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ABSTRACT

Both chirp (or sweep) and maximum length sequence (MLS) excitation sig-

nals are used to obtain measurements of the head-related transfer function

(HRTF) for the Knowles electronic manikin for acoustic research (KEMAR),

resulting in remarkably low relative error between the two measurement

methods. Due to the low relative error, it is asserted that applying both

methods in experiments involving system characterization can be used to

confirm the accuracy of individual measurements and reduce the likelihood

that erroneous measurements go unnoticed.

An MLS burst-augmented excitation signal is presented to compensate

for unpredictable delay added in sound-acquisition software that lacks the

capability of synchronized record/playback.

The HRTF measurements obtained with an external probe microphone are

compared with those obtained with the standard in-ear microphones that the

KEMAR is equipped with, to reveal that care should be taken to select a

probe microphone that has a low susceptibility to multipath interference.

An experiment is performed to investigate the feasibility of using two pre-

filtered chirp responses to obtain the relative transfer function between the

two locations of measurement.
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CHAPTER 1

BACKGROUND

This chapter will introduce the reader to what is known as the head-related

transfer function (HRTF), followed by a discussion of several pertinent fun-

damentals of acoustics and digital signal processing that will be referenced

in subsequent chapters.

1.1 Introduction to the HRTF

As sound propagates from an acoustic source to the ear of a listener, it un-

dergoes a complicated acoustic transformation. The location of the source,

physical aspects of the environment, and physiological properties of the lis-

tener’s body all contribute to the uniqueness of this transformation. Fur-

thermore, since sound must take a different path to reach either the left or

the right ear, this transformation is unique for each ear. The general features

that are most commonly considered to influence the transformation of sound

are an individual’s head, torso, and external ear.

The size and shape of the external ear, or pinna, greatly influences this

sound transformation. This effect of the pinna is of particular importance

because as its shape varies from individual to individual so does the overall

HRTF [1]. The position of the source with respect to the listener is charac-

terized by azimuth (horizontal angle), elevation (vertical angle), and range

(distance from ear). For a given angle of incidence, the specific way in which

frequencies are scaled and delayed before arriving at the eardrum can actu-

ally provide the brain with important information to discern where the sound

originated, with relatively high accuracy.

If a sound is passed through an artificial HRTF and played for a listener

through headphones, the listener can experience an externalized perception

of that sound, tricking the brain into believing the sound came from the di-
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rection corresponding to the HRTF. In the field of psychoacoustics, research

is being conducted to determine what cues the brain uses to arrive at a con-

clusion regarding the position of a sound source. While it is not exactly

known what factors the brain takes into account, research has led scientists

to group cues into two groups: binaural difference cues, primarily for local-

ization in the horizontal plane, and spectral cues, primarily for localization

in the vertical plane.

An example of a binaural difference cue is interaural time difference (ITD),

which is the difference between the arrival times of a sound at the left and

right ears. The magnitude of the HRTF with respect to frequency is consid-

ered a spectral cue.

This document will discuss how this acoustic transformation can be mea-

sured using standard audio equipment, and the considerations that should

be taken into account for accurate measurement of the HRTF.

1.2 Overview of Human Auditory System

The human auditory system is the final link in the communication chain

for applications seeking to immerse a listener in a virtual auditory sound-

scape. As more becomes known about how the auditory system receives,

manipulates, and processes acoustic signals, advancements can be made in

the engineering of products designed to deliver sound for virtual applica-

tions. Each of the subsystems within the auditory system has its own unique

physical characteristics, for which complex mathematical models have been

created that seek to explain the physics of sound propagation. Many of the

physical and mathematical interdependencies between physical subsystems

of the auditory system are too complex to explore in this paper. However,

the following section provides a superficial explanation of the external ear,

middle ear, internal ear, and the brain in an attempt to develop a broad and

general understanding of the system auditory system as a whole.

1.2.1 The External Ear

As sound propagates from a free-field source to the eardrum of a listener, it

must pass through the external ear, consisting of the pinna and the ear canal,
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or concha. The pinna is irregularly shaped and varies from listener to listener.

However, it serves an important role in filtering the sound incident on the

ear. In fact, the pinna can provide a different acoustic frequency response,

depending on the specific angle of an incident plane wave. It is commonly

accepted that this filter from the pinna and concha provides the brain with

additional aural cues that help a listener to determine the elevation of a

sound source. Research has also shown that because the human is equipped

with two ears, the brain is capable of using interaural difference cues such as

interaural time difference to determine the horizontal or azimuthal location

of a sound source.

1.2.2 The Middle Ear

Once an acoustic wave makes its way through the pinna and concha, it be-

comes incident on the eardrum and enters the part of the auditory system

called the middle ear. It is here that the acoustic wave changes mediums

as the eardrum transfers the acoustic energy from air into a system of three

small bones or ossicles: the malleus, incus, and stapes (also the smallest bone

in the human body). As the acoustic signal travels through these bones, it

is amplified until it reaches the junction between the stapes and the oval

window.

1.2.3 The Internal Ear

At the oval window, the acoustic signal changes mediums again from bone

to fluid as it enters the internal ear. The oval window is at the base of

an extremely complex and highly tuned physical organ called the cochlea.

The cochlea is shaped like a spiral that makes approximately three rotations

before it reaches the helicotrema at the cochlear apex. A cross-section of the

cochlea is shown in Figure 1.1.

If the cochlea were rolled out, it would look something like a long acoustic

tube with a horizontal divider called the basilar membrane along the center,

except at the cochlear apex. As the basilar membrane stretches from the

cochlear base to the cochlear apex, its thickness gradually decreases. This

varying thickness of the basilar membrane in conjunction with its distance

3



Figure 1.1: Cross-section of cochlea

from the base enables it to act like a transmission line, with finely tuned

resonances at specific frequencies. High frequencies resonate at the base of

the cochlea, whereas the lowest frequencies resonate near the apex.

When a frequency resonates at a specific location within the cochlea, it

stimulates the inner hair cell nerves. These inner hair cell nerves are effer-

ent, which means that they direct an electrical signal to the central nervous

system. The outer hair cells have a primarily afferent function, which means

that they receive signals from the central nervous system. The function of

the outer hair cells is to provide feedback that “lowers the volume” that is

allowed to stimulate the inner hair cells when the sound volume increases

over a long period of time.

The term firing rate is used to describe the rate at which the inner hair

cells along the cochlea discharge an efferent electrical signal. Every location

along the cochlea has a unique tuning curve which is the sound pressure level

(SPL) required to excite the inner hair cells at a particular frequency. The

point at which this curve is minimum is the frequency which requires the

least power to excite the inner hair cell.

The firing rate at this location does not, however, increase linearly with

pressure or SPL. In fact, there are several different synaptic connections

(around 15) for each inner hair cell, and each each synapse begins to fire at
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relatively different sound pressure levels. It is thought that this nonlinear

relationship between SPL and the firing rate has to do with the perceived

loudness of a sound source. A discussion of loudness is left for the next

section.

1.2.4 Perception of Loudness

The concept of loudness has been investigated since around the 1840s. Loud-

ness was a difficult thing to measure, because it is based on perception rather

than a physical unit. The more powerful the sound source is, and the closer

it is to the ear, the greater the intensity of sound will be at the eardrum. It

is obvious to assume that the higher this intensity is, the louder the sound

will be perceived. However, exactly how the perception of loudness is related

to sound intensity was the question that prompted Weber to seek what is

now called the loudness function. An accurate representation of this loudness

function became the focus of research for many years to come.

Around 1840 Weber came up with an idea for how to quantify loudness.

He had been working on this problem for some time; and one night, the

answer happened to come to him in his sleep.

Weber realized that the solution to such a function would rely on mea-

surements based on perceptual experiments in which a listener would indicate

whether sound “one” was louder than sound “two.” If the differences in inten-

sities of the first and second sounds were perceivable, then Weber sought to

find the smallest intensity difference that a listener would be able to discern.

This difference in intensity was called the intensity just-noticeable difference

(JND). Later Fechner made the assumption about the loudness function,

that between each intensity JND was a constant difference in loudness, ∆L.

The catch here is that the difference in intensity ∆I was found to increase

as the intensity increased, resulting in a function that tends towards a max-

imum constant loudness as ∆IJND → ∞. This finding makes sense, as the

derivative of the loudness function can be approximated by

∆L

∆IJND
→ 0 as ∆IJND →∞ (1.1)

The actual experiments that Weber conducted calculated ∆IJND by in-

troducing additive white Gaussian noise (AWGN) with a known variance (in
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intensity) to a tone with a known intensity. This introduction of noise ef-

fectively shifted the probability distribution of the sound intensity for sound

“one” around mean, µI1, with variance, σI1. A second sound with a higher

average intensity, µI2, but with variance, σI2 = σI1 was also played. The

listener would then choose whether the first or second sound seemed louder,

making this an intensity forced-choice (IFC) experiment.

Fechner proposed a method of using such an IFC experiment to count the

number of JNDs over an interval, NJND, which would then be capable of

producing a representation of the loudness function.

NJND =

∫ I2

I1

dI

∆L(I)
(1.2)

Under his assumption, ∆L was a constant for each JND, he was able to

simplify Equation (1.2).

NJND =

∫ I2

I1

dI

∆L
≈ 1

∆L

∫ I2

I1

dI (1.3)

This assumption led Fechner to find a loudness function based on integrating

over the JNDs, resulting in the function

L1 − L0 =
1

C
log

(
I2
I1

)
. (1.4)

It was later determined that the assumption of a constant ∆L was false.

It was Harvey Fletcher who first devised an experiment that more accurately

measured the loudness function (he was also the first person to measure the

charge of an electron). In his experiment, he sought to find loudness curves

of L(I) and 2L(I). He did this to determine when a sound perceived as

twice as loud. By collecting experimental data, and comparing the difference

of intensity between equal loudness of the two functions, he was able to

determine the following relationship

L(I) α I1/3 , (1.5)

which is now commonly referred to as Steven’s Law after his 1957 publication

on the psychophysical law. [2]

The later chapters of this document rely heavily on various fundamental

principles in both acoustics and digital signal processing (DSP). For this
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reason, it is pertinent to develop a strong background concerning the fun-

damental principles of acoustics, such as the propagation of sound, and to

review several digital signal processing techniques.

1.3 Pressure, Volume, and Temperature

The means by which sound propagates in an acoustic environment is an

adiabatic process, in which energy is transferred from particle-to-particle

within air. The knowledge of acoustics has greatly advanced over the past

century, after the discovery of the atom. To name all of the key players in

the development of modern-day acoustics is beyond the scope of this paper.

However, some names will be linked to key concepts.

Avogadro had hypothesized that equal volumes of gases, at the same tem-

perature and pressure, contain the same number of molecules. It wasn’t until

much later that the actual number was discovered by Loschmidt to be

NA = 6.02214199× 1023 , (1.6)

and was named Avogadro’s number (also equal to one mole).

So if air consists of such a great number of small gaseous particles, where

does sound come from? In order to address this question, it is important to

gain a greater understanding of the underlying physical system. Imagine a

small box containing a finite number of gas molecules, each molecule having

some kinetic energy along its three degrees of freedom. Although Einstein

proved that, under extreme circumstances, conservation of energy breaks

down, it can be reasonably assumed that energy is in fact conserved within

this gaseous system. Each air molecule is free to move, as well as, to bump

and bounce off of other air molecules within the box, as long as energy is

conserved. The concept of pressure arises if we look at what is happening at

the boundaries of the box.

Assuming the box is rigid, if a molecule is to bounce off of it, the box must

supply an impulse that is equal and opposite the impulse experienced by

the molecule, in order to maintain the energy of the system. From classical

mechanics, the impulse required to reverse the molecule’s normal velocity

component would be equal to the integral over time of the force exerted by
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the boundary or,

Impulse =

∫ tdepart

tcontact

f(t) dt , (1.7)

where f is the force. Now if a great number of air molecules collide with

the boundary of the box, the rigid side of the box must exert a total force

over the time for the cumulative molecular collisions. This force normalized

over the area of the box’s side becomes the pressure that it would have to

exert at any point in time to keep the air molecules inside. Even though

this pressure might be changing erratically as random molecules collide, the

average pressure over a small time frame is relatively constant. This finding

makes sense when one thinks of the extremely high number of molecules in

the box, and their relative probability of hitting the side of the box.

So what would happen to the pressure if we could speed up each molecule,

and add to the overall kinetic energy of the system? It seems obvious from

the impulse Equation (1.7) that the instantaneous force required to keep the

molecules inside the box would increase, which would increase the average

force applied by the boundary of the box, ultimately resulting in increased

pressure.

Now what happens if the the volume of this box were reduced, keeping the

same molecules inside? The first assumption is that the energy must still be

conserved. So in order to collapse the box, an excess pressure must be applied

to the boundary. Now over the course of each impulse, the molecule would

experience a force slightly higher than what is required to simply reverse its

motion. In fact, the average molecule would return from the boundary with

an increased kinetic energy. So decreasing the volume of the box results in

an increase in overall kinetic energy and a decrease in area, which would

cause the pressure to increase. Similar reasoning can be used to explain how

pressure is reduced when the volume increases.

Boyle was the first to formalize this relationship between the pressure and

volume of a gas with Boyle’s Law,

PV = constant , (1.8)

where P is pressure, and V is volume.

It was Boltzmann, however, who took this a step further, and related

pressure, volume, temperature, and the number of molecules in the system,
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N , with his equation.

PV = NkT (1.9)

Equation (1.9), includes Boltzmann’s constant, which relates temperature

to the average kinetic energy of a molecule by

k = 1.3806505(24)× 10−23
[
joules

kelvin

]
(1.10)

It was also determined that Boyle’s Law was not entirely accurate, because

Equation (1.8) didn’t take temperature into account. It was later found that

for adiabatic expansion (expansion sufficiently rapid to change the tempera-

ture of the gas), it could be corrected by

PV γ = constant , (1.11)

where γ is the ratio of specific heats.

γ =
CP
CV
≈ 1.402 in air (1.12)

CP = molar specific heat under constant pressure

CV = molar specific heat under constant volume

The constant, γ, also has significance in relating air volume and pressure

within an enclosed space to the acoustic compliance of that space. The

acoustic compliance, denoted C here, is a significant property in acoustics

that has similar properties to electrical capacitance and can be found by

C =
Vo
γPo

. (1.13)

1.4 Acoustic Wave Propagation

The previous section was important in establishing the interdependence of

pressure, volume, and temperature in an acoustic system. Although it was

not directly mentioned, density was also discussed, as it represents mass

per volume (related to the number of molecules per volume). In acoustics,
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density is denoted by the variable, ρ, where

ρ =

[
kg

m3

]
. (1.14)

When it is possible for air to change temperature, pressure, and volume,

the relationship between pressure and density is

P

Po
=

(
ρ

ρo

)γ
, (1.15)

where γ is the ratio of specific heats from Equation (1.12). In Equation (1.15),

Po and ρo are the equilibrium acoustic pressure and equilibrium acoustic

density. In air at standard tempereature at sea level these values are

Po = 101325 [Pascals] = [N/m2] (1.16)

ρo = 1.18 [kg/m3] . (1.17)

The equation governing acoustic pressure in a gas is

∇2p =
1

c2
∂2p

∂t2
, (1.18)

which can be simplified to the one dimensional case of

∂2p

∂x2
=

1

c2
∂2p

∂t2
. (1.19)

The solution of the one-dimensional wave equation from (1.19) results in two

plane waves traveling in both the positive and negative x directions, of the

form

p(x, t) = p+ejk(ct−x) + p−ejk(ct+x) , (1.20)

where p+ and p− are the phasors of the forward and backward traveling

waves, respectively. In Equation (1.20), the constant, k, is the wave number

and is related to the frequency of the acoustic source, and c is the speed of

sound, both of which can be found by

c =
√
γrTk (1.21)

k =
ω

c
, (1.22)
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where r is the specific gas constant and Tk is the absolute temperature in

kelvins [3].

The three-dimensional wave equation can also be solved in spherical coor-

dinates, which results in a radially outward propagating wave of the form

p(r, t) =
p+

r
ejk(ct−r) (1.23)

Although it is not traditionally taught in textbooks, the spherical wave equa-

tion may also consist of an inward traveling wave, causing the equation to

take the form

p(r, t) =
p+

r
ejk(ct−r) +

p−

r
ejk(ct+r) (1.24)

The conditions under which the inward traveling wave is produced are rare

and would probably not occur in nature. However, an inward traveling wave

that converges to a relative singularity has been used to initiate the explosive

fission of a nuclear bomb. Interesting as it may be, inward traveling spherical

waves are almost never considered in practical acoustics.

1.4.1 Approximation of Spherical Source

It is relatively desirable to model acoustic sources as spherical ones, because

of the straightforward analysis of spherical wave propagation. An added

convenience of modeling a source as spherical is that it is possible to obtain

a relatively simple and intuitive approximation of the source’s impedance.

The spherical wave equation from (1.24) can be expressed in the form

pr(r, t) =
1

r
f(ct− r) +

1

r
g(ct+ r) (1.25)

By using phasor notation and disregarding the inward propagating wave, the

outward wave can be represented as

pr(r, t) =
P+(ω)

r
ej

ω
c
(ct−r) (1.26)

Through mathematical manipulation, the phasor of the volume velocity,
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U+(ω) can be related to the pressure by

U+(ω) =
P+(ω)

jωρo

(
1

r
+
jω

c

)
(1.27)

Then, by noting that acoustic impedance is found by P (ω)/U(ω), the acoustic

admittance of the spherical source can be found.

Yr(ω) =
U+(ω)

P+(ω)
=

1

jωρor
+

1

ρoc
(1.28)

It can be seen that Equation (1.28) has the form of an inductive admittance

in parallel with a resistive admittance,

Yr(ω) =
1

sL
+

1

R
, (1.29)

where s = jω, L = ρor, and R = ρoc.

1.4.2 Sound Pressure Level

A simple but important matter of notation is the logarithmic measure of

acoustic pressure called the sound pressure level, or SPL. The sound pressure

level is defined with respect to a reference pressure of Pref = 20µPa =

2× 10−5 Pa. according to

SPL = 20 log

(
P

Pref

)
(1.30)

1.5 Energy and Power

This section discusses energy in electroacoustic systems and reviews how to

power results from these manifestations of energy. To gain a deeper under-

standing of how energy is related, it is often necessary to perform dimensional

analysis using fundamental units. This section compares the main units of

energy and power for electrical, acoustical, and mechanical systems.

Before dimensional analysis can be performed, it is first necessary to agree

upon common units of measurement. Because of its widespread use, the

metric system will be used to express the units in this section. Also when
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it is possible to confuse a unit’s abbreviation with that of another unit, the

entire word will be used to eliminate ambiguity. Otherwise, abbreviations

will be used when their meaning is relatively clear within the context.

The fundamental units of the metric system that are of most interest are

kilogram [kg] unit of mass,

meter [m] unit of distance.

second [s] unit of time,

coulomb [C] unit of charge .

In addition to these fundamental units, there are also units that aid in the

comprehension of a system. They are called convenience units and include

• cycles - the period of a single sinusoid or one complete revolution around

the unit circle

• radians - there are 2π radians in one complete cycle around the unit

circle

• samples - a discrete measurement of an analog signal with regard to

either time, space, etc.

Convenience units are important in understanding a system; for example,

the simple formula for angular frequency, ωc = ΩcT , is well-known in signal

processing and has the units

ωc = ΩcT (1.31)[
radians

sample

]
=

[
radians

second

] [
seconds

sample

]
. (1.32)

It can be seen from Equation 1.32 that without convenience units, discrete

angular frequency would be unitless and would have a much less intuitive

meaning.

To begin dimensional analysis of energy, let’s look at it’s metric unit, the

joule. Energy results from applying a force over some distance, where the

units of force are Newtons, [N ] or [kg ∗m/s2]. The joule [J] can have dimen-

sions as follows:

1.0 J = (1.0 N)× (1.0 m)

1.0 J = (1.0 C)× (1.0 V ) . (1.33)

(1.34)
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It can seen from Equation 1.33 that the dimensions of the Volt, [V] are joules

per coulomb, or

[V ] =
[J ]

[C]
. (1.35)

Equation (1.35) becomes important in the dimensional analysis of power

resulting from current flow. The units of electrical current are amperes, [A],

where

[A] =
[coulombs]

[second]
=

[
C

s

]
. (1.36)

Power results when a motive force is applied to a moveable. The unit of

power is the watt [W], and it has dimensions of energy per second. In a

mechanical system, the power is found through the product of force with

velocity.

Power = Force× velocity =
Energy

time
(1.37)

[W ] = [N ]×
[m
s

]
(1.38)

[W ] =
[N ×m]

[s]
=

[
J

s

]
. (1.39)

The power in an electrical system is similar, however, the motive force

is voltage (also called electromotive force ) and the moveable is the electric

current. The unit of power in an electrical circuit is also the watt and can

be found by

Power = Current× V oltage

[W ] = [amperes× volts]

[W ] =

[
coulombs

second

] [
joules

coulomb

]
[W ] =

[
joules

second

]
=

[
J

s

]
. (1.40)

It is important to note that the units of electrical energy and mechanical

energy are the same, and that power can be expressed in terms of the same

fundamental units as well.
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1.6 Types of Impedance

Impedance is central to almost every subject matter, whether it is electrical

impedance, acoustic impedance, or mechanical impedance. Because of their

frequent occurrence in electroacoustic systems, it is worth discussing the dis-

tinctions between these impedances, as well as how they are derived. Each of

the following impedances (with the exception of specific acoustic impedance)

may be a complex function of frequency and written in the form Z, Z(jω),

Z(s), etc.

Mechanical impedance is perhaps the most familiar, and is defined as the

ratio of force to velocity. The units of force are Newtons, [N ] or [kg ∗m/s2].

Zm =
F

v

[
N

m/s

]
(1.41)

In electrical engineering, voltage divided by current is recognized as elec-

trical impedance. Because electrical voltage is the energy required to move a

coulomb of charge over some load, it has units of joules per coulomb, [J/q] or

[volts]. In a wire, electrical current is the amount of charge passing through

a cross-section of the wire per unit of time, [C/s], or amperes. Electrical

impedance can be found by the ratio of voltage to current in a circuit,

Ze =
V

I
(1.42)

Ze =
[volts]

[amperes]
=

[joules/coulomb]

[coulomb/sec]
=

[joules] [sec]

[coulomb]2
.

Electrical impedance is the ratio of electromotive force to the rate of electric

charge flow. Stated this way, it may be easer to understand how it is similar

to mechanical impedance. Both represent the force required to sustain a

given velocity or flow.

Acoustic pressure is force per area and has units of Pascals, [Pa], or New-

tons per square-meter, [N/m2]. It can can be thought of as a force normalized

over an area. Similarly acoustic volume velocity, with units [m3/s], can be

thought of as velocity through an area.

[m3/s] = [m2]×
[m
s

]
(1.43)
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Acoustic impedance is the ratio of acoustic pressure to the volume velocity

of air.

ZA =
P

U
. (1.44)

The acoustic impedance of Equation (1.44) is to be distinguished from the

impedance experienced by an particle in the air, or specific acoustic impedance

of air,

Zo = ρoc , (1.45)

where ρ is the density and c ≈ 343 [m/s] is the speed of sound at standard

temperature and pressure.

1.7 Signal Processing Techniques

Digital signal processing is an integral part of data acquisition and analysis for

HRTF measurement. Many steps in the measurement involve the processing

of a digitally sampled audio signal. The following sections address several

key concepts required for the manipulation of discrete signals.

1.7.1 Frequency Domain Transformations

There are several types of frequency domain representations of signals. How-

ever, it is important to know when a particular transformation is best suited

for the current application. For this reason, several transformations, as well

as the best time to use them, are addressed below.

• Fourier Series The Fourier series can be applied to continuous peri-

odic signals, transforming them into the frequency domain at discrete

multiples of the signal’s fundamental frequency.

F (ωk) =
1

T

∫ T/2

T/2

f(t)T e
−j ωk

T
t dt (1.46)

• Fourier Transform The Fourier transform is used in the transforma-

tion from continuous time to continuous frequency. The signals do not

need to be periodic; however, some signals that exhibit transients such

as exponential decay might not have a Fourier transform.
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F (ω) =

∫ ∞
t=−∞

f(t)e−jωt dt (1.47)

• Laplace Transform The double-sided Laplace transform is unique

because it uses an argument, s, in the exponent that has both a real and

a complex component, s = jω+σ, whereas the Fourier Transform uses

only the complex jω. The real value in the exponent allows the Laplace

transform to converge for most causal signals that exhibit exponential

behavior.

F (s) =

∫ ∞
t=−∞

f(t)e−st dt (1.48)

A one-sided Laplace transform, where the lower limit of the integral is

0 rather than −∞, is commonly used so that the transform converges

for functions that are analytic in a half-space of the complex s-plane.

• DTFT The discrete-time Fourier transform (DTFT) can be used to

transform a discrete signal in time to a continuous frequency domain

representations. Although it is mathematically valid, it cannot be ap-

plied to real-world signals, because it would require computation over

infinite time.

X(ω) =
∞∑

n=−∞

x[n]e−jωn (1.49)

• DFT The discrete Fourier transform (DFT) can be applied to discrete

signals, and results in a discrete spectrum. It is related to the DTFT

in that it is a sampled version of the DTFT, where the sampling occurs

in the frequency domain. The reason that it is not continuous in the

frequency domain is that it is computed over a finite window of time.

The fact that an infinite window of time is not necessary makes it

possible to apply the DFT to real-word signals.

X[k] =
N−1∑
n=0

x[n]e−j
2πnk
N (1.50)
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• FFT The fast Fourier transform (FFT) is mathematically equivalent

to the DFT; however, it is implemented in a computationally efficient

way that groups calculations together in either the time-domain or

frequency-domain rather than performing the cumbersome summation

in Equation (1.50) directly. The speed of the FFT is the reason it is

almost always used in practice to calculate the DFT of a signal.

• STFT The short-time Fourier transform (STFT) is very similar to the

DFT, however the signal of interest is multiplied by a window function,

w[n] before the Fourier transform is applied. Actually, the DFT can be

thought of as a special case of the STFT, when the windowing function

is rectangular. The window can be moved across the signal to take

“snapshots” of the signal in different regions of time. If the window is

set to move at constant increments of R samples at a time, then the

STFT takes the form.

X[k,m] =
N−1∑
n=0

w[n−mR]s[n]e−j
2πnk
N (1.51)

• Z-Transform The double-sided Z-transform is very similar to the

Laplace transform because it uses an argument, z = rejω, that ac-

counts for exponential behavior. Notice that the argument, z = rejω,

describes a complex plane in polar coordinates. Most causal discrete

signals have a z-transform that converges in some region of the complex

z-plane.

X[z] =
∞∑

n=−∞

x[n]z−n (1.52)

1.7.2 Windowing

When processing signals such as the head-related impulse response, it is of-

ten necessary to look at only a finite duration of a signal at a time. Even

if the signal is simply truncated before and after the region of interest, this

introduces spectral distortion to the signal. It is a mathematically proven

fact that multiplying two signals in the time domain (or in discrete-time)

has the effect of convolving the respective spectra of the two signals in the

frequency domain. Even simple signal truncation has the mathematical sig-
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nificance of multiplying the observed signal with a rectangular window in

the time domain, resulting in the convolution with a sinc function in the

frequency domain. For this reason, it is often important to carefully consider

the spectral properties of the window itself when attempting to extract the

spectral properties of a windowed signal.

Examples of windows that are commonly applied are rectangular, Ham-

ming, and Kaiser windows. The mathematical formulas along with some

properties of these windows are discussed below.

• Rectangular Window The rectangular window is the simplest window

conceptually, as it has a magnitude of 1 over the signal’s region of

interest and a magnitude of 0 everywhere else. Its advantage in the

frequency domain is that it has a narrow mainlobe which can be helpful

in resolving frequencies that are close. Its main downfall, however, is

that its sidelobes are quite high, approximately 13 dB below the main

lobe.

• Hamming Window The Hamming window is one of the most widely

used windows, because it has the desirable property of low sidelobes in

the frequency domain, which are at least 40 dB below the main lobe,

as shown in Figure 1.2.

w[k] = 0.54− 0.46 cos

(
2π

k

N − 1

)
, k = 1, ..., N (1.53)

Another attractive feature of the Hamming window is that it has a

low time-bandwidth product relative to many other windows. The time-

bandwidth product, γ, is simply the product of the length of the win-

dow (in time) and the width of the mainlobe of the window’s Fourier

transform.

• Kaiser Window The Kaiser window can take on many forms, because

it is defined in terms of several adjustable parameters. One thing that

makes the Kaiser window desirable is that it can be designed to be ap-

plication specific, with either lower or narrower sidelobes when needed.
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Figure 1.2: Top: Plot of a Hamming window in time. Bottom: Spectrum of

Hamming window with wide mainlobe and low sidelobes, assuming a 44.1 kHz

sampling frequency.

1.8 2-Port Networks

1.8.1 ABCD Matrix

An electroacoustic transducer is a specific type of 2-port network that is ca-

pable of making the transformation between electrical voltage and current

to and from acoustic pressure and volume velocity, respectively. It is often

2 - Port 
Network

ABCD

Voltage

Current

Pressure

Volume
Velocity

Force

Velocity
or

Figure 1.3: Example of a 2-port network, represented by an ABCD matrix.

possible to model this transformation in the form of an ABCD matrix (some-

times called a transmission matrix). Figure 1.3 shows an example of a 2-port

network, represented by an ABCD matrix that is capable of converting from

electrical voltage and current to either mechanical force and velocity or to

acoustic pressure and volume velocity.

If it is desired to transform voltage and current to pressure and volume
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velocity, the ABCD matrix would appear as[
P

U

]
=

[
A B

C D

][
V

I

]
(1.54)

1.8.2 Impedance Matrix - Z

It is also possible to model a 2-port network using an impedance matrix as

shown in Figure 1.4. The mathematical representation of Figure 1.4 can be

2-Port 
Network 

Z matrix

Voltage

Current

Pressure

Volume
Velocity

Figure 1.4: Example of a 2-port network, represented by a impedance matrix.

shown using the matrix notation[
V

P

]
=

[
z11 z12

z21 z22

][
I

U

]
. (1.55)

Notice that in impedance matrix form, the current is always defined as going

into the 2-port Network. This convention is different from the ABCD matrix

form, where the current is always oriented clockwise, enabling concatenation

of transmission networks.

1.8.3 Conversion Between Z and ABCD Matrices

Once a 2-port network has been found in either the impedance matrix form

or transmission matrix form, it can be converted to its alternate form. If

the elements of the impedance matrix are known, it is possible to find the

elements of the T matrix (representing the ABCD matrix) by

T =
1

z21

[
z11 ∆z

1 z12

]
, (1.56)
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where ∆z is the determinant of the impedance matrix.

Similarly, if the elements of the ABCD matrix are known, the Z-matrix

can be found by

Z =
1

C

[
A ∆T

1 D

]
. (1.57)

1.8.4 Properties of 2-Port Networks

A two-port network may have several properties that characterize its func-

tionality. It can be shown that a network satisfies each property if it satisfies

the postulate corresponding to the property. While an in-depth discussion

of each of these properties would be worthy of its own paper, seven specific

network postulates are outlined below.

1. Linearity A network is considered linear if it obeys the principles of

superposition. For example if it performs the transformation Γ, then

it is linear if and only if

Γ(c1x(t) + c2y(t)) = c1Γ(x(t)) + c2Γ(y(t)) , (1.58)

where c1 and c2 are constants.

2. Time Invariance If every input corresponds to a specific output, a net-

work is considered time-invariant if, when an input is delayed, the only

change in the output is that it is delayed by the exact same amount.

3. Passivity A network is considered passive if it is not a power source

and does not add any energy to the system. Passivity holds true if the

transmission matrix is positive definite.

4. Causality A network is causal if the current output is determined only

by the current and past inputs.

5. Real A network consists of real-valued parameters and functions of time

such as voltage, current, pressure, etc.

6. Reciprocity If the input and output quantities can be scaled in such a

way that the impedance matrix becomes Toeplitz, then the network is
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reciprocal. A reciprocal network can communicate energy simultane-

ously in both directions, e.g., it can play back recorded signals while

simultaneously recording the acoustic response.

7. Reversibility A network is reversible if the output terminals of the sys-

tem can be used as the inputs, creating the corresponding “output”

at the side of the input terminals. Or stated another way, if specific

inputs create specific outputs, then the specific outputs can be used to

create the specific inputs. It is important to note that reversibility is

NOT the same as reciprocity.

1.8.5 Examples of 2-Port Networks

Two-port networks can be used to model a variety of real-world systems. This

section outlines how 2-port networks are also used to model piezoelectric

transducers, speakers, and transmission lines [4]. The ABCD matrices for

these systems are provided below.

• Speaker Coil - The tricky part of the impedance matrix of a speaker

coil is that it requires the cross-product of E = l(v×B). For this rea-

son, Hunt used what is called the quaternion operator, k, to rewrite the

equation in the form, E = Blkv. The quaternion is a spatial operator

capable of encompassing the spatial dimensionality of the cross-product

[4]. Its use in the impedance matrix of the speaker coil is significant,

because it causes the matrix to be symmetric when it would other-

wise be antisymmetric. Using the quaternion operator, the impedance

matrix for the speaker coil becomes,

Zcoil =

[
Ze Blkv

Blkv Zm

]
. (1.59)

• Piezo Electric Transducer - The impedance matrix for a piezoelec-

tric transducer consists of four important impedance elements.
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[
E

F

]
=

[
Ze Tem

Tme Zm

][
I

v

]
(1.60)

Zpiezo =

[
Ze Tem

Tme Zm

]
, (1.61)

where

Ze(s) = Re + sLe +
1

sCe
= blocked electrical impedance

Zm(s) = rm + slm +
1

scm
= open-circuit mechanical impedance

Tem = rT + sLT +
1

sCT
= electrical-to-mechanical transimpedance

Tme = RT + slT +
1

scT
= mechanical-to-electrical transimpedance

• Transmission Line - For a transmission line of length, L, and impedance,

Zo the ABCD matrix is

Tline =

[
cosh(γL) Zo sinh(γL)
sinh(γL)

Zo
cosh(γL)

]
, (1.62)

where γ =
√
ZY =

√
(jω)2LC.
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CHAPTER 2

PREVIOUS WORKS

The chapter will present a brief history of HRTF measurement methods and

proceed to summarize the results of several modern studies, each of which

seeks to improve the accuracy of the head-related transfer function by the use

of physical modeling based on fundamental acoustic principles. In addition,

a psychoacoustic study pertaining to the importance of HRTF accuracy will

be presented.

2.1 Early Measurements of the HRTF

Although the head-related transfer function has not always gone by the same

name, researchers have been seeking to characterize it for over 70 years, using

various testing methods. In 1974, Shaw made an effort to combine the results

of 12 studies dating back to 1933 which sought to uniquely characterize the

HRTF. In these studies, both direct and indirect methods of measurement

had been used in the development of the head-related transfer function. In

the direct method, the transformation of the sound pressure level (SPL) from

the free field to the eardrum was measured by placing a small probe tube

microphone in a subject’s ear.

The subject would remain seated in an anechoic chamber as an acoustic

point source of a set frequency was placed at a specific distance and angle

from the stationary head. The SPL at the listener’s ear was then measured

over a range of frequencies for several discrete angles along the horizontal (az-

imuth) plane. Some of the test data in the previous studies had been collected

from indirect measurements. The measurement was considered indirect if it

did not measure directly at the eardrum. Placing the probe-microphone in

the orifice located at the ear canal entrance, the concha, was a common way

of performing an indirect measurement method. What set the direct mea-
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Figure 2.1: Family of 10 self-consistent curves Td(v) showing transformation of

sound pressure level from free field to eardrum as a function of frequency v at 15o

intervals of azimuth θ, as shown. (included from [5])

surements apart from the indirect is that by measuring at the eardrum, the

transfer function of the ear canal and the pressure distribution within it was

included in the HRTF. For the indirect method, the transfer function of the

ear canal needed to be modeled and added to the measured HRTF. After

employing various methods to match the data sets of each previous study

to a common format, Shaw produced curves representing the transformation

of sound pressure level from the free-field to the eardrum as a function of

frequency for 15 degree intervals of azimuth. His results for the frontal sector

are shown in Figure 2.1

2.2 Impact of the Head and Torso on the HRTF

Given that the head itself has a profound influence on the head-related trans-

fer function, it is logical to assume that the rest of the body might have

considerable influence as well. In order to gain a better understanding of

this, Duda and Algazi performed a study on approximating the head-related

transfer function using simple geometric models of the head and torso [6].

In their study they considered two models of the head and torso. The first

model consisted of a large spherical surface that represented the torso of a

listener, and a smaller spherical surface was placed on top of the larger to
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Figure 2.2: Image representations of the magnitude of the HRTF for an ideal

rigid sphere. (a) shows the HRTF as a function of frequency verses elevation. in

rectangular coordinates. (b) shows same data in polar coordinates. (scanned

from [6])

represent the head of a listener. This first model was named the “snowman”

model because of its appearance. The second model was similar to the first;

however, the torso was modeled as ellipsoidal to approximately match the

dimensions of the torso for the KEMAR. For both models, the pinna were

removed to isolate the effect of the head and torso only. For the first experi-

ment, a real two-sphere “snowman” model was constructed on a thin rod in

the laboratory. The multipole expansion method for two spherical surfaces

was used to model this system in order to obtain an approximation to the

expected HRTF. Then actual measurements were taken in the laboratory to

evaluate the accuracy of the multipole reexpansion method. The results of

the simulation for a spherical head alone are plotted as a function of elevation

versus frequency in Figure 2.2 for the right ear. Plot (a) in Figure 2.2 repre-

sents the intensity at the pinnaless ear for a given frequency and for sources

existing only on a vertical plane around the listener. Plot (b) shows the same

information, but in polar coordinates from the perspective of looking towards

the listener’s face, with his ear at the origin. In plot (b) it is much easier to

see the bright spot occurring at 180 degrees, which corresponds to the source

being on the exact opposite side of the head. When the torso of the snowman
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model is added to the modeling, the HRTF is dramatically altered, as seen in

Figure 2.3. The dark region occurring between angles between 210 and 250

degrees is the effect of the torso. The physical meaning of this shadow is that

a sound above 1 kHz frequency will be greatly attenuated at the right ear if

it comes from a low elevation on the opposite side of the head. When the

Figure 2.3: Boundaries of the torso-shadow cone for the physical showman

model. (a) defines direction of the torso and the bright spot. (b) exhibits strong

correspondence between geometrical boundaries and the region of reduced

response (scanned from [6]).

HRTF of the physical snowman was measured in the laboratory, the HRTF

shown in Figure 2.4 was obtained. It can easily be seen that this empirically

measured HRTF exhibits strong similarity to the expected HRTF. This re-

sult supports the performance of multipole reexpansion in predicting sound

pressure levels for a simple two sphere case.

For the second experiment, the multipole reexpansion method could not

be used to model the HRTF, because it is only valid for sound scattering off

spherical surfaces and this model incorporated an ellipsoidal torso roughly

matching the dimensions of the KEMAR. In place of multipole reexpansion,

another method called the boundary element method (BEM) was used. In

the boundary element method a mesh of dense points is used to model some

irregularly shaped surface.

While the boundary element method may be used to model irregularly
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Figure 2.4: Image representations of the magnitude of the HRTF for the

snowman model scaled for a head radius of 8.75 cm. (a) shows the HRTF as a

function of frequency verses elevation, in rectangular coordinates. (b) shows

same data in polar coordinates. (scanned from [6])

shaped surfaces, its calculation can be much more computationally intensive

than the multipole reexpansion involving two spherical surfaces. As a pre-

liminary test of the BEM, it was applied to the snowman model of the first

experiment to yield the same results as multipole reexpansion. Similar to

the first experiment, the HRTF was measured in the laboratory, as well as

calculated using the BEM. The experimental results were then compared to

the KEMAR HRTF in the pinnaless case, shown in Figure 2.5.

This study showed evidence that the introduction of the torso to a simple

spherical model of the head can have a profound effect on the HRTF. This

combined head and torso model was also shown to more accurately model the

behavior of the pinnaless KEMAR. This finding suggests that models that

don’t take the torso into account could be have significant errors; especially

for lower-frequency sources in the shadow region of the torso. Inaccurate ren-

dering of such sources in virtual auditory space could yield flawed perception

of sounds such as footsteps.
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Figure 2.5: Measured and computed frontal-plane HRTFs. (a) KEMAR with

the pinna removed. (b) The spherical-torso snowman approximation. (c) An

ellipsoidal-torso snowman approximation. (scanned from [6] )

2.3 Interpolation and Range Extrapolation of HRTFs

A characteristic of empirically measuring the HRTF is that it must be dis-

cretely sampled over a range of incident angles. Two important limitations

are that (1) measured HRTFs do not directly allow one to find the transfer

function for an angle that lies between two sampled points; and (2) when

many source angles are considered, they are usually measured with respect

to a single far-field distance. This measured HRTF would not be an accurate

representation of the true transfer function of a source that is very close to

the head or had a low frequency.

Time-domain methods of interpolation are commonly used to derive the

HRTF between two azimuthal angles and usually employ a simple weighting

of the HRIRs depending on their proximity to the desired azimuth [7]. In

an attempt to address the second limitation, a study was conducted which

used the multipole reexpansion method to interpolate the HRTF for angles

that lie between those which were previously sampled, and to extrapolate

the HRTF to a desired source range [8].

The fundamental principle behind multipole reexpansion is the acoustic

principal of reciprocity, which states that if the locations of a small source and
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small receiver are interchanged in an unchanging environment, the received

signal will be the same [8].

The multipole’s physical interpretation is a difficult concept; however, sev-

eral equations behind the multipole reexpansion technique will be provided

for completeness, as copied from [8]. The main thing to keep in mind is

the multipole reexpansion is a means to compute the potential field that

results when an acoustic plane wave is scattered over a spherical surface.

A description for a multipole, Φlm, of order m and degree l is provided in

Equation (2.1).

Φlm(r, θ, ϕ, k) = hl(kr)Ylm(θ, ϕ), k = ωc−1 (2.1)

In (2.1), k is the wavenumber, hl(kr) represents the spherical Hankel func-

tions of the first kind, and Ylm(θ, ϕ) are the spherical harmonics,

Ylm(θ, ϕ) = (−1)m

√
2n+ 1

4π

(l − |m|)!
(l + |m|)!

P
|m|
l (cos θ)ejmϕ, (2.2)

where Pl|m| are the associated Legendre polynomials.

Multipole reexpansion finds a solution for complex pressure amplitude, ψ,

that satisfies both the the Helmholtz equation in 3–dimensional space, and

the Sommerfeld radiation condition. The complex Helmholtz equation in

three dimensions is the Fourier transform of Equation (1.18), thus

∇2ψ(x, k) + k2ψ(x, k) = 0 , (2.3)

and the Sommerfeld radiation condition requires that the local wavefront

must approach that of a plane wave as r →∞, thus

lim
r→∞

r

(
∂ψ

∂r
− jkψ

)
= 0, r = |x|. (2.4)

Instead of evaluating the potential for all possible degrees, l was chosen to

be no larger than the truncation number, p. The new m values of αlm are

coefficients which will be used to solve for the least mean squared mapping

of known potential functions to the known multipoles of the HRTF data.

The general idea behind multipole reexpansion is that if the HRTF data

represents what was received when a specific combination of multipole sources
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were present, then under the acoustic principle of reciprocity, it should be

possible to reverse the system to find out what acoustic source was responsible

for the HRTF. Imagine replacing the ear with an acoustic source with a given

frequency, to calculate the potential function for that HRTF.

ψ =
∞∑
l=0

(
l∑

m=−l

αlmhl(kr)Ylm(θ, ϕ)

)
(2.5)

In the implementation of the multipole reexpansion technique, the study

noted that the choice of the truncation number is relatively important. Pre-

vious experiments with this method indicated that good interpolation quality

was achieved when the truncation number was chosen to be roughly equal to

the wavenumber. The resulting equations are

ψh(x1, k) =

p−1∑
l=0

p−1∑
m=−l

αlmΦlm(x1, k), (2.6)

ψh(xN , k) =

p−1∑
l=0

p−1∑
m=−l

αlmΦlm(xN , k), (2.7)

which can be simplified to

ΦA = Ψ. (2.8)

When the αlm values of vector A are solved for, the acoustic field can be

calculated for any given range, or angle.

The correlation between the truncation number and the wavenumber is

supported by the underlying physics of the model. For high-frequency sources,

the potential field will change rapidly as one travels through it in three dimen-

sions. In order to fit this rapidly changing potential field with multipoles,

a higher number of multipoles need to be placed around the head in the

expansion, which results in a higher truncation number. Choosing the trun-

cation number to be too large, however, can also have negative effects on the

evaluation of the potential field at a smaller radius, because of the behavior

of the spherical Bessel functions of the first kind, jl(kr). In order to find a

truncation number, p, roughly equal to kr, the following equation was used.

p = integer(kr) + 1. (2.9)
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Figure 2.6: Left: KEMAR HRTF measured at 1.4 meters and results of HRTF

reconstruction at 1.4 meters and HRTF extrapolation to 1.0, 0.5, 0.25, and 1.25 meters.

Right: DEMAR HRTF measured at 1.0, 0.5, 0.25, and 0.125 meters (scanned in from [9]

and [8]). The horizontal axis is frequency, the vertical axis is azimuth.

For verifying the multipole reexpansion technique for range extrapolation,

two main tests were conducted.

The purpose of the first experiment was to confirm the performance of

multipole reexpansion, for an analytical sphere HRTF model that had been

calculated over a grid containing 1,636 points. Multipole reexpansion was

used to compute the potential function at r = 1 meter, which was then used

for the multipole decomposition of the potential field. This potential field

was used to extrapolate the HRTF for a source at a distance of 0.5, 0.25, and

0.125 meters.

The HRTFs obtained from range extrapolation after multipole expansion

were then directly compared to the analytical HRTFs, which had been cal-

culated for the same ranges. It was found that the reconstructed HRTFs

matched almost perfectly with the analytical results, which verified the func-

tionality of the method for a simplified model.
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The second experiment sought to perform range extrapolation on the

HRTF of the KEMAR, empirically measured at a fixed distance of 1.4 meters,

in an attempt to match the transfer function with HRTF data, empirically

measured (in a separate study) over ranges of r = {1, 0.5, 0.25, 0.125} meters.

The result, seen in Figure 2.6, shows general agreement in some characteris-

tics of the head-related transfer function

2.4 Psychoacoustic Importance of HRTF Accuracy

The previous research studies were all geared towards increasing the accuracy

of the head-related transfer function in order to more accurately recreate a

virtual auditory space. This motivation is logical; however, it is based on an

assumption that if the modeled HRTF is more true to the actual HRTF for an

individual, the individual’s perception of the virtual auditory space would be

more profound. A recent psychoacoustic study [1] questioned this assumption

by investigating the role of spectral detail in sound-source localization.

An experiment was conducted to test the listener’s ability to distinguish

“real” sounds and “virtual” sounds. The real sounds were played over a

loudspeaker, and the virtual sounds were introduced to the ear through open

canal tube-phones. To test the importance of spectral detail, these virtual

sounds were passed through an HRTF that was a “smoothed” version of

the original data. This smoothed HRTF still retained the dominant spectral

notches found in the original.

In a complete binaural head-related transfer function, the interaural time

difference (ITD) is already incorporated to the filter. In the procedure for

this experiment, however, modified HRTFs were used. The minimum phase

approximation of the HRTF was served as the filter, which only accounted for

frequency amplitude at the ear. Then the ITD was added after calculating

the expected ITD for actual free-field stimulus.

In order to smooth the HRTF, the Fourier transform of the original HRTF

was used to calculate its spectrum. Then the HRTF was reconstructed after

truncating the upper spectral components of the transformed HRTF. Let’s

elaborate quickly on this point, as it may be a confusing concept. The head-

related transfer function is already a function of the frequency spectrum. The

Fourier transform of this frequency spectrum shows at what rate the HRTF
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changes with a change in frequency. Truncating this second spectrum essen-

tially has the effect of low-pass filtering the frequency domain representation

of the HRTF. The smoothed versions of the HRTF can be seen in Figure 2.7.

Figure 2.7: Left: Discrimination performance of four subjects (S1–S4) as a

function of the smoothing parameter, M, at each azimuthal position tested. The

95% confidence bounds for chance performance are shown by the two horizontal

lines in each graph. Right: Spectral smoothing of the left-ear HRTF magnitude

spectra measure from a representative subject (S1) for the 0-degree location.

(scanned from [1] )

The subjects (listeners) were given real and virtual sounds from azimuthal

angles of 0, 45, 135, and 180 degrees. They were simply asked to identify

which sound was which. If both the real and the virtual sound were to

produce exactly the same pressure function at the eardrum, it is expected

that the listener would correctly discern the real from the virtual with 50%

accuracy, after many trials.

The results of the experiment indicate that the four test subjects could

not discriminate between the real and virtual sounds until the HRTF was

smoothed enough to eliminate significant spectral notches. According to

the results, at least in an anechoic space when no head movements occur

and when the visual cues are consistent and accurate, details of the HRTFs

(magnitude and phase) are not responsible for a well-localized, externalized
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perception of a sound source. ([1] p.748)

They did stress however, that the individualized HRTFs are not unimpor-

tant, and that only individualized HRTFs were used in the experiment.

2.5 Summary

The search for an accurate representation of the head-related transfer func-

tion (HRTF) dates back to the 1930s. Since then, insight into what uniquely

characterizes the HRTF has been gained through research modeling the

acoustics of combinations of the torso, head, and pinna. The results from

multipole reexpansion techniques and the boundary element method sug-

gest that it is possible to construct an accurate HRTF based solely on the

physical characteristics of a given listener. Further advancement to HRTF

accuracy, however, should yield meaningful results. For this reason, psycho-

acoustic analysis of the relevance should complement further efforts of HRTF

research.
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CHAPTER 3

SYSTEM CHARACTERIZATION

This chapter discusses the subject of system characterization of a linear time-

invariant (LTI) system by the estimation of the system’s impulse response.

Two excitation signals are presented: the chirp signal and the maximum

length sequence (MLS). Though the representations of the chirp signal and

the MLS are very different in the time-domain, they can be used indepen-

dently to estimate the same impulse response of a system.

If it can be confirmed that MLS and chirp measurement methods can in-

dependently obtain the same transfer function with acceptable relative error,

the measurement methods can serve as an extra check to verify the validity

of one another.

3.1 Impulses in Continuous and Discrete Time

There are different delta functions that serve as the mathematical definition

of an impulse for continuous-time and discrete-time. As in previous sections,

the notation for all discrete-time functions will be represented with bracket

notation, and continuous-time will be represented with parenthesis.

The Dirac delta function, δ(t), is the unit impulse in continuous-time and

can be expressed as

δ(t) ≡ lim
a→0

[
1

a
√
π
e−t

2/a2
]
. (3.1)

The Dirac delta function is a purely theoretical mathematical function that

has desirable mathematical properties, especially for convolution; but only

approximations of it can exist in reality due to the fact that δ(0) = +∞.

The Kronecker delta function, δ[n], comprises the unit impulse in discrete-
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time, and can be expressed as

δ[n] =

1 , if n = 0

0 , otherwise .
(3.2)

Unlike the Dirac delta function, the value of the Kronecker delta function is

finite at n = 0 and does not take on a value greater than one.

The key point to take away from this section is that the Kronecker delta

is not a sampled version of the Dirac delta function and there is no direct

transform between the two. However, both the Dirac and Kronecker delta

functions have the property shown in Equation (3.3) and Equation (3.4),

respectively.

δ(t) ∗ x(t) = x(t) (3.3)

δ[n] ∗ x[n] = x[n] (3.4)

3.2 The Need for Excitation Signals

The impulse response of a continuous-time LTI system, h(t), relates the

excitation signal, x(t), to the excitation response, y(t), by

x(t) ∗ h(t) = y(t) . (3.5)

Note that if the Dirac delta function could be substituted for the excitation

signal in Equation (3.5), then

δ(t) ∗ h(t) = h(t) . (3.6)

Equation (3.6) indicates that h(t) is the theoretical response of the system

when the excitation signal is an impulse. Figure 3.1 illustrates an analog LTI

system with an impulse response, h(t), if an analog impulse in the form of a

Dirac delta were supplied as the excitation signal.

Although it is technically impossible to create a perfect Dirac delta to be

used as an impulse, pulse generators have been made to approximate an im-

pulse in physical systems and used to obtain impulse response measurements.

This work seeks to obtain the discrete-time characterization of an acoustic
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Figure 3.1: Impulse Response

system as it relates to the head-related transfer function. The discrete-time

characterization requires the sampling of Equation (3.5) at intervals of t = nT

to obtain

x[n] ∗ h[n] = y[n] , (3.7)

where T is the sampling period in seconds.

DAC ADC

Figure 3.2: Overall System

Figure 3.2 illustrates where the digital-to-analog converter (DAC) and the

analog-to-digital converter (ADC) are located with respect to the physical

acoustic system that is represented in continuous-time.

It is a natural question to ask why the Kronecker Delta function cannot

be used as the excitation signal to obtain the discrete-time impulse response

directly. The answer to this lies in the fact that the Kronecker Delta function

is not a sampled version of the Dirac delta function.

When presented with a Kronecker delta, any normal DAC would not rec-

ognize that it is a signal that should be converted in a special way. A typical

DAC would attempt to create an analog signal by using either a zero-order

hold or a first-order hold method for signal reconstruction. This conver-

sion method would cause the DAC to effectively output the nominal output

voltage corresponding to δ[0] = 1 for a duration of a single audio sample.

Figure 3.3 shows that after the result is passed through a low-pass anti-

imaging filter, the output would be a small ripple (sinc
(
πt
Ts

)
if the DAC is

ideal), which has much less energy than a Dirac delta impulse and would
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DAC

Figure 3.3: Kronecker Delta after Digital-to-Analog Conversion

most likely be inaudible.

In order to characterize the acoustic system seen in Figure 3.2, it is nec-

essary to choose a digital excitation signal, x[n], that is rich in frequency

content and energy that can undergo digital-to-analog conversion with a

standard DAC to produce an analog excitation signal, x(t), that is a faithful

representation of its digital counterpart.

3.3 The Chirp Excitation Signal

The chirp is effectively a sinusoid that increases in frequency over time, so it

is a signal that is rich in frequency content and has substantially more energy

than the Kronecker delta function. Since modern digital-to-analog converters

excel at accurately converting sinusoid-like signals over the audible range, the

chirp is a good candidate for an excitation signal that will not be distorted

due to hardware limitations. Figure 3.4 shows a chirp excitation signal, xc[n],

Figure 3.4: Chirp Response

applied to a system with an discrete-time impulse response, h[n], to obtain

a chirp response, yc[n].

The chirp signal is also commonly referred to as a sweep, and the terms

may be used interchangeably. However, in this document, the signal will be

most frequently referred to as a chirp because of the author’s familiarity with

that term.

The rate at which the instantaneous frequency changes with time can ei-

ther be linear or logarithmic. The chirp signal used for experiments was a

40



logarithmic chirp, as the instantaneous frequency increased with the square

of time.

3.3.1 Generation of a Chirp Signal

For all experiments, a frequency domain-based implementation by Jont Allen

was used to generate a chirp that would have a power spectral density of

unity across all frequencies, when evaluated via the FFT [10]. This section

presents a derivation of an alternative chirp in the time-domain to illustrate

its time-varying instantaneous frequency.

Since the chirp is a time-varying sinusoid, it can be expressed in its most

generic form by

x(t) = sin(θ(t)) . (3.8)

The chirp can be either linear or logarithmic, depending on the definition

of θ(t) in Equation (3.8). The instantaneous frequency of the sinusoid from

Equation (3.8) is the derivative of θ(t) and can be expressed with respect to

time as

Ω(t) =
d

dt
θ(t) , (3.9)

where Ω(t) the frequency in units radians per second. The conversion to

frequency in Hertz leads to a more intuitive representation and can be be

done using the relationship

Ω(t) = 2πf(t) , (3.10)

where f(t) is in units of Hertz. By substituting Equation (3.10) into Equa-

tion (3.9), we obtain the relationship

f(t) =
1

2π

d

dt
θ(t) . (3.11)

Farina presents a derivation for a linear chirp [11], where the function for

the instantaneous frequency takes the form

f(t) = fo + kt . (3.12)

Combining Equation (3.11) with Equation (3.12) we can begin to solve for a
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specific θ(t) by

1

2π

d

dt
θ(t) = fo + kt (3.13)

θ(t) = 2π lim
t→∞

∫ t

0

(fo + kτ)dτ (3.14)

θ(t) = 2π(fo +
k

2
t)t . (3.15)

Finally, by substituting the result from Equation (3.15) into Equation (3.8),

the linear chirp signal can be expressed as

xc(t) = sin

(
2π(fo +

k

2
t)t

)
. (3.16)

The derivation by Farina is useful in illustrating how a chirp can be derived

in continuous-time for a given f(t). However, the derivation from Equa-

tion (3.12) has limited usefulness as it does not correspond to a well-defined

frequency range and is not a discrete-time signal. In order to obtain a more

generic solution for a chirp excitation signal, the author took steps to solve

for a chirp that would range from ω = 0 to ω = π over N samples. The

remainder of this section presents the derivation for an rth order chirp that

can be used to generate both linear and logarithmic chirps of length N that

cover the entire frequency range of a DAC.

The instantaneous frequency can be expressed as

f(t) = f1 +

(
t

Tc

)r
(f2 − f1) , (3.17)

where f1 is the start frequency, f2 is the end frequency, Tc is the intended

duration of the transition from f1 to f2, and r is the order of the exponenti-

ation.

For the purposes of system characterization over the entire frequency range

of a system, Equation (3.17) can be simplified by making the substitutions

of f1 = 0 and f2 = fN , where fN is the Nyquist frequency and is related to

the sampling frequency, fs, by

fN =
fs
2
. (3.18)
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This reduces Equation (3.17) to

f(t) = 0 +

(
t

Tc

)r
(fN − 0) (3.19)

=
fN
T rc
tr (3.20)

= Krt
r , (3.21)

where Kr has been defined as a constant for an order r chirp.

Replacing Equation (3.12) with Equation (3.21) and solving for θ(t), we

have

1

2π

d

dt
θ(t) = Krt

r , (3.22)

θ(t) = 2π lim
t→∞

∫ t

0

(Krτ
r)dτ (3.23)

θ(t) =
2πKr

(r + 1)
t(r+1) . (3.24)

It is desirable to obtain a discrete-time representation of θ(t) by sampling

at t = nTs, where Ts is the sampling period. Before sampling, note that if

the chirp is to be N samples long, then the duration of the chirp, Tc, can be

converted to

Tc = NTs

=
N

fs
. (3.25)
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After sampling θ(t), Equation (3.24) can be reduced to

θ[n] =
2πKr

(r + 1)
(nTs)

(r+1) (3.26)

=
2π

(r + 1)

fN
T rc

(nTs)
(r+1)

=
2π

(r + 1)

fs
2

1

T rc
(nTs)

(r+1)

=
2π

(r + 1)

fs
2

(
fs
N

)r
(nTs)

(r+1)

=
2π

(r + 1)

fs
2

f rs
N r

(
n

fs

)(r+1)

=
2π

(r + 1)

fs
2

f rs
N r

(
n

fs

)(r+1)

=
2π

(r + 1)

1

2

f
(r+1)
s

N r

n(r+1)

f
(r+1)
s

=
π

N r(r + 1)
n(r+1) (3.27)

Finally, by sampling Equation (3.8) and substituting Equation (3.27) for

θ[n], a discrete-time representation of a chirp can be expressed as

xc[n] = sin

(
π

N r(r + 1)
n(r+1)

)
. (3.28)

If r = 1 is selected, the resulting chirp will be linear, and if r > 1 the chirp

will be logarithmic.

Note that Equation (3.28) has no dependence on the sampling frequency.

It is simply designed to sweep from a start frequency of ω1 = 0 to an end

frequency of ω2 = π over a duration of N samples. Therefore a chirp, xc[n],

that is constructed from Equation (3.28) can be reused at any sampling

frequency to sweep over the entire range of the DAC. The only difference

in switching from one sampling rate to another will be the change in the

physical duration of the chirp, Tc, which is determined by the number of

samples and the sampling frequency.

It should be restated that the chirp from Equation (3.28) was not used

in experiments; however, the first order chirp with r = 1 was verified to

measure simulated impulse responses in MATLAB. It should also be noted

that Equation (3.28) does not encompass all possible solutions for linear and

44



logarithmic chirps but was derived by the author for the specific purpose of

providing a closed solution capable of generating either a linear or logarithmic

chirp that spans the maximum frequency range.

3.3.2 The Chirp Train

In Figure 3.5 a system is shown that has an impulse response h[n]. If this is

an LTI system, then it will theoretically also have a unique chirp response,

denoted yc[n]. However, because of noise in the system, every measurement

will be corrupted by some degree. For this reason, a distinction is also made

between the theoretical chirp response, yc[n], and the ith chirp response win-

dow, which will be denoted ỹic[n].

Figure 3.5: Chirp Response with Noise

The estimated chirp response, ŷc[n], should contain exactly the same num-

ber of samples as the chirp excitation signal xc[n]. Also, any delay in the

chirp response can be recovered only if it causes ŷc[n] to be a circularly shifted

version of xc[n]. This constraint can make things tricky, since the delay in

the system is not known until after the impulse response calculation.

To address the problem with delay and the need for a circularly shifted

ŷc[n], a chirp must be repeated at least once in a chirp train. After a chirp

train is passed through a system, the resulting train of chirp responses are

segmented into a series of contiguous chirp response windows, ỹic[n], where

the ith window should contain the response for the ith chirp, xic[n], in the

chirp train.

The first measured chirp response window, ỹ1c [n], will almost certainly

contain zero values from the first sample up to the onset of the chirp response

because of system delay. The delay will also shift important samples of the

chirp response into the next chirp response window. Since it is very likely
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that ideal chirp response yc[n] will not be contained ỹ1c [n] due to shifting,

this window should be discarded from the measurement calculations.

Unlike ỹ1c [n], the second measured chirp response window, ỹ2c [n], will begin

with all measured samples that should have been in ỹ1c [n] but were shifted out

of the window due to system delay. Directly following the samples shifted in

from the previous response, this window will also contain the initial response

from the second chirp excitation signal, x2c [n]. The windowing of a chirp

train effectively satisfies the requirement that, in addition to filtering, ỹ2c [n]

is a circularly shifted version of xc[n].

The subsequent chirp response windows should all effectively obtain cir-

cularly shifted chirp response measurements; however, all of these measure-

ments will independently be corrupted to some degree by noise.

3.3.3 Improving SNR using a Chirp Train

In order to improve the resilience of the chirp response in the presence of

noise, multiple chirps presented: in a chirp train can be averaged.

After obtaining M independent windows of the chirp response, an im-

proved estimate of the system chirp response can be made by averaging over

the M independent windows by

ŷc[n] =
1

M

M∑
i=2

ỹic[n] (3.29)

where ŷc[n] is the chirp response estimate.

Using the model from Figure 3.5, each measured chirp response, ỹic[n], can

be represented as the ideal chirp response, yc[n], corrupted by a vector of

noise on the ith measurement, si[n], which leads to

ŷc[n] =
1

M

M∑
i=2

(
yc[n] + si[n]

)
. (3.30)

Since the ideal chirp response, yc[n], does not change for each measurement,

it can be pulled out of the summation, which leaves

ŷc[n] = yc[n] +
1

M

M∑
i=2

si[n] . (3.31)
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If it is assumed that si[n] is stationary Gaussian noise, Equation (3.31) indi-

cates that doubling the number of chirps in the chirp train, M , will have the

effect of reducing the noise power by a factor of two.

3.3.4 Impulse Response from a Chirp Response

The impulse response can be found through the deconvolution of the chirp

response with the chirp excitation signal. [12].

Deconvolution is a process in which a response signal, y[n], is convolved

with the inverse of the excitation signal, x′[n], resulting in

h[n] = y[n] ∗ x′[n] . (3.32)

The inverse of the signal here means that it is the inverse with respect to

convolution and has the property that

x[n] ∗ x′[n] = δ[n] . (3.33)

The inverse of the excitation signal can be calculated using the FFT and

IFFT by

X[k] = FFT (x[n]) (3.34)

X ′[k] =
X[−k]

|X[k]2|
(3.35)

x′[n] = IFFT (X ′[k]) . (3.36)

Deconvolution in the time domain can be difficult to apply and is compu-

tationally inefficient. However, deconvolution is much more straightforward

when applied in the frequency domain. Just as convolution can be performed

in the frequency domain by multiplication, deconvolution can be performed

by the division of Y [k] by X[k]. In this method, the deconvolution is per-

formed much faster because of the use of the FFT and IFFT algorithms.

hc[n] = IFFT

(
FFT (ŷc[n])

FFT (xc[n])

)
. (3.37)

Equation (3.37) illustrates how to apply deconvolution in the frequency do-

main to efficiently compute the impulse response from the chirp excitation
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Figure 3.6: Properties of Linear Chirp

signal and an averaged chirp response. For clarity, an impulse response esti-

mate obtained from a chirp response is denoted hc[n].

3.3.5 Linear vs. Logarithmic Chirps

Figure 3.6 shows the properties of a linear chirp constructed from Equa-

tion (3.28) when a value of r = 1 is selected with N = 216, and assumes

fs = 44.1 kHz. In Figure 3.6(a) the first 150 ms illustrates the sinusoidal

characteristics of linear chirp as it increases in frequency. Figure 3.6(b) shows

that the power spectral density (PSD) of the linear chirp is evenly distributed

across all frequencies. The power spectral density of Figure 3.6 was estimated

using the FFT by

PSD(x[n]) = |FFT(x[n])|2 . (3.38)

The magnitude of the PSD is dependent on the length of the chirp, N , so a

longer chirp excitation signal would raise the magnitude of the energy seen

for each frequency bin in Figure 3.6(b).

A ripple of around 3 dB for frequencies under 200 Hz can be seen in
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Figure 3.7: Properties of Logarithmic Chirp

Figure 3.6(b); however, Figure 3.6(d) shows that the ripple in PSD does not

have any bearing in the effectiveness of the chirp to produce flat frequency

response for these frequencies when passed through a system with a flat

frequency response.

Figure 3.7 shows the properties of a logarithmic chirp constructed from

Equation (3.28) when a value of r = 2 is selected. Again, the length of the

chirp is N = 216, and it is assumed that fs = 44.1 kHz. In Figure 3.7(a) it

can be seen that the logarithmic chirp spends more time at lower frequencies

within the first 150 ms when compared to the linear chirp. The emphasis

placed on lower frequencies can also be seen in the PSD of the logarithmic

chirp in Figure 3.7(b).

It can be seen in Figure 3.7(c) that, even though it does not have flat power

spectral density, the logarithmic chirp is perfectly capable of characterizing a

system that has an impulse response of a Kronecker delta function in the same

way that the linear chirp did in Figure 3.6(c). In fact, logarithmic chirps are

sometimes preferred in system characterization because the uneven spectral

energy will result in a higher SNR for lower frequencies.

In Chapter 6, the ability of some chirps with uneven PSD to character-
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Figure 3.8: MLS Response

ize a system is used as the basis for an experimental approach to relative

equalization.

3.4 The MLS Excitation Signal

Figure 3.8 shows a maximum length sequence (MLS) excitation signal, xs[n],

applied to a system with a discrete-time impulse response, h[n], to obtain a

MLS response, ys[n].

A maximum length sequence is a discrete signal that resembles a pseu-

dorandom sequence but has special properties that make it desirable for

impulse response measurements. Since the MLS is rich in frequency content

and energy, it is a viable choice for use as an excitation signal.

However, because the MLS requires abrupt transitions from −1 to +1,

questions have been raised concerning whether a standard DAC will introduce

nonlinear artifacts during the digital-to-analog conversion that may need

to be compensated for in impulse response calculations [13]. According to

previous research, it is possible that the MLS can expose nonlinear effects in

several aspects of the sound production, such as the loudspeaker itself [14].

It can be difficult for a researcher to be confident in the experimental results

when presented with such potential drawbacks in the MLS measurement

methods. In particular, if a feature of the transfer function abruptly changes,

it is desirable to be able to identify it as a characteristic of the physical

system with confidence and reduce doubt that it is distortion introduced by

the measurement method.
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3.4.1 Generation of a Maximum Length Sequence

The maximum length sequences were generated using an implementation by

Ludwig [15] based on a shift-register generator designed by Peterson and

Weldon [16].

To begin generation of a MLS, the length must be chosen based on rounding

the desired number of samples to the nearest power of 2. A k-bit shift-register

generator is capable of generating a sequence of length 2k − 1.

Next, a specific coefficient vector, ᾱ, must be found that will generate a

sequence with a periodicity of N = 2k− 1, which is considered the maximum

length of a sequence that can be generated by a k-bit shift-register. Each

value in the coefficient vector, αi, can take on a value of either 0 or 1, and

there is a specific solution for ᾱ that is unique for a k-bit implementation of

the shift-register generator. The purpose of ᾱ is to effectively choose which

values of the shift-register to include in the summation before shifting takes

place. The derivation of the coefficient vector is beyond the scope of this

document, but they are solved for many values of k in [16].

Using the correct ᾱ derived for the chosen value of k, the maximum length

sequence is recursively defined relative to its previous k values by the differ-

ence equation,

x[n] =

(
k∑
i=1

αix[n− i]

)
mod 2, (3.39)

where the modulo operation is performed on the result of the summation.

Note that if Equation (3.39) is implemented using a physical shift-register,

the modulo operation may be implicitly performed as the underlying hard-

ware stores the result of the summation in a single-bit position of the register,

which can only take on a value of 0 or 1.

In the shift-register implementation, the values of x[n− 1] to x[n− k] are

each stored as a single bit in a shift-register and are initialized to 1. If all

bits in the shift-register were ever zero, then the recursive defininition in

Equation (3.39) would result in x[n] = 0 ∀ n. These initial shift-register

values for n < 1 are not considered to be a part of the MLS.

The value for x[n] is calculated by summing a subset of x[n−1] to x[n−k]

according to ᾱ, and then performing the modulo 2 on the result to limit x[n]

to 0 or 1. When the value of x[0] is calculated, all values in the register are

shifted so that x[0− k] is discarded, and x[0] takes the place of the open bit.
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After shifting, Equation (3.39) is performed again to calculate the value of

x[1]. These steps are repeated to calculate x[2], and so forth.

A k-bit shift-register is capable of having 2k states, each corresponding to

the unique binary number represented by the bit in each location of the shift-

register. In the generation of a maximum length sequence, the shift-register

will take on all possible states, except for the zero vector. The omission of

the zero vector is the reason a MLS generator will not produce a MLS that

is periodic with an even power of two but rather have a periodicity of 2k − 1

[16].

3.4.2 Mathematical Properties of MLS

Figure 3.9(a) shows the first 5 ms of a MLS excitation signal taking on

values of ±1. Figure 3.9(b) shows the power spectral density of the entire

MLS excitation signal, which is nearly flat over all frequencies.

The following section discusses the properties of maximum length sequences

that make them suitable for obtaining an estimation of the impulse response

of a system. The derivation presented here is slightly simplified from [17] to

deal with a digital system where the MLS excitation signal can only take on

values of ±1.

In any discrete system, the output signal, y[n], is related to the input

signal, x[n], through linear convolution with the impulse responses, h[n], by

y[n] = x[n] ∗ h[n] (3.40)

=
∞∑

k=−∞

x[k]h[n− k] . (3.41)

It should be emphasized that linear convolution, denoted by the * operator

in equation 3.40, is needed to transform the input signal to the output signal

via the impulse response.

The property that makes a MLS well suited to estimate the impulse re-

sponse of a system stems from the fact that its circular autocorrelation,

52



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−1

−0.5

0

0.5

1
A
m
p
lit
u
d
e

Time [msec]

M−Sequence: x
s
[n] (Zoomed to First 5 milliseconds)

0 5 kHz 10 kHz 15 kHz 20 kHz
−10

0

10

20

30

M
a
g
n
it
u
d
e
 [
d
B
]

Frequency [Hz]

(a)

(b)

Figure 3.9: Maximum Length Sequence: xs[n]

Rxsxs [n], is nearly a delta function, as seen in Equation (3.43). [17]

Rxsxs [n] =
1

L+ 1

L−1∑
k=0

xs[k]xs[n+ k] (3.42)

= δ[n− l]− 1

L+ 1
(3.43)

The function, Rxsys [n], will be used to denote the circular cross correlation

of the MLS excitation signal, xs[n], and the MLS response, ys[n]. Combin-

ing the MLS property of Equation (3.43) with the definition of the impulse

response from Equation (3.40), Rxsys [n] can be expressed in terms of the
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impulse response by

Rxsys [n] =
1

L+ 1

L−1∑
k=0

xs[k]y[n+ k] (3.44)

=
1

L+ 1

L−1∑
k=0

∞∑
l=−∞

xs[k]xs[n+ k − l]h[l] (3.45)

=
∞∑

l=−∞

h[l]
1

L+ 1

L−1∑
k=0

xs[k]xs[n+ k − l] (3.46)

=
∞∑

m=−∞

L−1∑
l=0

h[l +mL]

[
δ[n− l]− 1

L+ 1

]
(3.47)

=
∞∑

m=−∞

h[n+mL]− 1

L+ 1

∞∑
m=−∞

h[m] . (3.48)

The cross-correlation of the MLS excitation signal with the MLS response is

essentially the impulse response that will wrap around to the beginning after

L samples and is very slightly shifted by the second term of 3.48.

Therefore, an estimate of the impulse response from a MLS excitation

signal will be defined as

ĥs[n] ≡ Rxsys [n] (3.49)

When L is sufficiently large, the second term of Equation (3.48) tends to zero

and can safely be discarded, leaving an impulse response that is repeated

every L samples, as in Equation (3.50).

ĥs[n] = Rxsys [n]

=
∞∑

m=−∞

h[n+mL]− 1

L+ 1

∞∑
m=−∞

h[m]

=
∞∑

m=−∞

h[n+mL]− ε

.
=

∞∑
m=−∞

h[n+mL] (3.50)

≈ h[n] (3.51)

If the length, L, of the MLS excitation signal is chosen carefully to ensure

that it is sufficiently longer than the impulse response, the fact that h[n]
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is wrapped every L samples will be of little or no consequence because the

value of the wrapped samples of h[n] will essentially be zero value. When

this criterion is met, the approximation of Equation (3.51) is valid.

3.4.3 Impulse Response from a MLS Response

If circular cross-correlation is to be performed, it requires that the excitation

signal and the estimated excitation response are the same number of samples.

This constraint was also imposed for the chirp response, and the difficulty of

creating a response with a circular delay was solved by creating a chirp train

and discarding the first windowed response. A similar solution can be applied

to the MLS response by immediately repeating the MLS and discarding the

first window.

Cross-correlation in the time-domain is computationally inefficient and is

mathematically equivalent to the convolution operation with a time-reversed

signal as

Rxsys [n] = ys[n] ∗ xs[−n] . (3.52)

The convolution in Equation (3.52) can be efficiently applied in the frequency

domain to obtain the impulse response by

ĥs[n] = IFFT (FFT (ys[n])× FFT (xs[−n])) , (3.53)

recalling that the circular cross-correlation, Rxsys [n], was defined to be the

estimator of the impulse response in Equation (3.49).
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CHAPTER 4

EXPERIMENT 1: EXCITATION
RESPONSE

SYNCHRONIZATION

4.1 Variability in Sound-Acquisition Software

To ensure valid measurements, extra care was taken to verify that a measure-

ment would be reproducible for each angle of the HRTF. In order to test for

reproducibility after the KEMAR had been positioned, each excitation sig-

nal was repeated several times and the response signal was collected for each

repetition. Since repeated measurements were separated by only a few sec-

onds, it was assumed that all environmental factors would remain constant,

including the position of the probe microphone, cables, and the KEMAR.

If all systems are operating correctly, then the only theoretical difference

between independent measurements would be due to system noise. However,

surprisingly, after comparison of independent measurements, it was found

that the resulting impulse responses were shifted in time relative to one

another. In fact, these repeated impulse response measurements could shift

up to 120 milliseconds.

Visually, each impulse response appeared to be similar but was shifted in

time. To perform an initial verification of reproducibility, all samples be-

fore the impulse response were manually removed in MATLAB, effectively

shifting each impulse response to the beginning of the measured signal. Af-

ter each manually shifted measurement was superimposed in MATLAB, it

was apparent that the impulse responses were nearly identical but had been

shifted due to an unknown reason.

After inspecting the system and troubleshooting, the issue was finally root

caused. The program to issue the excitation signal and record its response

was written in the MATLAB scripting language using the built-in wavplay

and wavrecord functions. As of MATLAB version R2007b, there was no func-

tionality available to synchronize the functionality of recording and playback
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so that they would always be reading in lockstep with respect to the audio

buffer in the soundcard. In the execution of the program, the excitation was

initiated by the wavplay function, which would presumably spawn a thread

to configure the soundcard for output and begin writing to the output buffer.

Then the program would continue to the next line in the MATLAB script

where the wavrecord function was invoked. This function would also presum-

ably spawn a separate thread to configure the soundcard for input and would

independently begin to read from the recorded audio buffer.

The delay was caused due to the independence of threads spawned by

the wavplay and wavrecord matlab functions. The starting time of these

threads was therefore largely dependent on the operating system and any

other activity that was happening on the PC at the time the MATLAB script

was executed. Sometimes this could result in sub-millisecond discrepancies

and other times it could result in up to 120-millisecond discrepancies.

This variability presented a major challenge in validating the reproducibil-

ity of each measurement, since manually shifting and inspecting several im-

pulse responses for each angle of the HRTF would be too costly and time-

consuming to be feasible. It was clear that the synchronization issue across

independent measurements would need to be rectified in another way.

Some time was spent investigating if a custom interface to the soundcard

could be written in C, but this would also require a large amount of cost and

would be customized for the particular soundcard in use. Another drawback

of this approach is that the record/playback program would have limited

portability across operating systems. Ultimately, it was concluded that the

most desirable solution would be to devise a MATLAB function capable of

synchronizing independent measurements relative to some reference time. If

such a function were capable of ensuring sample-to-sample accuracy across

measurements, it would be sufficient for automating the task of synchroniza-

tion of repeated measurements, as well as for independent measurements of

the HRTF for different azimuthal angles.

4.2 Response Synchronization via the MLS Burst

In the previous chapter it was explained that when a maximum length se-

quence is sent through a system, the impulse response of the system can be
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obtained by cross-correlating the MLS response with the original maximum

length sequence.

It was the cross-correlation properties of the maximum length sequence

that made it a desirable signal for the function of time synchronization. If

a maximum length sequence is shifted by N samples to the right and cross-

correlated with its unshifted version, the result will be a Kronecker delta

function shifted by N samples to the right and scaled by the number of

samples in the sequence.

Similarly, if a MLS excitation signal is filtered and delayed, the maximum

value of the cross-correlated response will most likely be delayed by the same

number of samples each time. It is foreseeable that an exception may occur

when the numerical value for the maximum is shared (or almost the same)

for two adjacent samples of the impulse response, but this was not observed

in this experiment.

4.2.1 An MLS Burst Augmented Excitation Signal

In order to synchronize measurements, a MLS burst was prepended to each

excitation signal. Figure 4.1(a) shows the response data obtained from two

independent excitation responses augmented with the following:

• Initial Silence: This is a sequence of zero-valued samples. It is ex-

pected that some of these samples may be missing from the response

data, depending on when the record function begins. The length of

this sequence should be used to increase the likelihood that record-

ing has begun before the MLS synchronization burst is sent. For this

experiment, a duration of 0.5 seconds was chosen for the initial silence.

• MLS Synchronization Burst: This is a short maximum length sequence,

whose sole purpose is to provide a reference signal for synchronization.

The length of the MLS should be chosen so that a suitable maximum

can be found after cross-correlation. In this experiment, the length

of 216 samples was used at 44.1kHz to result in a 1.5-second MLS

synchronization burst.

• Intermediate Silence: This is a sequence of zero-valued samples between

the MLS synchronization burst and the excitation signal. The length

58



0 5 10 15

x 10
4

−1

−0.5

0

0.5

1
MLS Burst Augmented Chirp Responses: Before Synchronization

0 2 4 6 8 10 12

x 10
4

−1

−0.5

0

0.5

1
MLS Burst Augmented Chirp Responses: After Synchronization

Time [samples]

(a)

(b)

Figure 4.1: Synchronizaion of Independent Chirp Responses

of this silence should be determined by the reverberation time of the

room with a reasonable safety factor, so that any reverberation from the

MLS synchronization burst has dissipated before the excitation signal

begins. The KEMAR laboratory had an approximate reverberation

time of one second, so an intermediate silence of 3 seconds was chosen

for this experiment.

• Excitation Signal: The excitation signal would take the form of either

a train of chirps or a maximum length sequence.

To ensure that no portion of the excitation response would be inadvertently

truncated, the wavrecord function was configured to record for one second

longer than the length of the augmented excitation signal.

The boxed areas of Figure 4.1 contain the onset of the chirp responses

before and after synchronization. Figure 4.2 is zoomed to the boxed area

showing the onset of the chirp responses.
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4.2.2 Response Synchronization

After the response data was collected, the MLS burst was used to perform

the synchronization. The first task of performing the synchronization was to

isolate the MLS synchronization burst apart from the excitation signal. If

no extra latency had been incurred between the playback/record of the aug-

mented excitation signal, the MLS synchronization burst would have com-

pleted after 2 seconds (0.5 seconds of silence plus 1.5 seconds of the burst).

However, it likely would have been shifted by up to 120 milliseconds or 0.12

seconds during the measurement. With this in mind, the first 3 seconds of

the augmented excitation signal were selected to isolate the synchronization

burst with silence on either side. For the synchronization step, all samples

after 3 seconds (including the excitation signal) were discarded.

Once the response for the synchronization burst was isolated, the signal was

cross-correlated with the original MLS synchronization burst. Then the index

of the maximum value of the cross-correlated signal was found. This index

was referred to as the synchronization index because it would theoretically

occur at the same time relative to the beginning of the excitation signal.

To perform synchronization, the entire augmented excitation signal was

first left-shifted (with truncation) by the value of the synchronization index.

This shift effectively eliminated the initial silence, so that the remaining sig-
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nal theoretically began at or near the first sample of the MLS synchronization

burst. Next, the synchronized augmented excitation signal was left-shifted by

the length of the MLS synchronization burst and the intermediate silence so

that only the synchronized excitation response remained. To reduce the risk

of truncating the excitation response, the last 64 samples of the intermediate

silence were kept in the excitation response data.

4.3 Results

In Figure 4.2(a), the onset of the unsynchronized responses differs by ap-

proximately 700 samples, which corresponds to a discrepency of 15.9 ms

for a 44.1 kHz sampling frequency. A discrepency of this magnitude would

make independent measurements unreliable to measure the interaural time

difference (ITD) of the HRTF, which is less than 1 ms at its maximum.

Figure 4.2(b) shows the onset of the chirp responses after the synchro-

nization steps have been performed. These synchronized chirp responses are

capable of producing impulse responses whose maximum occurs reliably at

the same sample index. Thus, the synchronization method is capable of

aligning independent measurements with sample-by-sample accuracy.
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CHAPTER 5

EXPERIMENT 2: COMPARISON OF
PROBE AND IN-EAR MICROPHONES IN

HRTF MEASUREMENTS

Chapter 4 addressed the need for synchronization across independent mea-

surements of an excitation response, before a reproducible impulse response

can be calculated for a system.

This chapter builds on the results of Chapter 4 by incorporating the MLS

burst method of synchronization for every measured MLS response and chirp

response. When the head-related impulse response (HRIR) measurements

are presented in figures, both the MLS- and chirp-derived impulse responses

are superimposed for a reference of relative accuracy.

The focus of this chapter is to test for potential discrepancies that may arise

when attempting to obtain a HRIR using a probe microphone. The issues

that are tested include the potential for multipath interference for a probe

microphone located outside the KEMAR, and an attempt to dereverberate

a measurement obtained by a probe microphone.

5.1 Equipment and Room Configuration

The Event EZ Bus was used as the DAC/ADC in all experiments. A desktop

PC with an Pentium 4 processor and MATLAB R2007b was interfaced to

the EZ Bus via a single USB 1.0 cable, which ran from the adjacent room

under a sound-treated door. All audio equipment, with the exception of the

loudspeaker and stand, were grouped as far from the KEMAR as possible,

on the opposite side of the room. The experiment was designed to allow for

the existence of early reflections from equipment and supporting structures

that were in the room. Figure 5.1 shows the position of the KEMAR relative

to the sound source.

The KEMAR laboratory had been built for the intelligent hearing aid

project conducted in the Beckman Institute. The room that housed the KE-
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Figure 5.1: Room Configuration and Probe Microphone Placement

MAR was sound-treated with styrofoam on the walls and doors. Although

the walls were treated to increase sound absorption, the room was not ane-

choic. Other reflective surfaces included the floor, ceiling tiles, and ventilation

ducts. The floor was simply carpeted, and the ceiling tiles and ventilation

ducts were left untreated. The laboratory had a notable reverberation time

that was mostly due to reverberation in the ventilation system.

To reduce the reverberation time, styrofoam was also placed over the ven-

tilation ducts when experiments were performed. The exact value for the

reverberation time of the KEMAR laboratory was not needed for this exper-

iment, but it was informally observed to be on the order of 1 second.

As previously described in section 3.4.2, in order to avoid corruption due

to time-domain wrapping of the room impulse response tail, the excitation

signal must be longer than the reverberation time of the room. This require-

ment was taken into account by using excitation signals that were at least

three times as long as the estimated reverberation time.

With the reverberation time accounted for, the early reflections caused by

reflective surfaces in the room needed to be addressed.

For this experiment, two types of microphones were used. The first micro-

phone is the ER-11, developed by Etymotic Research for use with KEMAR.
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Figure 5.2: KEMAR Microphone Placement and DB-100 Zwislocki Coupler

Each ear of the KEMAR is equipped with a DB-100 to simulate the ear

canal, which is terminated with an ER-11 microphone. All microphones

used in these experiments were manufactured by Etymotic Research.

The Etymotic ER-11 is a microphone specifically designed to use with the

DB-100 Zwislocki Coupler that is shown in Figure 5.2. The DB-100 is used

to simulate the human ear canal, and the ER-11 microphone is placed so

that it is analogous to the eardrum. The probe microphone used for this

experiment was the ER-7C, which uses a probe tube to measure the SPL

in cavities such as the ear canal. The physical microphone of the ER-7C is

contained in a housing that was placed outside the KEMAR head above the

ear, so that the probe tube could reach into the DB-100 without significantly

altering the response seen by the ER-11 microphone.

For the rest of the experiment, the ER-11 will be referred to as the in-

ear microphone, and the ER-7C will be referred to as the probe microphone.

The distance between the in-ear microphone and the termination of the probe

tube is denoted DPE in Figure 5.2.
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5.2 Addressing Early Reflections

When working in an imperfect acoustic space that is not anechoic, perhaps

the most obvious form of multipath interference of concern is that of early

reflections from walls and other objects in the environment. It may seem

that such an environment would make it impossible to obtain an uncor-

rupted measurement of the head-related impulse response. However, if the

distances of most reflective boundaries and objects are taken into account,

the environment can be arranged in such a way that it allows for the impulse

response to be isolated from nearly all other early reflections.

Previous work has indicated that the main part of the HRIR lies within

the first 5 to 6 milliseconds of the impulse response [18]. The measurements

contained in the CIPIC database consist of the first 256 samples of the HRIR

sampled at 44100Hz, which takes a time of

256[samples]× 1

44100

[second]

[samples]
= 5.8 milliseconds . (5.1)

Therefore, if the room can be arranged in a way that will cause early

reflections to arrive more than 6 milliseconds after the direct path of the

excitation signal, then these reflections will present themselves after the per-

tinent section of the HRIR. Therefore, for the following experiments, it is

maintained that 6 milliseconds of an uncorrupted HRIR is sufficient for an

accurate representation of the HRIR as though it had been measured in an

anechoic chamber.

The sample length of the chirp excitation signal, L, was determined based

on the sample rate of 44.1 kHz and the desired duration of the signal. To im-

prove the computational speed of FFT calculations, it was desirable that the

signal length be a power of two. In addition, in order to satisfy the criterion

that the excitation signal was at least twice the length of the reverberation

time of the room, a sample length of 218 samples was chosen for each chirp

of the chirp train. This corresponded to a 5.9-second chirp excitation signal,

which was at least three times the reverberation time of the room.
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Figure 5.3: Probe vs. In-Ear: No Alignment.

5.3 Results

The DAC/ADC used in this experiment was capable of recording only two

simultaneous channels, which were both needed to record the simultaneous

excitation responses for both the probe and in-ear microphones. This lim-

itation prevented using a third external reference microphone for synchro-

nization, so the MLS burst from the in-ear microphone channel was used to

synchronize all measurements.

This experiment focused on the measurement of only one azimuthal angle

of the HRTF for the left ear. The azimuthal angle chosen was 90◦, which

theoretically corresponds to the HRIR with the most energy for the left ear.

Figure 5.3 shows the first 7 ms of an impulse response obtained simul-

taneously from both the in-ear and probe microphones. Both a chirp and

MLS response were used to obtain the impulse response for each microphone,

resulting in a total of four independent impulse response measurements plot-

ted. The impulse responses resulting from the chirp and excitation signals

are superimposed with little relative error so that effectively only two impulse
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Figure 5.4: Time-Aligned Measurement with Multipath Interference

responses are visible. The similarity of MLS- and chirp-derived responses is

also the reason that only two frequency responses are visible in the second

plot of Figure 5.3.

It is evident from Figure 5.3, that the probe and in-ear microphones result

in significantly different estimation of the HRIR for the same azimuthal angle.

The most notable visible difference in the time-domain is that the impulse

response estimated by the probe microphone appears to be a time-delayed

version of that of the in-ear microphone. This finding generally stands to

reason since an incident wave must travel a longer distance to reach the

transducer of the probe microphone, as it must first enter the canal and then

travel through the probe tube to the housing of the ER-7C.

Figure 5.4 shows the probe impulse response manually shifted eleven sam-

ples to the left to align the most prominent features with the in-ear impulse

response. Examined closely, it can be seen that the in-ear impulse response

has a very clear onset at approximately 1.5 ms but is zero up to this onset.

The probe impulse response, however, shows unexpected energy preceding

the more pronounced onset of the in-ear impulse response.
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Figure 5.5: Time-Aligned Measurement with Styrofoam Dampening

There is also a major discrepancy in the frequency responses in Figure 5.4,

as the frequency response obtained from the probe microphone has a notch

at 9 kHz, as opposed to the frequency response from the in-ear microphone,

which has the notch at 10 kHz.

Suspecting that the unexpected energy seen in the probe impulse response

was due to multipath interference, an extra step was taken to shield the

housing of the ER-7C microphone from direct incident waves. A hollow was

cut in the center of styrofoam cube of approximately 4 cm per side, so that

the entire housing of the ER-7C could fit inside with only the cord exposed

to air. The styrofoam-enclosed ER-7C was replaced above the left ear of the

KEMAR, and the experiment was repeated.

Figure 5.5 shows the resulting measurements after styrofoam damping with

the probe impulse response shifted as it had been in Figure 5.4. The unex-

pected energy in the probe impulse response is clearly attenuated with respect

to what is seen without the styrofoam damping in Figure 5.4.

The frequency response obtained by the probe microphone with styrofoam

damping more closely matches that of the in-ear microphone up to 10 kHz
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Figure 5.6: Time-Aligned Measurement with Dampening and Truncation

and does not have the notch previously located at 9 kHz. However, even

with these improvements, the frequency responses of Figure 5.5 still diverge

significantly above 15 kHz.

Since Figure 5.4 clearly demonstrates that the unexpected energy was due

to multipath interference, a heuristic was tested that arbitrarily zeros out

time-domain signal components believed to be caused by multipath interfer-

ence, specifically, those preceding the first clear onset of the impulse response.

Figure 5.6 shows the resulting impulse response and frequency responses

after the samples leading up to the initial onset of the in-ear impulse re-

sponse were zeroed. A notch is introduced at approximately 17 kHz for the

frequency response of the probe microphone after pre-truncation is applied

to the impulse responses. Future work will test theoretical models in order to

determine whether the 17 kHz notch is likely to match any physical property

of the probe microphone system.
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CHAPTER 6

EXPERIMENT 3: AN EXPERIMENTAL
APPROACH TO EQUALIZATION

It was established in section 5.3 that it was likely that multipath interference

was chiefly responsible for the discrepancies between impulse response esti-

mations obtained from the probe microphone and those obtained from the

in-ear microphone.

This section explains an experiment that was developed with the intention

to characterize the multipath interference of the probe microphone, itself,

and attempt to compensate for its corruption of the measurement of the

HRIR.

6.1 Explanation of Approach

The experiment describes a method for equalization that has not been seen

in previous works.

Probe Position i

xc[n] hPi [n] yPic [n]

System Reference

xc[n] hR[n] yRc [n]

Relative
Transfer

hRPi [n]

Figure 6.1: Approach to Equalization using a Reference Chirp Response.

Figure 6.1 illustrates the approach, to equalization that was attempted
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Figure 6.2: Microphone Positions for Equalization Experiment

in this experiment. In the approach the KEMAR was removed from the

room and the probe microphone was suspended from the ceiling at position,

P1, shown in Figure 6.2, to obtain a reference chirp response denoted yRc [n],

which was stored for later use. This reference chirp response, yRc [n], was

meant to characterize the entire transfer function of the system at P1 without

the KEMAR, including that of the DAC/ADC, the loudspeaker, the probe

microphone, and all reflective surfaces, including the cord to the microphone.

After the reference chirp response was obtained, three independent chirp

responses were measured at positions P1, P2, and P3. Once the chirp re-

sponse, yPic [n], was obtained for position Pi, the relative transfer function

from position R to Pi was obtained from the deconvolution with the refer-

ence chirp response, yRc [n], by

hRPi [n] = IFFT

(
FFT (yPic [n])

FFT (yRc [n])

)
. (6.1)

Before going further, it is necessary to discuss how the relative impulse

response, hRPi [n], should be interpreted with respect to the system. It should

not be interpreted as the transfer function that a sound will undergo as it

travels from the reference point R to point Pi. Rather, when a sound source

is present in the room, the relative impulse response of hRPi [n] is what must
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Figure 6.3: Chirps Equalization Centered

be applied to the sound observed at point R to transform it to what would

theoretically be observed at point Pi for the same sound source.

6.2 Equalization Case 1

For the first case in this experiment, the reference point and the test point

were chosen to be the same location, where R = P1. When this experiment

was performed, after obtaining the reference chirp response, absolutely noth-

ing about the room configuration was changed before the measurement of the

chirp response response for position R = P1. This simple test is an important

first step to evaluate the soundness of this approach to equalization because

if the approach is not capable of equalizing hanging probe microphone in

a static position, it cannot be expected to equalize the system when the

position is altered.

Figure 6.3 shows the relative transfer function from point R to point P1.

The relative impulse response shows that hRP1 [n] ≈ δ[n], which is what would

be expected for the transformation a sound must undergo to be observed

from the same location in space. The transfer function is nearly flat across
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Figure 6.4: Chirps Equalization, 5-cm displacement

all frequencies but does exhibit small deviations of less than 0.5 dB from

unity gain. The results from Figure 6.3 do indicate that deconvolution can

be used with a chirp response which contains pre-shaped spectral content

from already having been passed through the system characterized by hR[n].

6.3 Equalization Case 2

For the second case in this experiment, the hanging probe microphone was

moved approximately 5 cm to the right to position P2, shown in Figure 6.2.

In addition to changing the physical location of the probe microphone, the

act of moving the probe microphone slightly changed orientation of the probe

tube, as well as the angle of the microphone cord.

Figure 6.4 shows the result of deconvolution of yP2
c [n] with yRc [n]. Unlike

the case at P1, the relative transfer function has noticeable peaks and valleys

across the entire frequency range. Still, the gain of the relative transfer

function from P1 to P2 does not exceed ±2 dB, which may be the case for a

slight change in location within the room.

Without comparing the result relative transfer function with one obtained
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Figure 6.5: Chirps Equalization, 10-cm displacement

from another approach, it is difficult to use the results seen in Figure 6.4

to either support or refute the validity of the equalization approach. It is

foreseeable that moving 5 cm would cause a listener to observe frequencies

accentuated and attenuated by a few decibels as would be the case in the

relative transfer function of Figure 6.4.

6.4 Equalization Case 3

For the third case in this experiment, the hanging probe microphone was

moved another 5 cm to the right to position P3, resulting in approximately

10 cm of deviation from the original reference point shown in Figure 6.2.

Again, the act of moving the probe microphone slightly changed orientation

of the probe tube, as well as the angle of the microphone cord.

Figure 6.5 shows the result of deconvolution of yP3
c [n] with yRc [n]. The

relative frequency response is still within reason, as it does not deviate from

unity gain by more than ±3 dB.

In this case, the relative impulse response, hRP3 [n], is the most interesting,

as it shows a very noticeable resonance in the time-domain. If such artifacts
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were created after applying this method in an attempt to equalize an HRIR,

the process of equalization would serve to further corrupt the HRIR rather

than correct it.

It should be noted that the result from Figure 6.5 does not invalidate the

possibility that hRP3 [n] is an accurate representation of the relative impulse

response between points R and P3; however, it does suggest that the reference

chirp measured at point R cannot be used to dereverberate the measurement

made after the probe microphone’s position and orientation had changed.

If it can be assumed that hRP3 [n] is an accurate representation of the

relative impulse response between the chirp responses obtained R and P3,

there must be an explanation for what changed in the system that prevented

yRc [n] to dereverberate yP3
c .

It is possible that the manifestation of the multipath interference had

changed for the probe microphone between the times that the measurements

were taken at points R and P3. One possibility, that the system had sig-

nificantly changed, can be attributed to the assumption that the multipath

interference is highly dependent on the orientation of the probe tube. In the

case of the ER-7C probe microphone, the multipath interference was sus-

pected to be the result of incident waves reaching the microphone housing

before traveling to the microphone by way of the probe tube.

By changing the orientation of the probe tube, the relative time needed

for a wave to reach the microphone via the probe tube is also altered. The

time needed for the wave to reach the microphone would be at a minimum

when the probe tube is oriented toward the sound source, and would be at a

maximum when the probe tube is oriented away from the sound source.

6.5 Feasibility of Dereverberation for HRTF

Measurements

After analyzing the results from case 3, it was reasoned that, even if a valid

method of dereverberation is used, the dereverberation would only be valid

to deal with multipath interference that remains constant with time.

In an experiment measuring a binaural HRTF of the KEMAR, the ori-

entation of the probe tube and microphone cord would eventually rotate

360 degrees as the measurements are made for each chosen azimuth. This
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change in orientation would cause the probe microphone to experience time-

varying multipath interference. It was reasoned that, in order to dereverber-

ate an impulse response for the ith azimuthal measurement obtained from

the probe microphone, the exact orientation of the probe microphone, probe

tube, and microphone cord would have to be recorded as they would rest

on the KEMAR. Then the exact orientation would need to be reproduced

without the KEMAR present in order to obtain a valid yRic to be used for

the dereverberation.

In light of this hypothesis, it was reasoned that dereverberation for a com-

plete set of azimuthal measurements in a binaural HRTF would be an infeasi-

ble workaround for a probe microphone that is more susceptible to multipath

interference than the in-ear microphones already present in the KEMAR.
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CHAPTER 7

EXPERIMENT 4: BINAURAL HRTF
MEASUREMENTS USING MLS AND

CHIRP EXCITATION SIGNALS

The overall goal of the HRTF measurement is to characterize the system

that acts to transform sound as it travels from an acoustic source in three-

dimensional space to the eardrum of a listener. More specifically, the system

of interest pertains to the transformational contribution of the head, torso,

and pinna. For many years, the acquisition of impulse response has been the

primary means of characterizing such a system. As highlighted in previous

works, the system becomes better characterized as impulse responses are

collected for a variety of combinations of azimuth, elevation, and distance

from the head.

The accuracy of the system characterization is, therefore, very closely tied

to the accuracy of each individual impulse response measurement. Any dis-

tortion or corruption to the impulse response will, in turn, skew accuracy of

the system characterization. Therefore, in order to improve the accuracy of

the system characterization, all factors that may serve to corrupt or distort

the impulse response measurements should be sought out and eliminated.

7.1 Experimental Procedure

The chirp and MLS excitation signals introduced in Chapter 3 are indepen-

dently applied for each azimuthal measurement. Chapter 4 concluded that

if synchronization is applied for both measurement methods, they can serve

as an extra mutual validation of one another.

This chapter builds on the results of Chapter 4 by incorporating the MLS

burst method of synchronization for every measured MLS response and chirp

response.

The interaural time difference (ITD), introduced in section 1.1, is a critical

aural cue that the brain uses for sound localization. Therefore, it was an im-
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Figure 7.1: Room with Reference Microphone

portant consideration that the experiment be conducted in a way that would

ensure that the ITD was accurately captured in each azimuthal measurement

of the binaural HRTF.

Figure 7.1 shows the room configuration for the experiment. The ER-7C

was suspended from the ceiling near the KEMAR to serve as a dedicated

reference microphone to be used for synchronization of each measurement.

The KEMAR was equipped with two ER-11 microphones, each enclosed in

a DB-100 coupler for both the left and the right ears.

Because the DAC/ADC was capable of recording only two simultaneous

channels and the statically located reference microphone channel was needed

for all measurements, the impulse response for only one in-ear microphone

could be measured at a time.

To begin the HRTF measurement, the in-ear ER-11 microphone for the left

ear of the KEMAR was sent through channel 2 and the suspended reference

microphone was sent through channel 1 to the analog-to-digital converter.

The KEMAR was rotated so that the loudspeaker was positioned at an az-

imuthal location of −180 degrees, which is behind the head of the KEMAR.

Figure 7.2 shows how the location of the sound source is mapped to azimuth

in degrees relative to the KEMAR head.
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Figure 7.2: Azimuthal Location of Source

Both the chirp and MLS excitation responses were augmented with an MLS

synchronization burst, explained in Chapter 4. The augmented excitation

signal was used to obtain an augmented excitation response for both the

reference microphone and the in-ear microphone.

For the synchronization step, the MLS burst from the suspended micro-

phone was used to obtain the synchronization index. The reference micro-

phone was used to obtain the synchronization index for all measurements,

since its position remained constant relative to the sound source. The MLS

synchronization burst from the in-ear microphone was discarded because it

would have caused the impulse response to shift relative to the location of

the in-ear microphone, which would effectively lose ITD information.

Both channels were synchronized using the synchronization index derived

from the MLS synchronization burst from the reference microphone. After

the excitation responses were synchronized, the impulse response estimates

were calculated for the chirp and MLS methods via deconvolution and cross-

correlation, respectively.

With the ER-11 microphone for the left ear still connected, the KEMAR

was rotated by 5 degrees to locate the source at −175◦ and the impulse

responses were estimated for the new azimuthal location of the sound source.

The measurement method was repeated for all angles from −180◦ to +175◦,

resulting in 72 azimuthal estimates of the HRIR for the left ear from both

the chirp and MLS excitation methods.
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When a complete set of HRIRs had been collected for the left ear, the

in-ear ER-11 microphone for the right ear of the KEMAR was connected to

channel 2 of the analog-to-digital converter, and the experiment was repeated

until the HRIRs for the same 72 azimuthal locations were obtained the right

ear.

7.2 Reproducibility of Independent Measurements
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Figure 7.3: Reproducibility of Independent HRIR Measurements

Figure 7.3 illustrates the reproducibility of independent measurements of
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an impulse response for the same azimuthal location.

At first glance, the impulse response in Figure 7.3(a) seems to be a sin-

gle plot that shows some high-complexity features. If one is not sure of the

accuracy of the measurement, some of these complexities may appear to be

noiselike and possibly raise doubt concerning the accuracy of the measure-

ment.

Figure 7.3(b) and Figure 7.3(c) reveal the redundancy that was used to

verify the reproducibility of the impulse response measurement by attempting

to reproduce it four times from both chirp and MLS methods. The fact

that the independent measurements are almost indistinguishable from one

another increases the confidence that the complex features present in the

impulse response are due to physical aspects of the system and should not

be dismissed as noise or corruption.

7.3 Relative Accuracy of MLS- and Chirp-Derived

Transfer Functions

Table 7.1 shows the relative error between transfer functions obtained by

chirp and MLS methods for each azimuthal measurement for the left ear.

Given the chirp-derived transfer function, Hc[k], and the MLS-derived trans-

fer function, Hs[k], the relative error between the two functions was calulated

by

Error(Hs, Hc) =
1

N

N−1∑
k=0

∣∣∣∣1− |Hs[k]|
|Hc[k]|

∣∣∣∣ . (7.1)

The relative error metric of Equation (7.1) also provides an intuitive measure

of the visual difference that would be seen when viewing a plot of the two

transfer functions.

Of the 72 azimuthal data points, 81% of measurements had less than 0.01

relative error, and 95% of measurements had less than 0.02 relative error. The

25◦ measurement for the left ear was the only outlier in the measurements

and had a value of 0.162 for relative error. Not considering the outlier,

the average relative error was 0.0079 between the MLS- and chirp-derived

transfer functions for the left ear.
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Table 7.1: Relative Error of MLS- and Chirp-Derived Transfer Functions

Az. Error Az. Error Az. Error Az. Error
-180◦ 0.0042 -90◦ 0.0089 0◦ 0.0072 90◦ 0.0047
-175◦ 0.0096 -85◦ 0.0084 5◦ 0.0048 95◦ 0.0048
-170◦ 0.0055 -80◦ 0.0064 10◦ 0.0071 100◦ 0.0153
-165◦ 0.0129 -75◦ 0.0089 15◦ 0.0056 105◦ 0.0034
-160◦ 0.0067 -70◦ 0.0254 20◦ 0.0083 110◦ 0.0052
-155◦ 0.0116 -65◦ 0.0153 25◦ 0.0058 115◦ 0.0080
-150◦ 0.0047 -60◦ 0.0074 30◦ 0.0059 120◦ 0.0057
-145◦ 0.0065 -55◦ 0.0079 35◦ 0.0052 125◦ 0.0042
-140◦ 0.0064 -50◦ 0.0161 40◦ 0.0061 130◦ 0.0045
-135◦ 0.0058 -45◦ 0.0114 45◦ 0.0066 135◦ 0.0073
-130◦ 0.0089 -40◦ 0.0091 50◦ 0.0061 140◦ 0.0059
-125◦ 0.0067 -35◦ 0.0094 55◦ 0.0066 145◦ 0.0054
-120◦ 0.0177 -30◦ 0.0059 60◦ 0.0087 150◦ 0.0051
-115◦ 0.0091 -25◦ 0.1620 65◦ 0.0057 155◦ 0.0044
-110◦ 0.0212 -20◦ 0.0057 70◦ 0.0068 160◦ 0.0038
-105◦ 0.0111 -15◦ 0.0084 75◦ 0.0062 165◦ 0.0043
-100◦ 0.0170 -10◦ 0.0075 80◦ 0.0054 170◦ 0.0051
-95 ◦ 0.0124 -5◦ 0.0036 85◦ 0.0045 175◦ 0.0052

7.4 Evaluation of Measured Binaural HRIR

In Figure 7.4, the first 5 ms of all 72 head-related impulse response mea-

surements for both the left and right ears are represented in log magnitude.

Each row shows the impulse response synchronized to the reference micro-

phone and measured independently after the KEMAR was rotated to direct

the source at the given azimuthal location. The reason that log magnitude

was chosen for the figure is because the amplitude of each impulse response

quickly decays after its initial onset. When viewed in log magnitude, it can be

seen that the binaural HRIR still has structure several milliseconds into the

response that is closely related to the impulse responses of nearby azimuthal

measurements.

Figure 7.4 also presents the measured ITD clearly as the onset of the

impulse responses gradually change with azimuth. When the sound source is

located at −90◦, the onset of the impulse response for the right ear begins at

its earliest time and the onset of the impulse response for the left ear begins

at its latest time. Conversely, when the sound source is located at +90◦, the
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Figure 7.4: Binaural HRIR Expressed in Log Magnitude
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Figure 7.5: Binaural HRTF Expressed in Decibels

onset of the impulse response for the right ear begins at its latest time and

the onset of the impulse response for the left ear begins at its earliest time.

7.5 Evaluation of Measured Binaural HRTF

Figure 7.5 shows the measured binaural head-related transfer function for

the KEMAR expressed in decibels. In the figure, it can be seen that for a

fixed frequency the gain of the HRTF is smooth with respect to changes in

azimuth. This continuity indicates that the choice of 5-degree increments in

azimuthal samples was sufficient to sample the HRTF without spacial aliasing

of key features that may change quickly with changes in azimuth.

Figure 7.5 also shows features that are consistent with what is expected to

be seen regarding the shadowing effects of the head [6]. For the left ear, the
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shadowing effects of the head are clearly seen for frequencies above 6 kHz

when the sound source is between −135◦ and −45◦, whereas for the right

ear, the same shadowing effects are seen when the sound source is located

between 45◦ and 135◦.
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CHAPTER 8

DISCUSSION

8.1 Probe Microphone Selection

The experiment presented in Chapter 5 investigated the ability of a probe

microphone to measure the same head-related impulse response as the in-ear

microphone of the KEMAR. The probe microphone used in the experiment

was the ER-7C and the in-ear microphone was the ER-11, both manufactured

by Etymotic Research.

In the experiment, the impulse response measurements obtained by the

ER-7C microphone exhibited some significant artifacts that differed from

the impulse response obtained by the ER-11. Because the artifacts were

suppressed after sound-isolating styrofoam was placed around housing of the

ER-7C, it was concluded that the initial artifacts were the result from mul-

tipath interference caused by the microphone sensing acoustic waves directly

incident on the microphone housing, in addition to what was sensed from the

probe tube.

It is possible that other ER-7C microphones are not as susceptible to mul-

tipath interference as the microphone used in the experiments. However,

only one ER-7C microphone was available for the laboratory experiments, so

the effect of multipath interference could not be compared against another

ER-7C microphone.

The results from the experiment in Chapter 5 do suggest that a probe

microphone should be tested for its susceptibility to multipath interference

before is chosen to measure the binaural HRTF of a human subject. Ac-

cording to the results shown in Figure 5.5, the discrepancies in the transfer

function may be more significant for frequencies above 10 kHz.
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Figure 8.1: Binaural HRIR Expressed in Log Magnitude

8.2 Role of the HRIR in Localization of Impulselike

Stimuli

It is clear that the HRTF alters the frequency content of an impulselike stim-

ulus before it reaches the eardrum. With the exception of the interaural time

difference, much research focuses on the role of the HRTF in the frequency

domain. This section discusses the possibility of other time-domain aspects

of the HRIR that may not have been thoroughly explored in previous research

and might aid in the localization of impulselike stimuli.

Section 1.2.3 briefly described how a stimulus must induce firing of the

inner hair cells of the cochlea in order to be perceived. In this way, the

perception of the sound does not solely depend on the frequency content of

stimulus at the eardrum but rather the ability of the stimulus to excite inner

hair cells of the cochlea by producing resonances along the basilar membrane.

87



When excited by a stimulus with periodic maxima, inner hair cells near

the same point in the cochlea can fire in such a way that the composite

firings of the group are clustered near the same time the pressure maxima

occur. In this way, the firing of the inner hair cells have been said to have a

phase-locking effect when presented with a periodic stimulus [19].

It is proposed here that, for some source locations with respect to the ear,

the structure of the HRIR can bring periodicity into an impulselike stimulus

in a way that may induce the phase-locking effect of the auditory nerves

corresponding to the resonance. Conversely, for other source locations with

respect to the same ear, the HRIR can introduce aperiodic features that

could inhibit the ability of auditory nerves to phase-lock on the stimulus.

In Figure 8.1, the binaural HRIR measured from the KEMAR is presented

in log magnitude as it was in section 7.4. Figure 8.1 shows remarkable struc-

ture in the HRIR for the first 4 ms after the onset of the impulse response

for each azimuth.

At an azimuth of +90◦ with respect to the left ear, the impulse response

quickly decays after its initial onset. However, it continues to produce lo-

cal pressure maxima with a relatively consistent periodicity of 3 peaks per

millisecond, which approximately corresponds to a 3-kHz resonance. Note

that although the maxima and minima cannot be distinguished directly from

Figure 8.1, the zero crossings in dark blue can be used to gauge periodicity.

For the same azimuthal location of +90◦, the HRIR has an entirely different

structure for the right ear. In fact, Figure 8.1 shows the impulse responses

for azimuths near +90◦ are the least periodic for the right ear.

In the case of a sound source at +90◦, the HRIR may filter an impulselike

stimulus in a way that will increase the likelihood for phase-locking the left

ear but would actually reduce the likelihood of phase-locking for the right

ear.

A similar argument can be applied to the HRIR at each azimuthal location.

At an azimuth of 0◦, for example, the ability for both ears to lock onto the

phase of an impulselike stimulus would be maximized.

If future work can show that human auditory nerve bundles are capable of

phase-locking to the approximate 3-kHz resonance when presented with an

impulselike stimulus, the difference in phase-locking ability between the left

and right ears may constitute a newly discovered interaural difference cue.
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CHAPTER 9

CONCLUSIONS

In order to perform acoustic system characterization using standard audio

hardware, an excitation signal must be chosen that both can be accurately

converted by the digital-to-analog converter and is rich in frequency content

and energy. Experiments tested the relative performance of chirp and MLS

excitation signals and showed that either signal can be used to independently

obtain a characterization of the HRTF with less than 0.8% average error

relative to one another.

It has been observed that some sound-acquisition software does not syn-

chronize the tasks of playback and recording with the audio hardware. When

the tasks of playback and record are initiated independently from one an-

other, inconsistent delay can be introduced into the recorded signal relative

to the signal that is played. This is particularly problematic when it is desired

to use built-in playback and record functionality of standard audio software

to characterize a system which requires reproducible sample-by-sample ac-

curacy.

It has been shown that augmenting a signal with a short MLS burst can

be used to perform synchronization across independently recorded audio sig-

nals in systems that introduce unpredictable delay. By performing linear

cross-correlation of the recorded MLS burst with a reference MLS burst,

a synchronization index can be obtained to realign a recorded signal with

sample-by-sample accuracy across independent measurements. This method

was successfully used in experiments to obtain consistent characterizations

of the HRIR using independent excitation responses.

An experiment was conducted to compare measurements of the HRTF ob-

tained by KEMAR’s standard in-ear ER-11 microphone with those obtained

from an external ER-7C probe microphone having the probe tube inserted

into the DB-100 ear canal simulator of the KEMAR. Artifacts were seen at

the beginning of the impulse responses obtained from the probe microphone
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that were reduced after the microphone housing was placed in a block of sty-

rofoam for additional sound isolation. This finding suggests that multipath

interference can corrupt HRIR measurements made with a probe microphone

if the microphone housing does not supply adequate sound isolation. Accord-

ing to these results, care should be taken to test a probe microphone for its

susceptibility to multipath interference before attempting to use it for HRIR

measurements.

It was reasoned that dereverberation of the probe microphone would be in-

feasible, as the multipath interference would likely change depending on the

orientation of the probe tube. However, while investigating the issue of mul-

tipath interference, a new approach was developed which attempted to char-

acterize the relative transfer function between two points in a system using

the chirp responses obtained at each point. Deconvolution of chirp responses

obtained at the same location in the room yielded a nearly perfect Kronecker

delta for the relative transfer function, which lends credence to the idea that

some pre-filtered chirp responses can be reused for system characterization.

The relative transfer function calculated between two points quickly became

increasingly complex as the points diverged in space, which made it difficult

to evaluate the general effectiveness of this approach. In future work, the

results from this approach could be compared with those from an alternate

method of system characterization in order to more adequately evaluate its

effectiveness.
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