSide;

data port side2Failed -> activeStandbyThread.side2Failed;

data port activeStandbyThread.side2ActiveSide -> side2ActiveSide;

properties

Dispatch_Protocol => Periodic applies to activeStandbyThread;

SynchAADL::Deterministic => true applies to activeStandbyThread;

end Side2Process.impl;

thread ActiveStandbyThread

features

side3ActiveSide: in data port behavior::integer;

side1ActiveSide: in data port behavior::integer;

side2Failed: in data port behavior::boolean;

side2ActiveSide: out data port behavior::integer;

end ActiveStandbyThread;

thread implementation ActiveStandbyThread.impl

annex behavior_specification {**
state variables

g_side1:behavior::integer;

g_side2:behavior::integer;

g_side3:behavior::integer;

prev_gside2:behavior::integer;

initially

g_side1 := -1;

g_side2 := -1;

g_side3 := -1;

prev_gside2 := -1;states

s0 : initial complete state;

transitions

s0 -[on side2Failed’fresh and side2Failed = true]-> s0 {
g_side2 := prev_gside2;

if (side1ActiveSide’fresh)

g_side1 := side1ActiveSide;else

g_side1 := -1;end if;

if (side3ActiveSide’fresh)

g_side3 := side3ActiveSide;else

g_side3 := -1;end if;

side2ActiveSide := -1;

prev_gside2 := -1;};
s0 -[on side2Failed’fresh and side2Failed = false]-> s0 {

g_side2 := prev_gside2;

if (side1ActiveSide’fresh)

g_side1 := side1ActiveSide;else

g_side1 := -1;end if;

if (side3ActiveSide’fresh)

g_side3 := side3ActiveSide;else

g_side3 := -1;end if;

if (g_side2 = -1)

side2ActiveSide := 0;

prev_gside2 := 0;

elsif (g_side2 = 0 and g_side1 = (-1) and g_side3 != 1)

side2ActiveSide := 1;

prev_gside2 := 1;

59

else

side2ActiveSide := prev_gside2;

end if;

};
**};

end ActiveStandbyThread.impl;

end Side2;

package Side3

public

system Side3

features

side1ActiveSide: in data port behavior::integer;

side2ActiveSide: in data port behavior::integer;

side3Failed: in data port behavior::boolean;

side3ActiveSide: out data port behavior::integer;

end Side3;

system implementation Side3.impl

subcomponents

sideProcess: process Side3Process.impl;

connections

data port side1ActiveSide -> sideProcess.side1ActiveSide;

data port side2ActiveSide -> sideProcess.side2ActiveSide;

data port side3Failed -> sideProcess.side3Failed;

data port sideProcess.side3ActiveSide -> side3ActiveSide;

end Side3.impl;

process Side3Process

features

side1ActiveSide: in data port behavior::integer;

side2ActiveSide: in data port behavior::integer;

side3Failed: in data port behavior::boolean;

side3ActiveSide: out data port behavior::integer;

end Side3Process;

process implementation Side3Process.impl

subcomponents

activeStandbyThread: thread ActiveStandbyThread.impl;

connections

data port side1ActiveSide -> activeStandbyThread.side1ActiveSide;

data port side2ActiveSide -> activeStandbyThread.side2ActiveSide;

data port activeStandbyThread.side3ActiveSide -> side3ActiveSide;

data port side3Failed -> activeStandbyThread.side3Failed;

properties

Dispatch_Protocol => Periodic applies to activeStandbyThread;

SynchAADL::Deterministic => true applies to activeStandbyThread;

end Side3Process.impl;

thread ActiveStandbyThread

features

side1ActiveSide: in data port behavior::integer;

side2ActiveSide: in data port behavior::integer;

side3Failed: in data port behavior::boolean;

side3ActiveSide: out data port behavior::integer;

end ActiveStandbyThread;

thread implementation ActiveStandbyThread.impl

annex behavior_specification {**
state variables

g_side1:behavior::integer;

g_side2:behavior::integer;

60

g_side3:behavior::integer;

prev_gside3:behavior::integer;

initially

g_side1 := -1;

g_side2 := -1;

g_side3 := -1;

prev_gside3 := -1;states

s0 : initial complete state;

transitions

s0 -[on side3Failed’fresh and side3Failed = true]-> s0 {
g_side3 := prev_gside3;

if (side1ActiveSide’fresh)

g_side1 := side1ActiveSide;else

g_side1 := -1;end if;

if (side2ActiveSide’fresh)

g_side2 := side2ActiveSide;else

g_side2 := -1;end if;

side3ActiveSide := -1;

prev_gside3 := -1;};
s0 -[on side3Failed’fresh and side3Failed = false]-> s0 {

g_side3 := prev_gside3;

if (side1ActiveSide’fresh)

g_side1 := side1ActiveSide;else

g_side1 := -1;end if;

if (side2ActiveSide’fresh)

g_side2 := side2ActiveSide;else

g_side2 := -1;end if;

if (g_side3 = -1)

side3ActiveSide := 0;

prev_gside3 := 0;

elsif (g_side3 != (-1) and g_side1 = (-1) and g_side2 = -1)

side3ActiveSide := 1;

prev_gside3 := 1;

else

side3ActiveSide := prev_gside3;

end if;

};
**};

end ActiveStandbyThread.impl;

end Side3;

B.2 Real-Time Maude Specification

load rtmaude/synch-aadl-interpreter.maude

(tomod MainMainSystemimplInstance is

including SYNCHRONOUS-STEP .

--- names, states, variables

ops s2F s3F s1F : -> BoolVarId [ctor] .

ops prevgside2 prevgside1 side1ActiveSideout side3ActiveSideout gside1 side2ActiveSideout

prevgside3 gside2 gside3 : -> IntVarId [ctor] .

ops s0 initState curState : -> Location [ctor] .

ops impl : -> ImplName [ctor] .

ops Side1::ActiveStandbyThread Aileron::OutputSynchronizer Environment::EnvProcess

Aileron::IOProcess Side2::Side2 Side3::Side3 Side1::Side1 Aileron::IOTask Environment::Environment

Side3::Side3Process Side3::ActiveStandbyThread Side2::Side2Process MainModule::MainSystem

Side1::Side1Process Environment::InputSynchronizer Side2::ActiveStandbyThread : -> TypeName [ctor] .

61

ops side3Failed side2ActiveSidein side3ActiveSidein side3ActiveSide side1ActiveSidein side1ActiveSide

side1Failed side2ActiveSide side2Failed : -> PortId [ctor] .

ops environment sideOne outsynchThread insynchThread sideTwo envProcess aileron activeStandbyThread

MainMainSystemimplInstance ioProcess sideThree sideProcess : -> ComponentId [ctor] .

--- the initial state

op initial : -> Configuration .

eq initial = MainMainSystemimplInstance : system MainModule::MainSystem . impl .

eq MAIN = MainMainSystemimplInstance .

--- AADL instance

var COMP : ComponentId .

eq stateVariables(thread Side1::ActiveStandbyThread . impl) =

(gside1 |-> -1)

(gside2 |-> -1)

(gside3 |-> -1)

(prevgside1 |-> -1) .

eq states(thread Side1::ActiveStandbyThread . impl) =

initial: s0

complete: s0

.

eq transitions(thread Side1::ActiveStandbyThread . impl) =

(s0 -[(fresh(side1Failed) and (side1Failed = true))]-> s0 {
(if (fresh(side2ActiveSide))

(

(gside2 := side2ActiveSide))

else

(

(gside2 := -1))end if);

(if (fresh(side3ActiveSide))

(

(gside3 := side3ActiveSide))

else

(

(gside3 := -1))end if);

(gside1 := prevgside1);

(side1ActiveSide := -1);

(prevgside1 := -1)});
(s0 -[(fresh(side1Failed) and (side1Failed = false))]-> s0 {

(gside1 := prevgside1);

(if (fresh(side2ActiveSide))

(

(gside2 := side2ActiveSide))

else

(

(gside2 := -1))end if);

(if (fresh(side3ActiveSide))

(

(gside3 := side3ActiveSide))

else

(

(gside3 := -1))end if);

(if (((gside2 = -1) and (gside3 = -1)))

(

(side1ActiveSide := 1);

(prevgside1 := 1))

62

((elsif (((gside1 = -1) and (((gside2 != -1) or (gside3 != -1)))))

(

(side1ActiveSide := 0);

(prevgside1 := 0)))

(elsif ((((gside1 = 0) and (gside2 != 1)) and (gside3 != 1)))

(

(side1ActiveSide := 1);

(prevgside1 := 1))))

else

(side1ActiveSide := prevgside1) end if)}) .

eq COMP : thread Side1::ActiveStandbyThread . impl =

< COMP : Thread |

features :

< side2ActiveSide : InDataThreadPort | content : noMsg, fresh : false >

< side3ActiveSide : InDataThreadPort | content : noMsg, fresh : false >

< side1Failed : InDataThreadPort | content : noMsg, fresh : false >

< side1ActiveSide : OutDataPort | content : noMsg >,

behaviorRef : (thread Side1::ActiveStandbyThread . impl),

variables : stateVariables(thread Side1::ActiveStandbyThread . impl),

currState : initialState(thread Side1::ActiveStandbyThread . impl),

completeStates : completeStates(thread Side1::ActiveStandbyThread . impl),

properties :

Synchronous(true) ;

syncPeriod(2) ;

Period(2) ;

DispatchProtocol(Periodic) ;

Deterministic(true),

connections :

none,

subcomponents :

none

> .

eq COMP : process Side1::Side1Process . impl =

< COMP : Process |

features :

< side2ActiveSide : InDataPort | content : noMsg >

< side3ActiveSide : InDataPort | content : noMsg >

< side1Failed : InDataPort | content : noMsg >

< side1ActiveSide : OutDataPort | content : noMsg >,

properties :

Synchronous(true) ;

syncPeriod(2) ;

Period(2),

connections :

(activeStandbyThread . side1ActiveSide --> side1ActiveSide) ;

(side2ActiveSide --> activeStandbyThread . side2ActiveSide) ;

(side3ActiveSide --> activeStandbyThread . side3ActiveSide) ;

(side1Failed --> activeStandbyThread . side1Failed),

subcomponents :

(activeStandbyThread : thread Side1::ActiveStandbyThread . impl)

> .

eq COMP : system Side1::Side1 . impl =

< COMP : System |

features :

< side2ActiveSide : InDataPort | content : noMsg >

< side3ActiveSide : InDataPort | content : noMsg >

< side1Failed : InDataPort | content : noMsg >

< side1ActiveSide : OutDataPort | content : noMsg >,

63

properties :

Synchronous(true) ;

syncPeriod(2) ;

Period(2),

connections :

(sideProcess . side1ActiveSide --> side1ActiveSide) ;

(side2ActiveSide --> sideProcess . side2ActiveSide) ;

(side3ActiveSide --> sideProcess . side3ActiveSide) ;

(side1Failed --> sideProcess . side1Failed),

subcomponents :

(sideProcess : process Side1::Side1Process . impl)

> .

eq stateVariables(thread Side2::ActiveStandbyThread . impl) =

(gside1 |-> -1)

(gside2 |-> -1)

(gside3 |-> -1)

(prevgside2 |-> -1) .

eq states(thread Side2::ActiveStandbyThread . impl) =

initial: s0

complete: s0

.

eq transitions(thread Side2::ActiveStandbyThread . impl) =

(s0 -[(fresh(side2Failed) and (side2Failed = true))]-> s0 {
(gside2 := prevgside2);

(if (fresh(side1ActiveSide))

(

(gside1 := side1ActiveSide))

else

(

(gside1 := -1))end if);

(if (fresh(side3ActiveSide))

(

(gside3 := side3ActiveSide))

else

(

(gside3 := -1))end if);

(side2ActiveSide := -1);

(prevgside2 := -1)});
(s0 -[(fresh(side2Failed) and (side2Failed = false))]-> s0 {

(gside2 := prevgside2);

(if (fresh(side1ActiveSide))

(

(gside1 := side1ActiveSide))

else

(

(gside1 := -1))end if);

(if (fresh(side3ActiveSide))

(

(gside3 := side3ActiveSide))

else

(

(gside3 := -1))end if);

(if ((gside2 = -1))

(

(side2ActiveSide := 0);

(prevgside2 := 0))

((elsif ((((gside2 = 0) and (gside1 = -1)) and (gside3 != 1)))

(

(side2ActiveSide := 1);

64

(prevgside2 := 1))))

else

(

(side2ActiveSide := prevgside2))end if)}) .

eq COMP : thread Side2::ActiveStandbyThread . impl =

< COMP : Thread |

features :

< side3ActiveSide : InDataThreadPort | content : noMsg, fresh : false >

< side1ActiveSide : InDataThreadPort | content : noMsg, fresh : false >

< side2Failed : InDataThreadPort | content : noMsg, fresh : false >

< side2ActiveSide : OutDataPort | content : noMsg >,

behaviorRef : (thread Side2::ActiveStandbyThread . impl),

variables : stateVariables(thread Side2::ActiveStandbyThread . impl),

currState : initialState(thread Side2::ActiveStandbyThread . impl),

completeStates : completeStates(thread Side2::ActiveStandbyThread . impl),

properties :

Synchronous(true) ;

syncPeriod(2) ;

Period(2) ;

DispatchProtocol(Periodic) ;

Deterministic(true),

connections :

none,

subcomponents :

none

> .

eq COMP : process Side2::Side2Process . impl =

< COMP : Process |

features :

< side3ActiveSide : InDataPort | content : noMsg >

< side1ActiveSide : InDataPort | content : noMsg >

< side2Failed : InDataPort | content : noMsg >

< side2ActiveSide : OutDataPort | content : noMsg >,

properties :

Synchronous(true) ;

syncPeriod(2) ;

Period(2),

connections :

(side1ActiveSide --> activeStandbyThread . side1ActiveSide) ;

(activeStandbyThread . side2ActiveSide --> side2ActiveSide) ;

(side3ActiveSide --> activeStandbyThread . side3ActiveSide) ;

(side2Failed --> activeStandbyThread . side2Failed),

subcomponents :

(activeStandbyThread : thread Side2::ActiveStandbyThread . impl)

> .

eq COMP : system Side2::Side2 . impl =

< COMP : System |

features :

< side3ActiveSide : InDataPort | content : noMsg >

< side1ActiveSide : InDataPort | content : noMsg >

< side2Failed : InDataPort | content : noMsg >

< side2ActiveSide : OutDataPort | content : noMsg >,

properties :

Synchronous(true) ;

syncPeriod(2) ;

Period(2),

connections :

(side1ActiveSide --> sideProcess . side1ActiveSide) ;

(sideProcess . side2ActiveSide --> side2ActiveSide) ;

65

(side3ActiveSide --> sideProcess . side3ActiveSide) ;

(side2Failed --> sideProcess . side2Failed),

subcomponents :

(sideProcess : process Side2::Side2Process . impl)

> .

eq stateVariables(thread Side3::ActiveStandbyThread . impl) =

(gside1 |-> -1)

(gside2 |-> -1)

(gside3 |-> -1)

(prevgside3 |-> -1) .

eq states(thread Side3::ActiveStandbyThread . impl) =

initial: s0

complete: s0

.

eq transitions(thread Side3::ActiveStandbyThread . impl) =

(s0 -[(fresh(side3Failed) and (side3Failed = true))]-> s0 {
(gside3 := prevgside3);

(if (fresh(side1ActiveSide))

(

(gside1 := side1ActiveSide))

else

(

(gside1 := -1))end if);

(if (fresh(side2ActiveSide))

(

(gside2 := side2ActiveSide))

else

(

(gside2 := -1))end if);

(side3ActiveSide := -1);

(prevgside3 := -1)});
(s0 -[(fresh(side3Failed) and (side3Failed = false))]-> s0 {

(gside3 := prevgside3);

(if (fresh(side1ActiveSide))

(

(gside1 := side1ActiveSide))

else

(

(gside1 := -1))end if);

(if (fresh(side2ActiveSide))

(

(gside2 := side2ActiveSide))

else

(

(gside2 := -1))end if);

(if ((gside3 = -1))

(

(side3ActiveSide := 0);

(prevgside3 := 0))

((elsif ((((gside3 != -1) and (gside1 = -1)) and (gside2 = -1)))

(

(side3ActiveSide := 1);

(prevgside3 := 1))))

else

(

(side3ActiveSide := prevgside3))end if)}) .

eq COMP : thread Side3::ActiveStandbyThread . impl =

< COMP : Thread |

66

features :

< side1ActiveSide : InDataThreadPort | content : noMsg, fresh : false >

< side2ActiveSide : InDataThreadPort | content : noMsg, fresh : false >

< side3Failed : InDataThreadPort | content : noMsg, fresh : false >

< side3ActiveSide : OutDataPort | content : noMsg >,

behaviorRef : (thread Side3::ActiveStandbyThread . impl),

variables : stateVariables(thread Side3::ActiveStandbyThread . impl),

currState : initialState(thread Side3::ActiveStandbyThread . impl),

completeStates : completeStates(thread Side3::ActiveStandbyThread . impl),

properties :

Synchronous(true) ;

syncPeriod(2) ;

Period(2) ;

DispatchProtocol(Periodic) ;

Deterministic(true),

connections :

none,

subcomponents :

none

> .

eq COMP : process Side3::Side3Process . impl =

< COMP : Process |

features :

< side1ActiveSide : InDataPort | content : noMsg >

< side2ActiveSide : InDataPort | content : noMsg >

< side3Failed : InDataPort | content : noMsg >

< side3ActiveSide : OutDataPort | content : noMsg >,

properties :

Synchronous(true) ;

syncPeriod(2) ;

Period(2),

connections :

(side1ActiveSide --> activeStandbyThread . side1ActiveSide) ;

(side2ActiveSide --> activeStandbyThread . side2ActiveSide) ;

(activeStandbyThread . side3ActiveSide --> side3ActiveSide) ;

(side3Failed --> activeStandbyThread . side3Failed),

subcomponents :

(activeStandbyThread : thread Side3::ActiveStandbyThread . impl)

> .

eq COMP : system Side3::Side3 . impl =

< COMP : System |

features :

< side1ActiveSide : InDataPort | content : noMsg >

< side2ActiveSide : InDataPort | content : noMsg >

< side3Failed : InDataPort | content : noMsg >

< side3ActiveSide : OutDataPort | content : noMsg >,

properties :

Synchronous(true) ;

syncPeriod(2) ;

Period(2),

connections :

(side1ActiveSide --> sideProcess . side1ActiveSide) ;

(side2ActiveSide --> sideProcess . side2ActiveSide) ;

(sideProcess . side3ActiveSide --> side3ActiveSide) ;

(side3Failed --> sideProcess . side3Failed),

subcomponents :

(sideProcess : process Side3::Side3Process . impl)

> .

eq stateVariables(thread Environment::InputSynchronizer . impl) =

67

(s1F |-> false)

(s2F |-> false)

(s3F |-> false) .

eq states(thread Environment::InputSynchronizer . impl) =

initial: s0

complete: s0

.

eq transitions(thread Environment::InputSynchronizer . impl) =

(s0 -[]-> s0 {
(side1Failed := s1F);

(side2Failed := s2F);

(side3Failed := s3F)}) .

eq COMP : thread Environment::InputSynchronizer . impl =

< COMP : Thread |

features :

< side1Failed : OutDataPort | content : noMsg >

< side2Failed : OutDataPort | content : noMsg >

< side3Failed : OutDataPort | content : noMsg >,

behaviorRef : (thread Environment::InputSynchronizer . impl),

variables : stateVariables(thread Environment::InputSynchronizer . impl),

currState : initialState(thread Environment::InputSynchronizer . impl),

completeStates : completeStates(thread Environment::InputSynchronizer . impl),

properties :

Synchronous(true) ;

syncPeriod(2) ;

Period(2) ;

DispatchProtocol(Periodic) ;

IsEnvironment(true) ;

InputConstraints(not s1F or not s2F or not s3F),

connections :

none,

subcomponents :

none

> .

eq COMP : process Environment::EnvProcess . impl =

< COMP : Process |

features :

< side1Failed : OutDataPort | content : noMsg >

< side2Failed : OutDataPort | content : noMsg >

< side3Failed : OutDataPort | content : noMsg >,

properties :

Synchronous(true) ;

syncPeriod(2) ;

Period(2),

connections :

(insynchThread . side1Failed --> side1Failed) ;

(insynchThread . side2Failed --> side2Failed) ;

(insynchThread . side3Failed --> side3Failed),

subcomponents :

(insynchThread : thread Environment::InputSynchronizer . impl)

> .

eq COMP : system Environment::Environment . impl =

< COMP : System |

features :

< side1Failed : OutDataPort | content : noMsg >

< side2Failed : OutDataPort | content : noMsg >

< side3Failed : OutDataPort | content : noMsg >,

68

properties :

Synchronous(true) ;

syncPeriod(2) ;

Period(2),

connections :

(envProcess . side1Failed --> side1Failed) ;

(envProcess . side2Failed --> side2Failed) ;

(envProcess . side3Failed --> side3Failed),

subcomponents :

(envProcess : process Environment::EnvProcess . impl)

> .

eq stateVariables(thread Aileron::OutputSynchronizer . impl) =

(side1ActiveSideout |-> -1)

(side2ActiveSideout |-> -1)

(side3ActiveSideout |-> -1) .

eq states(thread Aileron::OutputSynchronizer . impl) =

initial: initState

complete: initState

complete: curState

.

eq transitions(thread Aileron::OutputSynchronizer . impl) =

(initState -[]-> curState {
(side1ActiveSideout := -1);

(side2ActiveSideout := -1);

(side3ActiveSideout := -1)});
(curState -[]-> curState {

(side1ActiveSideout := side1ActiveSidein);

(side2ActiveSideout := side2ActiveSidein);

(side3ActiveSideout := side3ActiveSidein)}) .

eq COMP : thread Aileron::OutputSynchronizer . impl =

< COMP : Thread |

features :

< side1ActiveSidein : InDataThreadPort | content : noMsg, fresh : false >

< side2ActiveSidein : InDataThreadPort | content : noMsg, fresh : false >

< side3ActiveSidein : InDataThreadPort | content : noMsg, fresh : false >,

behaviorRef : (thread Aileron::OutputSynchronizer . impl),

variables : stateVariables(thread Aileron::OutputSynchronizer . impl),

currState : initialState(thread Aileron::OutputSynchronizer . impl),

completeStates : completeStates(thread Aileron::OutputSynchronizer . impl),

properties :

Synchronous(true) ;

syncPeriod(2) ;

Period(2) ;

DispatchProtocol(Periodic) ;

Deterministic(true),

connections :

none,

subcomponents :

none

> .

eq COMP : process Aileron::IOProcess . impl =

< COMP : Process |

features :

< side1ActiveSidein : InDataPort | content : noMsg >

< side2ActiveSidein : InDataPort | content : noMsg >

< side3ActiveSidein : InDataPort | content : noMsg >,

properties :

69

Synchronous(true) ;

syncPeriod(2) ;

Period(2),

connections :

(side1ActiveSidein --> outsynchThread . side1ActiveSidein) ;

(side2ActiveSidein --> outsynchThread . side2ActiveSidein) ;

(side3ActiveSidein --> outsynchThread . side3ActiveSidein),

subcomponents :

(outsynchThread : thread Aileron::OutputSynchronizer . impl)

> .

eq COMP : system Aileron::IOTask . impl =

< COMP : System |

features :

< side1ActiveSide : InDataPort | content : noMsg >

< side2ActiveSide : InDataPort | content : noMsg >

< side3ActiveSide : InDataPort | content : noMsg >,

properties :

Synchronous(true) ;

syncPeriod(2) ;

Period(2),

connections :

(side1ActiveSide --> ioProcess . side1ActiveSidein) ;

(side2ActiveSide --> ioProcess . side2ActiveSidein) ;

(side3ActiveSide --> ioProcess . side3ActiveSidein),

subcomponents :

(ioProcess : process Aileron::IOProcess . impl)

> .

eq COMP : system MainModule::MainSystem . impl =

< COMP : System |

features :

none,

properties :

Synchronous(true) ;

syncPeriod(2) ;

Period(2),

connections :

(sideOne . side1ActiveSide -->> sideTwo . side1ActiveSide) ;

(sideOne . side1ActiveSide -->> sideThree . side1ActiveSide) ;

(sideOne . side1ActiveSide -->> aileron . side1ActiveSide) ;

(sideTwo . side2ActiveSide -->> sideOne . side2ActiveSide) ;

(sideTwo . side2ActiveSide -->> sideThree . side2ActiveSide) ;

(sideTwo . side2ActiveSide -->> aileron . side2ActiveSide) ;

(sideThree . side3ActiveSide -->> sideOne . side3ActiveSide) ;

(sideThree . side3ActiveSide -->> sideTwo . side3ActiveSide) ;

(sideThree . side3ActiveSide -->> aileron . side3ActiveSide) ;

(environment . side1Failed --> sideOne . side1Failed) ;

(environment . side2Failed --> sideTwo . side2Failed) ;

(environment . side3Failed --> sideThree . side3Failed),

subcomponents :

(sideTwo : system Side2::Side2 . impl)

(sideThree : system Side3::Side3 . impl)

(aileron : system Aileron::IOTask . impl)

(environment : system Environment::Environment . impl)

(sideOne : system Side1::Side1 . impl)

> .

endtom)

70

B.3 LTL Property Specification in Real-Time Maude

(tomod Main_MainSystem_impl_Instance-VERIFICATION-DEF is

including MainMainSystemimplInstance .

including LTL-MODEL-CHECK-AADL .

op side1Active : -> Formula .

eq side1Active

= value of side1ActiveSideout in component (MAIN -> aileron -> ioProcess -> outsynchThread) is 1 .

op side2Active : -> Formula .

eq side2Active

= value of side2ActiveSideout in component (MAIN -> aileron -> ioProcess -> outsynchThread) is 1 .

op side3Active : -> Formula .

eq side3Active

= value of side3ActiveSideout in component (MAIN -> aileron -> ioProcess -> outsynchThread) is 1 .

op side1Standby : -> Formula .

eq side1Standby

= value of side1ActiveSideout in component (MAIN -> aileron -> ioProcess -> outsynchThread) is 0 .

op side2Standby : -> Formula .

eq side2Standby

= value of side2ActiveSideout in component (MAIN -> aileron -> ioProcess -> outsynchThread) is 0 .

op side3Standby : -> Formula .

eq side3Standby

= value of side3ActiveSideout in component (MAIN -> aileron -> ioProcess -> outsynchThread) is 0 .

op flipOne : -> Formula .

eq flipOne

= (value of s1F in component (MAIN -> environment -> envProcess -> insynchThread) is true

<-> O (value of s1F in component (MAIN -> environment -> envProcess -> insynchThread) is false))

\/

(value of s1F in component (MAIN -> environment -> envProcess -> insynchThread) is false

<-> O (value of s1F in component (MAIN -> environment -> envProcess -> insynchThread) is true)) .

op flipTwo : -> Formula .

eq flipTwo

= (value of s2F in component (MAIN -> environment -> envProcess -> insynchThread) is true

<-> O (value of s2F in component (MAIN -> environment -> envProcess -> insynchThread) is false))

\/

(value of s2F in component (MAIN -> environment -> envProcess -> insynchThread) is false

<-> O (value of s2F in component (MAIN -> environment -> envProcess -> insynchThread) is true)) .

op flipThree : -> Formula .

eq flipThree

= (value of s3F in component (MAIN -> environment -> envProcess -> insynchThread) is true

<-> O (value of s3F in component (MAIN -> environment -> envProcess -> insynchThread) is false))

\/

(value of s3F in component (MAIN -> environment -> envProcess -> insynchThread) is false

<-> O (value of s3F in component (MAIN -> environment -> envProcess -> insynchThread) is true)) .

op sameOne : -> Formula .

eq sameOne

= (value of gside1 in component (MAIN -> sideOne -> sideProcess -> activeStandbyThread) is 0

<->

value of gside1 in component (MAIN -> sideThree -> sideProcess -> activeStandbyThread) is 0)

/\

(value of gside1 in component (MAIN -> sideOne -> sideProcess -> activeStandbyThread) is 0

<->

value of gside1 in component (MAIN -> sideTwo -> sideProcess -> activeStandbyThread) is 0) /\

(value of gside1 in component (MAIN -> sideOne -> sideProcess -> activeStandbyThread) is 1

<->

value of gside1 in component (MAIN -> sideThree -> sideProcess -> activeStandbyThread) is 1)

/\

(value of gside1 in component (MAIN -> sideOne -> sideProcess -> activeStandbyThread) is 1

<->

value of gside1 in component (MAIN -> sideTwo -> sideProcess -> activeStandbyThread) is 1) /\

(value of gside1 in component (MAIN -> sideOne -> sideProcess -> activeStandbyThread) is -1

71

<->

value of gside1 in component (MAIN -> sideThree -> sideProcess -> activeStandbyThread) is -1)

/\

(value of gside1 in component (MAIN -> sideOne -> sideProcess -> activeStandbyThread) is -1

<->

value of gside1 in component (MAIN -> sideTwo -> sideProcess -> activeStandbyThread) is -1) .

op sameTwo : -> Formula .

eq sameTwo

= (value of gside2 in component (MAIN -> sideOne -> sideProcess -> activeStandbyThread) is 0

<->

value of gside2 in component (MAIN -> sideThree -> sideProcess -> activeStandbyThread) is 0)

/\

(value of gside2 in component (MAIN -> sideOne -> sideProcess -> activeStandbyThread) is 0

<->

value of gside2 in component (MAIN -> sideTwo -> sideProcess -> activeStandbyThread) is 0) /\

(value of gside2 in component (MAIN -> sideOne -> sideProcess -> activeStandbyThread) is 1

<->

value of gside2 in component (MAIN -> sideThree -> sideProcess -> activeStandbyThread) is 1)

/\

(value of gside2 in component (MAIN -> sideOne -> sideProcess -> activeStandbyThread) is 1

<->

value of gside2 in component (MAIN -> sideTwo -> sideProcess -> activeStandbyThread) is 1) /\

(value of gside2 in component (MAIN -> sideOne -> sideProcess -> activeStandbyThread) is -1

<->

value of gside2 in component (MAIN -> sideThree -> sideProcess -> activeStandbyThread) is -1)

/\

(value of gside2 in component (MAIN -> sideOne -> sideProcess -> activeStandbyThread) is -1

<->

value of gside2 in component (MAIN -> sideTwo -> sideProcess -> activeStandbyThread) is -1) .

op sameThree : -> Formula .

eq sameThree

= (value of gside3 in component (MAIN -> sideOne -> sideProcess -> activeStandbyThread) is 0

<->

value of gside3 in component (MAIN -> sideThree -> sideProcess -> activeStandbyThread) is 0)

/\

(value of gside3 in component (MAIN -> sideOne -> sideProcess -> activeStandbyThread) is 0

<->

value of gside3 in component (MAIN -> sideTwo -> sideProcess -> activeStandbyThread) is 0) /\

(value of gside3 in component (MAIN -> sideOne -> sideProcess -> activeStandbyThread) is 1

<->

value of gside3 in component (MAIN -> sideThree -> sideProcess -> activeStandbyThread) is 1)

/\

(value of gside3 in component (MAIN -> sideOne -> sideProcess -> activeStandbyThread) is 1

<->

value of gside3 in component (MAIN -> sideTwo -> sideProcess -> activeStandbyThread) is 1) /\

(value of gside3 in component (MAIN -> sideOne -> sideProcess -> activeStandbyThread) is -1

<->

value of gside3 in component (MAIN -> sideThree -> sideProcess -> activeStandbyThread) is -1)

/\

(value of gside3 in component (MAIN -> sideOne -> sideProcess -> activeStandbyThread) is -1

<->

value of gside3 in component (MAIN -> sideTwo -> sideProcess -> activeStandbyThread) is -1) .

endtom)

(mc {initial} |=u [] (~(side1Active /\ side2Active) /\

~(side1Active /\ side3Active) /\

~(side2Active /\ side3Active)) .) --- label: R1

(mc {initial} |=u (([]<> (~ flipOne /\ ~ flipTwo /\ ~ flipThree))->

([]((~ side1Active /\ ~ side2Active /\ ~ side3Active) ->

(

<> (side1Active \/ side2Active \/ side3Active)

)

72

))) .) --- label: R2

(mc {initial} |=u (([] ((~ flipOne /\ ~ flipTwo /\ flipThree) \/

(~ flipOne /\ flipTwo /\ ~ flipThree) \/

(flipOne /\ ~ flipTwo /\ ~ flipThree) \/

(~ flipOne /\ ~ flipTwo /\ ~ flipThree)))

->

([]((~ side1Active /\ ~ side2Active /\ ~ side3Active) ->

(

O (side1Active \/ side2Active \/ side3Active)

\/

O O (side1Active \/ side2Active \/ side3Active)

\/

O O O (side1Active \/ side2Active \/ side3Active)

\/

O O O O (side1Active \/ side2Active \/ side3Active)

)

))) .) --- label: R3

(mc {initial} |=u [] (sameOne /\ sameTwo /\ sameThree) .) --- label: R4

73

C Real-Time Maude semantics of Synchronous AADL

In this section, the entire Real-Time Maude semantics of Synchronous AADL is
given.

(omod BASIC-SORTS is

protecting INT .

sorts PortId ComponentId . subsorts PortId ComponentId < Oid .

sort PortName . subsort PortId < PortName .

op _._ : ComponentId PortId -> PortName [ctor] .

endom)

(omod COMPONENT-REF is including BASIC-SORTS .

sort TypeName . --- name of qualified component type name

sort ImplName . --- name of implementation

sort CompCategory . --- name of component category

ops system thread process : -> CompCategory [ctor] .

--- top module name ID, where the corresponding equation is generated by code-gen.

op MAIN : -> ComponentId [ctor] .

--- component type

sort CompType . subsort TypeName < CompType .

op _._ : TypeName ImplName -> CompType [ctor prec 0] .

--- reference to a component

sort ComponentRef .

op __ : CompCategory CompType -> ComponentRef [ctor prec 1] .

--- component instance operator, where each equation is generated by code generation.

op _:_ : ComponentId ComponentRef -> Object [prec 2] .

endom)

(omod PORTS is inc BASIC-SORTS .

class Port | content : MsgContent . --- Ports are represented as objects ...

sort MsgContent .

op noMsg : -> MsgContent [ctor] .

endom)

(omod DATA-PORTS is including PORTS .

op data : Bool -> MsgContent [ctor] .

op data : Int -> MsgContent [ctor] .

class InDataPort . class OutDataPort .

subclass InDataPort OutDataPort < Port .

endom)

(omod THREAD-PORTS is including DATA-PORTS .

class InDataThreadPort | fresh : Bool . subclass InDataThreadPort < InDataPort .

var P : PortId . var PORTS : Configuration . var B : Bool . var I : Int . var MSGC : MsgContent .

--- Functions on input thread ports

op newMsgInPort : PortId Configuration ~> Bool .

eq newMsgInPort(P, < P : InDataThreadPort | fresh : B > PORTS) = B .

op intFromPort : PortId Configuration ~> Int .

op boolFromPort : PortId Configuration ~> Bool .

eq intFromPort(P, < P : InDataThreadPort | content : data(I) > PORTS) = I .

eq boolFromPort(P, < P : InDataThreadPort | content : data(B) > PORTS) = B .

--- OUTPUT PORTS FROM THREADS

74

op writeData : Bool PortId Configuration ~> Configuration .

op writeData : Int PortId Configuration ~> Configuration .

eq writeData(I, P, < P : OutDataPort | > PORTS) = < P : OutDataPort | content : data(I) > PORTS .

eq writeData(B, P, < P : OutDataPort | > PORTS) = < P : OutDataPort | content : data(B) > PORTS .

endom)

(omod BEHAVIOR-LANGUAGE is pr BASIC-SORTS + INT .

sorts BoolVarId IntVarId .

sorts BoolExpression IntExpression .

subsort BoolVarId Bool < BoolExpression .

subsort IntVarId Int < IntExpression .

op fresh : PortId -> BoolExpression [ctor] . --- p’fresh

op _=_ : IntExpression IntExpression -> BoolExpression [ctor] .

op _>=_ : IntExpression IntExpression -> BoolExpression [ctor ditto] .

op _>_ : IntExpression IntExpression -> BoolExpression [ctor ditto] .

op _<=_ : IntExpression IntExpression -> BoolExpression [ctor ditto] .

op _<_ : IntExpression IntExpression -> BoolExpression [ctor ditto] .

op _!=_ : IntExpression IntExpression -> BoolExpression [ctor] .

op _=_ : PortId IntExpression -> BoolExpression [ctor] .

op _=_ : IntExpression PortId -> BoolExpression [ctor] .

op _>=_ : PortId IntExpression -> BoolExpression [ctor] .

op _>=_ : IntExpression PortId -> BoolExpression [ctor] .

op _>_ : PortId IntExpression -> BoolExpression [ctor] .

op _>_ : IntExpression PortId -> BoolExpression [ctor] .

op _<=_ : PortId IntExpression -> BoolExpression [ctor] .

op _<=_ : IntExpression PortId -> BoolExpression [ctor] .

op _<_ : PortId IntExpression -> BoolExpression [ctor] .

op _<_ : IntExpression PortId -> BoolExpression [ctor] .

op _!=_ : PortId IntExpression -> BoolExpression [ctor] .

op _!=_ : IntExpression PortId -> BoolExpression [ctor] .

op _-_ : IntExpression IntExpression -> IntExpression [ctor ditto] .

op _+_ : IntExpression IntExpression -> IntExpression [ctor ditto] .

op _=_ : PortId Bool -> BoolExpression [ctor] .

op _=_ : BoolVarId Bool -> BoolExpression [ctor] .

op _and_ : BoolExpression BoolExpression -> BoolExpression [ctor ditto] .

op _or_ : BoolExpression BoolExpression -> BoolExpression [ctor ditto] .

op not_ : BoolExpression -> BoolExpression [ctor ditto] .

sort Statement .

op _:=_ : IntVarId IntExpression -> Statement [ctor] .

op _:=_ : BoolVarId BoolExpression -> Statement [ctor] .

op _:=_ : PortId IntExpression -> Statement [ctor] .

op _:=_ : PortId BoolExpression -> Statement [ctor] .

op _:=_ : PortId PortId -> Statement [ctor] .

op _:=_ : IntVarId PortId -> Statement [ctor] .

op _:=_ : BoolVarId PortId -> Statement [ctor] .

sort StatementList .

op nil : -> StatementList [ctor] .

subsort Statement < StatementList .

op _;_ : StatementList StatementList -> StatementList [ctor assoc id: nil] .

op if‘(_‘)_end‘if : BoolExpression StatementList -> Statement [ctor] .

op if‘(_‘)_else_end‘if : BoolExpression StatementList StatementList -> Statement [ctor] .

op if‘(_‘)__end‘if : BoolExpression StatementList ElseIfs -> Statement [ctor] .

op if‘(_‘)__else_end‘if : BoolExpression StatementList ElseIfs StatementList -> Statement [ctor] .

75

sort ElseIfs .

op __ : ElseIfs ElseIfs -> ElseIfs [ctor assoc] .

op elsif‘(_‘)_ : BoolExpression StatementList -> ElseIfs [ctor] .

op while‘(_‘)‘{_‘} : BoolExpression StatementList -> Statement [ctor] .

endom)

(omod BEHAVIOR-PROG is inc BEHAVIOR-LANGUAGE + COMPONENT-REF .

var CR : ComponentRef . var SL : StatementList .

vars L L1 L2 : Location . vars LS LS1 LS2 : LocationSet .

var LDS : LocationDeclSet .

op stateVariables : ComponentRef ~> Valuation .

op transitions : ComponentRef ~> TransitionSet [memo] .

op states : ComponentRef ~> LocationDeclSet [memo] .

--- state lookup ops

op initialState : ComponentRef ~> Location .

op completeStates : ComponentRef ~> LocationSet .

--- assume only 1 initial state.

ceq initialState(CR) = L if (initial: L) LDS := states(CR) .

ceq completeStates(CR) = LS if (complete: LS) LDS := states(CR) .

--- state variables

sort VarAssignment .

op _|->_ : IntVarId Int -> VarAssignment [ctor] .

op _|->_ : BoolVarId Bool -> VarAssignment [ctor] .

sort Valuation . --- set of variable assignments

op emptyValuation : -> Valuation [ctor] .

subsort VarAssignment < Valuation .

op __ : Valuation Valuation -> Valuation [ctor assoc comm id: emptyValuation] .

--- Locations and location sets:

sorts Location LocationSet .

subsort Location < LocationSet .

op emptyLocationSet : -> LocationSet [ctor] .

op __ : LocationSet LocationSet -> LocationSet [ctor assoc comm id: emptyLocationSet] .

sorts LocationDecl LocationDeclSet .

subsort LocationDecl < LocationDeclSet .

ops initial:_ : Location -> LocationDecl [ctor] .

ops complete:_ other:_ : LocationSet -> LocationDecl [ctor] .

op noLocDecl : -> LocationDeclSet [ctor] .

op __ : LocationDeclSet LocationDeclSet -> LocationDeclSet [ctor assoc comm id: noLocDecl] .

ceq complete: LS1 complete: LS2 = complete: (LS1 LS2)

if LS1 =/= emptyLocationSet and LS2 =/= emptyLocationSet .

ceq other: LS1 other: LS2 = other: (LS1 LS2)

if LS1 =/= emptyLocationSet and LS2 =/= emptyLocationSet .

*** Transitions

sort Transition .

op _-‘[_‘]->_‘{_‘} : Location TransGuard Location StatementList -> Transition [ctor] .

sort TransitionSet .

subsort Transition < TransitionSet .

op emptyTransitionSet : -> TransitionSet [ctor] .

op _;_ : TransitionSet TransitionSet -> TransitionSet [ctor assoc comm id: emptyTransitionSet] .

76

--- GUARDS for transitions

sort TransGuard .

op on‘dispatch : -> TransGuard [ctor] .

--- Execution guards:

subsort BoolExpression < TransGuard .

op otherwise : -> TransGuard [ctor] .

op _-‘[‘]->_‘{_‘} : Location Location StatementList -> Transition .

eq L1 -[]-> L2 {SL} = L1 -[true]-> L2 {SL} .

endom)

(omod COMPONENT is

including BASIC-SORTS .

class Component | features : Configuration, --- PORT objects!

properties : Properties,

subcomponents : Configuration,

connections : ConnectionSet .

--- properties

sorts Property Properties .

subsort Property < Properties .

op noProperty : -> Properties [ctor] .

op _;_ : Properties Properties -> Properties [ctor assoc comm id: noProperty] .

--- Connections: immediate and delayed connections

sort Connection .

ops _-->_ _-->>_ : PortName PortName -> Connection [ctor] .

sort ConnectionSet .

subsort Connection < ConnectionSet .

op none : -> Connection [ctor] .

op _;_ : ConnectionSet ConnectionSet -> ConnectionSet [ctor assoc comm id: none] .

endom)

(omod SYSTEM is including COMPONENT .

class System . subclass System < Component .

endom)

(omod PROCESS is including COMPONENT .

class Process . subclass Process < Component .

endom)

(tomod THREAD is including COMPONENT + BEHAVIOR-PROG + THREAD-PORTS .

class Thread | behaviorRef : ComponentRef, --- to retrieve transitions

variables : Valuation, --- behavior state variables

currState : Location, --- behavior current state

completeStates : LocationSet . --- behavior complete states

subclass Thread < Component .

endtom)

*** Execute a transition.

(omod EXEC-TRANS is

including BEHAVIOR-PROG .

including THREAD-PORTS .

vars P P1 P2 : PortId .

vars BE BE2 BE3 BEXP1 BEXP2 : BoolExpression .

var VAL : Valuation .

var PORTS : Configuration .

vars B B2 : Bool .

77

var BVAR : BoolVarId .

vars IE E1 E2 : IntExpression .

var I : Int .

var IVAR : IntVarId .

var GUARD : TransGuard .

vars L1 L2 : Location .

vars SL SL1 SL2 SL3 SL4 : StatementList .

var ELSIFS : ElseIfs .

--- Evaluate transition guards:

op evalGuard : TransGuard Configuration Valuation ~> Bool .

eq evalGuard(BE, PORTS, VAL) = evalBoolExpression(BE, VAL, PORTS) .

eq evalGuard(otherwise, PORTS, VAL) = true . *** Be aware of this one!

eq evalGuard(on dispatch, PORTS, VAL) = true .

--- Evaluate boolean expressions:

op evalBoolExpression : BoolExpression Valuation Configuration ~> Bool .

eq evalBoolExpression(B, VAL, PORTS) = B .

eq evalBoolExpression(BVAR, (BVAR |-> B) VAL, PORTS) = B .

eq evalBoolExpression(fresh(P), VAL, < P : InDataThreadPort | fresh : B > PORTS) = B .

eq evalBoolExpression(E1 = E2, VAL, PORTS) =

(evalIntExpression(E1, VAL) == evalIntExpression(E2, VAL)) .

eq evalBoolExpression(E1 <= E2, VAL, PORTS) =

(evalIntExpression(E1, VAL) <= evalIntExpression(E2, VAL)) .

eq evalBoolExpression(E1 < E2, VAL, PORTS) =

(evalIntExpression(E1, VAL) < evalIntExpression(E2, VAL)) .

eq evalBoolExpression(E1 >= E2, VAL, PORTS) =

(evalIntExpression(E1, VAL) >= evalIntExpression(E2, VAL)) .

eq evalBoolExpression(E1 > E2, VAL, PORTS) =

(evalIntExpression(E1, VAL) > evalIntExpression(E2, VAL)) .

eq evalBoolExpression(E1 != E2, VAL, PORTS) =

(evalIntExpression(E1, VAL) =/= evalIntExpression(E2, VAL)) .

eq evalBoolExpression(P = IE, VAL, PORTS) =

(intFromPort(P, PORTS) == evalIntExpression(IE, VAL)) .

eq evalBoolExpression(IE = P, VAL, PORTS) = evalBoolExpression(P = IE, VAL, PORTS) .

eq evalBoolExpression(P >= IE, VAL, PORTS) =

(intFromPort(P, PORTS) >= evalIntExpression(IE, VAL)) .

eq evalBoolExpression(IE >= P, VAL, PORTS) = evalBoolExpression(P <= IE, VAL, PORTS) .

eq evalBoolExpression(P > IE, VAL, PORTS) =

(intFromPort(P, PORTS) > evalIntExpression(IE, VAL)) .

eq evalBoolExpression(IE > P, VAL, PORTS) = evalBoolExpression(P < IE, VAL, PORTS) .

eq evalBoolExpression(P <= IE, VAL, PORTS) =

(intFromPort(P, PORTS) <= evalIntExpression(IE, VAL)) .

eq evalBoolExpression(IE <= P, VAL, PORTS) = evalBoolExpression(P >= IE, VAL, PORTS) .

eq evalBoolExpression(P < IE, VAL, PORTS) =

(intFromPort(P, PORTS) <= evalIntExpression(IE, VAL)) .

eq evalBoolExpression(IE < P, VAL, PORTS) = evalBoolExpression(P > IE, VAL, PORTS) .

eq evalBoolExpression(P != IE, VAL, PORTS) =

(intFromPort(P, PORTS) =/= evalIntExpression(IE, VAL)) .

eq evalBoolExpression(IE != P, VAL, PORTS) = evalBoolExpression(P != IE, VAL, PORTS) .

eq evalBoolExpression(P = B, VAL, PORTS) = boolFromPort(P, PORTS) == B .

eq evalBoolExpression(BVAR = B, (BVAR |-> B2) VAL, PORTS) = (B == B2) .

ceq evalBoolExpression(BEXP1 and BEXP2, VAL, PORTS) =

(evalBoolExpression(BEXP1, VAL, PORTS) and evalBoolExpression(BEXP2, VAL, PORTS))

if not (BEXP1 :: Bool and BEXP2 :: Bool) .

ceq evalBoolExpression(BEXP1 or BEXP2, VAL, PORTS) =

78

(evalBoolExpression(BEXP1, VAL, PORTS) or evalBoolExpression(BEXP2, VAL, PORTS))

if not (BEXP1 :: Bool and BEXP2 :: Bool) .

ceq evalBoolExpression(not BEXP1, VAL, PORTS) =

not evalBoolExpression(BEXP1, VAL, PORTS)

if not (BEXP1 :: Bool) .

op evalIntExpression : IntExpression Valuation ~> Int .

eq evalIntExpression(IVAR, (IVAR |-> I) VAL) = I .

eq evalIntExpression(I, VAL) = I .

eq evalIntExpression(E1 - E2, VAL) =

(evalIntExpression(E1, VAL) - evalIntExpression(E2, VAL)) .

eq evalIntExpression(E1 + E2, VAL) =

(evalIntExpression(E1, VAL) + evalIntExpression(E2, VAL)) .

*** Execute a transition.

op executeTransition : Transition Configuration Valuation ~> PortsValuation .

eq executeTransition(L1 -[GUARD]-> L2 {SL}, PORTS, VAL) =

if evalGuard(GUARD, PORTS, VAL) then

executeStatements(SL, PORTS, VAL)

else transResult(PORTS, VAL)

fi .

op executeStatements : StatementList Configuration Valuation ~>

PortsValuation [strat (2 3 1 0)] . --- just to be sure

eq executeStatements(nil, PORTS, VAL) = transResult(PORTS, VAL) .

eq executeStatements((IVAR := IE) ; SL, PORTS, (IVAR |-> I) VAL) =

executeStatements(SL, PORTS,

(IVAR |-> evalIntExpression(IE, (IVAR |-> I) VAL)) VAL) .

--- same thing for Boolean assignment:

eq executeStatements((BVAR := BE) ; SL, PORTS, (BVAR |-> B) VAL) =

executeStatements(SL, PORTS,

(BVAR |-> evalBoolExpression(BE, (BVAR |-> B) VAL, PORTS)) VAL) .

eq executeStatements((P := IE) ; SL, PORTS, VAL) =

executeStatements(SL, writeData(evalIntExpression(IE, VAL), P, PORTS), VAL) .

eq executeStatements((P := BE) ; SL, PORTS, VAL) =

executeStatements(SL,

writeData(evalBoolExpression(BE, VAL, PORTS), P, PORTS),

VAL) .

--- A little trickier one:

ceq executeStatements((P1 := P2) ; SL, PORTS, VAL) =

executeStatements(SL, writeData(B, P1, PORTS), VAL)

if B := boolFromPort(P2, PORTS) .

ceq executeStatements((P1 := P2) ; SL, PORTS, VAL) =

executeStatements(SL, writeData(I, P1, PORTS), VAL)

if I := intFromPort(P2, PORTS) .

eq executeStatements((BVAR := P) ; SL, PORTS, (BVAR |-> B) VAL) =

executeStatements(SL, PORTS,

(BVAR |-> boolFromPort(P, PORTS)) VAL) .

eq executeStatements((IVAR := P) ; SL, PORTS, (IVAR |-> I) VAL) =

executeStatements(SL, PORTS,

(IVAR |-> intFromPort(P, PORTS)) VAL) .

79

--- The various if-constructs:

eq executeStatements((if (BE) SL1 end if) ; SL2, PORTS, VAL) =

if evalBoolExpression(BE, VAL, PORTS) then

executeStatements(SL1 ; SL2, PORTS, VAL)

else executeStatements(SL2, PORTS, VAL) fi .

eq executeStatements((if (BE) SL1 else SL2 end if) ; SL3, PORTS, VAL) =

if evalBoolExpression(BE, VAL, PORTS) then

executeStatements(SL1 ; SL3, PORTS, VAL)

else executeStatements(SL2 ; SL3, PORTS, VAL) fi .

--- the elsifs ... there might be a nicer way of doing this ...

eq executeStatements((if (BE) SL1 (elsif (BE2) SL2) end if) ; SL3, PORTS, VAL) =

if evalBoolExpression(BE, VAL, PORTS) then

executeStatements(SL1 ; SL3, PORTS, VAL)

else executeStatements((if (BE2) SL2 end if) ; SL3, PORTS, VAL) fi .

eq executeStatements((if (BE) SL1 (elsif (BE2) SL2) else SL3 end if) ; SL4, PORTS, VAL) =

if evalBoolExpression(BE, VAL, PORTS) then

executeStatements(SL1 ; SL4, PORTS, VAL)

else executeStatements((if (BE2) SL2 else SL3 end if) ; SL4, PORTS, VAL) fi .

eq executeStatements((if (BE) SL1 ((elsif (BE2) SL2) ELSIFS) end if) ; SL3, PORTS, VAL) =

if evalBoolExpression(BE, VAL, PORTS) then

executeStatements(SL1 ; SL3, PORTS, VAL)

else executeStatements((if (BE2) SL2 ELSIFS end if) ; SL3, PORTS, VAL) fi .

eq executeStatements((if (BE) SL1 ((elsif (BE2) SL2) ELSIFS) else SL3 end if) ; SL4,

PORTS, VAL) =

if evalBoolExpression(BE, VAL, PORTS) then

executeStatements(SL1 ; SL4, PORTS, VAL)

else executeStatements((if (BE2) SL2 ELSIFS else SL3 end if) ; SL4, PORTS, VAL) fi .

--- while loop:

eq executeStatements((while (BE) {SL1}) ; SL2, PORTS, VAL) =

if evalBoolExpression(BE, VAL, PORTS) then

executeStatements(SL1 ; (while (BE) {SL1}) ; SL2, PORTS, VAL)

else executeStatements(SL2, PORTS, VAL) fi .

endom)

(omod TRANSFER-DATA is

including BASIC-SORTS . --- Definition of ConnectionSet

including THREAD-PORTS .

including COMPONENT .

including THREAD .

op transferData : Configuration -> Configuration [strat (1 0)] .

vars C C1 C2 : ComponentId .

vars P P1 P2 : PortId .

var PN PN1 : PortName .

vars PORTS PORTS2 OBJECTS : Configuration .

vars MC MC’ : MsgContent .

var CONXS : ConnectionSet .

vars REST COMPONENTS : Configuration .

var I : Int . var B : Bool .

op transfer : MsgContent -> MsgContent [ctor] . --- the flag that makes the equations move the data.

eq transferData(COMPONENTS) = initializeTransfer(COMPONENTS) .

op initializeTransfer : Configuration -> Configuration .

80

eq initializeTransfer(< C : Component | features : PORTS,

subcomponents : COMPONENTS >

REST)

= < C : Component | features : initializeTransfer(PORTS),

subcomponents : initializeTransfer(COMPONENTS) >

initializeTransfer(REST) .

--- now for ports:

eq initializeTransfer(< P : InDataThreadPort | > PORTS)

= < P : InDataThreadPort | fresh : false >

initializeTransfer(PORTS) .

eq initializeTransfer(< P : OutDataPort | content : data(I) >

PORTS)

= < P : OutDataPort | content : transfer(data(I)) >

initializeTransfer(PORTS) .

eq initializeTransfer(< P : OutDataPort | content : data(B) >

PORTS)

= < P : OutDataPort | content : transfer(data(B)) >

initializeTransfer(PORTS) .

eq initializeTransfer(REST) = REST [owise] .

--- covers both the empty configuration and non-thread ports and

--- thread ports that need not change due to lack of output to transfer.

*** Connections of the form inport --> subcomponent . inport.

eq < C : Component | features :

< P : InDataPort | content : transfer(MC) > PORTS,

subcomponents : COMPONENTS,

connections : (P --> C1 . P1) ; CONXS >

=

< C : Component | features :

< P : InDataPort | content : noMsg > PORTS,

subcomponents :

(transfer MC from P to COMPONENTS

using ((P --> C1 . P1) ; (P,CONXS))) > .

op transfer_from_to_using_ : MsgContent PortName Configuration ConnectionSet -> Configuration [memo] .

--- Notice ’InPort’ here. Never connection to subcomponent . outport!

eq transfer MC from PN to

(< C : Component | features : < P : InDataPort | > PORTS >

COMPONENTS)

using ((PN --> C . P) ; CONXS)

=

transfer MC from PN to (

< C : Component | features :

< P : InDataPort | content : transfer(MC) > PORTS >

COMPONENTS)

using CONXS .

*** Connections of the form subcomponent . outport --> outport and

--- subcomponent1 . outport --> subcomponent2 . inport

eq < C : Component |

features : PORTS,

subcomponents :

< C1 : Component |

features :

< P1 : OutDataPort | content : transfer(MC) > PORTS2 >

COMPONENTS,

81

connections : (C1 . P1 --> PN) ; CONXS >

=

< C : Component | features : (transfer MC from (C1 . P1) to PORTS

using ((C1 . P1 --> PN) ; ((C1 . P1),CONXS))),

subcomponents :

< C1 : Component |

features :

< P1 : OutDataPort | content : noMsg >

PORTS2 >

(transfer MC from (C1 . P1) to COMPONENTS

using ((C1 . P1 --> PN) ; ((C1 . P1),CONXS))) > .

eq transfer MC from PN to (< P : OutDataPort | > PORTS)

using (PN --> P) ; CONXS

= < P : OutDataPort | content : transfer(MC) >

transfer MC from PN to PORTS using CONXS .

*** Same thing, with delayed connections:

eq < C : Component |

features : PORTS,

subcomponents :

< C1 : Component |

features :

< P1 : OutDataPort | content : transfer(MC) > PORTS2 >

COMPONENTS,

connections : (C1 . P1 -->> PN) ; CONXS >

=

< C : Component | features : (transfer MC from (C1 . P1) to PORTS

using CONXS),

subcomponents :

< C1 : Component |

features :

< P1 : OutDataPort | content : noMsg >

PORTS2 >

(transfer MC from (C1 . P1) to COMPONENTS

using ((C1 . P1 -->> PN) ; ((C1 . P1), CONXS))) > .

eq transfer MC from PN to

(< C : Component | features : < P : InDataPort | > PORTS >

COMPONENTS)

using ((PN -->> C . P) ; CONXS)

=

transfer MC from PN to (

< C : Component | features :

< P : InDataPort | content : transfer(MC) > PORTS >

COMPONENTS)

using CONXS .

eq transfer MC from PN to OBJECTS using CONXS = OBJECTS [owise] .

*** Finally, a message has arrived at its destination:

eq < C : Thread | features :

< P : InDataThreadPort | content : transfer(MC) >

PORTS >

=

< C : Thread | features :

< P : InDataThreadPort | content : MC, fresh : true >

PORTS > .

endom)

(omod AADL-PROPERTIES is

including TIME-DOMAIN .

82

including COMPONENT .

including BEHAVIOR-LANGUAGE .

*** Some SynchAADL properties:

sort SynchAADLProperty .

subsort SynchAADLProperty < Property .

op Synchronous : Bool -> SynchAADLProperty [ctor] .

op syncPeriod : Time -> SynchAADLProperty [ctor] .

op Deterministic : Bool -> Property [ctor] .

--- Environment properties; will be dealt with more thoroughly later:

op IsEnvironment : Bool -> Property [ctor] .

op InputConstraints : BoolExpression -> Property [ctor] .

*** Dispatch methods

sort DispatchMethod .

subsort DispatchMethod < Property .

op periodic-dispatch : Time -> DispatchMethod [ctor] .

--- Dispatch:

sort ADispatchMethod .

op Periodic : -> ADispatchMethod .

op DispatchProtocol : ADispatchMethod -> Property .

op Period : Time -> Property .

eq (DispatchProtocol(Periodic) ; Period(T:Time)) = periodic-dispatch(T:Time) .

endom)

(tomod EXECUTE-THREADS is

including THREAD .

including EXEC-TRANS .

protecting EXT-BOOL .

including SYSTEM .

including PROCESS .

including AADL-PROPERTIES .

var CR : ComponentRef .

var LDS : LocationDeclSet .

var O : Oid .

vars PORTS NEW-PORTS CONF1 CONF2 COMPONENTS : Configuration .

var P : PortId .

vars L L1 L2 : Location .

vars LS LS1 LS2 : LocationSet .

var GUARD : TransGuard .

vars VAL NEW-VALUATION : Valuation .

var TRANSITIONS TRANSES : TransitionSet .

var SL : StatementList .

vars TP PROPS : Properties .

op applyTransitions : Configuration ~> Configuration [strat (1 0)] .

*** Distribute down to threads:

eq applyTransitions(< O : System | subcomponents : COMPONENTS >)

= < O : System | subcomponents : applyTransitions(COMPONENTS) > .

eq applyTransitions(< O : Process | subcomponents : COMPONENTS >)

= < O : Process | subcomponents : applyTransitions(COMPONENTS) > .

ceq applyTransitions(CONF1 CONF2) = applyTransitions(CONF1) applyTransitions(CONF2)

if CONF1 =/= none and CONF2 =/= none .

83

*** Threads: environment thread is not executed by this one:

eq applyTransitions(< O : Thread | properties : (IsEnvironment(true) ; PROPS) >)

= < O : Thread | > .

*** Now, we come to deterministic thread, which should be executed.

ceq applyTransitions(

< O : Thread | properties : Deterministic(true) ; PROPS,

features : PORTS,

currState : L1,

completeStates : LS,

variables : VAL,

behaviorRef : CR >)

= if L2 in LS then --- done!

< O : Thread | features : NEW-PORTS,

currState : L2,

variables : NEW-VALUATION >

else --- not a complete state: continue!

applyTransitions(< O : Thread | features : NEW-PORTS,

currState : L2,

variables : NEW-VALUATION >)

fi

if ((L1 -[GUARD]-> L2 {SL}) ; TRANSITIONS) := transitions(CR)

/\ evalGuard(GUARD, PORTS, VAL)

/\ GUARD =/= otherwise or-else

not someTransEnabled(TRANSITIONS, L1, VAL, PORTS)

/\ transResult(NEW-PORTS, NEW-VALUATION) :=

executeTransition(L1 -[GUARD]-> L2 {SL}, PORTS, VAL) .

op environmentThread : Properties -> Bool .

eq environmentThread(IsEnvironment(true) ; PROPS) = true .

eq environmentThread(PROPS) = false [owise] .

op someTransEnabled : TransitionSet Location Valuation Configuration -> Bool .

eq someTransEnabled((L1 -[GUARD]-> L2 {SL}) ; TRANSITIONS, L, VAL, PORTS)

= if L == L1 and evalGuard(GUARD, PORTS, VAL) then true

else someTransEnabled(TRANSITIONS, L, VAL, PORTS) fi .

eq someTransEnabled(emptyTransitionSet, L, VAL, PORTS) = false .

op _in_ : Location LocationSet -> Bool .

eq L in L LS = true .

eq L in LS = false [owise] .

endtom)

(omod APPLY-ENV-TRANS is

including EXECUTE-THREADS .

including GENERATE-ENV-INPUTS .

var CR : ComponentRef .

var LDS : LocationDeclSet .

var O : Oid .

vars PORTS NEW-PORTS CONF1 CONF2 COMPONENTS : Configuration .

var P : PortId .

vars L L1 L2 : Location .

vars LS LS1 LS2 : LocationSet .

var GUARD : TransGuard .

vars VAL OLD-VAL NEW-VALUATION : Valuation .

var TRANSITIONS TRANSES : TransitionSet .

var SL : StatementList .

vars TP PROPS : Properties .

var BE : BoolExpression . var BVAR : BoolVarId . var B : Bool .

84

op applyEnvTransitions : Valuation Configuration ~> Configuration .

*** Distribute down to threads:

eq applyEnvTransitions(VAL, < O : System | subcomponents : COMPONENTS >)

= < O : System | subcomponents : applyEnvTransitions(VAL, COMPONENTS) > .

eq applyEnvTransitions(VAL, < O : Process | subcomponents : COMPONENTS >)

= < O : Process | subcomponents : applyEnvTransitions(VAL, COMPONENTS) > .

ceq applyEnvTransitions(VAL, CONF1 CONF2)

= applyEnvTransitions(VAL, CONF1) applyEnvTransitions(VAL, CONF2)

if CONF1 =/= none and CONF2 =/= none .

*** Threads: non-environment thread is not executed by this one:

ceq applyEnvTransitions(VAL, < O : Thread | properties : PROPS >) = < O : Thread | >

if not environmentThread(PROPS) .

*** Now, we come to environment thread, which should be executed:

ceq applyEnvTransitions(VAL,

< O : Thread | properties : IsEnvironment(true) ; PROPS,

features : PORTS,

currState : L1,

completeStates : LS,

variables : OLD-VAL,

behaviorRef : CR >)

= if L2 in LS then --- done!

< O : Thread | features : NEW-PORTS,

currState : L2,

variables : NEW-VALUATION >

else --- not a complete state: continue!

applyEnvTransitions(NEW-VALUATION,

< O : Thread | features : NEW-PORTS,

currState : L2,

variables : NEW-VALUATION >)

fi

if ((L1 -[GUARD]-> L2 {SL}) ; TRANSITIONS) := transitions(CR)

/\ evalGuard(GUARD, PORTS, VAL)

/\ GUARD =/= otherwise or-else

not someTransEnabled(TRANSITIONS, L1, VAL, PORTS)

/\ transResult(NEW-PORTS, NEW-VALUATION) :=

executeTransition(L1 -[GUARD]-> L2 {SL}, PORTS, VAL) .

*** A main function, that gives all the possible variable assignments in a system:

op allEnvAssignments : Configuration ~> ValuationSet . --- assumes ONE environment!

op containsEnvironment : Configuration -> Bool .

eq containsEnvironment(< O : System | subcomponents : COMPONENTS >)

= containsEnvironment(COMPONENTS) .

eq containsEnvironment(< O : Process | subcomponents : COMPONENTS >)

= containsEnvironment(COMPONENTS) .

ceq containsEnvironment(CONF1 CONF2) =

containsEnvironment(CONF1) or-else containsEnvironment(CONF2)

if CONF1 =/= none and CONF2 =/= none .

eq containsEnvironment(< O : Thread | properties : PROPS >) = environmentThread(PROPS) .

eq containsEnvironment(none) = false .

op getEnvironment : Configuration ~> Object .

eq getEnvironment(< O : System | subcomponents : COMPONENTS >)

= getEnvironment(COMPONENTS) .

eq getEnvironment(< O : Process | subcomponents : COMPONENTS >)

= getEnvironment(COMPONENTS) .

85

ceq getEnvironment(CONF1 CONF2) =

if containsEnvironment(CONF1) then getEnvironment(CONF1)

else getEnvironment(CONF2) fi

if CONF1 =/= none and CONF2 =/= none .

eq getEnvironment(< O : Thread | properties : IsEnvironment(true) ; PROPS >)

= < O : Thread | > .

eq allEnvAssignments(< O : System | subcomponents : COMPONENTS >) =

allEnvAssignments(getEnvironment(COMPONENTS)) .

eq allEnvAssignments(< O : Thread | properties : IsEnvironment(true) ; InputConstraints(BE) ; TP,

variables : VAL >)

= allAssignments(initializeToFalse(VAL), BE) .

op initializeToFalse : Valuation ~> Valuation .

eq initializeToFalse((BVAR |-> B) VAL) = (BVAR |-> false) initializeToFalse(VAL) .

eq initializeToFalse(VAL) = VAL [owise] .

endom)

(tomod SYNCHRONOUS-STEP is

including APPLY-ENV-TRANS .

including TRANSFER-DATA .

vars SYSTEM OBJ : Object .

var VAL : Valuation . var VALS : ValuationSet .

var NZT : NzTime . var O : Oid .

var PROPS : Properties . var COMPONENTS CONF : Configuration .

crl [syncStepWithTime] :

{SYSTEM} --- top-level object

=>

{applyTransitions(transferData(applyEnvTransitions(VAL, SYSTEM)))}
in time period(SYSTEM)

if containsEnvironment(SYSTEM)

/\ VAL ;; VALS := allEnvAssignments(SYSTEM) .

crl [syncStepWithTimeNoEnv] :

{SYSTEM}
=>

{applyTransitions(transferData(SYSTEM))}
in time period(SYSTEM)

if not containsEnvironment(SYSTEM) .

--- We assume that all perids are the same, but it period may be declared

--- in different places, either explicitly at the top level, or impicitly

--- by the period in some thread.

op period : Configuration -> Time .

eq period(< O : Component | properties : syncPeriod(NZT) ; PROPS >) = NZT .

eq period(< O : Thread | properties : periodic-dispatch(NZT) ; PROPS >) = NZT .

eq period(< O : Component | subcomponents : COMPONENTS >) =

period(COMPONENTS) [owise] .

ceq period(OBJ CONF) = if period(OBJ) == 0 then period(CONF) else period(OBJ) fi

if CONF =/= none .

eq period(none) = 0 . --- default value

endtom)

