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Abstract

This thesis presents a method of solving a newly posed Second Life Product Family Design problem. This

is unique in that the architecture of the product is not specified to be identical to one of the recaptured

products, rather it is determined through optimization. The problem is framed using Conjoint Analysis

and the Multi Nomial Logit Model, formatted with respect to components available for inclusion in the

final products and then solved using an implementation of Genetic Algorithms. The solution method is also

encapsulated in a software module which can be disseminated to industrial users without a background in

optimization or familiarity with Genetic Algorithms.

A case study is performed to determine the effectiveness of the proposed solution method, and analyze

the influences different market conditions and component similarities can have on the optimal design. It is

concluded that the proposed method converges to an optimal Second Life Product Family Design.
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Chapter 1

Introduction

Due to the ever-expanding focus on the human interaction with the environment, extra attention is being

paid to what happens to products and materials after their typical consumer lifetime has expired. There

are clear environmental and economic gains to be captured by recycling and reusing raw materials [11].

Aluminum, for example, can be recycled and reprocessed for 12 to 20 times less energy than mining bauxite

and smelting raw aluminum [17]. These economic and environmental returns have long been known with

regards to raw materials, and now companies are applying the same mentality and methodology to the

recycling and remanufacture of consumer goods.

Remanufacturing involves the reuse of not only the raw materials, but also the value-added aspects that

make the product valuable to the consumer. For example, a computer that is returned to a remanufacturing

center might have it’s motherboard taken out and used in the production of a refurbished product(given

that the motherboard is functioning properly, of course). This process allows the capture of additional value

that the recycling of materials alone would miss.

Today there exist companies who do just that; collect products at the end of their useful life, disassem-

ble them into their individual components, and reassemble the working components to produce a product

with value for sale to the refurbished market. One such example is Recellular. They are able to capture

approximately 75,000 used cellular phones weekly, diverting them from the waste stream and utilizing the

remaining value to produce a profit for the company [19].

The typical mode of business for remanufacturing operations such as Recellular is to disassemble the

collected product, analyze and test the components for functionality, and recombine working components to

make refurbished products that exactly resemble the returned product. By producing a product identical

to the uptake product, the remanufacturer ensures that there is demand in the marketplace for the output

product. This process is illustrated for the computer remanufacturing case in Figure 1.1.

In this work, we propose a method to optimally design a Second Life Product Family. This would allow

the remanufacturer to forgo merely recreating the design of the recaptured product, and instead obtain the

maximum amount of profit from their given recaptured inventory. The process is shown in Figure 1.2. There
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Figure 1.1: Overview of Current Remanufacturing Process

Figure 1.2: Overview of Proposed Remanufacturing Process
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has been little work in the field of Second Life Product Family Design. In pursuing a novel optimal design

for the second life product, the need arises for additional considerations about component compatibility.

The remanufacturer must ensure that the components used in their product will function properly with

one another, as the components could have originated in different host products. Component compatibility

with regards to Second Life Product Design is also addressed in this work. In addition to the compatibility

consideration, the proposed problem has no gradient information available for the solver. This leads to the

implementation of Genetic Algorithm as the necessary solver for the problem.

This thesis will be organized as follows: First we will review the state of the art in Remanufacturing

Design, and where research is concentrated in the remanufacturing process. We will focus on ways utility is

measured with regard to products and components, and show that the Multi-Nomial Logit Model is ideal

for Second Life Product Design. Next, the Second Life Product Family Design problem will be formulated,

addressing the multiple product case and its affect on problem structure. After formulation and explanation

of the problem, we will present an architecture of the problem whereby Genetic Algorithms can be uti-

lized to streamline the problem implementation and sidestep issues regarding the Mixed Integer Non-Linear

Programming (MINLP) implementation of the problem.

1.1 Contributions

The contributions of this work are twofold. First, the Second Life Product Design problem is described and

is shown to have a representation whereby component utility can be considered independent of final product

design, allowing for a description of product utility dependent on a linear combination of component utilities.

This allows for the Second Life Product Design problem to be addressed. Prior to this work, the primary

focus of decision making involved selection among the set of recaptured products. This inherently limits the

design space to very few of the possibilities. This work expands the space to include all combinations of

components, subject to compatibility restrictions.

A case study is performed, and the results are analyzed and shown to provide insight into the selection

of included components and the relationship between selected components and the market preferences. The

second deliverable is a solution platform, which is published to allow industry users a convenient interface

to solve real-life Second Life Product Family Design problems, optimizing their company’s profit.

Now a synopsis of the current research focuses in Remanufacturing Optimization will be described, and

this problem will be found to fit in a niche that has not yet been investigated. The methods of data gathering

and expression will also be discussed to provide a sound base on which to build the optimization procedure.
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Chapter 2

Literature Review

In this section we will address the current state of art with regards to optimization in the remanufacturing

context. We will discuss methods of product and component evaluation, such as Conjoint analysis and

Discrete Choice Models, and will look at various methods in use to determine market share. We will then

address methods for compatibility capture.

2.1 Optimization in Remanufacturing

Much work has been done in addressing the process requirements of the remanufacturing system. The

production systems have been analyzed and designed in the context of remanufactured products [22, 23].

An essential component of remanufacturing is the collection of used parts, so recapture methodologies and

models have been developed with regard to the reverse supply chain[9][20]. Optimal system design has also

been performed from many perspectives to construct an optimal recovery network[25][10]. In addition to

recovery network design, the inventory system impact has been a large focus in remanufacturing systems, as

the inflow of used products is not under the direct control of the remanufacturer. This novelty is a problem

not faced by typical manufacturing organizations, and thus robust inventory control systems are needed to

balance the purchase of spare products with the recapture of used parts[12].

In addition to the remanufacturing supply chain and process analysis, there has been work done in the

area of new product design for remanufacturability[26][5]. In this area, ease of disassembly and associated

influences on the recaptured value are included in the initial product design in order to make the entire

life-cycle more profitable or reduce environmental impact. However, the design process of the Second Life

Product is distinct from the work that has been done, and has not been considered as an independent

problem given a fixed set of recovered components. The description and solution of such a problem is the

focus of this work.
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2.2 Component Utility Calculation and Demand Expression

One of the contributions of this work is to develop a problem formulation which will search the entire space

of possible product architectures to design the Second Life Product Family. In order to search this whole

space, an expression of demand had to be used which was dependent on the component-level contributions.

This is necessary because we are no longer only considering the performance of products already released to

the market, where actual data can be recorded to describe demand of the product whole.

Typical methods of describing market share which were considered are the Discrete Choice Model and

Conjoint Analysis[8]. Though some work has been done with the Discrete Choice Model in the remanufac-

turing space [24], Conjoint Analysis is found to be most suited to design problems, due to the ability to

analyze the utility from the attribute level without extensive data collection[3]. Also advantageous is the

ability to model information regarding product configurations not currently in the marketplace[16].

In addition to the measurement of utility, this problem involves the utility’s effect on market size. The

Multi Nomial Logit Model is a common framework from which market share can be computed based on the

utilities of products available in the market[24]. This MNL model requires an assumption of Independence of

Irrelevant Alternatives(IIA). IIA implies that, given the removal of one option from the market, all remaining

choices would be impacted (ie no two choices are equal, commonly expressed by the Blue Bus vs. Red Bus

example[15]). IIA will be assumed to hold, though in actual remanufacturing examples, this would need to

be determined on a case by case basis.

2.3 Compatibility in Second Life Products

Because the Second Life Product Family Design problem has not been addressed as a component-based design

previously, there is no work entailing compatibility in this specific area. However, the concept of compatibility

is translatable from the new product design problem. Some areas where this has been considered are in

optimal component sharing and security design for new products [1][2]. In the component sharing area,

compatibility was analyzed to determine if modules could be formed to facilitate cross-product utilization,

and thus savings to the company.

Now that the current research landscape has been defined and the tools necessary for the data analysis

have been presented, the form of the Second Life Product Family design problem will be discussed, followed

by a case study implementing the new framework.
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Chapter 3

Optimal Design of a Second Life
Product Family

Now that the basis for the Logit Models, Compatibility, and Compatibility is understood, we attempt to

combine these three tools to accurately and completely design an optimal family of products in the context

of a remanufacturing company. To do so, it must be determined which components to include in the given

products in order to maximize company profit, as well as determine the quantity of each to produce and

what price to sell them at in the marketplace. A complete description of the problem with constraints and

assumptions follows.

3.1 Problem Framework

The Second Life Product Family Design Problem is intended to set out an optimal product family design

based on 1) the remanufacturing company’s current inventory of components and 2) the current marketplace.

The inventory of the company is easily determined and is assumed to be given, but the dynamics of the

marketplace into which the remanufactured product will be sold presents a challenge. This formulation of

this problem was first proposed by Minjung Kwak in [14], but was never worked to a solution. We will

now present the problem, and discuss how it captures the market dynamics as well as the impact a given

component has on the final product offering. The parameters and variables needed are as follows:

• Xi : Quantity of Product i to Produce

• Pi : Price at which Product i is sold

• yijk : Indicator to include Part j, Variant k in Product i

• Qjk : Quantity of Part j, Variant k collected by remanufacturer

• csjk : Unit Cost of Spare Part j, Variant k

• rjk : Unit Revenue from Selling Part j, Variant k

• cp : Cost of Reprocessing/Cleaning/Assembling one Unit of Product

6



• W c
jk : Utility of Part j, Variant k

• M : Market Size in Units

• Ul : Utility of Competitor Product l

• T : Binary Compatibility Matrix

• β : Scaling Parameter of Conditional Multi Nomial Logit Choice Rule

• ρ : Discount Factor for Used Product

• W p : Weight of Price in Utility Function

7



3.2 Mathematical Formulation

The mathematical expression of the Second Life Product Family Design problem[14] is as follows:

Max Profit =
∑
i

(Xi ∗ Pi) +

[
Qjk −

∑
i

(Xi ∗ yijk) + Zjk

]
∗ rjk − Zjk ∗ Cs

jk − Cp ∗
∑
i

(Xi) (3.1)

Subject to:

Xi ≤ Di ∀i (3.2)∑
k yijk = 1∀i, ∀j (3.3)

(yijk)′ ∗ T ∗ yijk = 0 ∀i (3.4)

yijk is binary (3.5)

Xi ≥ 0 ∀i (3.6)

Pi ≥ 0 ∀i (3.7)

Pi ≤ Pmax (3.8)

Where:

Di = M ∗
[

eUi∑
i e

Ui+
∑

l e
Ul

]
∀i (3.9)

Zjk = max ([
∑

i(Xi ∗ yijk)−Qij ] , 0) ∀j, ∀k (3.10)

Ui =
[∑

j

(∑
k(W c

jk ∗ yijk)
)

+WP ∗
(

Pmax−Pi

Pmax

)]
∗ β ∗ ρ ∀i (3.11)

i = Product Index j = Component Type Index k = Component V ariant Index

Under Assumptions:

csjk > rjk ∀j, ∀k (3.12)∑
k yijk ≤ 1 ∀i, ∀j (3.13)

8



3.2.1 Objective

As is shown in the framework in Equation 3.1, the objective of the problem is to maximize the profit of a

remanufacturing company. This objective function consists of four main elements. These are:

1. The sale of finished products

2. The sale of excess components to the marketplace

3. The cost of purchasing the necessary spare components

4. The cost of testing/cleaning/assemblying the finished products

The calculation of the revenue from the finished products is straightforward, simply using
∑

i(Xi ∗ Pi),

we are able to multiply the number of products sold (Xi) by the Price (Pi), and sum over all product

offerings i. The computation of the sale of excess components is somewhat more complex. Here we use

[Qjk −
∑

i(Xi ∗ yijk) + Zjk] ∗ rjk, where Qjk is the number of recaptured components of each Type and

Variant,
∑

i(Xi ∗yijk) removes the components used in the production of the Second Life Products, and Zjk

is a vector defined as the Spare Parts Needed, as seen in Equation 3.10. By subtracting the components

used while adding the Spare Parts Needed, we avoid having a negative quantity, which makes sense in that

we can only sell as many parts as we collect less the parts we use, and no more. However, it is possible to

use more parts than are collected by purchasing spares, which is captured by Zjk. Once we have determined

the total quantity of extra components (Qjk −
∑

i(Xi ∗ yijk) +Zjk), we then multiply by rjk, the price they

can fetch in the marketplace, to yield the total revenue from sale of excess components.

The remainder of the objective function are the costs, namely the cost to purchase spare components and

the unit cost of testing, cleaning, and assembly. The spare cost is defined by Zjk ∗ Cs
jk, with Zjk denoting

the quantity of Part j Variant k needed to complete the specified quantity of products, while Cs
jk is the

price at which the components can be purchased from the marketplace. The form of Zjk will be described

in Section 3.2.3. The unit production cost is captured in Cp ∗
∑

i(Xi), with Cp being the unit cost scalar.

3.2.2 Constraints

Now that the objective is defined, we will examine the constraints. The first constraint (Equation 3.2)

restricts the Quantity of remanufactured product to be less than the Demand for that product. Demand is

defined in Equation 3.9, and will be discussed further shortly. The second constraint (Equation 3.3) restricts

the inclusion of one and only one of each Type j of component. This is done by allowing yijk to take values

of 1 or 0, with 1 denoting inclusion of component Type j, Variant k in Product i. This is essential to ensure

9



that each product designed includes all necessary components, and also does not have duplicity of any given

component. This constraint is important to note and will present other issues related to solving the problem

later.

The constraint in Equation 3.4 restricts the product to using only components compatible with each

other. T is defined as a binary matrix, with both the rows and column indices corresponding to individual

components. Elements in T which correspond to compatible components are given a value of 0, while

elements corresponding to an intersection of incompatible components are assigned a value of 1. In both

T and yijk, the elements must be organized by Type (j ) and Variant (k) in the same order. In this way,

the matrix T can be pre-multiplied by vector y′ijk and post-multiplied by yijk, and the result describes the

number of incompatibilities in the product. Clearly, the number of incompatibilities must be restricted to

be 0 in order to have a functional product.

The remainder of the constraints simply limit the range of the variables. Equation 3.5 restricts yijk to

be binary. Equation 3.6 ensures that a non-negative number of products are produced, and Equations 3.7

and 3.8 ensure that the selling price of the Second Life products is non-negative and also below the critical

price(Pmax).

3.2.3 Definitions

Now to tackle the definitions of Di, Zjk, and Ui. Equation 3.9 shows the expression of demand for Product

i (Di). The demand is found by multiplying the total market size in units, represented by M , by the ratio

of the exponential of utility of Product i relative to the total utility available in the marketplace, again in

exponential form, described by
∑

i e
Ui +

∑
l e

Ul . This is the implementation of the Multi Nomial Logit model.

In this expression, Ui represents the utility of product i offered by the remanufacturer and Ul represents the

utility offered by competitor product l, where all competitor products are included in the set of l.

Zjk is the description of the quantity of spare components needed to produce all i finished Prod-

ucts. Shown in Equation 3.10, the spares needed are determined by multiplying the quantity of Product i

remanufactured(Qi) by the inclusion parameter(yijk). The quantity available(Qjk) is then subtracted from

this value to compute a vector which holds the difference between quantity on hand and quantity needed.

However, elements can be negative if the quantity on hand is larger than the quantity needed. Clearly,

to use the spare vector, these values must be represented by zeros. Hence, the maximum between the

aforementioned difference and 0 is taken to be the definition of Zjk.

The final definition needed is that of Ui, which represents the utility of Product i. The calculation of

the product utility is dependent on the components included and their respective contributions to customer
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Table 3.1: Component Attribute Example

Attribute Level Utility from Speed Utility from Range
1 0.0 0.1
2 0.25 0.2
3 0.35 0.3
4 0.4 0.4

utility, as well as the utility available to the customer from having the opportunity to purchase the product

below their critical price. The utility garnered from the components included in the Second Life product is

characterized by
∑

k(W c
jk ∗yijk), with W c

jk representing the contribution of the component of Type j, Variant

k. This form comes directly from Conjoint Analysis[8]. As in the calculation of the spare components, yijk is

used as a multiplier to remove the effect of components not included in the product. The utility contribution

of price level is then added to the components’ influence through the term WP ∗
(

Pmax−Pi

Pmax

)
. Here, the WP

coefficient is a weight parameter to balance the contributions of components and price, while Pi is the price

at which the Product i will be sold and Pmax is the critical price for the product.

To illustrate the calculation of product utility using the Conjoint Analysis framework, a brief example

will be given. If a given electronics component is described using the range and speed, as in a wireless

communications card, the Conjoint Analysis would be performed with regard to both range and speed as

independent attributes. The attributes are assumed to not be correlated. Table 3.1 gives a sample table with

utility values assigned to various attribute levels. If Component A has a Speed of rank two and a Range of

rank three, its utility contribution would be 0.25 + 0.3 = 0.55.

Thus we see how the results of Conjoint Analysis, which defines the attribute utilities, can be used to

determine component utilities. Using this formulation with the Multi-Nomial Logit model, the share of the

total market can then be determined, and thus the upper limit on the number of units to be sold. Again, if

further clarification on the use of Conjoint Analysis is necessary, please refer to [8].

3.2.4 Assumptions

In order to properly frame the problem, some assumptions are necessary. These are listed at the bottom of

the Mathematical Formulation, and will be discussed here. The first necessary assumption is Equation 3.12,

which states that the cost of purchasing a spare part (csjk) must be greater than the price at which that part

can be sold to the market (rjk). This assumption follows logically from market dynamics, and if it were not

to hold, the maximal profit model would include purchasing parts at a given cost and selling those parts at a

higher cost. Though a valid business model, this is not the purpose of the remanufacturer. Thus we restrict
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the price and cost of components as shown in Equation 3.12.

Another necessary assumption is that found in Equation 3.13. This constraint maintains that there is

not more than one component of a given Type j included in Product i. It is evident that this assumption is

also in play in Equation 3.3, where a Product is restricted to have one and only one of a given component

Type. This assumption relates to the architecture of the final product, and is made for simplicity’s sake.

Though it is possible that the inclusion of more than one of a given component type can be advantageous

(as in the case of computer hard drives), this case will be left for future work. This assumption will become

extremely significant once the problem is reworked for implementation by Genetic Algorithm in Section 3.4.

3.3 Difficulties with Traditional Solvers

In this section we briefly describe the attributes of the Second Life Product Family Design Problem, and

discuss obstacles to methods of obtaining a solution. First, it is important to point out the characteristics

of the Second Life Product Family Design problem. It is apparent from the Section 3.2 that we have three

categories of variables. The first is the quantity produced of a given product, represented by Qi. The second

is the price at which a product is sold, given by Pi. The third is the inclusion vector, yijk, which is a binary

set of variables with the same number of elements as distinct components that exist in the inventory. All

three of these variables scale with the number of products offered. Though the first two scale at a one to one

rate with respect to i, the third scales as the product of i and the number of possible components. Though

not exponential, this high degree of linear scaling poses a problem for solvers, as combinatorial solvers must

then deal with exponentially increasing solution spaces.

It is also difficult to implement a relaxation technique that will work for these inclusion-determining

variables. This is because the variables are not ordinal, but rather reference utility, purchase price, and

selling price values that are component dependent, and , aside from the utility values, have no discernable

relation to other components. Due to this fact, a non-heuristic solution algorithm would have no gradient

related information to guide the search process, thus requiring some sort of combinatorial search method.

With variables of degree two and upwards of 300 variables possible in a moderately sized problem (three

products with 100 possible components) yielding on the order of 1090 combinations, the combinatorial method

quickly gets out of hand. Even assuming that Equation 3.3, the constraint requiring one and only one of

each component type to be included, is met a priori, given ten component types with ten variants each, the

search space still contains 10 billion possible combinations.

This is a case where heuristic algorithms can be put to good use. Genetic Algorithms seem particularly
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suited for this problem, as the structure required for GA implementation will capture some of the constraints,

and allow fewer calculations to be performed by the solver. This synergy will be further explained in Section

3.4.

In addition to the difficulty to traditional solvers arising from the variables and the inability to relax

them, there is also a combinatorial-based constraint, namely the compatibility constraint. Again, relaxation

of the yijk variables will not be helpful in determining an appropriate search direction with regards to the

constraint satisfaction.

3.4 Formulation for Genetic Algorithms

As was illustrated in the previous section, this problem is inherently difficult for traditional solvers to handle.

As such, we formulate it for use with a Genetic Algorithm, and thus avoid searching the entire combinatorial

space and also capture some synergy between the GA format and the problem formulation itself.

Genetic Algorithms are based on implementation of a chromosome to represent variables in the problem[7].

It is this representation of the problem variables that we are able to exploit. Through definition of the

chromosome, and specifying that each component type is represented by a single integer variable, we are

able to avoid computing the constraint in Equation 3.3. This is because every integer value necessarily

corresponds to one and only one Variant of a given Type. Through this careful implementation of the

chromosome, we are able to avoid the yijk variables all together, and thus shrink the size of the problem

significantly. Instead of the problem including all
∑

j(max(k)) binary indicator variables and j additional

constraints, we capture the same information and restrictions by the use of j integer variables. The format

of the Second Life Product Design chromosome is shown in Figure 3.1. The values in positions one and

two are Quantity produced and Price, respectively. These are continuous variables with the upper limits

specified by Market Size (M) and Critical Price (Pmax). The remainder of the chromosome is composed of

integer variables corresponding to a specific component. The format in Figure 3.1 shows the implementation

of Cj
k, where the third term in the chromosome is the integer value representing the variant included of the

first component type. The fourth term is an integer representing the second Type of component, and so on

through all j Types. Through use of this format, the j index is stored in the location of Cj
k, and the value at

that location is left to represent the index k. Again, it should be noted that because the location stores the

value of j, there can only be a single component variant chosen for a given j, thus capturing the constraint

expressed in Equation 3.3.

Of course, the same implementation could be done without the use of GA, by representing the component
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Figure 3.1: Chromosome for Single Product GA Implementation and Conversion to Multi-Product

indices using integer variables instead of sets of binary inclusion variables, but traditional solvers are still left

(in our 10 Types with 10 Variants example) with 10 billion combinations of components. Relaxation of these

variables still poses the same challenge as that of yijk, because the integer value has no bearing on the sell

price, quantity captured, or purchase price associated with the component. Thus no gradient information,

even through use of a relaxation scheme, is available to the solver.

Figure 3.1 also shows the expansion of the problem to include cases where multiple product architectures

are produced, and so i > 1. The simplest case, i = 2, is shown, but the same principals apply to the i = n

product case. First the Qi are listed in order of i, followed by Pi, again in order of i. After all quantities

and prices are listed, the component indices are listed in the same fashion as the single product case, but

grouped by product index i, again in ascending order of i. Other orderings of the chromosome could also be

chosen without negatively impacting the outcome of the GA, but this grouping was chosen to facilitate the

lookup code that must be used in the calculation of the objective and constraints in the produced software,

which is described in the following section.
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Figure 3.2: Software Architecture for Remanufacturing Second Life Product Family Design

3.5 Software Implementation

The second deliverable of this thesis, aside from the methodology to solve the Second Life Product Family

Design problem, is the creation of a software program to make the developments in methodology accessible

to industry. This involves creating a program to encapsulate the Genetic Algorithm; allowing us to automate

the formulation of the chromosome, the objective function, and the constraint expressions. This program

requires no working knowledge of GA to operate, with user input restricted to utility calculation parameters

and two input matrices. The user is then able to run the optimization, and the output prices, quantities, and

components are given in vector form. This will allow dissemination of this work to actual remanufacturers,

enabling them to more efficiently produce value from their inputs, and hopefully increase the profitability

(and thus induce growth) of the remanufacturing sector.
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Figure 3.3: Control File for Input to GA Toolbox in MATLAB

3.5.1 Input Handling

The architecture of the provided software is shown in Figure 3.2. In the Figure, there are two types of input

the user must provide, namely the .csv inputs required in the first block and the parameter inputs required

in the MATLAB GUI. Once these inputs are made and the program is instructed to run, it calls a file named

’MyGAFile’, which takes the user inputs, properly defines the chromosome, and then loads and validates

the user .csv files. Once these steps are performed, a control file is written to feed to the GA toolbox. This

toolbox, labeled ’GAtbxm’, was produced in the IllIGAL lab at the University of Illinois[21]. The control file

is what passes information to the GA toolbox, such as the size of the chromosome, the type and limits on the

elements of the chromosome, the operators used during execution of the Genetic Algorithm, the direction of

the objective, as well as where to find the evaluation of the objective and constraints. A sample control file is

shown in Figure 3.3. The GA toolbox is where the optimization itself is performed, with the typical Genetic

Algorithm operators of crossover and mutation controlling the evolution of the population. In this software,

a penalty structure is used to compute constraint violation, where all constraints are equally weighted.
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Table 3.2: Fixed and Adjustable Elements

Fixed Elements Elements Determined by User Input
Number of Objectives Number of Decision Variables

Objective Type Type of Decision Variables
90% Replacement Rate Upper Limits on Decision Variables
Weight of Constraints Number of Constraints

No Niching Population Size
Tournament Selection (WOR) Number of Generations

Crossover Rate
Polynomial Mutation Rate

No Scaling
Tournament Constraint Handling

No Local Search
Stop after Maximum Number of Generations

Start with a Random Population

As is evidenced in Figure 3.3, there are many specifications needed to use the GA Toolbox. Some of

these are fixed for all user inputs, and some are dependent on the user specified parameters. The breakdown

between elements fixed for any user input and those dependent on problem size and other inputs is shown in

Table 3.2. It should be noted that the general form and function of the GA solver remains the same for any

problem size input by the user. However, the definition of the chromosome is a function of the number of

component Types and Variants available as well as the number of products, and the number of constraints

needed in the problem is determined by the number of Products the user would like to have in the product

family.

Population Size and Number of Generations are the only parameters relating to the GA solver that the

user has direct control over, and this is simply to facilitate a change from initial testing of the problem,

in which fewer calculations are necessary, to computation of a solution, where convergence of the solution

would be required. To gain a deeper understanding of what the various settings mean (Tournament Selection

without replacement 2, for example) and the complete list of available options for use in the GA Toolbox,

please refer to [21].

After the user inputs have been uploaded and the control file written, it is then passed to the GA Toolbox,

which generates the population of individuals and controls the evolution of the population according to the

rules selected in the control file. Each individual is assigned an associated objective function value and

constraint violations, which impact the probability that it will be able to pass it’s information on to the next

generation. This computation of Objective and Constraints is left to an additional file, ’sgaFitnessFunction’.

Once the program has met the termination criteria, which in this case is a specified number of generations,

it is terminated and the best individual is returned to the user via the ’GAresult’ file.
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3.5.2 Objective and Constraint Calculation

Let’s take a closer look at the calculation of the Objective and Constraints and see how this is performed.

’sgaFitnessFunction’ takes as its input the individual’s chromosome provided by the GA Toolbox, and uses

the Quantity, Price, and Component information to determine the associated Profit, as well as any incom-

patibilities that exist in the product. This is done by using the component indexes given in the chromosome

to refer to the input matrix given by the user. The associated utility, sale price, and purchase price can then

be used in calculation of the profit, as explained in Section 3.4.

After Objective calculation is complete, the same component indices are used to reference another matrix,

the Compatibility matrix provided by the user. The intersection of all the components used in the product

are checked to ensure values of 1 in the Compatibility matrix, meaning that the components will function with

each other. If a 0 is found in the intersection of two components used in the same product, a compatibility

counter is incremented. There is no numerical justification for the choice of value to assign to ’compatible’

or ’incompatible’, as the code simply searches for a match to a specific value in the Compatibility Matrix.

After all component combinations that exist in the given product are checked, the value of the compatibility

counter is equal to the number of incompatibilities in the product. This value is then multiplied by a weight

factor to increase the impact of compatibility to the same magnitude as the demand constraint.

It is clear from Figure 3.4 that the Compatibility matrix will be symmetric about the diagonal. This is

analogous to the symmetric property of equality, in that if Component A is compatible with Component B,

then Component B must necessarily be compatible with Component A. It is also evident that a component

does not have to be checked for compatibility against itself, which is represented by the shaded area in

the Figure. These conditions lead to the conclusion that it is only necessary to check the upper triangular

portion of the Compatibility matrix, less the block diagonal(as the components here are all of the same

Type). After the Objective and Constraint values have been determined, the results are returned to the GA

Toolbox, where they influence the next generation of individuals.

The distinct advantage of this software implementation of the problem is that it automatically constructs

the necessary GA definitions based on user inputs, such as the structure of the chromosome and evaluation

of the objective function and constraints. This allows industry users unfamiliar with GA to reap the benefits

of optimal design in the Second Life Product Family Design space.

In the following chapter this software will be used to determine an optimal product architecture for

a remanufacturing example. The problem formulation that was described previously will be used, and

conclusions drawn to demonstrate the effectiveness of the software and the reliability of the solutions found.
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Figure 3.4: Sample Compatibility Matrix
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Chapter 4

Second Life Produce Family Design
Example - Computer Remanufacture

Now that the formulation of the problem and the adaptation to the Genetic Algorithm solution method have

been proposed, we will use a case study to demonstrate the effectiveness of the solution method, as well as

the software program. This case study will address a typical remanufacturing example, that of a computer

remanufacturer. The remanufacturing company will be assumed to collect products composed of 41 distinct

components of 9 differing Types. The case study will begin with the determination of utility values via

conjoint analysis for all component Types and Variants. These values will then be combined with the Selling

and Purchase prices for all components, as well as the Quantities obtained, and designated the Input Table.

Compatibility must also be captured, as explained in Section 2.3, in what will be termed the Compatibility

Matrix.

The objective of the case study will be to determine the optimal combination of components to include

in a final product, as well as the price at which to sell the product and the quantity of products to produce.

Variation in the solution values will be examined, and conclusions drawn relating the importance of compo-

nent utility to the optimal product architecture. The multiple product case will also be considered, and it’s

affects on the resulting profit analyzed.

4.1 Necessary Assumptions

In this case study, we begin with an assumption of the number of components recovered from the marketplace.

This is done by assuming a given number of returned computers of each generation, then describing each

generation with both Budget and High value products. This produces eight distinct products that have been

recovered. Each of these eight products is then described in terms of included components. See Table A.1 in

the Appendix for further information regarding product architecture. We will assume 500 units collected of

the oldest and newest generations, and a higher quantity of the two middle generations of returned product,

with 750 of each being recaptured. This is logical, as there are likely fewer old units in circulation due to

previous failure or disposal, and there are likely less newer units being returned, because these still provide
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Table 4.1: Attribute Definitions and Levels

Component Type Attribute Attribute Level

Processor 1) Speed 1) 1GHz(1.0), 2GHz(1.1), 3GHz(1.2)
2) Brand 2) Celeron(2.0), Pentium(2.1), Core2(2.2), Corei(2.3)
3) Socket type 3) Socket I(3.0), Socket II(3.1)
4) Power Consumption 4) 80-140W

Motherboard 1) Socket type for Processor 1) Socket I, Socket II
2) Memory type 2) DDR, DDR2
3) Graphic card type 3) Type I, Type II
4) Hard drive connection type 4) Parallel ATA, Serial ATA
5) Power Consumption 5) 50-150W

Hard Drive 1) Size 1) 80GB(1.0), 160GB(1.1), 250GB(1.2), 320GB(1.3), 500GB(1.4)
2) Connection type 2) Parallel ATA, Serial ATA
3) Power consumption 3) 15-30W

Memory 1) Memory size 1) 256MB(1.0), 512MB(1.1), 1GB(1.2), 2GB(1.3), 3GB(1.4), 4GB(1.5)
2) Technology type 2) DDR, DDR2
3) Power consumption 3) 15W/GB

Video Card 1) Memory size 1) 64MB(1.0), 128MB(1.1), 256MB(1.2), 512MB(1.3), 1GB(1.4)
2) Card type 2) Type I, Type II
3) Power consumption 3) 30-50W

Optical Drive 1) Technology type 1) CR-ROM, DVD-ROM, DVD-burner
2) Power consumption 2) 20-30W

Operating System 1) Version 1) WindowsXP(1.0), WindowsVista(1.1), Windows7(1.2)
Case 1) Power capacity 1) 300W, 400W, 500W

Warranty 1) Warranty period 1) None(1.0), 1yr(1.1), 3yr(1.2)

a high degree of value to the customer.

Once the products are specified, we determine which components are present in each product, and also

determine the probability that the component will be reusable(i.e. not damaged). The result from this first

analysis, which is shown in Table A.1, is then used to provide the End-of-Life Part Assumptions, found

in Table 4.1. In this representation, the identical components among the returned products have been

combined to give the Quantity collected in terms of each specific component. For example, though multiple

returned products use Motherboard 2, all of these motherboards are collected in the same bin, regardless of

which parent it was collected from. The Price of each component was set in accordance with the level of

technology. For this case study, prices were set by the experimenter, based loosely on market data [4], while

maintaining the assumption that newer, faster, or larger component was always more expensive, but in an

actual remanufacturer’s case, this data should be readily available from the suppliers that are being used.

In addition to the quantity and purchase price of each component in inventory, the remanufacturer must

determine the price at which each component can be sold individually (independent of a full product). For

this study, the Sell price was assumed to be half of the purchase price. This value will then be assigned to

rjk, and will be used in the computation of the profit function.
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Table 4.2: Assumptions on Market Preferences

Key attribute Type Critical Ideal Wnew

Processor Brand HIB Celeron Core i 0.057
Processor Speed HIB 1GHz 3GHz 0.074

Memory size HIB 512MB 4GB 0.189
Video Memory HIB 128MB 1GB 0.000
Optical drive HIB CD-ROM DVD-burner 0.189

Hard Drive size HIB 80GB 500GB 0.057
Operating System HIB WindowsXP Windows7 0.107

Warranty HIB None 3yr 0.074
Price ($) LIB High ($500) Low (less than $100) 0.254

4.2 Utility Calculation

Now that the Sell price, Purchase price, and Quantity of the various components have been specified, it must

be determined how much utility each component contributes to the product. This is done through use of

Conjoint Analysis.

As explained in Section 2.2, Conjoint Analysis is a method of analyzing a customer base’s choice prefer-

ences with regard to products available in the marketplace. This is done through strategically formulated

surveys and other sampling techniques, which are designed to allow the data collector to determine the

influence of individual product attributes on the final purchase decision[13]. It is assumed that a potential

industrial user of this method will be able to perform, or obtain, a Conjoint Analysis in their market space.

However, for the case study, the Conjoint Analysis was constructed using artificial data, as this study is

intended as a proof of concept. Table 4.2 shows the results of the Conjoint Analysis, given the assumptions in

the intended market. The relationship among attributes is assumed to be linear, with equal spacing enforced

between attributes. For example, the critical level for Processor Speed is 1GHz, which will be assigned a

utility of 0, while the ideal level is 3GHz, which will receive a utility of 0.057. If there were only one other

Processor Speed level between the critical and ideal levels, it would receive a utility value of 0.057/2 or

0.0285. This would hold for all values of Speed between the critical and ideal levels, not just the 2GHz level.

In this way, we are able to account simply for categorical variables such as Processor Brand. The Type

column denotes whether a higher specification is better(HIB) or a lower specification is better(LIB). From

customer survey information (or in this case, assumptions made by the author) the ranking of the Brands

can be made, and then assigned at equal intervals in a linear fashion between 0 and Wnew. This process

is performed for all attributes, and the resulting attribute level utilities are used to form W c
jk by summing

over the attributes in the given component. Table 4.1 Shows the attribute levels which were used in this

case study. The data used to perform the Conjoint Analysis, such as the Taguchi Orthogonal Array with
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artificially assigned product weights, are attached in the Appendix.

4.3 Inputs and Outputs

Now that all components have been defined, along with their respective sell prices (rjk), purchase prices

(csjk), quantities (Qjk), and utilities (W c
jk), this data must be organized in a manner to be input to our

solver. The format is specific, in order for the software to automatically determine the correct chromosome

representation. Table 4.3 shows the proper organization of our case study data. The first column is designated

as the component Type column, while the second column holds the indices for the Variants. The following

columns store the Utility, Quantity, Purchase Price, and Sell Price, respectively.

It should be noted that there are zeros in Table 4.3. The zeros in the utility column with regard to Case

imply that the customer does not value the choice of case in the decision of which computer to purchase.

Obviously, even though no utility is assigned to the component, the final product must still include a case.

There are also zeros that exist for other components in the quantity column. There are multiple reasons for

this. A zero could be due to the component not being recoverable, such as warranties. A warranty will not

be transferable to a remanufactured product, but the customer still values warranties (shown by the non-zero

utility values), so it must be decided which warranty to offer. In the case of Video Card 1, there is a zero

quantity because the component is new to the market, and no recovered computers contain that component.

However, the remanufacturer could purchase the component as a spare and use it in the production of the

remanufactured product, if the utility it contributed outweighed the spare purchase cost. This decision will

be made automatically by the GA, so the part should be considered as a possible component.

In addition to the component information, we also need to input the Compatibility Matrix. The form

is described in detail in Section 3.4. In Figure 4.1 we see a representation of the compatibilities considered

in this case study. In this instance, it was only necessary to consider four interactions between components,

as all the others are mutually compatible. The compatibility concerns in this specific problem arise from

the interconnection between electronic components, as physical connectors and connection standards have

changed in the course of component development. The actual Compatibility Matrix used in the case study

is shown in Figure 4.2. Note once again that the 1’s represent compatible components and the 0’s indicate

incompatibilities.

Now that the two necessary tables have been formed, the other problem parameters must be specified.

Figure 4.3 shows the Inputs that must be provided by the user. The rest of the parameters and inputs are

either hard-coded or dependent on the user parameters in some way. Please see Section 3.5.1 for a review of
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Table 4.3: Conjoint Analysis - Example Attributes

Part j Variant k Wjk Qjk Zjk rjk
Processor 1 0.03700 450 25 12.5

2 0.09300 450 30 15
3 0.03700 700 30 15
4 0.09300 700 50 25
5 0.05600 700 40 20
6 0.07500 1200 75 37.5
7 0.11200 500 90 45
8 0.13100 0 100 50

Motherboard 1 0.00000 800 35 17.5
2 0.00000 3600 50 25
3 0.00000 0 100 50

Hard Drive 1 0.00000 320 20 10
2 0.01425 320 25 12.5
3 0.01425 600 25 12.5
4 0.02850 1200 28 14
5 0.04275 1000 30 15
6 0.05700 450 35 17.5

Memory 1 0.00000 450 8 4
2 0.00000 1200 10 5
3 0.04725 1500 15 7.5
4 0.09450 1200 25 12.5
5 0.14175 500 50 25
6 0.18900 0 75 37.5

Video Card 1 0.00000 400 20 10
2 0.00000 400 25 12.5
3 0.00000 1300 30 15
4 0.00000 1800 35 17.5
5 0.00000 450 50 25
6 0.00000 0 80 40

Optical Drive 1 0.09450 200 20 10
2 0.18900 2800 25 12.5
3 0.00000 0 15 7.5

Case 1 0.00000 750 35 17.5
2 0.00000 2000 40 20
3 0.00000 1500 45 22.5

OS 1 0.00000 0 10 5
2 0.05350 0 20 10
3 0.10700 0 30 15

Warranty 1 0.00000 0 0 0
2 0.03700 0 15 7.5
3 0.07400 0 50 25
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Figure 4.1: Incompatibilities considered in Case Study
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Part i

Variant j 1 2 3 4 5 6 7 8 1 2 3 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 1 2 3 1 2 3 1 2 3

Processor 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

6 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

8 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Motherboard 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Hard Drive 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Memory 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Video Card 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Optical Drive 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Case 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

OS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Warranty 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Case OS WarrantyProcessor Motherboard Hard Drive Memory Video Card Optical Drive

Figure 4.2: Incompatibilities considered in Case Study
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Figure 4.3: Graphic User Interface for Matlab Inputs

parameter dependence. The values shown in Figure 4.3 are the actual parameters used in this case study.

Table 4.4 shows where the parameters originate from, as well as any assumptions made for the case study

to determine the parameter value.

The first two parameters, Population Size and Number of Generations, are control parameters for GA

implementation. These can be tuned to provide for better performance. A simple plot of the progress of the

solver is shown in Figure 4.4. In this case, our objective and constraints are converged after approximately

fifteen generations, so it is unnecessary to increase the number of generations beyond thirty. In the case of

Table 4.4: Case Study Parameters

Parameter Name Symbol Origin(Assumption)
Population Size - Standard GA Setting
Maximum Number of Generations - Standard GA Setting
Competitor Utility

∑
l e

Ul From Conjoint Analysis
Market Size M (Assumption)
Rho Value ρ Discount for Used Product (Assumption)
Beta Value β Market parameter (Assumption)
Critical Price Pmax From Conjoint Analysis (Assumption)
Price Utility Weight W p From Conjoint Analysis
Unit Production Cost cp (Assumption)
Number of Products i User Decision
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Table 4.5: Competitor Product Attributes

Attribute Competitor 1 Competitor 2 Competitor 3 Competitor 4
Processor speed 2GHz 3GHz 3GHz 1GHz
Processor brand Celeron Pentium Core2 Pentium

Memory size 2GB 3GB 4GB 1GB
Video RAM size 256MB 256MB 512MB 128MB

Optical Drive DVD Burner DVD Burner DVD Burner DVD-ROM
Hard Drive 320GB 500GB 500GB 80GB

Operating System Windows7 Windows7 Windows7 WindowsXP
Warranty 1 1 1 3

Price 300 400 500 250
Condition New New New Used

Table 4.6: Competitor Utilities

Attribute Competitor 1 Competitor 2 Competitor 3 Competitor 4

Processor speed 0.0287 0.0574 0.0574 0.0000
Processor brand 0.0000 0.0246 0.0492 0.0246
Memory size 0.1131 0.1508 0.1885 0.0754
Video RAM size 0.0000 0.0000 0.0000 0.0000
Optical Drive 0.1885 0.1885 0.1885 0.0943
Hard Drive 0.0459 0.0574 0.0574 0.0000
Operating System 0.1066 0.1066 0.1066 0.0000
Warranty 0.0369 0.0369 0.0369 0.0738
Price 0.1270 0.0635 0.0000 0.0000

Utility (Ul) 0.5996 0.6635 0.6844 0.2398
eUl 1.8214 1.9416 1.9826 1.2709

a larger problem, this might not be the case, and so these parameters are left to be editable by the user.

Below the GA parameters in the Graphical User Interface there are two input locations for the names of the

Input Table and Compatibility Matrix, which were explained previously.

The right column begins with the Competitor Utility. In order to calculate this value, it must be

determined what competitors are in the marketplace and what components are used in their products.

To represent an approximate marketplace, we have specified four competitors. The components chosen

to represent each product are shown in Table 4.5. These specific combinations of components have been

constructed so as to represent an entry-level product, a mid-range product, a high-end product , and a used

product, corresponding to Competitors 1-4, respectively. The utility values calculated from these attribute

combinations are shown in Table 4.6. It is the value of
∑

l(e
Ul) which is entered into the ’Competitor Utility’

textbox.

The next user input is the Market Size. This value was assumed to be 10,000 units. The following four
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parameters, Rho Value, Beta Value, Critical Price, and Price Utility Weight, all pertain to the construction of

the Demand function from the MNL model. These values will be identical to those used in the pre-processing

using Conjoint Analysis. The Rho Value is set at 0.5 because the remanufactured product requires a utility

discount relative to the new product. This discount of 0.5 was also used in the calculation of Competitor 4’s

utility, as Competitor 4 is assumed to also be a remanufactured product. The next data entry is the Beta

Value. We will assume β = 1. In an actual marketplace, this β value is likely too low, and it’s effect on the

optimal solution will be discussed in Section 4.4.

The Critical Price must also be entered. Again, this value was used in the Conjoint Analysis, and is

equal to $500. The Price Utility Weight is a result of the Conjoint Analysis, and in this case was found to be

0.245. Lastly, the user is asked to specify how many products will be included in the final Product Family.

Cases of i= {1:5} will be tested.

Once the parameters and .csv names are input to the Graphical User Interface, all thats left for the user

is to click the ’Run Optimization’ button.

To understand exactly the steps that are taken during the solution process, all MATLAB code is included

in the Appendix. A sample calculation would simply reiterate what has been described in Section 3.4, and

take the reader through the code step by step. Thus, it will be left as an exercise for the interested reader.

4.4 Results and Analysis

The data returned from the solver will now be analyzed, first for the single product case, and then for the

multi-product cases. In Table 4.7, the chromosomes of the best individual from five runs of the optimization

procedure are shown, with the objective and constraint values shown to the right of the component indices.

First, we note the objective values. There is some variation in the optimal value, but this is a result of

using a heuristic optimization procedure without a local search method attached[6]. The standard deviation

of these five runs is found to be $6657, which comes to 0.68% of the average value. For a heuristic solver

with no local search, this low standard deviation leads to the conclusion that our solution has essentially

converged.

This conclusion can be supported by Figure 4.4. In this figure, the objective value of the best individual

without constraint violation is plotted against the generation number. As is expected with GA, there are

oscillations during the search procedure, but the algorithm converges and remains constant after approxi-

mately 30 generations. Both plots show results using identical input parameters. The differences are due to

a combination of the random starting population used by the GA, as well as the random operators the GA
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Table 4.7: Case Study Results - Single Product

Run # Q P Component Type Objective Demand Compatibility
∑

Const.
1 2 3 4 5 6 7 8 9 Constraint Constraint

1 1421 499.99 5 2 6 5 5 3 2 1 3 973668.60 0 0 0
2 1439 499.92 3 2 5 4 3 3 3 3 2 975422.96 0 0 0
3 1426 499.99 3 2 2 6 4 2 3 3 3 971646.54 0 0 0
4 1415 499.11 3 2 3 3 5 2 2 3 1 988355.92 0 0 0
5 1433 499.99 3 2 1 3 3 3 2 2 3 980096.85 0 0 0

uses to ’evolve’ the population. Thus no two runs should progress in the same manner. However, both runs

are shown to converge to the same value, indicating convergence to a globally optimal region. This is further

demonstrated in Section A.1 in the Appendix, which includes results from multi-product cases. Again, the

multiple runs are shown to converge to the save value.

Figure 4.4: Objective Values vs. Generation Number - Single Product Case

Now that the we are confident in the results of the objective function, what information can we gather

from the optimal combinations of components? Ideally, the solver would determine the same combination of

components for every solution. However, this is clearly not the case. The only component to remain in all

of the solutions is Component Type 2, Variant 2, which is Motherboard 2. This choice is not driven by the

Variant’s impact on product utility, as the motherboards were rated as non-differentiable by the Conjoint

Analysis. Instead, this is driven by the quantity recaptured, as there are 3600 units of Motherboard 2 in

inventory, compared to 800 and 0 of the other two Variants. The use of Motherboard 2 precludes any spare

purchases, and thus is the lowest cost option for the final product.

In other component types, there are multiple components included in different solutions. There are a
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Table 4.8: Case Study Results - Single Product Variable Limits

Run # Quantity Predicted Demand Limit Price Predicted Price Limit
1 1421 1421 499.99 500
2 1439 1442 499.92 500
3 1426 1442 499.99 500
4 1415 1420 499.11 500
5 1433 1433 499.99 500

multitude of reasons that multiple components could be considered in the near-optimal designs. One is

an inverse relationship between two of the components parameters. For example, with regard to the three

warranties, Warranty 3 has a higher utility value but also costs more to include while Warranty 1 has zero

utility but costs nothing. These trade-offs could lead to the improvement in costs by including Warranty 1

to be offset by the decrease in demand.

In other cases, rather than an obvious choice of Variant to include, there are Variants which are missing

from all of the proposed solutions. This is the case with both the Memory(Component Type 4) and Video

Card (Component Type 5). In neither of these columns does Variant 1 or 2 show up in a solution. This

is due to the compatibility constraint. These variants are not compatible with Motherboard 2, and thus

including them would violate said constraint.

More dominant in the problem are the values for Quantity and Price. Table 4.8 shows both the values

computed by the GA as well as the limits of the constraints with the component combinations from runs one

through five. As is clear in Equation 3.9, the demand limit depends on both the utility of the components and

the price. The price limit is set by the user in the Pmax parameter. In both of these cases, the constraints

are seen to be active. Again, due to the GA, we know that the solution values are not precisely at the local

optimum point, but rather in a globally optimal region [6]. They are sufficiently close to the limits to allow

for us to conclude both of these constraints are indeed active.

The variation in the components can be attributed to the degree of influence the utility values have on

the market share. Recall that the value of β influences the degree to which customers base their purchase

decision on the product utility[3]. With a β of zero, the utility of the product does not impact purchase

decisions, while a β of 1 makes the impact of utility affect the market share, but only minimally. Higher

β values increase the impact of utility further. In an actual marketplace the β will need to be estimated.

During these runs, we were using a default value of β = 1. This value does not allow for much separation

between high and low utility products. If a value of β = 10 were used instead, less variation in components

should be seen. This is confirmed and illustrated in Table 4.9. In this Table, we see a maximum of two

Variants included in the optimal product architecture. This demonstrates that the characteristics of the
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Table 4.9: Case Study Results - Single Product Results with β = 10

Run # Q P Component Type Objective
1 2 3 4 5 6 7 8 9

1 99 426.94 4 2 6 6 6 3 3 3 3 509610
2 91 497.64 7 2 5 4 5 2 3 3 3 512150
3 94 484.76 7 2 5 5 6 3 2 3 3 511870
4 102 452.06 7 2 6 6 6 3 3 3 3 510910
5 83 496.98 4 2 6 6 6 3 3 3 3 511270

variant, namely the utility, become an important factor in the maximization of the profit function.

Also note that the quantity remanufactured decreases drastically, to approximately fourteen times fewer

units . This is due to the effect of our utility discount for a used product. This model discounts half of

the utility for a remanufactured product. Thus, given the greater influence of utility in the market demand

estimation (due to the higher β value), the competitors with new products (Competitors 1, 2, and 3) are

able to capture a much larger portion of the demand, leaving even the optimally designed remanufactured

product with only 1% of the sample market. As is shown here, in an actual Second Life Product Family

Design problem β would need to be known due to it’s influence on market share, and hence the effect of

component utility on optimal product design.

The combination of components included in the solutions presented in Table 4.9 are not similar to any

of the eight architectures that were collected as used products. This clearly illustrates the additional value

that this design process would provide to the remanufacturing company.

Now we address the multi-product design opportunity. Shown in Table 4.10 is a comparison between

average profits using the default values given previously, with β changed to be equal to 10. The zero

product case shown in Table 4.10 results from the sale of all recaptured components with no remanufacturing

occurring. It is clearly visible in this table that additional products in the portfolio provide an incremental

increase in profit. This is likely due to the use of additional inventory to capture additional market share,

but this hypothesis will need to be established in future work.

Missing in this analysis is the additional cost for installing multiple (re)production lines. This would

likely cause the incremental increase in profit from the addition of multiple products to be offset at some

point by the incremental cost associated with the extra line. However, in this simplification, the additional

revenue available from the introduction of a product family rather than a single product is clearly evident.
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Table 4.10: Case Study Results - Multiple Product Results with β = 10

# Products Average Objective over 5 runs($)
0 483925
1 511162
2 533318
3 555110
4 559325
5 566978
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Chapter 5

Conclusions and Future Work

This work has illustrated the development and release of a software tool to aid in decision making with

regard to the Second Life Product Family Design Problem. This problem was presented as a true design

problem, determining the optimal product architecture, price, and quantity to provide the largest profit

to a firm. This differs from typical approach to remanufacturing architecture selection, in that product

architectures are considered that are not available in the current market space. Through careful formulation

of the problem and the targeted use of Genetic Algorithms, the entire feasible space was searched in

the decision process and a globally optimal solution was obtained.

In helping the decision maker to search the entire space defined by the returned components, the

component-based design optimization allows the inclusion of spare parts not obtainable through collec-

tion. In our case study some of these cutting edge components were selected in the optimal product design

(such as Component Type 4, Variant 6, which was 4GB Memory shown in Table 4.9). This could prove to be

particularly advantageous in the electronics markets, where developments in a specific component contribute

significantly to the utility of a product. If the problem were restricted to pre-defined product architectures,

this opportunity for profit improvement would have been missed. Utilization of novel components in

the remanufactured product is a significant contribution of this work.

The optimization procedure can also be performed over a multitude of products, allowing for the design of

a portfolio of remanufactured products that optimizes company profit. This product family analysis considers

interactions between products both in the marketplace and internal to the company, with interaction effects

on inventory and spare part purchases accounted for. As was noted in Table 4.10, there are additional gains

to be made by designing a product family rather than a single remanufactured product. Again, the previous

conclusion about component inclusion in the design can be extended to the multiple product case.
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5.1 Future Work

Though this case study was able to demonstrate the solving of the Second Life Product Family Design

problem, the assumptions placed on the problem due to the artificial development of the market space,

take-back information, and component utility severely hamper efforts to translate the characteristic findings

into heuristics to guide actual remanufacturers in their decision making. One such characteristic is the

relationship between β, which is a market parameter describing utility impact on consumer preferences, and

the variability in the optimal components selected. Further work can be done in this area, using the proposed

solution method and tools to solve current industry problems. Only from such ’real world’ case studies will

the full impact of the proposed solution method be seen. In this context, heuristics could also be developed

to provide general guidelines in the Second Life Product Family Design space.

Further analysis can also be performed on the Product Family Design results, to determine the consistency

of product niches covered. It would be of interest to note if there are heuristics governing the selection of

primary, secondary, and tertiary product architectures, and how the architecture choice changes with the

inclusion of more products in the family.
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Appendix A

Case Study Data

A.1 Convergence Results

Figure A.1: Objective Values vs. Generation Number - Single Product Case - Runs 3 and 4

Figure A.2: Objective Values vs. Generation Number - Two Product Case - Runs 1 and 2
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Figure A.3: Objective Values vs. Generation Number - Two Product Case - Runs 3 and 4

A.2 Data Inputs

Table A.1: Recaptured Product Assumptions

Part Attribute 2003/Budget 2003/High 2006/Budget 2006/High 2007/Budget 2007/High 2008/Budget 2008/High Present/Spare

Num. Units Recaptured 500 500 750 750 750 750 500 500 -

Processor Speed 2GHz 3GHz 2GHz 3GHz 2GHz 2GHz 2GHz 3GHz 3GHz
Brand Celeron Pentium Celeron Pentium Pentium Core2 Core2 Core2 Corei

Socket type I I II II II II II II II
Power consumption 80 100 100 120 100 120 120 140 120
Lambda=0.018 [18] 7 7 4 4 3 3 2 2 -

Qfunctional 441 441 698 698 711 711 482 482 -

Motherboard Socket type I I II II II II II II -
Memory type DDR DDR DDR2 DDR2 DDR2 DDR2 DDR2 DDR2 -
Graphic Card I I II II II II II II -

Hard drive connection type PATA PATA SATA SATA SATA SATA SATA SATA -
Power consumption 75 100 75 125 100 125 125 150 -
Lambda=0.0302 [18] 7 7 4 4 3 3 2 2 -

Qfunctional 405 405 665 665 685 685 471 471 -

Hard drive Size 80GB 160GB 160GB 250GB 250GB 320GB 320GB 500GB -
Connection type PATA PATA SATA SATA SATA SATA SATA SATA -

Power consumption 15 20 20 25 25 30 30 30 -
Lambda=0.0633 [18] 7 7 4 4 3 3 2 2 -

Qfunctional 321 321 582 582 620 620 441 441 -

Memory Memory size 256MB 512MB 512MB 1GB 1GB 2GB 2GB 3GB 4GB
Technology type DDR DDR DDR2 DDR2 DDR2 DDR2 DDR2 DDR2 DDR2

Power consumption 4 8 8 15 15 30 30 45 60
Lambda=0.0147 [18] 7 7 4 4 3 3 2 2 -

Qfunctional 451 451 707 707 718 718 486 486 -

Graphic card Memory 64MB 128MB 128MB 256MB 128MB 256MB 256MB 512MB 1GB
Card type I I II II II II II II II

Power consumption 30 35 35 40 35 40 40 45 50
Lambda=0.039 [18] 7 7 4 4 3 3 2 2 -

Qfunctional 381 381 642 642 667 667 462 462 -

Optical drive Technology type DVD-ROM DVD-burner DVD-burner DVD-burner DVD-burner DVD-burner DVD-burner DVD-burner CD-ROM
Power consumption 20 30 30 30 30 30 30 30 20
Lambda=0.1372 [18] 7 7 4 4 3 3 2 2 -

Qfunctional 191 191 433 433 497 497 380 380 -

Case Power Capacity 300 300 400 400 400 500 500 500 -
Lambda=0.0438 [18] 7 7 4 4 3 3 2 2 -

Qfunctional 368 368 629 629 658 658 458 458 -
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Table A.2: End-of-Life Processor Assumptions

Speed 2GHz 3GHz 2GHz 3GHz 2GHz 2GHz 3GHz 3GHz
Brand Celeron Pentium Celeron Pentium Pentium Core2 Core2 Corei

Socket type I I II II II II II III
Power consumption 80 100 100 120 100 120 140 120

Price 25 30 30 50 40 75 90 100
Utility 0.037 0.093 0.037 0.093 0.056 0.075 0.112 0.131

Quantity 450 450 700 700 700 1200 500 Spare

Table A.3: End-of-Life Motherboard Assumptions

Socket type I II III
Memory type DDR DDR2 DDR2
Graphic Card I II II

Hard drive connection type PATA SATA SATA
Power consumption 100 125 110

Price 35 50 100
Utility - - -

Quantity 800 3600 Spare

Table A.4: End-of-Life Hard Drive Assumptions

Size 80GB 160GB 160GB 250GB 320GB 500GB
Connection type PATA PATA SATA SATA SATA SATA

Power consumption 15 20 20 25 30 30
Price 20 25 25 28 30 35

Utility 0 0.01425 0.01425 0.02850 0.04275 0.057
Quantity 320 320 600 1200 1000 450

Table A.5: End-of-Life Memory Assumptions

Memory Size 256MB 512MB 1GB 2GB 3GB 4GB
Technology type DDR DDR DDR2 DDR2 DDR2 DDR2

Power consumption 4 8 15 30 45 60
Price 8 10 15 25 50 75

Utility X 0 0.04725 0.0945 0.14175 0.189
Quantity 450 1200 1500 1200 500 Spare

Table A.6: End-of-Life Graphics Card Assumptions

Video Memory 64MB 128MB 128MB 256MB 512MB 1GB
Card type I I II II II II

Power consumption 30 35 35 40 45 50
Price 20 25 30 35 50 80

Utility X 0 0 0 0 0
Quantity 400 400 1300 1800 450 Spare
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Table A.7: End-of-Life Optical Drive Assumptions

Technology type DVD-ROM DVD-burner CD-ROM
Power consumption 20 30 20

Price 20 25 15
Utility 0.0945 0.189 0

Quantity 200 2800 Spare

Table A.8: End-of-Life Case Assumptions

Power Capacity 300 400 500
Price 35 40 45

Utility - - -
Quantity 750 2000 1500

Table A.9: End-of-Life Operating System Assumptions

Version XP Vista 7
Price 10 20 30

Utility 0 0.0535 0.107

Table A.10: End-of-Life Warranty Assumptions

Year None 1 3
Price 0 15 50

Utility 0 0.037 0.074

Table A.11: Assumption on Market Preferences

Key attribute Type Critical Ideal Wj(new)
Processor Brand HIB Celeron Corei 0.057
Processor Speed HIB 1GHz 3GHz 0.074

Memory size HIB 512MB 4GB 0.189
Video Memory HIB 128MB 1GB 0.000
Optical drive HIB CD-ROM DVD-burner 0.189

Hard Drive size HIB 80GB 500GB 0.057
Operating System HIB WindowsXP Windows7 0.107

Warranty HIB None 3yr 0.074
Price ($) LIB High ($500) Low (less than $100) 0.254
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Taguchi Orthogonal Array (9 factors*2 levels) 
Profile 

ID 
Processor 

Brand 
Processor 

Speed 
Memory 

size 
Video 

Memory 
Optical 
drive 

Hard 
Drive size 

Operating 
System 

Warranty Price ($) Score (0-100) 

1 Celeron 1GHz 512MB 128MB CD-ROM 80GB WindowsXP None High ($500) 10 

2 Celeron 1GHz 512MB 128MB CD-ROM 500GB Windows7 3yr Low (less than $100) 60 

3 Celeron 1GHz 4GB 1GB 
DVD-
burner 

80GB WindowsXP None Low (less than $100) 75 

4 Celeron 3GHz 512MB 1GB 
DVD-
burner 

80GB Windows7 3yr High ($500) 55 

5 Celeron 3GHz 4GB 128MB 
DVD-
burner 

500GB WindowsXP 3yr High ($500) 70 

6 Celeron 3GHz 4GB 1GB CD-ROM 500GB Windows7 None Low (less than $100) 80 

7 Corei 1GHz 4GB 1GB CD-ROM 80GB Windows7 3yr High ($500) 55 

8 Corei 1GHz 4GB 128MB 
DVD-
burner 

500GB Windows7 None High ($500) 70 

9 Corei 1GHz 512MB 1GB 
DVD-
burner 

500GB WindowsXP 3yr Low (less than $100) 75 

10 Corei 3GHz 4GB 128MB CD-ROM 80GB WindowsXP 3yr Low (less than $100) 75 

11 Corei 3GHz 512MB 1GB CD-ROM 500GB WindowsXP None High ($500) 30 

12 Corei 3GHz 512MB 128MB 
DVD-
burner 

80GB Windows7 None Low (less than $100) 80 

 

Figure A.4: Taguchi Orthogonal Array for Conjoint Analysis
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Figure A.5: Component Inputs for Case Study
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Part i

Variant j 1 2 3 4 5 6 7 8 1 2 3 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 1 2 3 1 2 3 1 2 3

Processor 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

6 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

8 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Motherboard 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Hard Drive 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Memory 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Video Card 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Optical Drive 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Case 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

OS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Warranty 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Case OS WarrantyProcessor Motherboard Hard Drive Memory Video Card Optical Drive

Figure A.6: Compatibility Matrix for Case Study
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Appendix B

Genetic Algorithm Solver: Software
Implementation

B.1 ’MyGAFile.m’

%Control file tasks:

% 1 Read CSV and determine # of components and # choices/component

% 2 Delete the old input file and write a new one (same format as example

% file)

% 3 Delete the old objective file and write an new one

% function MyGAFile(popsize_in,maxgen_in,computil_in,marketsize_in,rhovalue_in,kvalue_in,

pcritical_in,priceweight_in,unitproductioncost_in,product_number_in,datafile_in,

datafile2_in)

global popsize; %population size for runs

global maxgen; %maximum # of generations

global GAdatatable; % name of array with input data

global tablesize; %# of components(*all types) included in problem

global computil; %value of competition’s utility

global marketsize; %size of the total market

global rhovalue; %value of discount factor for utility calculation

global kvalue; %value of k for utility calculation

global pcritical; %critival value of price

global genelength; %# of components in a given type

global genenumber; %# of total types of components (# parts in finished product)

global priceweight; %value from conjoint analysis determining influence of price on utility

global allcomponentssold; %this will store the $ we can make if we just sell all components at

their market values

global unitproductioncost; %this represents the cost to refurb/clean/assemble a finished product.

the value is independent of the components used in the product

global com_matrix_used; %this stores the compatability matrix (1’s and 0’s) 1=compatible 0=incompatible

global product_number;%this stores the # of products to be manufactured

%

% popsize = popsize_in;
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% maxgen=maxgen_in;

% computil=computil_in;

% marketsize=marketsize_in;

% rhovalue=rhovalue_in;

% kvalue=kvalue_in;

% pcritical=pcritical_in;

% priceweight=priceweight_in;

% unitproductioncost=unitproductioncost_in;

% product_number=product_number_in;

% datafile=strcat(datafile_in,’.csv’);

% datafile2=strcat(datafile2_in,’.csv’);

%crossover rate value for sensitivity analysis

global sens_parama; %this is a sensitivity parameter you can use during sensitivity analysis with

GAsensitivity.m

%mutation rate for sensitivity analysis

global sens_paramb; %this is a sensitivity parameter you can use during sensitivity analysis with

GAsensitivity.m

%for now we will assume a constant value for ’priceweight’

priceweight =.254;

%

%

% %this section is used when commenting out the user inputs for debugging

% %purposes

popsize=100;

maxgen=60;

% computil = 7;

computil = 832.61;

marketsize=10000;

rhovalue=.5;

unitproductioncost=20;

datafile = ’Optimization_Table1.csv’;

product_number=2;

%
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% %k is set in this case, could also ask for user input value

kvalue=10;

% %

% % %pcritical is set in this case, could also ask for user input

pcritical=500;

%load the datatable from the file name and determine the size

GAdatatable = csvread(datafile,1,1 );

tablesize=size(GAdatatable);

%now need to determine max value for components(#of different types per

%component) and total # of components using only datasheet

i=1;

j=1;

k=0;

genelength=0;

genenumber=0; % number of total types of components

while( k < tablesize(1))

if(i==GAdatatable((k+1),1))

i=i+1;

k=k+1;

else

genelength(j)=GAdatatable((k),1); % max value of gene i ( # of possible components of type i)

genenumber=genenumber+1;

i=1;

j=j+1;

end

end

genelength(j)=GAdatatable((tablesize(1)),1);%this line is required because the loop skips the last element

in the table

genenumber=genenumber + 1;%see above comment

%now we need to load the compatibility .csv just as we loaded the
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%component/utility/recapture .csv

%this .csv should be binary, with 1’s representing compatible components

%and 0’s representing incompatibilities. The lower triangular area should

%be all 1’s, and 0’s should be confined to the upper triangular area. The

%order of the components MUST be the same as that in the .csv for

%component/utility/recapture

com_matrix=csvread(’GAcompatability.csv’,2,2);

% com_matrix=csvread(’GAcompatibility.csv’,2,2);

com_matrix_size=size(com_matrix);

%could have extra columns of zeros from .csv storage, so need to chop them

%off

com_matrix_used=com_matrix(:,1:com_matrix_size(1));

if tablesize(1)~=com_matrix_size(1)

% error(’Utility .csv is not the same size as Comparability .csv!’);

% return;

end

%create an input file to feed to GA toolbox

%you must maintain the line ordering as given in the documentation for GA

%toolbox

fid=fopen(’GAproductinput’,’wt’); %opens input file and returns file id; also clears file

%fprintf(fid,’this is the text to print \n’); %this line prints out a single line of code into the file

corresponding to fid

fprintf(fid,’#GA type \n’);

fprintf(fid,’SGA \n’);

fprintf(fid,’ \n’);

fprintf(fid,’# Number of Decision Variables \n’);

numvars=(2+genenumber)*product_number; % included variables are Qreman, Price, and ’all components’

times ’# products’)

fprintf(fid,’%i \n’,numvars);

fprintf(fid,’ \n’);
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fprintf(fid,’# Decision Variable Type \n’);

for (j=1:product_number)%cycles to list Qreman for multiple products

fprintf(fid,’int 0 %i \n’, marketsize); %this is for Qreman: first # is min, second # is max

end

for (j=1:product_number)%cycles to list Price for multiple products

fprintf(fid,’double 0 %i \n’, pcritical); %this is for Price: first # is min, second is max

end

for (j=1:product_number)%cycles to list chromosome for multiple products

for (i=1:genenumber) %now we need to list ’int’ for all the components

fprintf(fid,’int 1 %i \n’, genelength(i));%first # is min value, second is max

end

end

fprintf(fid,’ \n’);

fprintf(fid,’# Objectives \n’); %currently we will only be using a single objective function

fprintf(fid,’1 \n’);

fprintf(fid,’Max \n’); %objective is to maximize profit

fprintf(fid,’ \n’);

%first constraint is compatibility constraint

%second constraint is Qreman<=Demand for product 1

%third constraint is Qreman<=Demand for product 2

fprintf(fid,’# Constraints \n’);

numconstraints=product_number+1;

fprintf(fid,’%i \n’,numconstraints); %single constraint is Qreman<=Demand

fprintf(fid,’1 \n’); %weight of constraint for compatibility

for i=1:product_number

fprintf(fid,’1 \n’); %weight of constraint for Qreman(i)<=Demand

end

fprintf(fid,’ \n’);

fprintf(fid,’# General Parameters \n’); %will likely have to make these user-defined

fprintf(fid,’%i \n’,popsize); %population size

fprintf(fid,’%i \n’,maxgen); %maximum # of generations

fprintf(fid,’0.9 \n’);

fprintf(fid,’ \n’);

fprintf(fid,’# Niching \n’);
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fprintf(fid,’NoNiching \n’);

fprintf(fid,’ \n’);

fprintf(fid,’# Selection \n’); %determine a selection procedure

fprintf(fid,’TournamentWOR 2 \n’);

fprintf(fid,’ \n’);

fprintf(fid,’# Crossover \n’);

fprintf(fid,’.9 \n’);

% fprintf(fid,’%f \n’,sens_parama);

fprintf(fid,’SBX 0.5 10 \n’);

fprintf(fid,’ \n’);

fprintf(fid,’# Mutation \n’);

fprintf(fid,’0.1 \n’);

% fprintf(fid,’%f \n’,sens_paramb);

fprintf(fid,’Polynomial 20 \n’);

fprintf(fid,’ \n’);

fprintf(fid,’# Scaling Method \n’);

fprintf(fid,’NoScaling \n’);

fprintf(fid,’ \n’);

fprintf(fid,’# Constraint Handling Method \n’);

fprintf(fid,’Tournament \n’);

fprintf(fid,’ \n’);

fprintf(fid,’# Local Search Method \n’);

fprintf(fid,’NoLocalSearch \n’);

fprintf(fid,’ \n’);

fprintf(fid,’# Stopping Criteria \n’);

fprintf(fid,’0 \n’); %already have max generation stopping criteria set in "general parameters"

fprintf(fid,’ \n’);

fprintf(fid,’# Load Population \n’);

fprintf(fid,’0 \n’); %will start with a randomly generated population

fprintf(fid,’ \n’);

fprintf(fid,’# Save to File \n’);
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fprintf(fid,’1 EvaluatedGASolutions.txt \n’);

fclose(fid);

%compute the value for ’allcomponentssold’

%this value represents the money made if all recaptured components were

%sold to the market place.

x=0;

for i=1:tablesize(1)

x=x+GAdatatable(i,3)*GAdatatable(i,6);

end

allcomponentssold=x;

% Call the GAToolbox solver

GAtbxm(’GAproductinput’);

GAresult

For an example output of ’MyGAFile’, see Figure 3.3.

B.2 sgaFitnessFunction

%Code to evaluate the Objective and Constraints for the GA-based

%remanufacturing problem

%

% Called by the toolbox developed by Kumara Sastry in the IllIGAL at UIUC in 2007.

%

%

function objConst = sgaFitnessFunction(decVars)

x = decVars;

% x(1) through x(productnumber) is Qreman

% x(productnumber+1) through x(productnumber*2) is Price

% x(productnumber*2+1+genelength*(i-1)) through

% x(productnumber*2+1+genelength*i) are indexes for components for product

% i and so on through i=productnumber

global genenumber;
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global genelength;

global GAdatatable;

global computil;

global rhovalue;

global kvalue;

global pcritical;

global priceweight;

global marketsize;

global allcomponentssold;

global unitproductioncost;

global com_matrix_used;%this is a binary matrix, with 0’s representing the incompatibilities and 1’s

representing compatible components; this is determined in MyGAFile.m so that we have to

perform data validation on it only once.

global product_number;

%first calculate the utility of our product using the data table utility

%values. to do this, we need to find the utility values corresponding to

%the various components represented in our chromosome

tablesize=size(GAdatatable);

quant_needed=zeros(tablesize(1),1);%sets up a vector with one column and the same number of rows

as GAdatatable

for j=1:product_number

index=1;%designation of row in table

index2=0;%helps designate where the next loop should start(moves index to next component set)

for (i=1:genenumber)%runs the same number of times as there are component types

while(GAdatatable(index,1)~=x(i+product_number*2+(j-1)*genelength))

%iterates ’index’ until a match is found

index=index+1;

if(index>max(genenumber))

break;

end

end

utility(j,i)=GAdatatable(index,2);%good %stores the utility value which corresponds to the chosen

component in utility(i)

quant_needed(index,1)=quant_needed(index,1)+x(j);%the quantity used of the component is the quantity

needed for the other product(s) plus the quantity of this product being made

index2=index2+genelength(i);%finds the last row of the current component type

index=index2+1;%finds the first row of the next component type

end
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end

%need to determine how many of each component were used in our

%remanufactured product(ie subject to amount available and <= qreman.

quantused=min(quant_needed,GAdatatable(:,3));

%now the ’utility’ vector holds the utility values of all i components used

%in this individual, so we can then compute the utility of the product

prices=x((1+product_number):(product_number*2));%creates a vector to hold just the prices

quantities=x(1:product_number);%creates a vector to hold just the quantities

productutility=kvalue*rhovalue*(sum(utility’)+priceweight*(1-

(prices/pcritical)));

%calculate vectors for spare components needed and excess components for

%resale

s=-1*(quant_needed-GAdatatable(:,3));% creates a vector ’s’ with (-) elements for spares needed and (+)

elements for excess parts

sparecomponentsneeded=-(s-abs(s))/2;%eliminates all positive values from ’s’ and then turns entire

vector positive

%from product utility, competitor utility, and market size we can now compute the demand

SPARECOST=sum(sparecomponentsneeded.*GAdatatable(:,5));

objConst(1)= sum(x(1:product_number).*x((product_number+1):product_number*2)) + allcomponentssold -

sum(quantused.*GAdatatable(:,6)) - sum(sparecomponentsneeded.*GAdatatable(:,5)) -

unitproductioncost*sum(x(1:product_number));%evaluation of the objective

% x(1)*x(2) : the money made from selling x(1) units at x(2) price

% + allcomponentssold : the money made by selling all components

% recovered at their respective spare values

%- sum(quantused.*sparesell) : the money that is removed from

%’allcomponentssold’ because these components are used in the manufacture

%of our product

%- sparecomponentsneeded.*sparepurchase : the money needed to purchase

%the spare components at the ’sparepurchase’ prices.
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%- unitproductioncost*x(1) : the cost to refurb/clean/assemble a finished product times the total

number of products produced

%this constraint requires that the price be less than pcritical. This can

%be removed if higher values of price are acceptable

% if x(2)>pcritical

% objConst(3)=x(2)-pcritical;

% % objConst(3)=0;

% else

% objConst(3)=0;

% end

%The next section is used to determine if the components are compatible

%with one another. If they are not compatible, the constraint is a linear

%function of the number of incompatibilities.

penaltymultiplier=2000; %penalty added for each incompatibility found

% penaltymultiplier=0;

incompatibility=0;%will end up being the # of incompatibilities

for k=1:product_number%cycles through all products in family

for i=1:genenumber%cycles through all genes(all components used)

if i > 1%ensure that the row referenced in the comparability matrix corresponds to the

proper component

row=(x(2*product_number+i+(genenumber*(k-1)))+

sum(genelength(1:i-1)));

else

row=(x(2*product_number+i)+(genenumber*(k-1)));%in the case of the first component, just

use the component index as the row index

end

%inner loop to check all components are compatible with component i

for j=i:genenumber%again, cycles through all components used

if j>1%ensure that the column referenced in the comparability matrix corresponds to the

proper component

col=(x(2*product_number+j+(genenumber*(k-1)))+

sum(genelength(1:j-1)));

else
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col=(x(2*product_number+j)+(genenumber*(k-1)));%in the case of the first component, just

use the component index as the column index

end

%now that the correct index(row and column) is determined for the components used,

%check if the components are compatible

if com_matrix_used(row,col) <1

incompatibility=incompatibility+1;%if the components are not compatible, add 1 to the

variable ’incompatibility’

end

end

%end the inner loop

end

end

objConst(2)=penaltymultiplier*incompatibility;%the compatibility constraint is determined by multiplying the

number of incompatibilities with the assigned penalty value

for i=1:product_number

demand(i)=marketsize*(exp(productutility(i))/(sum(exp(productutility))+

computil));

constraint = x(i) - demand(i) ; %Qreman must be less than the demand

objConst(2+i)=constraint*(constraint > 0);% only have a value if const1>0, else the value will be 0

end

B.3 GAresult

%file to extract the optimal solution from the ’EvaluatedGASolutions.txt’

%file

function best_individual=GAresult;

global genenumber;

global product_number;

es=load(’EvaluatedGASolutions.txt’);%loads the saved individuals with their objectives and constraint

violations from most recent GA run
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essize=size(es);%used to determine how many products were in the last run

obj_col=2*product_number+product_number*genenumber+1;

const_col=2*product_number+product_number*genenumber+3+product_number;

%this loop sets objective values to zero if there was any constraint

%violation

for i=1:essize(1)

if es(i,const_col)>0

es(i,obj_col)=0;

end

end

[a,b]=max(es(:,obj_col));%finds location of best remaining individual

best_individual=es(b,:)%returns chromosome of best individual

objective_value=es(b,obj_col)

B.4 Sensitivity Analysis

A sensitivity analysis was performed for the crossover and mutation rates to determine the optimal parameter

settings for the Second Life Product Design problem. The data from the case study was used as inputs, and

the results are shown in Figure B.1.

From the Figure it is evident that the mutation rate should be 0.1 and the crossover rate should be 0.9.

Once these values were determined, they were then hard-coded into the software.
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