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Abstract

As Internet has become ubiquitous, the risk posed by network attacks

has greatly increased. Network attacks have been used to achieve a wide

gamut of objectives ranging from overloading a website to accessing classified

data. Effective defense against such attacks is a critical research area. In this

thesis, we demonstrate how game theory can be used to devise effective defense

systems.

We utilize game theory for defense systems in two scenarios in this thesis.

The first scenario is that of the attacker carrying out a Distributed Denial of

Service (DDoS) attack. The second scenario involves the attacker possessing

the ability to carry out a number of different attacks such as Denial of Service

(DoS), Dictionary attacks and Portscans.

An important restriction imposed in repeated complete-information games

is that each player has complete knowledge of the adversary’s payoffs. This

assumption is unrealistic when the adversaries are the defense system and

the attacker. We employ a Fictitious-Play approach in order to remove this

restriction.
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Chapter 1

Introduction

In today’s world, use of internet and mobile applications is growing rapidly.

A wide variety of information is shared and disseminated over networks to

geographically distant resources and consumers. As networks and information

systems become complex, the security and privacy problems faced by such

systems have also evolved.

A large number of defense mechanisms have been proposed against network

attacks. Given the sophistication and variety of today’s attacks, a defense sys-

tem may need to employ more than one defense mechanism to counter attacks.

Even when employing a single defense mechanism, there are a number of vari-

ables involved. For example, a common defense against Denial of Service

(DoS) attacks is identifying attack packets and filtering them. This defense

mechanism has a number of variable parameters such as rate and duration

of filtering the packets. The ’optimal’ value for these parameters will depend

upon the objectives of the defense system. Similarly, the combination of de-
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fense mechanisms to be employed will depend upon the costs and benefits of

the mechanism to the system.

An attacker also needs to choose the right combination of attacks suited to

achieve his goals. For example, given two attacks - one which is fast but easy

to detect and expensive to implement and the other which is slow but hard to

detect and cheap to implement; the optimal choice of attack will depend upon

the objective and resources of the attacker as well as the nature of defense

employed by the victim against such an attack.

In light of these arguments, a network attack and a defense against it

may be viewed as a game played between entities with conflicting objectives.

Game Theory provides an excellent mathematical framework for analyzing

such situations.

Some research has been done in this area. In [36], a stochastic game is used

to compute probabilities of an expected attacker behavior and these probabil-

ities are used in a transition matrix model to assess security in an intercon-

nected system. In [3], a two-person zero-sum Markov game is proposed to

capture the interactions between malicious attackers and an IDS. They also

study limited information cases where players optimize their strategies offline

or online depending on the type of information available, using methods based

on Markov decision process and Q-learning. In [22] , a dynamic Bayesian game

approach is used to analyze the interactions between pairs of attacking and

defending nodes in wireless ad hoc networks where the defender updates its

belief on his opponent. The authors show that a Bayesian hybrid detection

switching between lightweight and heavyweight monitoring leads to detection
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energy efficiency for the defender.

In our work, we use an incomplete-information repeated game to model

interaction between an attacker and a defense system in two scenarios. The

first scenario involves an attacker carrying out a Distributed Denial of Service

(DDoS) attack. The second scenario involves an attacker possessing the ability

to carry out a number of different attacks such as Denial of Service (DoS),

Dictionary attacks and Portscans. We utilize game-theory to devise optimal

strategies for the attacker and the defense system. Using network simulations

in SSFNet [20] and emulations in Virtual Network User Mode Linux (VNUML)

[7], we demonstrate the practical application of this approach.

Both [36] and [22] use a game model in which the payoff function of the

adversary is known to each player. [3] addresses games in which players have

limited information. However, the naive Q-learning method used by the au-

thors in the case of unknown adversary payoff functions is not effective. In our

work, we use a repeated game model based on the fictitious play (FP) process

to overcome this limitation. In a FP process, each player estimates the payoff

function of the adversary by observing all the actions up to present. At each

stage, the player updates this estimate and plays the pure strategy that is the

best response to the estimate. It has been shown that, for many classes of

games, such a FP process will finally render both players playing the Nash

equilibrium.

The rest of this report is organized as follows. Chapter 2 gives background

information about network attacks and defenses and a brief introduction to

Game Theory. In Chapter 3, we present a game-theoretic defense against
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DDoS attacks. In Chapter 4, we present a game-theoretic defense against an

attacker carrying out multiple types of attacks. Finally, we end with conclud-

ing remarks in Chapter 5.
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Chapter 2

Background

The Morris worm in 1988 was one of the first known computer worms dis-

tributed via the Internet. While the damage caused by the worm was signif-

icant, the intent behind it was not malicious according to its creator. Today,

most network attacks are malicious. With the growth of internet over the past

decade, the number of attacks has increased rapidly. According to CERT, the

number of reported Internet security incidents have jumped from 6 in 1988

to 137,529 in 2003 [33]. In fact, due to the excessive number of security in-

cidents, CERT has decided not to publish the number of reported incidents

since 2004. We now describe some well-known network attacks and proposed

defenses against them.
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2.1 Network Attacks

2.1.1 Denial of Service Attacks

A Denial-of-Service attack (DoS) is an attempt to make a computer resource

unavailable to its intended users. DoS attacks generally send large volumes of

packets that use up a significant proportion of the available network bandwidth

in order to make resources unavailable. Hence, DoS attacks are also called

bandwidth attacks. The aim of a bandwidth attack is to consume critical

resources in a network service. Some of the resources that may be targeted

by such attacks are CPU capacity in a server, stack space in network protocol

software, or Internet link capacity. A Distributed Denial-of-Service attack

(DDoS) is a DoS attack in which the attacker uses more a than one host,

router or other network device to generate the attack traffic. An important

feature of DoS attacks is that volume of traffic rather than the content of

traffic is used to make the targeted resource unavailable.

A typical DDoS attack has two phases -

1. Exploit vulnerabilities in systems on the network to install attack tools

in such systems

2. Send command messages to compromised systems (“zombies”) through

a command-channel to carry out bandwidth attack against a target

There are two main effects of a bandwidth attack. First, it consumes the re-

sources of the target which is typically a server. A server has a finite capacity

and resources to process incoming requests (packets). A bandwidth attack
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uses up this capacity through the volume of attack traffic. As a result, the

server is unable to process requests from legitimate users and becomes unavail-

able for such users. The second effect is consumption of network bandwidth.

Consumption of network bandwidth affects not only the legitimate traffic to

the targeted service but also legitimate traffic to other services sharing the

affected network link.

Two classic bandwidth attacks are the SYN-Flood and Smurf attacks which

exploit weaknesses in internet protocols.

2.1.1.1 SYN-Flood

As described in [9], SYN-Flood attacks first came to light in 1996, when the

description and source code of the attack was published by the magazines

Phrack and 2600. The basis of the SYN flooding attack lies in the design

of the 3-way handshake that establishes a TCP connection. In a three-way

handshake -

1. The client requests a connection by sending a SYN (synchronize) message

to the server.

2. The server acknowledges this request by sending SYN-ACK back to the

client.

3. The client responds with an ACK to complete the connection.

SYN-Flood attacks are of two types. A malicious agent can skip sending the

ACK message; or by spoofing the source ip address in the SYN, it can make

the server send the SYN-ACK to the falsified ip address and thus never receive
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the ACK. In both cases, the server never receives the final ACK message. Each

such half-open connection consumes resources on the server and may lead to

exhaustion of host’s kernel memory. In order to avoid this memory exhaustion,

operating systems generally associate a "backlog" parameter with a listening

socket that sets a cap on the number of connections simultaneously in the SYN-

RECEIVED state. Although this action protects a host’s available memory

resource from attack, the backlog itself represents another (smaller) resource

vulnerable to attack. With no room left in the backlog, it is impossible to

service new connection requests until some connections are removed from the

SYN-RECEIVED state.

2.1.1.2 Smurf

The Internet Control Message Protocol (ICMP) is based on the IP protocol

and is used to diagnose network status. A Smurf attack is a DoS attack

that uses ICMP packets. This attack relies on a perpetrator sending a large

amount of ICMP echo request (ping) traffic to ip broadcast addresses, all of

which have a spoofed source ip address of the intended victim. If the routing

device delivering traffic to those broadcast addresses delivers the ip broadcast

to all hosts, most hosts on that ip network will take the ICMP echo request

and reply to it with an echo reply, multiplying the traffic by the number of

hosts responding. On a multi-access broadcast network, hundreds of machines

might reply to each packet.
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2.1.1.3 Defense

Defense mechanisms proposed in research literature against DoS (and DDoS)

attacks can be divided into three main categories -

1. Attack Prevention

2. Attack Detection

3. Attack Reaction

Attack Prevention Attack Prevention aims to preempt attacks before they

cause damage. This approach is effective against DoS attacks in which the

source address of attack traffic is spoofed to hide the real source of the attack

traffic and exploit protocol vulnerabilities. The main exponents of this ap-

proach is Ingress/Egress Filtering [10], Router-based Packet Filtering (RPF)

[30] and Source Address Validity Enforcement (SAVE) [17].

Ingress filtering involves filtering the traffic coming into a local network,

and egress filtering involves filtering the traffic leaving a local network. The

purpose of ingress/egress filtering is to only allow traffic to enter or leave the

network if its source addresses are within the expected ip address range in

the network. Thus, as a result of deploying ingress/egress filtering, spoofed ip

packets with source ip address not within the network are dropped, thereby

mitigating the effect of DoS attacks.

RPF extends ingress filtering to the core of the Internet. It is based on the

principle that for each link in the core of the Internet, there is only a limited

set of source addresses from which traffic on the link could have originated.
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In the event that an unexpected source address appears in an ip packet on a

link, we can infer that the source address has been spoofed, and hence filter

the packet.

SAVE uses a protocol that can provide routers with information needed

for source address validation. SAVE messages propagate valid source address

information from source location to all destination, allowing each router along

the way to build an incoming table that associates each incoming interface of

the router with a set of valid source address blocks.

The techniques described above involve changes in network infrastructure

and protocols. Hence, unless policies or regulations are implemented for their

enforcement, it is difficult to deploy such techniques.

Attack Detection There are two main categories of DoS attack detection

techniques - DoS-attack-specific detection and anomaly detection.

DoS-attack-specific detection utilizes characteristics of DoS attack traffic.

Since DoS traffic is generated by the attacker, it does not typically follow

traffic control protocols. There is an imbalance in the traffic between source

and victim since the victim is not able to handle all incoming packets. This

is not the case for normal traffic. MULTOPS [12] is based on the assumption

that packet rates between two hosts are proportional during normal operation.

It monitors traffic rates in up and down links to detect disproportional traffic

between hosts in order identify DoS attacks. TOPS [2] uses a similar approach

but is more memory efficient on account of use of hashing scheme with a small

set of field length lookup tables. Other methods such as [39] define a statistical
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model of normal traffic and then identify traffic which does not match this

model to be attack traffic.

Anomaly detection builds a model of normal traffic using training data. If

the monitored traffic is statistically different from the model, then it can be

inferred that a DoS attack is in action. The first real-time intrusion detection

model was proposed in [8]. It detected attacks by monitoring a system’s audit

records for abnormal patterns of system usage.

The main drawback of using attack detection techniques mentioned above

is that depend heavily upon a traffic model which may not be universally

applicable. Building a traffic model and making online statistical comparison

between normal and observed traffic is also time-consuming and costly.

Attack Reaction The main aim of DoS attacks is to damage the target

as much as possible. Attackers typically do not disguise the attack since the

target will be aware of the attack damage eventually. The attack detection

techniques mentioned attempt to detect an ongoing attack in the minimal

possible time. In order to minimize the damage caused by DoS attacks, a

reaction scheme must be employed after an attack has been detected.

DoS attacks not only affect the end-host victim but also congest the in-

termediate links between the source and the victim. Attack reaction will be

most effective if the attack traffic is filtered as close to the source as possible.

Attack reaction techniques can be classified into host-based reaction which

takes place only at the end host and network-based reaction which takes place

at intermediate routers (and optionally end-hosts).
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An example of network-based reaction is [23]. It uses an online scheme in

which intermediate routers learn a congestion signature based on the victim’s

ip address and the volume of traffic directed towards that ip address. Once

a signature has been identified local congestion control is filter attack traf-

fic. In addition, a Pushback mechanism is used to request upstream adjacent

routers to rate-limit traffic matching a specified signature. [31] uses a Selective

Pushback mechanism that sends pushback messages to the routers closest to

the attack sources directly by analyzing the traffic distribution change of all

upstream routers at the target.

The techniques mentioned above, though effective, require the co-operation

of routers for their implementation. In many cases, a victim may not have

access to such routers. In such a scenario, defense mechanism must be im-

plemented on the end-host alone. While such techniques cannot completely

stop an attack, they can mitigate the damage caused. An example of such a

technique is SYN-cookies [5] using which a host does not need to keep track

of half-open connection states thereby mitigating the effects of a SYN-Flood.

Another technique is using system and network interface logs on the host to

identify ip address from which malicious traffic is originating and then filter-

ing them using tools such as iptables/netfilter [1]. Malicious traffic can also be

identified using a history maintained by the host [32].

2.1.2 Remote Password Cracking

In a Remote Password Cracking attack an attacker tries to gain unauthorized

access to some machine by making repeated guesses at possible usernames
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and passwords. Password guessing can be done remotely with many services;

telnet, ftp, pop, rlogin, and imap are the most prominent services that support

authentication using usernames and passwords. Dictionary attack is one such

type of attack.

2.1.2.1 Dictionary Attack

A Dictionary attack uses a targeted technique of successively trying all the

words in an exhaustive list called a dictionary which is a pre-arranged list of

values. In contrast with a brute force attack, where a large proportion key

space is searched systematically, a dictionary attack tries only those possibili-

ties which are most likely to succeed, typically derived from a list of words for

example a dictionary or a bible etc. Dictionary attacks succeed because many

people have a tendency to choose passwords which are short (7 characters or

fewer), single words found in dictionaries or simple, easily-predicted variations

on words, such as appending a digit.

2.1.2.2 Defense

The best defense against a password cracking attack is to choose strong pass-

words. However, since many users fail to do that, some other common defense

mechanisms against online Dictionary attacks are -

1. Delayed Response: Given a login-name/password pair the server pro-

vides a slightly delayed yes/no answer (say not faster than one answer

per second). This should prevent an attacker from checking sufficiently

many passwords in a reasonable time.
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2. Account Locking: Accounts are locked a few unsuccessful login at-

tempts (for example, an account is locked for an hour after five unsuc-

cessful attempts.) Like the previous measure, this measure is designed

to prevent attackers from checking sufficiently many passwords in a rea-

sonable time.

3. Ip - Blocking: With account locking, accounts belonging to legitimate

users can be locked if some other user makes unsuccessful attempts to

login. One way to prevent this is to keep track of ip addresses from

which login attempts have been made and block an ip in case of a specific

number of unsuccessful login attempts.

2.1.3 Port-Scanning

A Portscan attack sends client requests to a range of server port addresses on

a host, with the goal of finding an active port and exploiting a known vulner-

ability of that service. There are many varieties of portscanning. We consider

SYN scanning in particular which is also known as “half-open scanning”.

2.1.3.1 SYN-Scanning

In SYN scanning, the hostile client attempts to set up a TCP/IP connection

with a server at every possible port. This is done by sending a SYN (syn-

chronization) packet, as if to initiate a three-way handshake, to every port on

the server. If the server responds with a SYN/ACK (synchronization acknowl-

edged) packet from a particular port, it means the port is open. If the server

14



responds with an RST (reset) packet from a particular port, it indicates that

the port is closed and cannot be exploited.

2.1.3.2 Defense

Tools such Port Scan Attack Detector (PSAD) [34] known signatures of portscan-

ning traffic to scans. PSAD requires the iptables/netfilter to log all ip traffic.

Another simpler mechanism can be used to detect SYN scanning. Since an

attacker will typically use SYN scanning on all ports to carry out an attack,

the defense system can monitor traffic on an arbitrary port on which no service

is running. A legitimate client typically won’t send a SYN packet to this port

since no service on the system uses this port. Hence, if SYN packets are being

sent to this port, it means that a SYN-scan is in progress.

2.2 Game Theory

In the earlier section, we have described some common network attacks and

defenses against them. In our work, we propose to use game theory, specifically

a fictitious play model of game theory to devise optimal strategies for an

attacker and a defense system, given a choice of attacks and defenses against

them. We now give an overview of static games and fictitious play, where player

P1 has m and player P2 has n possible actions (pure strategies) [27, 28, 37, 38].
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2.2.1 Static Games

We first introduce a one-shot nonzero-sum version of the games, which we will

refer to as static games. In equations written for the generic player Pi, i = 1, 2,

we use k to denote m or n. We denote by p1 ∈ 4(m) and p2 ∈ 4(n) a pair of

mixed strategies for P1 and P2, respectively, where 4(k) is the simplex in Rk

(R is the set of real numbers), i.e.,

4(k) =
 s ∈ Rk | sj ≥ 0, j = 0, 1, . . . , k,

k∑
j=1

sj = 1
 (2.1)

For a static game, player i selects an integer action vi according to the

mixed strategy pi. The (instant) payoff for player Pi is vTi Miv−i, where we use

v
(j)
i , j = 1, . . . , k, to indicate the jth vertex of the simplex4(k). (For example,

when k = 2, v(1)
i = [1 0]T for the first action, and v(2)

i = [0 1]T for the second

action).1 For a pair of mixed strategies (p1, p2), the utility functions are given

by the expected payoffs:

Ui(pi, p−i) = E[vTi Miv−i]

= pTi Mip−i (2.2)

where Mi is the payoff matrix of Pi, i = 1, 2 (Note that M1 is of di-

mension m × n and M2 n × m.) This standard formulation of the pay-

off functions leads to a FP process that will be referred to as classical FP.
1As standard in the game theory literature, the index −i is used to indicate those of

other players, or the opponent in this case.
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Now, the best response mappings β1 : 4(n) →
{
v

(1)
1 , v

(2)
1 , . . . , v

(m)
1

}
and

β2 : 4(m)→
{
v

(1)
2 , v

(2)
2 , . . . , v

(n)
2

}
are defined as:

βi(p−i) = arg max
vi∈
{
v

(1)
i , v

(2)
i ,...,v

(k)
i

}Ui(vi, p−i) (2.3)

Note that given p−i, the best response mapping can be set-valued, i.e.,

there may be multiple vertices of the simplex 4(k) that yield the maximum

value of the payoff function. Finally, a (mixed strategy) Nash equilibrium is

defined to be a pair (p1, p2) ∈ 4(m)×4(n) such that for all p1 ∈ 4(m) and

p2 ∈ 4(n):

Ui(pi, p∗−i) ≤ Ui(p∗i , p∗−i) (2.4)

In a static game, as both players act simultaneously, each player cannot

observe the action of the other. Their choice of actions (or probabilities of

actions – mixed strategies) is based on their knowledge of both payoff matrices.

2.2.2 Fictitious Play Process

From the static game described in Section 2.2.1, we define the (discrete-time)

FP process as follows. The game is now repeated at times τ ∈ 0, 1, 2, . . .. The

empirical frequency pi(τ) of player Pi is given by:

pi(τ + 1) = 1
τ + 1

τ∑
j=0

vi(j) (2.5)

Using induction, we can prove the following recursive relation:
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pi(τ + 1) = τ

τ + 1p(τ) + 1
τ + 1vi(τ) (2.6)

Player i , i = 1, 2, then employs the algorithm listed in Algorithm 2.1.

Algorithm 2.1 Fictitious Play Algorithm
1: Given payoff matrix Mi

2: for τ ∈ {0, 1, 2, . . .} do
3: Update the empirical frequency of the opponent

p−i(τ + 1) using Eq. 2.6
4: Pick the optimal pure strategy(s) using Eq. 2.3
5: If there are multiple optimal strategies, randomize

over optimal strategies with equal probability
6: end for

Thus, in terms of information, there are two main features that distinguish

a FP process from the corresponding static game (the static game with the

same payoff formulation). First, each player can make decisions without nec-

essarily knowing the other’s payoff matrix. Second, each player has to be able

to observe the other’s actions. It is however worth noting that such a mech-

anism does not guarantee convergence to a Nash equilibrium. For two-player

zero-sum FP, the convergence proof was obtained for arbitrary numbers of

actions for each player (m × n) [35]. For nonzero-sum games, the proofs for

two-player FP have been found for the case where one player is restricted to

2 actions (See [4] for classical FP and [37] for stochastic FP). Nevertheless,

there are counter examples (e.g., for 3×3 games) where FP does not converge

to the mixed strategy NE [38]. Several techniques that can be used to enhance

convergence are discussed in [38, 26].
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Chapter 3

Defense Against DDoS Attacks 1

3.1 Introduction

As described in Section 2.1.1, a Distributed Denial-of-Service attack (DDoS

attack) is an attack launched from multiple computers in a network to flood

the resources of a targeted system, and thus making it less accessible to the

intended users. The computers launching attacks are called zombies, which

could be regular hosts that have been compromised by the attacker. In this

work, we utilize the pushback defense, a mechanism first proposed in [23] and

combine it with game theory.

As described in [13, 23], pushback is a mechanism that allows routers in

a network to cooperate in aggregate-based congestion control (ACC). An ag-

gregate is defined to be a collection of packets that share a common property

or parameter, such as ICMP ECHO packets or packets with the same desti-
1The work described in this chapter has been published as [15]
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nation ip address. The properties or parameters used to identify an aggregate

are called attack signatures. Based on aggregates, traffic and packets are di-

vided into three different categories: “bad”, “poor”, and “good”. Bad traffic

is that generated by the attackers. Poor traffic is from legitimate users but

shares the same attack signatures. Finally, good traffic does not match the

attack signatures but may suffer from the congestion. In local ACC, an indi-

vidual router identifies the aggregates that causes the congestion and tries to

cut down the throughput of these aggregates. In pushback, a router can re-

quest adjacent upstream routers to rate-limit some aggregates. This way, the

system can save the bandwidth that would otherwise be wasted if packets in

these aggregates were dropped downstream. Furthermore, if the DDoS attack

traffic comes from a few upstream links, pushback helps protect poor traffic

from congestion due to attack traffic.

In this chapter, we will use “Attacker” to refer to the DDoS attacker and all

the zombies under its control, and “System” to refer to all the routers taking

part in the pushback mechanism. When the Attacker launches DDoS attacks,

it has at its disposal a number of strategies to choose from. Among these are

the set of zombies, the set of targeted computers, and the attack protocols

and traffic patterns. Similarly, the System can also change the pushback pa-

rameters such as the congestion checking time, the target drop rate, and the

aggregate pattern. For each pair of strategies of the Attacker and the System,

the payoffs for each of them can be formulated based on the bandwidth occu-

pied by Attacker, the bandwidth used by the legitimate users, and the costs

of attacking and defending. It thus can be seen that there is a game situation
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between the Attacker and the System, where each player tries to maximize its

own payoff against all the possible strategies of the opponent.

In [21], DDoS attacks are modeled as a Bayesian game among the Attacker,

the System, and legitimate users. With such a game formulation, in order

to compute a Nash equilibrium pure or mixed strategy, each player has to

have full knowledge of payoff. The paper also mentions a repeated mechanism

where at each step, each player makes the best response to current strategies of

other players. Although this mechanism allows each player to proceed without

necessarily knowing others’s payoff matrices, it works well only when the game

has a pure strategy Nash equilibrium.

We examine a repeated game model based on the fictitious play (FP) pro-

cess for pushback defense. In a FP process, each player observes all the actions

up to present and makes estimate of the mixed strategy of the opponent’s ac-

tions. At each stage, the player updates this estimate and plays the pure

strategy that is the best response to the estimate. It can be seen that in a FP

process, if one plays a fixed strategy (either of the pure or mixed type), the

opponent’s strategy will converge to the best response to this fixed strategy.

Furthermore, it has been shown that, for many classes of games, such a FP

process will finally render both players playing the Nash equilibrium.
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3.2 Implementation Details

3.2.1 PRIME Network Simulator

In this work we use the PRIME Network Simulator/Emulator. PRIME stands

for Parallel Real-time Immersive Modeling Environment [19, 20, 18]. PRIME is

intended to simulate large-scale computer networks with thousands to millions

of network entities. PRIME has two main components: PRIME SSF (Scalable

Simulation Framework) and PRIME SSFNet. While SSF is the kernel that

supports parallel and real-time simulation, PRIME SSFNet is the upper layer

providing network simulation functions.

3.2.2 Network Topology

The network topologies used in the simulations are shown in Fig. 3.1 (Network

I) and Fig. 3.2 (Network II). The differences between these two networks are

the bandwidths of the links: Network II features a much larger scale and up-to-

date network with OC−3 and OC−48 links connecting backbone routers. We

implement packet-based simulation for Network I and flow-based simulation

for Network II (described in Section 3.2.4). Of the 64 hosts, U1 to U64, there

are 8 zombies and 56 legitimate users. Both zombies and users send packets

to servers S1 and S2. The routers Ri.j, i = 0, 1, 2, 3 , are organized in a

hierarchical manner where the subscript i denotes the level, and the subscript

j denotes the router in a level. On the Attacker’s side, a central controller

controls all the zombies in the network using control messages. Similarly, on

the System’s side, a master router controls the (slave) routers taking part in
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Figure 3.1: Network I with packet-based simulation
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Figure 3.2: Network II with OC−3 and OC−48 links used for flow-based
simulation
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the pushback mechanism with pushback control messages.

Each router employs a version of the ip protocol with modifications for en-

forcing pushback [23, 13]. Every router checks for congestion after each spec-

ified time interval which we refer to as the Congestion_Checking_Interval.

A router is considered to be in congestion if Incoming_Data_Rate > (1 +

Target_Drop_Rate)×Outgoing_Bandwidth. Here, Target_Drop_Rate is

the acceptable rate of dropping packets for the router. If a router detects

congestion, it looks through the log of dropped packets that it maintains to

identify an attack signature. Since the source ip-address of a packet can be

spoofed by the Attacker, we only use the destination ip-address as the attack

signature. Thus, the router identifies the most frequently occurring destina-

tion ip-address in the dropped packets log as the signature. For the sake

of efficiency, the log is of a fixed size and new log records overwrite older

ones if the log is full. In subsequent checks for congestion, if the router de-

tects that the incoming traffic not matching the signature is still greater than

(1 + Target_Drop_Rate) × Outgoing_Bandwidth then each time it adds

the next-most frequently occurring destination ip-address in the log to the

current signature. Each signature has a timestamp which is updated every

time the router detects congestion. A router also sends the identified signa-

tures to its immediately upstream routers and uses signatures received from

downstream routers as attack signatures. Traffic through the router which

matches the signature (Signature Traffic) is filtered out. The maximum signa-

ture traffic allowed to pass through the router is Outgoing_Bandwidth× (1+

Target_Drop_Rate)−Non_Signature_Traffic. A router also periodically
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Networks A1 A2 A3 A4 A5 Users’
Datarates

Network I 91.73 55.04 27.52 2.75 0.275 1.93
Mbps Mbps Mbps Mbps Mbps Mbps

Network II 13.76 5.504 2.752 0.275 30.58 124.42
Gbps Gbps Gbps Gbps Mbps Mbps

Table 3.1: Attacker’s Actions (Datarates generated by all 8 zombies) and
Collective Users’ Datarates

checks if any of the attack signatures has expired after a specified time interval

(which we refer to as Refresh_Interval). Routers periodically send update

messages for signatures to upstream routers. Routers use update messages

from downstream routers to update the timestamp of the signatures received

from downstream routers.

3.2.3 Game Formulation

The Attacker’s pure strategies are given by Aatt = A1, . . . , A5, where Ai,

i = 1, . . . , 5 are the collective attack datarates (generated by all 8 zombies).

The Attacker’s actions are shown in Table 3.1. The System consists of all the

routers taking part in pushback defense, R1, . . . , R8. The pushback behavior of

a router is represented by three parameters: Congestion_Checking_Interval,

Refresh_Interval, and Target_Drop_Rate. The action space of the Sys-

tem, Asys = S1, . . . , S6, is the same for both Networks I and II, and is specified

in .Table 3.2

For each pair (Ai, Sj), i = 1, . . . , 5, j = 1, . . . , 6, the payoff of the Attacker

is given by:
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Actions Congestion Checking Refresh Target
Interval (sec) Interval (sec) Drop Rate

S1 2 5 0.05
S2 2 10 0.05
S3 4 5 0.05
S4 2 5 0.03
S5 6 10 0.05
S6 2 5 0.07

Table 3.2: System’s Actions

Uatt = α
Bao

BN

+ (1− α)
1−

∑L
l=1 B

(l)
lo∑L

l=1 B
(l)
lw

 (3.1)

where B(l)
lo is the bandwidth occupied by the legitimate user l, and B

(l)
lw

is the bandwidth required by the legitimate user l, l = 1, . . . , L, where L is

the number of legitimate users (56 in our simulations), Bao is the bandwidth

occupied by the Attacker, and BN is the bandwidth capacity (BN = 2 Mbps for

Network I and BN = 155.52 Mbps for Network II). α ∈ [0, 1] is used to balance

between the damage the Attacker does to the System and the damage it causes

to the legitimate users; α is chosen to be 0.2 throughout our simulations. The

payoff of the System is given by:

Usys = ω

∑L
l=1 B

(l)
lo∑L

l=1 B
(l)
lw

+ (1− ω)
(

1− Bao

BN

)
(3.2)

where ω ∈ [0, 1] is used to balance between the utility the System can pro-

vide for the legitimate users and the pushback it applies against the Attacker;

ω is chosen to be 0.8 throughout our simulations. The costs of attacking and

defending can also be included in the payoff functions. For the Attacker, the
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action to be taken is determined by the controller and sent to the zombies. The

zombies then adjust their datarates and pick their victims accordingly. Simi-

larly, for the System, the action to be taken is determined by the master router

and sent to the slave routers. The slave routers then adjust their pushback

parameters accordingly. Our simulations consists of two steps: payoff mea-

surement and fictitious play. In the first step, the System and the Attacker

are forced to take each pair of actions. The attack traffic, good traffic, and

poor traffic at router R0.0 are then measured. These measurements are used to

calculate the payoffs for the Attacker and the System using Eq. 3.1 and Eq. 3.2

respectively. In the second step, both the System and the Attacker use a fixed

time interval as a “time step”, during which the action taken by the opponent

is identified. At the end of each time interval, both players choose the next

action to be taken which is the best response to the empirical frequencies of

the opponent’s actions (using Algorithm 2.1 with the payoff matrices obtained

from Step 1). The time step is chosen to be 50s, which allows enough time for

the pushback mechanism to stabilize.

3.2.4 Flow-based Simulation vs. Packet-based Simula-

tion

In packet-based simulation (Network topology I in Fig. 3.1), the Attacker’s

traffic consists of fixed length ip packets generated at a constant rate by the

zombies. Users’ traffic consists of fixed length ip packets with inter-packet

times being exponentially distributed. For determining the parameter of the

exponential distribution, we set the average user datarate to be the bandwidth

28



of the router R0.0 (Fig. 3.1) divided by the number of hosts in the network.

The rationale behind this is that if all users send out data with this rate, there

should be no congestion in the network. The datarates generated by the each

zombie ranges from around 300 to 1 times the legitimate user datarate.

We could run simulations with network bandwidths in the order of 20Mbps

using packet-based simulation with PRIME SSFNet. Simulations for networks

with larger bandwidths require significantly long times. Thus for Gigabit

networks (Network II, Fig. 3.2), we adopt the flow-based simulation approach

[29]. In this approach, we generate flows of packets instead of simulating

packet events. We model two different types of traffic: Background traffic

and Attacker traffic. Attacker traffic is the traffic generated and controlled

by the Attacker. It is deterministic in nature, i.e., the Attacker can precisely

control these flows. Background traffic is the aggregate of all other traffic in

the network and is stochastic in nature. For background traffic, we assume

that different flows are statistically independent.

We now describe the method for determining the input and output flows

at each router. The input flow at a router at any instant is the sum of de-

terministic traffic (from the Attacker) and the stochastic traffic (background

traffic). The input deterministic traffic at a given router is the sum of outgoing

deterministic flows from all routers connected to the given router. The input

stochastic flows are generated using Gaussian copulas [25, 14]. Let Z be a

discrete-time stochastic process describing a flow; the random variable Zt is

the flow rate at time t. Let ρst be the correlation coefficient between Zs and

Zt ; we assume that ρst = 0 for |s−t| > n, where n is a positive integer. Let -
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Σ ≡ {ρst}, s, t = i− 1, i− 2, . . . , i− n, (n× n matrix),

ρ
ji
≡ (ρi,i−1, ρi,i−2, . . . , ρi,i−n), (1× n vector),

ρ
ij
≡ ρT

ji
.

Let Zi ≡ (Zj−1, . . . , Zj−n)T . We have that Zj ∼ N(µ, σ2), i.e., Zj is a

Gaussian random variable with mean µ and variance σ2. Then we have

(Zj|Zi = zi) = N(µ̃, ρ̃σ2), (3.3)

where

µ̃ = ρ
ji

Σ−1zi

ρ̃ = 1− ρ
ji

Σ−1ρ
ij
.

In this simulation, we choose n = 5, ρst = (0.75)|s−t|, µ = 0.8× outgoing_bandwidth
number_of_flows ,

and σ2 = µ/3.

Given the input flows at a router the Drop_Rate is defined as

Outgoing_Bandwitdh× (1 + Target_Drop_Rate)− (Input_Flowrate). In

absence of filtering, the number of dropped packets from any flow at time

t is Drop_Rate × t. If there is a filter on any flow, then the flow rate is

scaled by the filter rate before the Drop_Rate is calculated. In the simulation

each router periodically samples its stochastic input flows and recalculates its

output flows. Any changes in deterministic output flows are sent to routers
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connected to the given router. A router on receiving an update in determin-

istic input flow, recalculates its output flows and updates connected routers.

The dropped packets set is also updated at each recalculation of flows at the

routers. Since the pushback mechanism only needs the dropped-packets set

and the test for congestion to work, the mechanism works well with the flow-

based simulation.

3.3 Simulation Results

In this section, we present the simulation results of both packet-based simula-

tion and flow-based simulation.

3.3.1 Packet-based Simulation Results

The results from payoff measurements are presented in Table 3.3. We use the

parameters given in Section 3.2. The payoff matrices of the System and the

Attacker are shown in Table 3.4 and Table 3.5.

The Nash Equilibrium calculated using Gambit [24] is (0, 0, 1, 0, 0) for the

Attacker and (0, 0, 0, 1, 0, 0) for the System. The fictitious play simulation

results are given in Fig. 3.3 and Fig. 3.4. The number of time steps simulated

is about 300. It can be seen that the frequency of pure strategy S4 of the

System goes to 1 while those of other pure strategies go to 0. Similarly, the

frequency of pure strategy A3 goes to 1, while those of the others go to 0. This

coincides with the Nash Equilibrium obtained from Gambit.
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Actions Attacker Good Poor Attacker System
Traffic Traffic Traffic Payoff Payoff

A1,S1 2.42E+05 5.15E+05 8.70E+03 0.6067 0.3933
A1,S2 2.42E+05 5.12E+05 8.48E+03 0.6083 0.3917
A1,S3 3.07E+05 5.00E+05 9.22E+03 0.6194 0.3806
A1,S4 2.40E+05 5.33E+05 1.55E+04 0.5961 0.4039
A1,S5 3.66E+05 5.49E+05 8.52E+03 0.6051 0.3949
A1,S6 2.40E+05 5.58E+05 7.66E+03 0.5892 0.4108
A2,S1 2.41E+05 5.21E+05 8.04E+03 0.6044 0.3956
A2,S2 2.41E+05 5.17E+05 8.27E+03 0.6058 0.3942
A2,S3 3.06E+05 5.05E+05 8.43E+03 0.6174 0.3826
A2,S4 2.41E+05 5.33E+05 1.50E+04 0.5967 0.4033
A2,S5 3.68E+05 5.54E+05 7.03E+03 0.6039 0.3961
A2,S6 2.39E+05 5.77E+05 6.70E+03 0.5817 0.4183
A3,S1 2.42E+05 5.12E+05 9.17E+03 0.6080 0.3920
A3,S2 2.43E+05 5.09E+05 9.26E+03 0.6090 0.3910
A3,S3 3.07E+05 5.06E+05 1.07E+04 0.6159 0.3841
A3,S4 2.41E+05 5.24E+05 1.65E+04 0.5995 0.4005
A3,S5 3.68E+05 5.46E+05 1.16E+04 0.6053 0.3947
A3,S6 2.45E+05 5.30E+05 7.99E+03 0.6012 0.3988
A4,S1 2.44E+05 9.78E+05 1.51E+05 0.3556 0.6444
A4,S2 2.44E+05 9.78E+05 1.51E+05 0.3556 0.6444
A4,S3 2.66E+05 9.68E+05 1.64E+05 0.3563 0.6437
A4,S4 2.35E+05 9.82E+05 1.46E+05 0.3551 0.6449
A4,S5 2.87E+05 9.56E+05 1.79E+05 0.3575 0.6425
A4,S6 2.52E+05 9.74E+05 1.56E+05 0.3560 0.6440
A5,S1 2.17E+05 8.98E+05 7.78E+05 0.1256 0.8744
A5,S2 2.17E+05 8.98E+05 7.78E+05 0.1256 0.8744
A5,S3 1.77E+05 1.04E+06 6.50E+05 0.1172 0.8828
A5,S4 2.19E+05 8.64E+05 7.80E+05 0.1393 0.8607
A5,S5 2.21E+05 8.33E+05 7.80E+05 0.1521 0.8479
A5,S6 2.15E+05 9.32E+05 7.76E+05 0.1122 0.8878

Table 3.3: Payoff Measurements - Network I
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System \ Attacker A1 A2 A3 A4 A5

S1 0.3933 0.3956 0.3920 0.6444 0.8744
S2 0.3917 0.3942 0.3910 0.6444 0.8744
S3 0.3806 0.3826 0.3841 0.6437 0.8828
S4 0.4039 0.4033 0.4005 0.6449 0.8607
S5 0.3949 0.3961 0.3947 0.6425 0.8479
S6 0.4108 0.4183 0.3988 0.6440 0.8878

Table 3.4: System’s Payoff Matrix - Network I

Attacker \ System S1 S2 S3 S4 S5 S6

A1 0.6067 0.6083 0.6194 0.5961 0.6051 0.5892
A2 0.6044 0.6058 0.6174 0.5967 0.6039 0.5817
A3 0.6080 0.6090 0.6159 0.5995 0.6053 0.6012
A4 0.3556 0.3556 0.3563 0.3551 0.3575 0.3560
A5 0.1256 0.1256 0.1172 0.1393 0.1521 0.1122

Table 3.5: Attacker’s Payoff Matrix - Network I

Figure 3.3: System’s Empirical Frequencies - Network I
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Figure 3.4: Attacker’s Empirical Frequencies - Network I

3.3.2 Flow-based Simulation Results

The results from payoff measurements and the payoff matrices of the Sys-

tem and the Attacker are presented in Table 3.6, Table 3.7, and Table 3.8,

respectively. Again, we use the parameters given in Section 3.2.

From Gambit, there are three Nash equilibria For Network II:

• Attacker (0, 0, 0, 1, 0), System (0, 0.992, 0, 0, 0.008, 0).

• Attacker (0, 0, 0, 1, 0), System (0, 0.992, 0.008, 0, 0, 0).

• Attacker (0, 0, 0, 1, 0), System (0, 1, 0, 0, 0, 0).

Again, the fictitious play simulation results are in agreement with the Nash

equilibria obtained from Gambit as can be seen in Fig. 3.5 and Fig. 3.6. Note
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Actions Attacker Background Attacker System
Traffic Payoff Payoff

A1,S1 1.25E+08 3.03E+07 0.9665 0.2335
A1,S2 1.25E+08 3.03E+07 0.9665 0.2335
A1,S3 1.27E+08 2.86E+07 0.9796 0.2204
A1,S4 1.25E+08 3.03E+07 0.9659 0.2341
A1,S5 1.27E+08 2.86E+07 0.9796 0.2204
A1,S6 1.25E+08 3.01E+07 0.9676 0.2324
A2,S1 1.25E+08 3.03E+07 0.9665 0.2335
A2,S2 1.25E+08 3.03E+07 0.9664 0.2336
A2,S3 1.27E+08 2.86E+07 0.9796 0.2204
A2,S4 1.25E+08 3.03E+07 0.9659 0.2341
A2,S5 1.27E+08 2.86E+07 0.9796 0.2204
A2,S6 1.25E+08 3.01E+07 0.9676 0.2324
A3,S1 1.25E+08 3.03E+07 0.9664 0.2336
A3,S2 1.25E+08 3.03E+07 0.9664 0.2336
A3,S3 1.27E+08 2.86E+07 0.9796 0.2204
A3,S4 1.25E+08 3.03E+07 0.9659 0.2341
A3,S5 1.27E+08 2.86E+07 0.9796 0.2204
A3,S6 1.25E+08 3.01E+07 0.9676 0.2324
A4,S1 1.26E+08 2.94E+07 0.9729 0.2271
A4,S2 1.25E+08 3.02E+07 0.9666 0.2334
A4,S3 1.25E+08 3.02E+07 0.9666 0.2334
A4,S4 1.26E+08 2.94E+07 0.9729 0.2271
A4,S5 1.25E+08 3.02E+07 0.9666 0.2334
A4,S6 1.25E+08 3.02E+07 0.9669 0.2331
A5,S1 3.06E+07 3.46E+07 0.8169 0.3831
A5,S2 3.06E+07 3.46E+07 0.8169 0.3831
A5,S3 3.06E+07 3.46E+07 0.8169 0.3831
A5,S4 3.06E+07 3.46E+07 0.8169 0.3831
A5,S5 3.06E+07 3.46E+07 0.8169 0.3831
A5,S6 3.06E+07 3.46E+07 0.8169 0.3831

Table 3.6: Payoff Measurements - Network II
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System \ Attacker A1 A2 A3 A4 A5

S1 0.2335 0.2335 0.2336 0.2271 0.3831
S2 0.2335 0.2336 0.2336 0.2334 0.3831
S3 0.2204 0.2204 0.2204 0.2334 0.3831
S4 0.2341 0.2341 0.2341 0.2271 0.3831
S5 0.2204 0.2204 0.2204 0.2334 0.3831
S6 0.2324 0.2324 0.2324 0.2331 0.3831

Table 3.7: System’s Payoff Matrix - Network II

Attacker \ System S1 S2 S3 S4 S5 S6

A1 0.9665 0.9665 0.9796 0.9659 0.9796 0.9676
A2 0.9665 0.9664 0.9796 0.9659 0.9796 0.9676
A3 0.9664 0.9664 0.9796 0.9659 0.9796 0.9676
A4 0.9729 0.9666 0.9666 0.9729 0.9666 0.9669
A5 0.8169 0.8169 0.8169 0.8169 0.8169 0.8169

Table 3.8: Attacker’s Payoff Matrix - Network II

that the first two mixed-strategy Nash equilibria (MSNE) shown above are

very close to pure strategies. In the case where there are mixed-strategy

Nash equilibria, if the first action (at time τ = 0) of each player is chosen

appropriately (which is necessary only if there are both mixed-strategy NE

and pure-strategy NE), the empirical frequencies of the player’s actions will

converge to a mixed-strategy Nash equilibrium, which means each player will

alternate among the pure strategies constituting the MSNE with proportional

numbers of times.
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Figure 3.5: System’s Empirical Frequencies - Network II
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Figure 3.6: Attacker’s Empirical Frequencies - Network II
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Chapter 4

Defense Against Multiple

Attacks

4.1 Introduction

The system developed in Chapter 3 was geared towards defense against DDoS

attacks. However, a sophisticated attacker may have at his disposal multiple

forms of attack. For example, even for carrying out a Denial of Service attack,

an attacker has a choice between SYN-Flood, Smurf or Ping-of-Death attacks

to name a few. In this chapter, we demonstrate a game-theoretic defense

system against such an attacker.

The attacker under consideration is assumed to be able to carry out four

different types of attacks namely SYN-Flood, Smurf, Dictionary and Portscan

attack. A SYN-Flood is a form of denial-of-service attack in which an attacker

sends a succession of SYN requests to a target’s system. These SYN requests
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lead to half-open connections on the server, thereby using up resources of

the server. A Smurf attack is a type of denial-of-service attack that floods

a target system via spoofed broadcast ping messages. A Dictionary attack

is a technique for defeating a cipher or authentication mechanism by trying

to determine its decryption key or passphrase by searching likely possibilities.

A Portscan attack sends client requests to a range of server port addresses

on a host, with the goal of finding an active port and exploiting a known

vulnerability of that service. A detailed description of these attacks and their

implementation is given in Section 4.3. Each option available to the attacker

has a specific cost and benefit.

The system has specific defenses geared towards defending against each

kind of attack. Like the attacker, the system too has a specific cost and

benefit from each defense. Game theory is used by the system to decide the

exact defense to employ at a given time. The defense mechanisms available to

the system are described in Section 4.4.

Some of the attacks available to the attacker in our consideration have

been around quite a while and hence are not very effective in today’s net-

works. However, we chose these attacks to demonstrate the working of our

system. We can very easily substitute these with more recent attacks (and

their corresponding defenses) without changing the overall structure of the

defense system.

Note that the actions of the attacker described above are various attacks,

in contrast to the game used in Chapter 3 in which the actions of the attacker

were ’intensities’ of a single attack. Since we use a repeated game model, this
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implies that the attack carried out by the attacker may differ from step to

step. In Section 4.5.4 we provide a justification of why such an approach will

be beneficial to an attacker. We also consider a case in which an attacker does

not a play a game i.e. he uniformly carries out a single attack. We prove

in Section 4.5.4 that even in such a case, the defense system can still derive

an optimal payoff by unilaterally using fictitious play. The same argument

holds for the system not playing a game. Thus, in our approach, the strategy

that should be employed a player does not depend upon whether the opponent

actually is playing a game or not.

4.2 Emulation

In contrast to the DDoS attacks used in Chapter 3 which work at the internet

and transport layers, the attacks used in this chapter such as the Dictionary

attacks are carried out at the application layer. Hence, instead of simulating

the network as in Chapter 3, we need to emulate hosts, routers and the inter-

connecting network. Emulating hosts also allows us to use defense techniques

which work at the application level. For the work described in this chapter,

we use Virtual Network User Mode Linux (VNUML) [7, 11].

VNUML is a general-purpose, open-source, scenario-based management

tool designed to help build virtual network testbeds automatically. It enables

the user to define, run, and interact with scenarios made of GNU/Linux vir-

tual machines interconnected through virtual networks running within a single

physical host.
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We used the network shown in Fig. 4.1 for our emulation. Each box in the

figure represents a VNUML virtual machine container running Linux kernel

2.6.28.10. From now onwards, we use the term “System” to refer to the set

of hosts and routers involved in defense against an attacker and the term

“Attacker” to represent the set of hosts and routers carrying out an attack.

As can be seen from the figure, the System consists of a single host. The

services running on the System host are ssh, ftpd and httpd. The ftpd

service running on the system utilizes ftpd bundled with the Linux kernel.

The httpd service uses turbo-http [16] which is a small and fast http server.

The Attacker consists of a host and a router which performs Network Ad-

dress Translation (NAT). Typically, an attacker will use more than one host

to carry out an attack. Since using a large number of hosts for the attacker

was infeasible due to the memory restrictions, we simulated multiple attacking

hosts by using ip-spoofing and NAT. Ip-spoofing was used in scenarios where

a complete TCP connection was not needed. We used Scapy [6] to implement

ip-spoofing. In scenarios where a complete TCP connection was needed, NAT

was used to map a range of ports to eight ip addresses. As a result, even

though just one virtual machine container was used for the Attacker, each

attack could be carried out using eight ip addresses.

4.3 Attack Implementation

In this section, we describe the attacks available to the attacker in our work

and their implementation.
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Figure 4.1: VNUML Network Topology

4.3.1 SYN-Flood

A SYN flood is a form of denial-of-service attack in which an attacker sends

a succession of SYN requests to a target’s system. SYN-Flood attacks are

described in Section 2.1.1.1. Modern operating systems such as Linux can

avoid the SYN-Flood problem by using SYN-Cookies. However, there are

drawbacks of using this approach. The server must reject all TCP options

(such as large windows), because the server discards the SYN queue entry

where that information would otherwise be stored. A connection may also

freeze when the final ACK of the three-way handshake is lost and the client

first awaits data from the server (i.e. client has completed the three-way

handshake, server did not receive the client’s ACK and thus has not actually
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opened the connection). As a result, this option is not enabled by default in

the Linux kernel.

We implemented the SYN-Flood attack in Python using the Scapy [6]

library. Since a full TCP connection is not required to carry out the attack,

the source ip address of the SYN packets were spoofed. Modern networks

typically implement egress filtering whereby ip packets with source ip-address

not contained in the network are dropped. Hence, we limited the spoofed

addresses to the ip addresses within the network available to the Attacker.

We also carry out the attack only against http (80) port.

4.3.2 Smurf

The Smurf attack is a denial-of-service attack that generates significant com-

puter network traffic on a victim network, thereby using up the network band-

width. A description of Smurf attacks is given in Section 2.1.1.2.

Modern-day networks can prevent Smurf attacks through the following two

steps -

1. Configuring hosts and routers not to respond to ping requests.

2. Configuring routers not to forward packets directed to broadcast ad-

dresses.

The above two steps prevent the multiplying effect on echo requests achieved

by the attacker through using broadcast addresses. However, if the attacker

has a sufficient number of hosts under its control, he can still generate a sizable
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amount of ICMP echo-reply traffic without the need for the multiplying effect.

Although such an attack is less effective, it can still cause a nuisance.

We implemented the Smurf attack in Python using Scapy [6]. To circum-

vent the problem of routers configured against this attack, we synthetically

generated ICMP echo-reply packets and directed them towards the victim,

without using a broadcast address.

4.3.3 Dictionary

A dictionary attack used to guess the password for protected resource in order

to gain unauthorized access to a resource. Dictionary attacks successively try

all the words in an exhaustive list called a dictionary which is a pre-arranged

list of values. A description is given in Section 2.1.2.1.

In our work, the Attacker carries out a dictionary attack to guess the root

password for the ftpd service run on the System.

The dictionary attack was implemented in Python using the ftp library.

The dictionary for the attack consisted of all four-letter words in the English

language (including the digits 1-9).

4.3.4 Portscan

As the name suggests, a Portscan attack involves ’scanning’ a range of server

port addresses on a host to find an active port. Once such a port has been

identified, a vulnerability of the service on that port may be exploited. In

our work, we use SYN scanning. A description of SYN-scanning is given in

Section 2.1.3.1.
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The portscan attack in our work was implemented using nmap which is a

free and open source utility for port-scanning.

4.4 Defense Implementation

In this section we describe the actions available to the System in our work and

their implementation.

4.4.1 SYN-Flood Defense

We implement a defense against a SYN-Flood attack using an iptables script.

The script is shown in Algorithm 4.1. In the script, we keep a count of new

connection requests ( SYN packets received ) from each source ip address. If

the rate of requests from any ip address reaches the value of 10 per second, we

immediately blacklist that ip address for 3 minutes. The result of blacklisting

is that all connection requests from that ip address are dropped.

4.4.2 Smurf Defense

We implement a defense against a Smurf attack using an iptables script. The

script is shown in Algorithm 4.2. In the script, we keep a count of number

of ICMP echo-replies received. If the rate of echo-replies received from any ip

address reaches the value of 10 per second, we immediately blacklist that ip

address for 3 minutes. The result of blacklisting is that all ICMP traffic from

that ip address is dropped.
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Algorithm 4.1 Iptables Script for SYN-Flood Defense
# Create synflood chain
iptables -N synflood

# Jump to synflood chain for new connection
iptables -A FORWARD -m state --state NEW -p tcp -m tcp --syn
-j synflood

iptables -A INPUT -m state --state NEW -p tcp -m tcp --syn
-j synflood

# If hitcount is 10, jump to blacklist-addition
iptables -A synflood -m recent --name synflood-suspects
--rcheck --seconds 1 --hitcount 10 -j blacklist-180-add

# Set counter for suspects
iptables -A synflood -m recent --name synflood-suspects
--set -j RETURN

4.4.3 Dictionary Defense

We implement a defense against a Dictionary attack using the authentication

log provided by Linux. Every authentication failure is logged by Linux in a

file auth.log. We monitor this file to keep track of number of authentication

failures from each ip address. If there are more than 5 authentication failures

within 2 minutes from an ip address, then that ip address is blacklisted for 3

minutes. The result of blacklisting is that authentication attempts from that

ip address are not accepted.

4.4.4 Portscan Defense

To detect a portscan attack, we employ two mechanisms.
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Algorithm 4.2 Iptables Script for Smurf Defense
# Create a chain for filtering icmp echo-replies
iptables -N icmp-traffic

iptables -A INPUT -p icmp --icmp-type echo-reply
-j icmp-traffic

iptables -A FORWARD -p icmp --icmp-type echo-reply
-j icmp-traffic

# Create icmpflood chain
iptables -N icmpflood

# Add icmpflood chain to icmp-traffic
iptables -A icmp-traffic -j icmpflood

# If hitcount is 10, jump to blacklist-addition
iptables -A icmpflood -m recent --name icmpflood-suspects
--rcheck --seconds 1 --hitcount 10 -j blacklist-180-add

# Set counter for suspects
iptables -A icmpflood -m recent --name icmpflood-suspects
--set -j RETURN
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First, we make use of Portscan Attack Detector (PSAD) [34]. PSAD is

a collection of three lightweight system daemons written in Perl and C that

are designed to work with the Linux Netfilter firewalling code to detect port

scans and other suspect traffic. In addition, PSAD incorporates many of the

TCP, UDP, and ICMP signatures included in Snort to detect highly suspect

scans for various backdoor programs (e.g. EvilFTP, GirlFriend, SubSeven),

DDoS tools (mstream, shaft), and advanced port scans (SYN, FIN, XMAS)

which are easily leveraged against a machine via nmap. PSAD requires the

iptables/netfilter to log all ip traffic.

We also use a second much simpler mechanism to detect portscan attacks.

Since the Attacker uses nmap SYN scanning on all ports to carry out an attack,

we monitor traffic on an arbitrary port (e.g. port 531). A client typically won’t

send a SYN packet to this port since no service on the system uses this port.

Hence, if SYN packets are being sent to this port, it means that an Attacker

is scanning all ports. This mechanism can thus be used to detect portscans.

Once a portscan has been detected, using iptables we drop all TCP traffic

from the ip address from which the portscan originated.

4.5 Game Formulation

We model the interaction between the Attacker and the System as a two-player

nonzero-sum repeated game. The System and the Attacker know their own

payoff function but not of the adversary and engage in a Fictitious Play (FP)

process as described in Section 2.2.
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Action Description
A1 Portscan Attack
A2 SYN-Flood Attack
A3 Dictionary Attack
A4 Smurf Attack

Table 4.1: Attacker’s Actions

Action Description
S1 Portscan Defense
S2 SYN-Flood Defense
S3 Dictionary Defense
S4 Smurf Defense

Table 4.2: System’s Actions

4.5.1 Action Space

The Attacker has four available actions as shown in Table 4.1. The implemen-

tation of these actions is described in Section 4.3. The System also has four

possible actions as shown in Table 4.2. The implementation of these actions

is described in Section 4.4.

4.5.2 Payoffs

For the Attacker, the payoff from carrying out a certain attack is the algebraic

sum of cost of carrying out an attack and the benefit from a successful attack.
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Uatt = (Batt ∗ I)− Catt (4.1)

where

Batt = Benefit from attack

Catt = Cost of carrying out an attack

I =


1 if attack is successful

0 if attack is unsuccessful

For the System, the payoff as a result of choosing a certain defense is the

algebraic sum of cost of the defense and the damage caused from the attack.

Usys = −Cdef − (Datt ∗ I) (4.2)

where

Cdef = Cost of defense

Datt = Damage caused by attack

I =


1 if attack is successful

0 if attack is unsuccessful

We used the values shown in Table 4.3 and Table 4.4 for Batt, Catt, Datt and

Cdef . These values were assigned by taking into consideration the effectiveness

of and the costs for implementing the attacks and defenses. The payoffs for the

System and the Attacker are shown in Table 4.5 and Table 4.6 respectively. It
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Parameter Batt Catt Datt

Portscan 0.35 0.15 0.15
SYN-Flood 0.5 1.0 1.0
Dictionary 0.4 1.5 1.5

Smurf 0.3 0.5 0.5

Table 4.3: Parameter Values - I

Parameter Cdef

Portscan Defense 0.25
SYN-Flood Defense 0.5
Dictionary Defense 0.5

Smurf Defense 0.3

Table 4.4: Parameter Values

is important to note here that the payoff functions can be changed depending

upon the preferences of the Attacker and the System. If payoff functions are

changed, only the NE solution to the game changes.

4.5.3 Start State

From the payoff functions for the System and the Attacker, we can see that

there is no dominating strategy for either player. Hence, the first action taken

by either player (before any estimate can be made of opponent’s empirical

frequencies) is randomly chosen from all available actions.

System/Attacker A1 A2 A3 A4

S1 -0.25 -1.25 -1.75 -0.75
S2 -0.65 -0.5 -2.0 -1.0
S3 -0.65 -1.5 -0.5 -1.0
S4 -0.45 -1.3 -1.8 -0.3

Table 4.5: System Payoff
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System/Attacker A1 A2 A3 A4

S1 -0.15 0.5 1.1 0.2
S2 0.2 -0.5 1.1 0.2
S3 0.2 0.5 -0.4 0.2
S4 0.2 0.5 1.1 -0.3

Table 4.6: Attacker Payoff

4.5.4 Optimal Strategies

Suppose that as a result of a repeated game process of n steps, the Attacker

plays action aattt at time t and the System plays action asyst at time t. We

define the payoff for a player k, k ∈ {sys, att} as

Qk =

n∑
t=1
U(akt , a−kt )

n
(4.3)

In other words, the payoff for a player is defined to be the average of payoffs

obtained at each step of the repeated game.

By definition, a mixed-strategy NE specifies a mixed strategy for each

player, in such a way that each player’s mixed strategy yields the player at

least as high an expected payoff as any other mixed strategy of the player,

given the mixed strategies of the other players. Hence, by playing a mixed

strategy given by NE, the Attacker can expect atleast as high a payoff as

obtained by playing any other mixed strategy, given the strategy of the System.

Therefore, the Attacker should ideally play a mixed strategy given by NE. As

a consequence, provided that empirical frequencies in a FP process converge

to a NE, the Attacker should employ FP. The same arguments hold for the

System employing FP.
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It is possible that an attacker may not actually engage in playing a game

and may simply carry out one attack uniformly. This is equivalent to the

Attacker choosing to play the same action at each step of a repeated game.

Even in such a case, the System should employ the FP approach to maximize

its payoff. The reason for this is as follows -

Without loss of generality, suppose the Attacker uniformly carries out a

Portscan attack i.e. it plays action A1 at each step of the game. Now suppose

the System follows the FP approach. At time t = 0, System will play a

random action. At time t = 1, empirical frequency observed by the System

will be (1, 0, 0, 0). It will respond with the best response to the observed

empirical frequency. For the payoffs given in Table 4.5, the best response

is System playing action S1. At time t = 1, Attacker will again play A1. At

t = 2, the empirical frequency (without normalization) observed by the System

will be (2, 0, 0, 0). The best response to this is again System playing action

S1. At time t = 2, Attacker will once again play A1. At t = 3, empirical

frequency is (3, 0, 0, 0) and best response is S1. This process will continue

upto infinity. Ignoring the initial random action, the payoff to the System is

(−0.25∗n)/n = −0.25. From Table 4.5, we can see that this is the best payoff

possible for the System when Attacker is playing action A1 and hence, the

strategy adopted by the System is optimal. A similar argument can be made

for the Attacker playing other actions uniformly.

The same logic also applies to the Attacker when the System is not playing

a game. Hence, a FP approach is beneficial to a player irrespective of whether

the other player is actually playing the game.
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4.6 Fictitious Play Simulation

The game-play proceeds via a Fictitious Play (FP) process as described in

Section 2.2. The FP process is simulated in VNUML. As a part of FP sim-

ulation, when a player selects a particular action to take, we actually carry

out that action in VNUML. For example, if the Attacker selects SYN-Flood

as its action, the Attacker host in VNUML carries out a SYN-Flood attack.

Similarly, if the System selects Portscan defense as its action, the System host

in VNUML deploys a Portscan defense. Thus, we demonstrate the working of

the game-theoretic defense-system through the FP simulation in VNUML.

The time step for each action is 180 seconds. We run FP simulation for

two scenarios. In the first scenario, both the System and the Attacker employ

FP and the action chosen at each step is the best response to the observed

empirical frequencies of the opponent. In the second scenario, the System

employs FP but the Attacker uniformly carries out a SYN-Flood attack. The

observations of opponent’s actions and calculation of empirical frequencies is

described in Section 4.6.1 and the results of the simulations are described in

Section 4.6.2.

4.6.1 Empirical Frequency Measurement

In order for Fictitious Play approach to work, each player must be able to

observe the opponent’s action. For the System, observing the action taken

by the Attacker is straight-forward because the location of the attack is the

system. The System can detects the action taken by the Attacker by analyzing
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the authentication and iptables/netfilter logs.

Detecting the action taken by the System is not easy for the Attacker. This

is because the Attacker does not (normally) have access to logs on the system

where the defense action is implemented. Hence, the Attacker has to infer the

action taken by the System based on the “side-effects” of the action.

In our work, the Attacker detects the action taken by the System by using

a “decoy” attack. The decoy attack is a low-intensity attack such that the

cost and the effectiveness of the attack is almost negligible but the intensity is

enough to produce a side-effect of the action taken by the System. Our decoy

attack procedure works as follows -

1. Execute all four actions of the attacker namely Portscan, SYN-Flood (on

port 80), Dictionary and Smurf with a very low intensity.

2. If the action taken by System is -

(a) Portscan Defense - All ports on the System will be filtered.

(b) SYN-Flood - Port 80 (http) will be filtered.

(c) Dictionary - Port 21 (ftp) will be filtered.

(d) Smurf - No port will be filtered.

3. Scan port 21, 80 and some randomly chosen port to detect which of (a),

(b), (c) or (d) is applicable.

4. Infer the action of the System using result of step 3.
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This procedure works because the side-effects of the System’s actions are mu-

tually exclusive. However, if this was not the case, some other technique will

have to be used to detect the action of the System.

4.6.2 Results

The NE solution to the single-shot game, calculated using Gambit [24], is

• System - (0.044, 0.315, 0.610, 0.029)

• Attacker - (0.311, 0.297, 0.198, 0.194)

The payoff when both players use NE strategies is

• System : -0.940

• Attacker: 0.185

The empirical frequencies resulting from fictitious play simulation for the first

scenario (both players employ FP) are shown in Fig. 4.2 and Fig. 4.3. The game

was simulated for 105 time steps. From the figures, we can see that empirical

frequencies converge to NE equilibrium strategies. The resultant payoff (as

defined in Eq. 4.3) is −0.986 for the System and 0.184 for the Attacker which

is very close to the NE payoff. The observed deviation from NE payoff can be

attributed to the time taken in FP for convergence of empirical frequencies to

NE.

In the second scenario, the Attacker uniformly carries out a SYN-Flood

attack (i.e. plays action A2) while the System employs FP. The resultant

empirical frequencies for the System are shown in Fig. 4.4. From the figure,
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Figure 4.2: System’s Empirical Frequencies in Scenario-I

Figure 4.3: Attacker’s Empirical Frequencies in Scenario - I

58



Figure 4.4: System’s Empirical Frequencies in Scenario - II

we can see that empirical frequency for action S2 converges to 1 while empirical

frequencies for other actions converge to 0. The resultant payoff for the System

is (ignoring payoff for the first random action) is −0.5, which is the maximum

possible payoff for the System if Attacker plays action A2. The payoff is also

much better than NE-payoff of −0.940. The resultant payoff for the Attacker

is −0.5 which is much worse than NE payoff of 0.184. This shows that it is

always beneficial for a player to engage in FP.
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Chapter 5

Conclusion

In this thesis, we have demonstrated the use of game-theory in devising effec-

tive defense mechanisms against network attacks. We have developed game-

theoretic defenses addressing two scenarios namely DDoS attacks and a com-

bination of SYN-Flood, Smurf, Portscan and Dictionary attacks. We have

modeled attacks and defense-mechanisms as a repeated two-player nonzero

sum game between an attacker and a defense system.

To address the fact that an attacker and a defense-system is not likely to

know objectives and payoff functions of adversaries, we have used a fictitious

play mechanism (classical FP) that allows players to learn their Nash Equi-

librium strategies without necessarily knowing the opponent’s payoff function.

While using FP does not guarantee convergence to Nash Equilibrium, for sev-

eral classes of games, it has been shown that such a FP process will finally

render both players playing their Nash equilibrium strategies. For the game

formulations that we have used, FP process does converge to NE.
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For the scenario in which an attacker carries out a DDoS attack, we mod-

eled the actions of the attacker as intensities or datarates employed in carrying

out the attack. The actions of the defense-system consist of values of parame-

ters involved in a Pushback defense mechanism. Using PRIME SSF, we simu-

lated FP in this scenario. For the simulation we used two network topologies.

The first network used Megabit speed links while the second network used

Gigabit speed links. Since simulating each packet-event in a Gigabit speed

network was computationally very expensive in PRIME SSF, we used a flow-

based simulation for the Gigabit speed network. In the flow-based simulation,

we simulated flow events instead of packet events. For both simulations, FP

resulted in empirical frequencies converging to NE strategies.

For the scenario in which an attacker possesses ability to carry out a number

of different types of attacks, we modeled the actions of the attacker as the

attack options available to him. The actions of the defense-system consisted

of defense-mechanisms available to the system where each mechanism was

geared towards mitigating a particular type of attack. We used VNUML to

emulate hosts and routers running a Linux kernel. The emulated machines

were then used to carry out attacks and deploy defense mechanisms against

attacks. We tested the working of the game-theoretic defense system within

VNUML for two cases - one in which the attacker plays a game and the other

in which the attacker does not play a game but carries out a single attack

uniformly. For both cases, we were able to demonstrate that it is beneficial

for the the defense system to employ FP.

Through the two scenarios, we have successfully demonstrated effectiveness
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of a game-theoretic defense system. Though some of the attacks and defense

mechanisms that we have employed are not very effective by themselves, we

can easily substitute them with more effective mechanisms, without changing

the manner in which game-theory is used to combine these mechanisms.
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