

TOPOLOGY-AWARE OPTIMAL TASK ALLOCATION

FRAMEWORK FOR MISSION CRITICAL

ENVIRONMENT: CENTRALIZED AND DECENTRALIZED

APPROACHES

BY

SHAMEEM AHMED

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Computer Science

in the Graduate College of the

University of Illinois at Urbana-Champaign, 2011

Urbana, Illinois

Advisor:

 Professor Klara Nahrstedt

ii

ABSTRACT

A Mission Critical Environment (MCE) consists of error-prone, highly variable, and highly rate

limited communication channels. Paradoxically, this environment substantially increases the

need to perform Optimal Task Allocation (OTA), while at the same time making it much harder

to perform OTA efficiently. To perform OTA in MCE, in this thesis, I have proposed two novel

automated algorithms. The first algorithm is called Centralized Optimal Task Allocation

Algorithm (COTAA), where I consider OTA for publish/subscribe-based MCE since it has

unique characteristics such as high level publish/subscribe node and task differentiation and high

scalability. I also propose an architectural framework and communication protocols emphasizing

the unique challenges of MCE. I adopt well known Hungarian Algorithm and Rectangular

Assignment Algorithm to solve the OTA problem in polynomial time. The second algorithm is

called Decentralized Optimal Task Allocation Algorithm (DOTAA) which exploits the concept

of application-layer Distributed Hash Table (DHT) to perform OTA in MCE. Through

simulations, I evaluate the performance of both COTAA and DOTAA for multiple mission

critical scenarios. The results indicate that both COTAA and DOTAA achieve the goal of OTA

in highly dynamic MCEs, with low processing time and communication overhead.

iii

ACKNOWLEDGMENTS

I would cordially like to thank my advisor Professor Klara Nahrstedt for her invaluable

time and proper guidance over the last few years. I would also like to thank Boeing Research and

Technology for sponsoring this thesis. I am thankful to Dr. Thadpong Pongthawornkamol,

Professor Matthew Caesar and Dr. Guijun Wang for their valuable suggestions to improve the

quality of my research.

iv

TABLE OF CONTENTS

LIST OF FIGURES .. vii

LIST OF TABLES .. ix

CHAPTER 1: INTRODUCTION ... 1

1.1. PROBLEM DESCRIPTION ... 3

1.2. CONTRIBUTIONS OF THE THESIS ... 4

1.3. THESIS OUTLINE .. 5

CHAPTER 2: BACKGROUND ... 7

2.1. MISSION CRITICAL ENVIRONMENT (MCE) ... 7

2.2. TASK ALLOCATION (TA) AND OPTIMAL TASK ALLOCATION (OTA) ... 8

2.3. PUBLISH/SUBSCRIBE SYSTEM ... 8

CHAPTER 3: CENTRALIZED OPTIMAL TASK ALLOCATION ALGORITHM (COTAA) 10

3.1. MODELS AND ASSUMPTIONS .. 10

3.1.1. Network Model .. 10

3.1.2. Node Model ... 12

3.1.3. Publish/Subscribe Model ... 12

3.1.4. Task Model .. 12

3.1.5. Assumptions .. 13

3.2. TOPOLOGY... 14

3.3. PROBLEM STATEMENT ... 15

3.3.1. Problem Description .. 15

3.3.2. Problem Formulation ... 16

3.4. PROPOSED SOLUTION ... 18

3.4.1. Information Dissemination Protocol... 18

3.4.2. Example .. 20

v

3.4.3. Task Assignment Protocol ... 22

3.4.4. Topology-Aware Protocol .. 22

CHAPTER 4: DECENTRALIZED OPTIMAL TASK ALLOCATION ALGORITHM (DOTAA) 23

4.1. TOPOLOGY... 23

4.2. MODELS AND ASSUMPTIONS .. 23

4.2.1. Network Model .. 23

4.2.2. Node Model ... 24

4.2.3. Mission and Task Model .. 24

4.2.4. Assumptions .. 25

4.3. PROBLEM DESCRIPTION ... 25

4.4. PROPOSED SOLUTION ... 26

4.5. EXAMPLE ... 31

CHAPTER 5: IMPLEMENTATION DETAILS ... 33

5.1. CENTRALIZED OPTIMAL TASK ALLOCATION ALGORITHM (COTAA) .. 33

5.1.1. Tcl file ... 33

5.1.2. C files .. 34

5.1.3. Script files ... 36

5.2. DECENTRALIZED OPTIMAL TASK ALLOCATION ALGORITHM (DOTAA) .. 36

5.2.1. Tcl file ... 36

5.2.2. C files .. 37

5.2.3. Script files ... 37

CHAPTER 6: EXPERIMENTS AND RESULTS ... 38

6.1. CENTRALIZED OPTIMAL TASK ALLOCATION ALGORITHM (COTAA) .. 38

6.1.1. Evaluation Scenario and Parameters used for COTAA ... 38

6.1.2. Static Nodes... 39

6.1.3. Mobile Nodes .. 43

vi

6.2. DECENTRALIZED OPTIMAL TASK ALLOCATION ALGORITHM (DOTAA) .. 44

6.2.1. Evaluation Scenario and Parameters used for DOTAA ... 44

6.2.2. Static Nodes... 46

6.2.3. Mobile Nodes .. 51

6.3. DISCUSSION ... 55

6.3.1. Pros of COTAA ... 55

6.3.2. Cons of COTAA .. 56

6.3.3. Pros of DOTAA ... 56

6.3.4. Cons of DOTAA .. 56

CHAPTER 7: CURRENT STATE OF ART ... 57

7.1. TASK ALLOCATION IN ROBOTICS ... 57

7.2. TASK ALLOCATION IN UAVS ... 58

7.3. MOBILE-BASED DHT ... 58

7.4. SENSOR NETWORKING ... 59

7.5. MISCELLANEOUS ... 60

CHAPTER 8: CONCLUSION AND FUTURE DIRECTIONS ... 61

BIBLIOGRAPHY .. 64

APPENDIX A: CODE FOR SHELL SCRIPTS .. 67

vii

LIST OF FIGURES

FIGURE 1.1. AN EXAMPLE OF MISSION CRITICAL ENVIRONMENT (MCE) ... 2

FIGURE 2.1. HAITI EARTHQUAKE [24] .. 7

FIGURE 2.2. DISASTER IN JAPAN [25] ... 7

FIGURE 2.3. FIRE FIGHTERS IN ACTION [26] .. 7

FIGURE 2.4. POST-DISASTER RESCUE [27] ... 7

FIGURE 3.1. PUBLISH/SUBSCRIBE-BASED MISSION CRITICAL ENVIRONMENT .. 14

FIGURE 3.2. HIERARCHICAL PUBLISH/SUBSCRIBE-BASED STRUCTURE .. 14

FIGURE 4.1. DECENTRALIZED OPTIMAL TASK ALLOCATION ALGORITHM (DOTAA) TOPOLOGY 23

FIGURE 4.2. EXAMPLE OF HOW MISSIONACCOMPLISHMENT ALGORITHM WORKS .. 29

FIGURE 4.3. FOUR NODES TO ACCOMPLISH THE MISSION PRESENTED IN TABLE 4.2 31

FIGURE 6.1. EVALUATION SCENARIO FOR COTAA .. 38

FIGURE 6.2. COTAA (STATIC NODES): END-TO-END DELAY VS. TASKS ... 40

FIGURE 6.3. COTAA (STATIC NODES): END-TO-END DELAY VS. NODES .. 41

FIGURE 6.4. COTAA (STATIC NODES): SYSTEM LOAD VS. TASKS .. 41

FIGURE 6.5. COTAA (MOBILE NODES): # OF REALLOCATION VS. AVERAGE SPEED 42

FIGURE 6.6. COTAA (MOBILE NODES): # OF REALLOCATION VS. # OF TASKS .. 42

FIGURE 6.7. COTAA (MOBILE NODES): SYSTEM LOAD VS. AVERAGE SPEED ... 43

FIGURE 6.8. A BATTLEFIELD SCENARIO [COLLECTED FROM WEB] .. 45

FIGURE 6.9. GROUP OF UAV [COLLECTED FROM WEB] ... 45

FIGURE 6.10. DOTAA (STATIC NODES): TASK ASSIGNMENT TIME VS. # OF TASKS/GROUP (1KM X 1KM) ... 47

FIGURE 6.11. DOTAA (STATIC NODES): TASK ASSIGNMENT TIME VS. # OF TASKS/GROUP (5KM X 5KM) ... 48

FIGURE 6.12. DOTAA (STATIC NODES): TASK ASSIGNMENT TIME VS. # OF TASKS/GROUP (10KM X 10KM) 49

FIGURE 6.13. DOTAA (STATIC NODES): SYSTEM LOAD VS. # OF TASKS/GROUP (2KM X 2KM) 50

FIGURE 6.14. DOTAA (STATIC NODES): SYSTEM LOAD VS. # OF TASKS/GROUP (5KM X 5KM) 50

FIGURE 6.15. DOTAA (STATIC NODES): SYSTEM LOAD VS. # OF TASKS/GROUP (10KM X 10KM)................ 51

FIGURE 6.16. GROUP WISE MOVEMENT.. 51

viii

FIGURE 6.17. DOTAA (MOBILE NODES): AVERAGE SPEED VS. TASK ALLOCATION TIME (1KM X 1KM) 52

FIGURE 6.18. DOTAA (MOBILE NODES): AVERAGE SPEED VS. TASK ALLOCATION TIME (2KM X 2KM) 53

FIGURE 6.19. DOTAA (MOBILE NODES): AVERAGE SPEED VS. TASK ALLOCATION TIME (10KM X 10KM) 53

FIGURE 6.20. DOTAA (MOBILE NODES): AVERAGE SPEED VS. SYSTEM LOAD (1KM X 1KM) 54

FIGURE 6.21. DOTAA (MOBILE NODES): AVERAGE SPEED VS. SYSTEM LOAD (2KM X 2KM) 54

FIGURE 6.22. DOTAA (MOBILE NODES): AVERAGE SPEED VS. SYSTEM LOAD (5KM X 5KM) 55

ix

LIST OF TABLES

TABLE 3.1. NOTATION TABLE FOR COTAA ... 11

TABLE 3.2. EXAMPLE OF A NODE-TASK MATRIX ... 17

TABLE 3.3. NODE-RESOURCE MATRIX (NRM) AT INFOBROKER1... 20

TABLE 3.4. NODE-RESOURCE MATRIX (NRM) AT INFOBROKER2... 20

TABLE 3.5. REQUESTED TASK LIST AT CENTRAL UNIT ... 21

TABLE 3.6. NODE-TASK MATRIX (NTM) AT CENTRAL UNIT .. 21

TABLE 3.7. NODE-TASK ASSIGNMENT MATRIX (NTAM) AT CENTRAL UNIT .. 21

TABLE 4.1. NOTATION TABLE FOR DOTAA... 24

TABLE 4.2. A SIMPLE MISSION OF SEVEN TASKS ... 28

TABLE 6.1. SIMULATION PARAMETERS FOR COTAA ... 39

TABLE 6.2. SIMULATION PARAMETERS FOR DOTAA ... 46

1

CHAPTER 1: INTRODUCTION

Mission Critical Environments (MCEs), such as battlefields, emergency response, firefighting,

and rescue operations, are among the most challenging operating environments for distributed

protocols. These environments present several of the most extreme systems-level design

challenges, including high rates of mobility and dynamism, communication channels prone to

high rates of errors and loss, and unpredictable and highly variable network delays and

bandwidths [7]. And yet MCEs also represent a situation where demands on the correct behavior

and efficient performance of systems are at their highest - with lives hanging in the balance,

tolerance for performance problems, lost communications, and unpredictable performance is

extremely low. Figure 1.1 offers an example of such MCE which shows a post-disastrous

situation in a particular geographic location. To cope with these demanding environments,

mission operators run systems to perform Optimal Task Allocation (OTA). These systems are

often comprised of a set of distributed nodes (e.g., communication devices carried by soldiers in

the battlefield), which are generally equipped with data processing, memory, and communication

capabilities. Each node may be responsible for carrying out multiple tasks (e.g., sensing the

temperature and taking pictures using camera).

OTA methods have proven useful in other contexts, including dynamic trajectory

planning in robotics [5, 6, 9], resource allocation in sensor networks [11, 12, 13], and grid

computing [10]. However, performing OTA in MCEs presents new challenges, as well as new

opportunities to customize their design and execution for the settings I consider. For example,

MCEs often maintain a logically-centralized command and control node which orchestrates the

operation, eliminating the need for fully distributed techniques. At the same time, MCEs

2

Figure 1.1. An Example of Mission Critical Environment (MCE)

introduce new challenges, including the need to react in real-time to events, and the need to

operate in resource constrained and highly variable-performance environments. Currently, in

MCEs, users often rely on manual allocation - a human at a command and control center is

responsible for allocating the tasks to the nodes. Unfortunately, relying on human users to

perform this allocation during disaster situations leads to potential for mistakes and inefficient

task allocations. There are only few existing solutions [32, 33] which perform OTA

automatically. However, these solutions suffer from several problems such as:

1. Existing solutions are applicable only for very specific MCE such as slower UAV

(Unmanned Aerial Vehicle) operation.

2. Existing solutions are not scalable and only applicable for very small settings.

3. Existing solutions perform very poorly when the nodes move very fast.

4. The convergence of the existing solutions is very slow.

5. Existing solutions don’t always guarantee the optimality of the task allocation.

3

1.1. Problem Description

A mission consists of several tasks where each task requires a set of resources and adheres to

system constraints. In this thesis, I consider task allocation as an optimization problem. The

objective of the optimization is to maximize the system’s overall utility. This utility value mainly

depends on the existing resources of the nodes as well as the importance of those resources for a

particular mission. For this purpose, it is utmost important to precisely define a utility / cost

function to measure the system utility. Besides defining the utility function, the following

research challenges are need to be addressed:

1. Design a communication protocol to know the resource status of all the nodes eligible to

perform a task.

2. Design an automated, online, time-efficient, and optimal algorithm to perform task

allocation. An offline algorithm might not fit well for MCEs since the status of the

system (e.g., geographical positions of the nodes, resource status of the nodes, etc.)

change rapidly. The algorithm should converge very quickly; otherwise, tasks might not

be executed before its deadline. The algorithm should be optimal to ensure that no task is

left unassigned and the system’s utility value is maximized.

3. Design a communication protocol for task assignment which informs the best eligible

node to start executing the task.

4. Make the entire system topology-aware to ensure that task assignment can be updated

due to topology change (e.g., node mobility, change of the nodes’ resource status, etc.).

5. Make the entire system scalable so that it works for large number of nodes and tasks.

6. Make the entire system generalizable so that it can be applied to a large group of MCEs.

4

1.2. Contributions of the Thesis

In this thesis, to address the research challenges described in Section 1.1, I have developed two

automated online approaches namely Centralized Optimal Task Allocation Algorithm (COTAA)

and Decentralized Optimal Task Allocation Algorithm (DOTAA). These two approaches are

scalable, topology-aware, fast, and guarantee the optimality of task allocation. Moreover, the

solutions are applicable for a broad range of MCEs such as battlefields, emergency response,

firefighting, rescue operations, and UAV operation, etc.

COTAA has three major contributions:

1. I map publish/subscribe communication model to OTA problem because

publish/subscribe model is proven useful for several MCEs [37]. The mapping considers

a formulation in which tasks are performed and distributed across nodes in a manner that

maximizes the aggregate network-wide utility.

2. I provide an online algorithm, protocol, and network architecture for carrying out this

task allocation, given an arriving set of tasks as inputs. This algorithm addresses the

challenges of OTA in MCEs described earlier. In particular, I

a. Develop a technique to identify availability of nodes and their resources. This

technique is required to understand the eligibility of a node to perform a particular

task. Moreover, if there are several eligible nodes to perform a single task, this

technique helps to find the best eligible node for that task.

b. Exploit the Hungarian Algorithm and the Rectangular Assignment Algorithm to

find OTA solutions. Both of these algorithms are proven effective to perform

OTA under resource constraint conditions.

5

c. Assign tasks to the appropriate nodes via information dissemination protocol. As

MCE poses DIL (Disconnected, Intermittent, Limited) communication among

nodes, this protocol assigns the tasks to the best eligible node in an efficient way.

d. Update the network resource allocation and task re-assignment based on the

current position and mobility of the nodes. In some MCEs (e.g., UAV operation),

nodes move very fast. Hence, task re-assignment might be required.

3. I perform extensive performance evaluation via simulations for several publish/subscribe

scenarios.

Some MCEs don’t have any central unit. All the nodes need to take decision by its own or by

collaborating with the other nearby nodes. So it is required to have another solution where the

research challenges can be addressed in a distributed manner. DOTAA is used to serve this

purpose. DOTAA has three major contributions:

1. I propose an automated, online, completely decentralized algorithm along with new

network protocol and architecture fitted for any kind of MCEs.

2. I exploit the Distributed Hash Table (DHT)-based approach to solve the OTA problem,

which, to the best of our knowledge, is the very first effort, in this context.

3. I extensively evaluate the performance of DOTAA through ns-2 simulator for several

mission critical scenarios.

1.3. Thesis Outline

The outline of this thesis is as follows. Chapter 2 contains the background information. Both

chapter 3 and chapter 4 present the research challenges and the proposed approaches for OTA in

MCEs. While chapter 3 concentrates on the centralized approach (COTAA), chapter 4 focuses

6

on the decentralized approach (DOTAA). I give a detailed description of my simulation

implementation in chapter 5. Chapter 6 details the experiments I have run for COTAA and

DOTAA along with the evaluation results. Chapter 7 describes the current state of the art. In

chapter 8, I conclude with some novel research directions of future work.

7

CHAPTER 2: BACKGROUND

This chapter describes all the basic terms used in this thesis to make those comprehensible to the

readers.

Figure 2.1. Haiti Earthquake [24]

Figure 2.2. Disaster in Japan [25]

Figure 2.3. Fire fighters in action [26]

Figure 2.4. Post-Disaster Rescue [27]

2.1. Mission Critical Environment (MCE)

By MCE, I mean the environment where a mission needs to be achieved in a timely-manner. A

mission consists of several tasks which have specific start and end times and which are

constrained by specific resource parameters. So, a mission is said to be successfully completed if

all tasks of that mission are performed before the deadlines and adhere to the resource

requirements. Figures 2.1 and 2.2 present two disaster scenarios (e.g., Haiti Earthquake and

8

Japan Disaster) where a mission is defined as how to rescue the affected people. This mission is

critical in a sense that affected people need to be rescued as quickly as possible; otherwise the

casualty might be enormous. Figures 2.3 and 2.4 show two rescue operations. In Figure 2.3,

firefighters are in action to control the fire, while Figure 2.4 shows how members of the rescue

team help the affected people in a post-disaster situation.

2.2. Task Allocation (TA) and Optimal Task Allocation (OTA)

Task allocation is a process where particular workers (eligible to perform the tasks) execute one

or more tasks assigned to them [36]. If there are several workers and tasks and there are multiple

ways to perform all the tasks by all the workers, then Optimal Task Allocation (OTA) ensures

that:

 There is no unassigned task after the task allocation (TA).

 The utility of TA is maximum in a sense that any other task allocation can’t guarantee

more system utilization than TA.

2.3. Publish/Subscribe System

Publish/Subscribe System [3, 4, 24] provides a communication pattern among two types of

nodes:

1. Publisher node and

2. Subscriber node

A publisher node publishes a message and a subscriber which subscribes for that message

receives it from the publisher. The entire communication occurs in an asynchronous manner.

Based on message filtering, there are three types of publish/subscribe systems:

9

1. Topic-based publish/subscribe system: A publisher node publishes a message with a

topic (or a set of topics) and the subscriber node subscribing to that topic receives the

message.

2. Content-based publish/subscribe system: The subscriber defines some constraints in its

subscription process. As soon as the publisher publishes a message and the message

content adheres to the constraints imposed by the subscriber, the message is delivered

from the publisher to the subscriber.

3. Hybrid approach: In this case, publisher follows the topic-based approach by publishing

a message based on a specific topic. However, the subscriber follows the content-based

approach where the subscriber not only subscribes for a specific topic but also specifies

the constraints for that topic. As soon as both the topic and the constraints match, the

message is delivered from the publisher to the subscriber.

The main advantages of using a publish/subscribe system are as follows [23]:

1. Publishers and subscribers are loosely coupled. They don’t need to know the existence of

each other. It differs from traditional client/server communication model. In a

client/server model, both client and server must be up at the same time for any

communication. However, publishers and subscribers don’t need to be up at the same

time.

2. Publish/subscribe communication system is very scalable.

10

CHAPTER 3: CENTRALIZED OPTIMAL TASK ALLOCATION

ALGORITHM (COTAA)

To solve the OTA problem in MCE, I have first proposed a centralized approach called

Centralized Optimal Task Allocation Algorithm (COTAA).

3.1. Models and Assumptions

Table 3.1 presents the notations I use to describe COTAA.

3.1.1. Network Model

I model the network as an infrastructure based wireless network. The network is considered as an

undirected graph, G(V, E), where V represents the set of nodes and E represents the set of

communication links or edges. V can also be classified into four sub-categories namely Vpub (set

of publisher nodes), Vsub (set of subscriber nodes), B (set of InfoBrokers), and CU (Central Unit),

where

V = Vpub ∪ Vsub ∪ B ∪ CU

N = Vpub ∪ Vsub

E can be classified into three sub-categories namely EPB (an edge between publisher and

InfoBroker), ESB (an edge between subscribe and InfoBroker), and EBC (an edge between

InfoBroker and Central Unit), where

E = EPB ∪ ESB ∪ EBC

11

Table 3.1. Notation Table for COTAA

Notation Meaning

N Set of Publisher or Subscriber Nodes

 | | Number of Publisher or Subscriber Nodes

T Set of Tasks

 Set of Publisher Tasks

 Set of Subscriber Tasks

 | | Number of Tasks

i Node identifier

 Task identifier

 Task τj assigned to node i

 Task τj assigned to node i at time t

 Number of tasks assigned to node i

 Number of tasks assigned to node i at time t

P Set of Resource Parameters

 | | Number of Resource Parameters

 Utility Value of Node i for Task

 Weight for Resource Parameter k of Task

 Resource Parameter k of Node i

 Node i is eligible for Task

 Node status for Node i

 Set of Topics that Node i can Publish

 Set of Topics that Node i can Subscribe

 A single topic for Publish/Subscribe Model

12

3.1.2. Node Model

Each node (i) in the network model is assigned a unique identifier and computes its node status

(λi). To compute λi, node (i) needs to know the following information:

 The status of each resource parameter node (i) posses. CPU, available memory,

bandwidth, communication delay, etc. are few examples of the resource parameters.

 The set of topics node (i) can publish (PTi)

 The set of topics node (i) can subscribe to (STi), and

 The list of tasks node (i) is currently executing.

Each node can move across the domains arbitrarily. Security aspect of node model is outside of

the scope of this thesis. However, existing techniques such as key encryptions and node

certificates can be used to address the security issues.

3.1.3. Publish/Subscribe Model

Each node (i) can carry either a publisher task or a subscriber task or both. The publisher and

subscriber nodes are grouped into domains according to various criteria such as geographic

location, communication range, and size of the groups. Each domain is managed by an

InfoBroker. The InfoBroker communicates with each node, exchanging publisher and subscriber

information.

3.1.4. Task Model

Tasks are classified into two categories: publisher task (Tpub) and subscriber task (Tsub), where T

= Tpub ∪ Tsub. For example, a node equipped with temperature sensor can publish temperature on

the network. Such a task is considered as a publisher task. On the contrary, a subscriber node can

receive the temperature value from the publisher via the InfoBroker. This task is an example of a

13

subscriber task. A task set (T) is provided as a mission to the CU (Central Unit) from the

corresponding authority (e.g., commander-in-charge) and COTAA assigns the tasks to the

appropriate nodes optimally. Each task (τj) has few properties, namely type, topic, a list of

available resource parameters, and corresponding weight of those resource parameters. The type

field contains either 'pub' or 'sub' value. Topic field specifies in which topic task (τj) belongs to.

The resource parameter (Pik, kP) of each node (i) is prioritized based on the task weight (Wjk,

kP). Wjk is application and task-specific, and only the commander-in-chief knows the relative

importance of a resource for a particular task. Hence, Wjk is assigned by the commander-in-chief.

A node (i) can perform several tasks. Eligibility (αij) of a task (τj) for node (i) can be

considered as an admission-control problem. Existing research [2] addresses the admission-

control problem, hence, it is not considered in this thesis. Task eligibility (αij) is defined as if

node (i) has sufficient resources to execute task (τj) and also adheres to the following condition:

 {
 () ()

3.1.5. Assumptions

In COTAA, the following assumptions have been made:

1. Mobile nodes have to follow the communication pattern of a publish/subscribe-based

hierarchical communication system where each mobile node (e.g., publisher or

subscriber) only communicates to the broker nodes. The broker works as the bridge

between the mobile nodes and the central node.

2. There is no inter-dependency among tasks of a mission.

3. The central unit is solely responsible for the task allocation.

14

3.2. Topology

Figure 3.1. Publish/Subscribe-based Mission Critical Environment

Figure 3.2. Hierarchical Publish/Subscribe-based Structure

COTAA exploits the publish/subscribe model to use it in MCE. Due to highly dynamic nature of

MCEs, an individual node has little to no knowledge about the other nodes. As a result, nodes

rely on the broker for information dissemination and as the broker is aware of the needs of the

existing nodes, it can handle the distribution efficiently. Figure 3.1 presents the proposed

COTAA architecture where each Wireless Local Area Network (WLAN) represents a domain

where a publisher or subscriber can reside. Any publisher or subscriber node is only allowed to

15

communicate to their corresponding gateway, which is called InfoBroker. The InfoBroker, on

behalf of the publisher or the subscriber, communicates to the other domains' InfoBroker through

Central Unit (CU). Figure 3.2 presents the logical architecture of such a publish/subscribe-based

MCE which follows a hierarchical network structure.

3.3. Problem Statement

3.3.1. Problem Description

The research challenges of COTAA are as follows:

1. Design an information dissemination protocol so that each node (i) informs CU about its

resource status (λi) and task eligibility (j αij);

2. Find time-efficient and optimal task allocation under resource constraint conditions;

3. Design an efficient task assignment protocol allowing CU to assign tasks (τj) to

appropriate nodes (i) efficiently;

4. Make the entire system topology-aware so that the task assignment can be updated based

on dynamic change of the topology (e.g., node mobility, change of the node's resource

status, etc.).

Publish/subscribe-based MCE demands to execute OTA in polynomial time. For COTAA, I

consider three categories of OTA based on the number of tasks (m) and number of nodes (n): (a)

n = m, (b) n > m, and (c) n < m. I adopt the Hungarian Algorithm [8] and the Rectangular

Assignment Algorithm [1] to solve the first and second categories respectively. For the third

category, I apply an iterative approach. I divide the third category problem into

n

m
 iterations

16

of the first category problem (n = m). At the last iteration, the number of tasks is)*(n
n

m
m

 ,

which is less than n. Hence, I use the Rectangular Assignment Algorithm for the last iteration.

3.3.2. Problem Formulation

A critical mission is a set of tasks where each task requires a set of resources and needs to

consider system constraints. I formulate task allocation among nodes as an optimization problem.

The objective of this optimization is to maximize the overall utility value of the system. This

utility value largely depends on the existing resources of the nodes as well as how important

those resources are for a particular task or mission. For node (i) and task (τj), I use the following

utility function:

 {∑

Each Pik (resource parameter k of node i) has different measurement unit such as CPU processing

time in sec, available memory in bytes, communication delay in sec and bandwidth in bps. Here,

max(Pik) is used to normalize Pik and makes Uij unit-less. For example, the available memory and

CPU processing time should be normalized by dividing these with the maximum available

memory and CPU processing time, respectively.

The objective function is targeted to maximize the total utility value of all nodes and all tasks:

[∑

]

17

Table 3.2. Example of a Node-Task Matrix

 τ1 τ2 τ3

N11 U11 U12 U13

N12 U21 U22

N32 U32 U33

N43 U41 U42 U43

Suppose, there are four nodes (N11, N12, N32, and N43) and three tasks (τ1, τ2, and τ3). Table 3.2

presents the corresponding utility parameters for this particular setting. In Table 3.2, a value of

 indicates that the node is not eligible for that particular task. The total utility value would be

as follows:

In addition to maximizing the utility value, T must be successfully allocated to N, provided there

are sufficient nodes which are eligible for executing T.

{

 ⋃

⋃ ⋃

 ⋃ (

)

The above optimization is subject to the following constraints:

18

3.4. Proposed Solution

3.4.1. Information Dissemination Protocol

Each publisher and subscriber node (i) computes its node status (λi). Each node (i) periodically

sends a beacon to its corresponding InfoBroker along with λi piggy-backed. Each InfoBroker

periodically aggregates all λi and stores these in a matrix, called Node-Resource Matrix (NRM).

The InfoBrokers communicate to CU to submit their NRMs. With the information from the

InfoBrokers, CU generates its own matrix, termed Node-Task Matrix (NTM) by aggregating all

NRMs. Each entry of NTM is either a singular value generated from the utility function or -∞.

Algorithms 1, 2, and 3 present the pseudo-code of NRM Generation, NTM Generation, and OTA

respectively. Each InfoBroker runs the GenerateNRM Algorithm while CU executes the

remaining two.

The Hungarian Method [8], one of the most celebrated algorithms in combinatorial

optimization area, solves the assignment problem in polynomial time. This algorithm assumes

that the number of nodes (n) is equal to the number of tasks (m). The time complexity of this

method is O(n
3
). The Rectangular Assignment algorithm [1] solves the generalized assignment

problem where the number of nodes (n) can be larger than the number of tasks (m). The time

complexity of this method is O(n
2
m). Note that the Hungarian Algorithm and the Rectangular

Assignment Algorithm are mainly designed for minimization rather than maximization. To

address this issue, for implementation purpose, I subtract each utility value (Uij) from the

maximum of all utility values.

19

Algorithm 1 GenerateNRM ()
b=current InfoBroker

NRMb = Ø /* Initialize NRM for b */

for each node i assigned to b do

 compute node status λi

 generate an entry at NRMb for λi

end for

Send NRMb to CU

Algorithm 2 GenerateNTM (N, T, B)
NTM = Ø /* Initialize NTM */

for each InfoBroker do

 get NRMb

 for each node i assigned to b do

 for each task do

 calculate Uij

 NTMij = Uij

 end for

end for

end for

Algorithm 3 OTA (N, T, B)

 NTM = GenerateNTM (N, T, B)

 NTAM = Ø /*Initialize NTAM */

 complete = false
 while (complete==false) do

 if (m==n) then

 NTAM = NTAM ∪ Hungarian (n, N, T)

 complete = true

 else if (m<n) then

 NTAM = NTAM ∪ Rectangular Assignment (m, n, N, T)

 complete = true

 else

 Tf = first n tasks of T

 NTAM = NTAM ∪ Hungarian (n, N, Tf)

 m = m – n

 T = T \ Tf

 NTM = GenerateNTM (N, T, B)

 end if

end while

20

3.4.2. Example

Suppose four nodes (N11, N12, N13, and N14) are connected to InfoBroker1 and five nodes (N21,

N22, N23, N24, and N25) are connected to InfoBroker2. Table 3.3 and Table 3.4 show the NRM

maintained by two InfoBrokers. Table 3.5 shows the task list (τ1, τ2, andτ3) and the weight of

the corresponding resource parameters. Higher value of weight indicates the higher preference of

the resource parameters. CU, by using Algorithm 2, generates NTM which is shown in Table 3.6.

By subtracting each element of NTM from the maximum value, 27.93 (from Table 3.6) and then

applying the Rectangular Assignment Algorithm [1], the OTA would be as follows: T1 is

assigned to N13, T2 is assigned to N22, and T3 is assigned to N25, which is shown in Table 3.7.

Table 3.3. Node-Resource Matrix (NRM) at InfoBroker1

 CPU Mem BW Delay PTi STi CurrTask

N11 12 100 134 10 Θ1 , Θ2 Θ4 , Θ7 τ7

N12 23 150 74 20 Θ1 , Θ2 Θ8 X

N13 24 300 23 30 Θ1 , Θ2 Θ3 X

N14 48 230 56 15 Θ12 Θ13 τ13

Table 3.4. Node-Resource Matrix (NRM) at InfoBroker2

 CPU Mem BW Delay PTi STi CurrTask

N21 134 28 453 5 Θ12 Θ3 , Θ6 τ12

N22 876 500 125 31 Θ1 , Θ2 Θ8 X

N23 98 456 765 34 Θ7 Θ10 X

N24 14 234 541 17 X Θ13 τ13

N25 87 987 876 20 X Θ3 , Θ13 X

21

Table 3.5. Requested Task List at Central Unit

 Type Topic CPU W. Mem W. BW W. Delay W.

τ1 pub Θ1 3 9 15 20

τ2 pub Θ2 10 5 3 2

τ 3 sub Θ3 30 8 1 1

Table 3.6. Node-Task Matrix (NTM) at Central Unit

 τ1 τ2 τ3

N11 9.13 1.69

N12 14.48 2.45

N13 20.86 3.64 4.16

N21 5.48

N22 27.93 14.78

N25 12.57

Table 3.7. Node-Task Assignment Matrix (NTAM) at Central Unit

 τ1 τ2 τ3

N11 0 0 0

N12 0 0 0

N13 1 0 0

N21 0 0 0

N22 0 1 0

N25 0 0 1

22

3.4.3. Task Assignment Protocol

After executing Algorithm 3 (OTA(N,T,B)), CU assigns the tasks to the appropriate nodes via the

corresponding InfoBrokers. However, due to the lossy nature of the wireless medium, the task

assignment message sent from an InfoBroker might be lost. To ensure eventual task assignment,

I adopt the reactive mechanism as follows. Each node (i) periodically sends the node status

message (λi) to the InfoBroker. If λi does not contain the task recently assigned to that node, the

InfoBroker can infer that the task assignment message sent to that node was lost. In situations

like these, the InfoBroker re-sends the task assignment message to that node.

3.4.4. Topology-Aware Protocol

The topology of the network can be changed due to the node mobility and change of the node

status. To achieve topology awareness, I assume the task re-allocation model as follows.

Whenever any node moves out from its closest InfoBroker, all tasks that are running on that node

must be revoked and re-allocated. The re-allocation process is triggered at CU whenever it

detects such a change from the NRMs aggregated from all InfoBrokers. However, to prevent CU

from re-allocating tasks too frequently, CU only checks for lost tasks and performs the

corresponding re-allocation periodically.

23

CHAPTER 4: DECENTRALIZED OPTIMAL TASK

ALLOCATION ALGORITHM (DOTAA)

To solve the OTA problem in MCE, I have proposed a decentralized approach called

Decentralized Optimal Task Allocation Algorithm (DOTAA).

4.1. Topology

Figure 4.1. Decentralized Optimal Task Allocation Algorithm (DOTAA) Topology

The topology used in DOTAA differs from the topology used in COTAA. In case of DOTAA,

each group of nodes forms a full mesh topology (Figure 4.1) and each node is single-hop away

from all other nodes of the same group.

4.2. Models and Assumptions

Table 4.1 presents the notations I use to describe DOTAA.

4.2.1. Network Model

Here, I consider the network model as (a) static wireless ad-hoc network and (b) mobile wireless

ad-hoc network. Each node can communicate to other nodes only through wireless

communication provided the other nodes are within its wireless communication range.

24

Table 4.1. Notation Table for DOTAA

Notation Meaning

T Set of Tasks

R Resource requirement to perform a task

i Node identifier

τ Task identifier

M A Mission

HashNode A node which evaluates all the cost values and then

selects a node to perform a task

C Cost value a node calculates and then sends to HashNode

4.2.2. Node Model

Each node is a mobile node equipped with different resources (e.g., sensors) required to perform

a task. Each node has a unique identifier and maintains a list of its available resources and a list

of currently executing tasks.

4.2.3. Mission and Task Model

A deadline-driven mission consists of several tasks which are of two types: Computation-

intensive tasks and Communication-intensive tasks. Each task has a unique identifier, start and

end time, and resource requirement to perform that task. A node is eligible to perform a task if

and only if that node has sufficient resources required for that particular task. There is a

correlation between a node and a task identifier. A hash value of a task identifier always provides

the identifier of a particular node.

25

4.2.4. Assumptions

The assumptions applied to COTAA are relaxed for DOTAA. For instance, no publish/subscribe-

based communication pattern is considered in DOTAA. Also, there is no central unit for resource

collection and task allocation. Unlike COTAA, there might be task-dependency, i.e., a task (τ1)

can start if and only if another task (τ2) finishes first. However, few additional assumptions have

been made for DOTAA, such as:

1. Each node belonging to a group is single-hop away from other nodes of the same group.

2. No node fails during the mission.

3. Each node is an honest node. For instance, when a node calculates its bid value, it

correctly calculates it. In case of arbiter node (described later), it evaluates bid value

correctly without showing any bias towards any particular node.

4.3. Problem Description

DOTAA addresses the following research challenges:

1. To perform OTA, it is utmost important to know the resource status of all nodes who are

eligible to perform a particular task. In the centralized approach, the resource status of

each node is periodically reported to the Central Unit, CU. However, for distributed

system, there is no such central unit. Hence, it is difficult to get the resource status in a

very efficient manner. The first research challenge of DOTAA is to design a distributed

networking protocol so that the resource status of eligible nodes can be collected in an

efficient manner.

2. After getting the resource status, it is required to evaluate all the eligible nodes so that the

best node can be chosen for a particular task. The second challenge of DOTAA is to find

26

such an efficient evaluation method. Also, a distributed protocol is necessary to inform

the best eligible node to start executing the task.

3. The final challenge of DOTAA is to make the proposed distributed protocols topology-

aware in the sense that even when the node moves with great speed, DOTAA finds the

best node to perform the task optimally.

4.4. Proposed Solution

During the mission, each node executes DOTAA which consists of three major algorithms:

 Algorithm 1: AdmissionControl Algorithm

 Algorithm 2: MissionAccomplishment Algorithm

 Algorithm 3: NodeSelectionForTask Algorithm

AdmissionControl Algorithm ensures a node’s eligibility to perform a task. Each task (τj) has

resource requirements which an eligible node must support. For instance, if a task is to take a

picture of a particular geographic location periodically, the eligible node must be equipped with

a camera; if a task needs to publish the temperature, the eligible node must be equipped with a

temperature sensor, and so on. According to the AdmissionControl Algorithm, a node ensures its

eligibility for a task by checking whether it has sufficient resources required for that task. The

eligible node allocates the resources required for that task. Later, if the node is not assigned to

the task, it releases those resources.

MissionAccomplishment Algorithm is executed by each node locally to accomplish a

particular mission. A mission (M) consists of several tasks which are constrained by several

properties such as start time, deadline, task dependency, and resource requirements. Table 4.2

shows a mission which consists of seven tasks namely τ1, τ2, τ3, τ4, τ5, τ6, andτ7.

27

According to MissionAccomplishment Algorithm, at first, a Directed Acyclic Graph (DAG) is

generated from the mission. To generate the DAG, it is required to have a time–dependent task

graph, which shows not only the start and end times of the tasks but also the inter-dependency of

the tasks. Figure 4.2(a) presents the time-dependent task graph of seven tasks present in Table

4.2. Figure 4.2(b) presents the corresponding DAG of these seven tasks.

Algorithm bool AdmissionControl (Node i, Task τ)

if Node (i) has sufficient resource R to execute τ then

 Allocate R in Node (i) for τ

return true

else

return false

 end if

Algorithm MissionAccomplishment (Mission M, Node i)
 µ: average RTT (Round-Trip Time) between two nodes

 while (M <> NULL) do

 D = DAG (Directed Acyclic Graph) based on M and its task dependency

 T = Tasks belonging to D that don’t have any dependency

 while (T<>NULL) do

 τ = pop (T)

 if (currentTime (i) < startTime (τ) - µ) then

 T = T∪{τ}
 continue

 end if

 if (AdmissionControl (i, τ) = true) then

 Node HashNode = HashFunction (τ)

 C = CostFunction (i, τ)

 Send C to HashNode

 end if

 end while

 𝑀 𝑀\𝑇

end while

Algorithm NodeSelectionForTask (Node HashNode, Task τ)

HashNode receives all cost values (C) from all eligible nodes for t

HashNode selects the node (i) with lowest cost value

HashNode informs the decision to all eligible nodes

All nodes except node (i) release R allocated before

28

Table 4.2. A simple mission of seven tasks

From the DAG, a set T is generated which consists of the tasks that don’t have any dependency

on other tasks. For instance, Tasks τ1, τ2, and τ4, don’t have any dependency (Figure 4.2(b)) and

hence, T = {τ1, τ2, τ4}. Now, for each task (τ) in T, each node (i) checks τ’s start time. If (i’s

current time + average round trip time ≈ τ’s start time), then node (i) executes the

AdmissionControl Algorithm for τ. As soon as node (i) passes through the AdmissionControl

Algorithm, node (i) starts bidding for τ.

To accomplish that, node (i) first finds the arbiter node (HashNode) based on a

predefined hash function. Then node (i) calculates its bid value (C) by executing the cost

function. Bid value (C) consists of three parts: Distance Cost (Cd), Bandwidth Cost (Cb), and

Computation Cost (Cu). Cost function calculates each part in the following ways:

Mission

Task Start End Depends Resources

τ1 12:00 13:00 X R1, R1

τ2 13:00 15:00 X R3

τ3 13:00 17:00 τ1, τ2 R3

τ4 16:00 18:00 X R4

τ5 14:00 22:00 τ3, τ6 R5, R6

τ6 18:00 20:00 τ4 R1

τ7 14:00 24:00 τ5 R2, R3

29

Figure 4.2. Example of how MissionAccomplishment algorithm works

(a) Time-Dependent Task Graph of the seven tasks presented in Table 4.2

(b) Directed Acyclic Graph (DAG) of the tasks presented in Table 4.2

(c) Time-Dependent Task Graph of the remaining four tasks presented in Table 4.2

(d) DAG of the remaining four tasks presented in Table 4.2

(e) DAG of the remaining two tasks presented in Table 4.2

30

The weight values for Cd, Cb, and Cu depend on task type. For instance, a purely computational

task has the highest weight value (1.0) for Cu whereas the weight values Cd and Cb are 0.0. A

bandwidth-hungry task, which also requires communication among nodes, can have a weight

value of 0.9 for Cb, a weight value of 0.5 for Cd, and a weight value of 0.0 for Cu. All these

weight values are predefined. Cd, Cb, and Cu have different measurement units. To make these

values unit-less, Cd, Cb, and Cu should be normalized in the following ways:

All other eligible nodes calculate their bid values in the same way and send it to the HashNode.

The HashNode waits for a threshold period to get bid values from all the eligible nodes. As soon

as HashNode gets all the bid values, it selects the highest bidder (HB) and sends back the result

to all the eligible nodes. The HashNode executes the third algorithm (NodeSelectionForTask

Algorithm) for this purpose. When HB gets the response back from the HashNode, it starts

executing the task. The other eligible nodes release the resources they have allocated earlier, so

that they can use the resources for other tasks, if required.

31

4.5. Example

Figure 4.3. Four nodes to accomplish the mission presented in Table 4.2

Suppose, four nodes are assigned to accomplish the mission presented in Table 4.2 and the ids of

these four nodes are: namely 000, 001, 010, and 011. Per our assumption, these nodes form a

local full-mesh topology which is shown in Figure 4.3. Figure 4.2 (b) presents the DAG

generated from the seven tasks given in Table 4.2. Here, we see that, at the very beginning, only

three tasks (τ1, τ2, and τ4) are independent. So, these tasks must be allocated first. Suppose,

node 000 and 100 are eligible, i.e., have sufficient resources to perform task τ1. Both of these

nodes will choose, at the start time of task τ1, the HashNode (by using predefined hash function)

for task τ1. Suppose, HashNode = Hash (τ1) = 011. Now, both of these nodes (000 and 100)

calculate their bid values considering τ1’s type (e.g., computationally intensive versus

communicationally intensive) and then send the bid value to the HashNode (011). After receiving

the bid values from both of these nodes (000 and 100), the HashNode chooses the highest bidder,

HB. Let, HB = 000. Now the HashNode informs its decision to both 000 and 100. As soon as HB

gets back the response from the HashNode, it starts executing the task τ1. The other node (100)

releases all the resources it allocated for task τ1 earlier so that it can use these resources for other

010

000 001

011

32

tasks, if needed. In the same way, two other independent tasks (τ2 and τ4) are assigned to two

different nodes through dynamically chosen HashNode.

After tasks τ1, τ2, and τ4 were successfully allocated to the most eligible nodes, these

three tasks are excluded from the Mission (M). The new time-dependent task list of M is shown

in Figure 4.2(c). The corresponding DAG is shown in Figure 4.2(d). This new DAG consists of

four tasks (τ3, τ5, τ6, and τ7) and only two of them are independent (τ3 and τ6). Now, by

exploiting the same approach, these two tasks are assigned through dynamically chosen

HashNode. Now the newer DAG consists of two tasks (τ5 and τ7) which is shown in Figure

4.2(e). The same approach is followed for the independent task (τ5). Finally, only one task is left

(τ7) and is assigned through the HashNode. This way, all the seven tasks of the mission have

been assigned to the best nodes and the mission is accomplished.

33

CHAPTER 5: IMPLEMENTATION DETAILS

From the implementation point of view, both centralized and decentralized approaches consist of

three modules:

1. Tcl file

2. C file

3. Script file

I have used ns-allinone-2.33 for the experiment.

5.1. Centralized Optimal Task Allocation Algorithm (COTAA)

5.1.1. Tcl file

The Tcl file is used here for the following purposes:

 Get the data (e.g., number of nodes, number of attributes, number of tasks, seed value,

and mobility scenario for mobile nodes) from the shell script / command prompt.

 Simulate the hierarchical topology

o One central node: This node is responsible for collecting all information from the

mobile nodes via InfoBroker nodes.

o Four InfoBroker nodes: These broker nodes are connected to the central node via

wired connection.

o Several mobile nodes: There are two types of mobile nodes, namely publisher

nodes and subscriber nodes. Each mobile node is connected to the corresponding

InfoBroker wirelessly.

34

 Mobility model

o I have used random way point mobility model for the mobile nodes. For

generating scenarios for random way point mobility model, I have used the ns-2

library available at: /ns-allinone-2.33/ns-2.33/indep-utils/cmu-scen-gen/setdest.

For other parameters used in Tcl file, I have utilized the online tutorial [23].

5.1.2. C files

I have designed new communication protocols to provide complex interactions among nodes. Tcl

files are not sufficient for this purpose and hence, I have written several C files. As mentioned

earlier, there are three types of nodes for COTAA such as the mobile nodes (e.g., publisher and

subscriber), the InfoBroker nodes and the Central Controller node. When a node (let, a mobile

node) communicates with other node (e.g., InfoBroker node), the communication occurs between

corresponding agents. All the C files described below are used by the nodes through their

corresponding agents.

 Boeing-client.cc: Each mobile node agent uses the functionality provided by this C file.

A mobile node periodically invokes beacon_callback() function to generate beacon

message informing its InfoBroker that it is alive. The recv() function is used to receive

message (e.g., task assignment, beacon message, etc.) from the InfoBroker.

 Boeing-gateway.cc: Each InfoBroker uses the functionality provided by this C file. The

beacon_callback() function is used to inform the mobile nodes which InfoBroker the

mobile nodes belong to. InfoBroker invokes assign() function to assign a particular task

(via packet format) to the specific destination node. The recv() function is used for two

purposes:

35

o InfoBroker receives a packet from the central node. This packet contains the task

assignment information. As soon as the InfoBroker receives this packet, it sends

the packet to the corresponding mobile nodes.

o InfoBroker receives a packet from the mobile nodes. This packet contains the

resource information of the mobile nodes. The InfoBroker accumulates all such

packets and then forwards the accumulative result to the central node.

When the InfoBroker doesn’t receive any beacon message from a mobile node for a

threshold period, it sends the updated information to the controller node.

 Boeing-control.cc: The central node uses the functionality provided by this C file. The

controller node maintains a dynamic table which is increased or decreased based on the

number of nodes currently participating in the mission. It invokes recv() function to

collect nodes’ available resource information via InfoBroker. It invokes alloc_task()

function to apply the Hungarian Algorithm to the dynamic table to find the optimal task

allocation. The reply_assignment() function is used to send the task assignment list to the

corresponding InfoBroker. The repair_callback() function is used to repair the task

assignment list if a node fails or moves away from wireless communication range.

 Boeing-agent.cc: All these node agents have some common characteristics (e.g., the

same packet format). Boeing-agent.cc is used to provide such common characteristics.

 Hungarian.c: This file is used by the controller node to implement the Hungarian

Algorithm for OTA.

36

5.1.3. Script files

There are two shell script files for COTAA, namely run_static.sh and run_mobile.sh. The

run_static.sh script is used to run the Tcl file for the static scenario, while run_mobile.sh is used

for the same purpose, but for the mobile scenario. The code for these two script files is given in

the Appendix Section.

5.2. Decentralized Optimal Task Allocation Algorithm (DOTAA)

5.2.1. Tcl file

The Tcl file is used here for the following purposes:

 Get the data (e.g., number of nodes, number of attributes, number of tasks, seed value,

and mobility scenario for mobile nodes) from the shell script / command prompt.

 Simulate the hierarchical topology: As mentioned earlier, DOTAA topology is different

than COTAA topology which is portrayed in the Tcl file. In DOTAA, several mobile

nodes form a group which is directed by a group leader. The predefined group leader is

positioned in the mission area randomly. The other nodes of the same group are placed

strategically in such a way that these nodes will be close enough (single-hop away) from

the leader node. Note that the concepts of the leader node and the arbiter node are

different. While the leader node is responsible for the group mobility, the arbiter node is

used for the task allocation. However, a leader node can also be an arbiter node.

 Mobility model: All mobile nodes follow their leader for mobility purposes. However, the

current version of ns-2 doesn’t support such kind of group mobility. Hence, I have

prepared a library file to generate such mobility using Visual C#.

37

5.2.2. C files

 Boeing-client.cc: This file is used to represent all the mobile nodes. The function

genPkt() is used to generate packets to send to other mobile nodes. The recv() function is

used to receive two types of packets from the other mobile nodes: bid packet and task

packet. The bid packet contains the bidding value for a task by a node and is received

only by the arbiter node. The task packet is received by the destination mobile node. The

command() function is invoked by each eligible mobile node to send their bid value to the

arbiter node.

5.2.3. Script files

Like COTAA, there are two shell script files for DOTAA namely run_static.sh and

run_mobile.sh. The run_static.sh script is used to run the Tcl file for the static scenario, while

run_mobile.sh is used for the same purpose, but for the mobile scenario. The code for these two

script files is given in the Appendix Section.

38

CHAPTER 6: EXPERIMENTS AND RESULTS

6.1. Centralized Optimal Task Allocation Algorithm (COTAA)

Figure 6.1. Evaluation Scenario for COTAA

6.1.1. Evaluation Scenario and Parameters used for COTAA

I evaluate the performance of COTAA via simulations using ns-2 simulator. The simulation runs

for the first-responder rescue mission on 1km x 1km area as depicted in Figure 6.1. There are

four static InfoBrokers (i.e., rescue vans), depicted by "G" box, distributed evenly in the area.

Each node (i.e., rescue agent) communicates to one of the InfoBrokers wirelessly. Each

InfoBroker is connected to the central unit, CU (i.e., rescue headquarter), depicted by "C" box in

the picture, via direct interface (i.e., dedicated radio or directional antenna). Unless otherwise

specified, the default parameters used in the simulation are presented in Table 6.1. The tasks in

the scenario consist of either publisher tasks (i.e., publishing sensor information) or subscriber

tasks (i.e., receiving sensor information). Each task (j) has its own utility (Uij), which is a linear

function of the resource parameter of node (i). In the simulation, the resource status of each node

(Pik, kP) and the corresponding weights (Wjk, kP) are generated uniformly and randomly.

39

I evaluate the performance of the proposed task assignment protocol in terms of end-to-end delay

and bandwidth overhead. The end-to-end delay is the delay between the time when the task

assignment request is issued at CU and the time that all task assignment messages arrive at the

nodes. The bandwidth overhead is the bandwidth consumption incurred from the node status

messages and task assignment messages.

 Table 6.1. Simulation Parameters for COTAA

6.1.2. Static Nodes

I first present the result in the scenario where nodes do not move. I conduct the experiment under

this scenario in order to measure the scalability of the protocol in terms of number of nodes and

tasks without the effect of mobility. From Figures 6.2 and 6.3, the following conclusions can be

drawn about the end-to-end delay. First, although the theoretical computation overhead in the

task assignment algorithm is O(n
2
m), where n is the number of nodes and m is the number of

Parameters Values

Number of Nodes 64-448

Number of Resource Parameters 32

Number of Tasks 1-32

Wireless Transmission Range 250 m

Mobility Model Random Waypoint

Speed 1-20 m/s

Advertisement Period 5 s

Simulation Period 500 s

Number of Runs per instance 5

40

tasks, the computation delay is much smaller than the communication delay in a wireless

network setting. This fact is confirmed in Figure 6.2, as the communication delay grows linearly

as the number of tasks increases. On the other hand, the computation delay grows much more

slowly as the number of nodes in the system grows, as seen in Figure 6.3. From this result, we

can conclude that the delay bottleneck is the number of tasks to be assigned, as it affects

communication delay. The same conclusion can be drawn for the bandwidth overhead, which is

presented in Figure 6.4. The bandwidth consumption grows linearly with the number of tasks and

the number of nodes in the system.

Figure 6.2. COTAA (Static Nodes): End-to-end Delay vs. Tasks

41

Figure 6.3. COTAA (Static Nodes): End-to-end Delay vs. Nodes

Figure 6.4. COTAA (Static Nodes): System Load vs. Tasks

42

Figure 6.5. COTAA (Mobile Nodes): # of Reallocation vs. Average Speed

Figure 6.6. COTAA (Mobile Nodes): # of Reallocation vs. # of Tasks

43

Figure 6.7. COTAA (Mobile Nodes): System Load vs. Average Speed

6.1.3. Mobile Nodes

This section presents the performance of the task allocation protocol depicted in Figure 6.1, but

with nodes moving around the area using random way point mobility model. Albeit it might not

be possible to have an ideal mobility model which can deal with all the possible scenarios of

wireless networks, I believe the random way point mobility model is a reasonable assumption as

in MCE, nodes are distributed in a heterogeneous manner and their movements are relatively

random. As described earlier, CU will check for lost tasks due to node mobility and perform the

re-allocation periodically. I set that time interval to 30 seconds in the experiment. Decreasing this

interval surely would decrease the outage time resulting from mobility. However, it would also

incur additional overhead due to having more message communication. Figure 6.5 presents the

performance of the protocol under mobile node scenario. The performance is measured in terms

44

of the number of reallocations through the entire simulation period (500 seconds) and the system

bandwidth consumption. The controlled parameters are the average node speed, the number of

tasks, and the number of nodes in the system.

According to the result in Figures 6.5 and 6.6, we can conclude that with an increase of

the node mobility, the number of tasks, or the number of nodes, and the number of re-allocations

also increases. However, since the re-allocation algorithm is executed only every 30-second

interval and the simulation period is 500 seconds, the maximum number of re-allocations in the

experiment is 1
30

500

≈15 times, which is consistent with the simulation results.

The average system load under different mobility level is presented in Figure 6.7. In

general, the system bandwidth consumption of the system grows proportionally to the system

size. The system bandwidth consumption also grows as mobility level increases, but with a lower

rate than the system size. The explanation is that the system load mainly consists of per-node

beaconing messages rather than re-allocation messages, which results from the node mobility

and subsequent task losses.

6.2. Decentralized Optimal Task Allocation Algorithm (DOTAA)

6.2.1. Evaluation Scenario and Parameters used for DOTAA

DOTAA is applicable for various mission critical scenarios. In this thesis, I present two

representative scenarios (e.g., a battlefield scenario and a group of UAV scenario) where

DOTAA can be very effective.

Suppose, a critical mission in the battlefield (Figure 6.8) needs to be executed within a

specific amount of time. The commander-in-chief, at the very beginning, informs the details of

45

the mission (e.g., how many tasks are involved, what are the requirements of each task, what is

the deadline, etc.) to each soldier. However, since a battlefield is a very dynamic environment,

the optimal task allocation might not be possible at the very beginning. Rather each soldier needs

to dynamically decide which task he or she will perform considering the situation. Each soldier

executes DOTAA in their mobile nodes and gets the decision very quickly from the dynamically

chosen arbiter node and then starts performing the task (assigned by the arbiter node) and

updates the resources their nodes consume.

Figure 6.8. A Battlefield Scenario [collected from web]

Figure 6.9. Group of UAV [collected from web]

46

DOTAA is also applicable for other MCEs. Figure 6.9 presents the operation by a group of

UAVs, where each UAV (Unmanned Aerial Vehicle) follows the speed and direction of the

predefined leader UAV for speed and direction. Each UAV is dynamically assigned some

specific tasks to achieve a particular mission. Each UAV runs DOTAA and bids for a task if it is

eligible for that task. By calculating the hash function, each eligible UAV finds the arbiter node

(NH) and then sends their bids to NH. After receiving the bidding values, NH finds the most

eligible UAV (A) for that task. As soon as A receives confirmation from NH, A starts executing

the task.

Table 6.2. Simulation Parameters for DOTAA

6.2.2. Static Nodes

Similar to COTAA, I first evaluate DOTAA for the scenario where nodes do not move. This

experiment has two major goals.

1. To evaluate the scalability of DOTAA in terms of number of nodes, number of tasks, and

the geographical area.

2. I envision a very specific kind of MCE where nodes are strategically placed at the very

beginning of the mission and hence, nodes will rarely move during the entire mission.

Parameters Values

Number of Nodes 4-100

Number of nodes per group 4

Number of Tasks per group 1-30

Wireless Transmission Range 250 m

Mobility Model Group-Based Random Waypoint

Speed 1-50 m/s

Simulation Area 1 km x 1km to 10 km x 10 km

47

For this experiment, the leader nodes are first placed randomly in mission’s geographical region

and the corresponding eligible nodes are placed accordingly to ensure that these nodes are single-

hop away from the leader node.

Figure 6.10. DOTAA (Static Nodes): Task Assignment Time vs. # of Tasks/Group (1km x 1km)

Figure 6.10 presents the impact of the number of tasks per group to the task allocation time for

the static scenario. I consider 1 km x 1 km geographic area for this experiment. The task

allocation time has two parts: Computation Time and Communication Time.

Figure 6.10 shows that the number of tasks has little impact on the task allocation time.

However, we saw earlier that, in case of COTAA, the number of tasks has great impact,

especially, on the communication time since multi-hop communication is required between

mobile nodes and the controller node. For DOTAA, the arbiter node and the mobile nodes are

always single-hop away. The task allocation time of DOTAA lies between 1001.5 ms to 1002.0

48

ms which is significantly less than COTAA. This result indicates that DOTAA is more scalable

than COTAA.

Figure 6.11. DOTAA (Static Nodes): Task Assignment Time vs. # of Tasks/Group (5km x 5km)

Figures 6.11 and 6.12 present the impact of geographical area to task allocation time for static

scenario. Here, we see that, for other geographical areas (e.g., 5km x 5km and 10 km x 10 km),

the task allocation time remains similar. The reason is that, even when the area is increasing,

each node in a particular group maintains the same full mesh topology and no group interferes

with other group for communication purposes. Hence, the task allocation time does not vary

much.

49

Figure 6.12. DOTAA (Static Nodes): Task Assignment Time vs. # of Tasks/Group (10km x 10km)

Figures 6.13, 6.14, and 6.15 present the average routing-level system load per node (byte/sec) for

static scenario. The geographical areas considered here are: 2 km x 2 km, 5 km x 5 km, and 10

km x 10 km. The result largely differs from the result of COTAA. In case of COTAA, the system

bandwidth consumption of the system grows proportionally to the system size. On the contrary,

for DOTAA, the average bandwidth consumption doesn’t depend on the system size. The reason

is that, in such full mesh topology, each node can send the packet to the destination node within

one hop and hence packet loss rarely happens. As I mentioned earlier, nodes do not fail during

the mission in case of DOTAA. So the average bandwidth consumption per node remains same

even for higher system size.

50

Figure 6.13. DOTAA (Static Nodes): System Load vs. # of Tasks/Group (2km x 2km)

Figure 6.14. DOTAA (Static Nodes): System Load vs. # of Tasks/Group (5km x 5km)

51

Figure 6.15. DOTAA (Static Nodes): System Load vs. # of Tasks/Group (10km x 10km)

6.2.3. Mobile Nodes

In case of the battlefield scenarios, firefighting situations, post-disaster recovery, etc., people

normally move in groups. They normally follow their leader or they move together by

communicating with each other. In short, the relative distance among nodes becomes nearly

constant even for very high speed. Figure 6.16 presents such a group-based mobility scenario.

 Figure 6.16. Group wise Movement

52

Figures 6.17, 6.18, and 6.19 present the impact of the average node speed to the task allocation

time for the mobile scenario. Here, I consider several geographic areas such as 1 km x 1 km, 2

km x 2 km, and 10 km x 10 km. The results show that the task allocation time varies between

1001.5 ms to 1002 ms. Albeit the node speed is very high, since the relative distance among

nodes remains almost constant, the packet delivery time is almost same as in the static scenario.

Figure 6.17. DOTAA (Mobile Nodes): Average speed vs. task allocation time (1km x 1km)

Figures 6.20, 6.21, and 6.22 show the average routing-level system load per node (byte/sec) for

the mobile scenario. The geographical areas considered here are: 1 km x 1km, 3 km x 3 km, and

5 km x 5 km and the average speeds of the nodes range from 5 m/s to 50 m/s. Here, 5 m/s can be

considered as the pedestrian speed while 50 m/s represents the UAV speed. In these Figures

(6.20 to 6.22), we see that, the system load is very low when the number of nodes and tasks is

small (4 nodes/2 tasks). However, even when the speed is very high, the average system load is

no more than 60 bytes/s. Even for higher speeds, the relative distance among nodes in a group is

53

nearly same. Hence, the local communication among nodes is not interrupted due to the speed

and most of the packets can be reached to the destination node without any problem.

Figure 6.18. DOTAA (Mobile Nodes): Average speed vs. task allocation time (2km x 2km)

Figure 6.19. DOTAA (Mobile Nodes): Average speed vs. task allocation time (10km x 10km)

54

Figure 6.20. DOTAA (Mobile Nodes): Average speed vs. System Load (1km x 1km)

Figure 6.21. DOTAA (Mobile Nodes): Average speed vs. System Load (2km x 2km)

55

Figure 6.22. DOTAA (Mobile Nodes): Average speed vs. System Load (5km x 5km)

6.3. Discussion

In this thesis, I have described both the centralized (COTAA) and decentralized (DOTAA)

approaches. Both of these approaches have some pros and cons.

6.3.1. Pros of COTAA

1. COTAA ensures the global OTA. The central node has the updated information of all the

resources of all the nodes. Hence, it is easier for the central node to find the best possible

node for a particular task.

2. COTAA is particularly useful for smaller group of nodes.

3. COTAA is better applicable for MCE, where global optimality is more important than

local optimality.

56

6.3.2. Cons of COTAA

1. COTAA converges slower than DOTAA, especially for larger number of nodes. COTAA

needs several seconds for performing optimal task allocation.

2. COTAA is vulnerable to the single point of failure. If the controller node fails, the entire

system becomes dysfunctional.

6.3.3. Pros of DOTAA

1. DOTAA ensures fast task allocation (around one sec only) as opposed to COTAA.

2. DOTAA is more scalable than COTAA. The task allocation time for DOTAA does not

increase much with the increase in the number of nodes and tasks.

3. The bandwidth consumption is less in DOTAA. Here the task allocation is performed in

the local group only and hence, nodes don’t need to send more messages for the task

allocation. However, since the increase in the number of nodes and tasks may increase

collisions, the bandwidth consumptions increase with the increase in the nodes and tasks.

4. DOTAA is free from single point of failure.

5. DOTAA is better applicable for MCEs where performance is preferred than global

optimality.

6.3.4. Cons of DOTAA

1. DOTAA only ensures local OTA. The arbiter node of a group receives all nodes’

information within the same group. Hence, there might exist some other nodes in other

groups which are better eligible for the particular task.

57

CHAPTER 7: CURRENT STATE OF ART

Based on task allocation, we can classify the existing research directions in several domains:

 Task allocation in Robotics

 Task allocation in UAV

 Mobile-based DHT

 Sensor Networking

 Miscellaneous (e.g., Grid computing, QoS)

7.1. Task Allocation in Robotics

Researchers are investigating the task allocation pattern of multiple robots (MRTA: Multi Robot

Task Allocation), especially focusing on the communication pattern among the robots [5, 6]. In

[6], the authors described MRTA problem from the formal point of view and provided a very

elaborate MRTA taxonomy. They discussed how task allocation in multi-robot situation can be

considered as an optimization problem. They also offered some guidelines for how existing

theories especially from operations research and combinatorial optimization area can be

exploited to solve MRTA problem. The same authors conducted an extensive comparative study

in [5] where they elaborated the pros and cons of all existing solutions for MRTA problem.

Sariel-Talay et al. proposed a cooperative framework to solve multiple traveling robot

problem (MTRP) based on dynamic task selection and robust execution [28]. MTRP is nothing

but the well-known Multiple traveling salesman problem, in context of robotics. The authors

followed an incremental task allocation method to adopt the dynamic environment. The same

authors proposed another distributed Multirobot-cooperation framework named DEMiR-CF for

58

autonomous underwater vehicles (AUV) [29]. They have also some other research in the same

direction which can be found in [30, 31].

7.2. Task Allocation in UAVs

In [32], Bertuccelli et al. proposed an algorithm for the task allocation in UAVs. Their algorithm,

named the Consensus Based Bundle Algorithm (CBBA), is based on conflict-free assignment

algorithm. Through CBBA, they tried to create collision free paths for the UAVs. They

simulated the real-time performance of CBBA by integrating it with 3D visualization and

interaction software tool.

Choi et al. [33] proposed a consensus-based decentralized algorithm for task allocation in

UAVs. A market-based decision strategy is exploited to reach a consensus among the UAVs on

the winning bid value. The authors claimed that their proposed algorithm ensures the conflict-

free feasible solution. They also showed that consensus-based algorithm converges faster than

the existing auction-based task-allocation algorithms.

7.3. Mobile-based DHT

DHT-based protocol is prominent in peer-to-peer (P2P) networking. Mobile Ad-Hoc Network

(MANET) and P2P share some common characteristics. There is no central infrastructure in P2P

and MANET. The topology changes over time due to churn for P2P and due to node mobility for

MANET. By observing these similarities and the prominence of DHT-based protocol for P2P,

several researchers have been trying to adapt DHT in MANET. Pucha et al. proposed Ekta, a

DHT-based algorithm applicable for a distributed application in MANET [19]. They proposed

two design options for Ekta. According to the first option, DHT is overlayed in a MANET. Here

multi-hop routing protocol is considered. In the second option, the authors examined the

59

performance of resource discovery application which exploits the physical layer broadcast as

opposed to the network layer broadcast.

Zahn et al. [20] proposed MADPastry which, like Ekta, exploits the concept of DHT to

use in MANET. One additional advantage of MADPastry over Ekta is that MADPastry considers

physical locality i.e. if two mobiles nodes are in the vicinity in the overlay network, MADPastry

ensures that those two nodes are also close to each other in the physical locality. Araújo et al.

proposed another DHT-based approach for MANET which they named Cell Hash Routing

(CHR). CHR has some fundamental differences from Ekta and MADPastry. CHR addresses the

problem of limited available energy. CHR uses position-based routing which exploits the node

clusters rather than individual nodes. The authors claimed that CHR is more scalable than any

other existing mobile-based DHT since CHR uses localized routing and introduces a new

concept of load sharing.

7.4. Sensor Networking

Due to energy and resource constrained nature of the sensor nodes, efficient task allocation is an

important research topic in the area of sensor network [11, 12, 13]. Most of the researchers of

sensor network mainly concentrated on energy efficiency. The goal of the research conducted by

Younis et al. [11] was also focused on the same direction. However, while most researchers

concentrated on energy efficiency on sensor node itself, Younis et al. paid attention to the energy

efficiency at the gateway. To do that, they proposed a task allocation approach to the gateway

which maximizes not only the life of the gateway but also the life of the entire sensor network.

Yu et al. proposed an energy-balanced task allocation for sensor network [12]. They mainly

offered two approaches in this regard: Integer Linear Programming and 3-phase heuristic

60

executable in polynomial time. They claimed that their proposed approaches work for both small

(<=10 tasks) and large systems (60-100 tasks) where lifetime of the sensor network is improved

by 5 times for small systems and 3.5 times for large systems. Zhao et al. also proposed a task

assignment algorithm for sensor network which is topology-aware, energy efficient, and viable

for resource constraints [13]. They named their approach as TETA (Topology-Aware Energy

Efficient Task Assignment). They first proved that TETA is NP-complete and then described

their ant-based heuristics to solve it. They evaluated their approach through simulation.

7.5. Miscellaneous

From the research point of view, the task allocation and resource allocation have many overlaps.

Both of these approaches try to find the best node of a network (wired/wireless) either for the

resource allocation or for task allocation. Hence, solutions for task allocation can be applicable to

the resource allocation and vice versa. Considering that, I am describing here some research in

the domain of resource allocation. Shu proposed an approach for grid computing to ensure the

optimal resource allocation [10]. The author exploited the concept of quantum chromosomes

genetic algorithm in this regard and evaluated the proposed approach through extensive

simulation. Caramia et al. proposed an economic model for resource allocation in grid computing

[35]. Their business model is based on tender/contract-net model which involves the interaction

among the nodes occurred in the grid computing. They evaluated their approach and compared

the result with traditional round-robin allocation algorithm.

61

CHAPTER 8: CONCLUSION AND FUTURE DIRECTIONS

Mission Critical Environment (MCE) poses numerous challenges which include, but are not

limited to, DIL (Disconnected, Intermittent, Limited) communications among nodes, high error

rate and data loss, heterogeneous capabilities and resources of mobile nodes, deadline-driven

mission, dynamic nature of topology formation and deformation, and random or group mobility

with greatest speed [7]. To address these challenges, mission operators (e.g., commander-in-chief

of a military force in a battle-field, rescue leader of a post-disaster recovery mission, etc.)

periodically execute task allocation manually which is very slow, error-prone, and cumbersome.

To address this, in this thesis I have proposed two novel automated, fast, and efficient algorithm,

namely, Centralized Optimal Task Allocation Algorithm (COTAA) and Decentralized Optimal

Task Allocation Algorithm (DOTAA).

In case of COTAA, I present an architectural framework and communication protocols to

solve the Optimal Task Allocation (OTA) problem in the publish/subscribe-based MCE. I exploit

the well-known Hungarian Algorithm and Rectangular Assignment Algorithm to solve the OTA

problem in polynomial time. I show that COTAA achieves the goal of OTA while maintaining

efficiency, scalability, and reasonably low processing and communication overhead. However,

COTAA is based on some assumptions such as: mobile nodes have to follow the communication

pattern of a publish/subscribe-based system, tasks in a mission have no inter-dependency, and

the central unit is solely responsible for the task allocation. Also, COTAA is vulnerable to a

single point of failure.

To relax the assumptions made by COTAA, I propose another novel automated approach

named Decentralized Optimal Task Allocation Algorithm (DOTAA). I have exploited the

62

concept of application-layer Distributed Hash Table (DHT) to perform the task allocation. I

have extensively evaluated both COTAA and DOTAA using ns-2.

The major lessons I have learned from this thesis are as follows:

1. Cost function plays a critical role both for COTAA and DOTAA. Hence, it is utmost

important to design the cost function in a very efficient manner.

2. Both COTAA and DOTAA have pros and cons. DOTAA is better applicable for MCEs

where performance is preferred than optimality. On the contrary, COTAA should be

chosen when global optimality is preferred.

3. For distributed approach, it is difficult to integrate both DHT-based approach and multi-

hop communication.

4. My solutions can be extended in some other domains. For instance, both COTAA and

DOTAA can be exploited to provide temporary communication infrastructure for remote

areas/underdeveloped regions.

In future, I plan to extend my current research in the following ways:

1. Hybrid approach: Combine COTAA and DOTAA to take advantages of both of these

approaches. The main idea is that, each node of the group will move together as DOTAA

suggests and there will be a central controller unit as COTAA suggests. Each group

leader will have both internal and external knowledge of the MCE and the arbiter node

can be chosen via inter-leader communication not only from within group but also from

outside of the group. The central node will be used for control purposes only.

2. Multi-Node, Single-Task: In some MCEs, more than one node might be required to

perform a single task. I will provide the support for such multi-node, single-task

operation in both COTAA and DOTAA.

63

3. Strategic node placement and movement: By strategy, here I mean, even before the

mission starts, each of the nodes will have the tentative plan where it should move next.

Then COTAA or DOTAA can perform the task allocation effectively. In this way, the

adaptation for the mission and hence, the system load would be minimal, which is a

major issue for COTAA.

64

 BIBLIOGRAPHY

[1] J. Bijsterbosch and A. Volgenant, “Solving the Rectangular assignment problem and

applications”, URL: www.optimization-online.org/db_file/2008/10/2115.pdf

[2] T. AlEnawy and H. Aydin, “Energy-aware task allocation for rate monotonic scheduling”, In

In the Proceedings of 11th IEEE Real Time and Embedded Technology and Applications

Symposium (RTAS), pp. 213-223, 2005.

[3] A. Belokosztolszki, D. Eyers, P. Pietzuch, and J. Bacon, “Role-based access control for

publish/subscribe middleware architectures”, In International Workshop on Distributed Event-

based Systems (DEBS), 2003.

[4] P. Eugster, P. Felber, R. Guerraoui, and A. Kermarrec, “The many faces of

publish/subscribe”, ACM Computing Surveys, volume 35, pp. 114-131, 2003.

[5] B. Gerkey and M. Mataric, “Multi-robot task allocation: Analyzing the complexity and

optimality of key architectures,” In the Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA), pp. 3862-3868, 2003.

[6] B. P. Gerkey and M. Mataric, “A formal analysis and taxonomy of task allocation in multi-

robot systems”, International Journal of Robotics Research, volume 23(9), pp. 939-954, 2004.

[7] D. Kidston and I. Labb, “A policy-based resource reservation service for maritime tactical

networks”, Technical report, Defense Research and Development Canada, 2007.

[8] H. Kuhn, “The Hungarian method for the assignment problem”, Naval Research Logistics

Quarterly, volume 2, pp. 83-97, 1955.

[9] M. Mataric, G. Sukhatme, and E. Stergaard, “Multi-robot task allocation in uncertain

environments”, Autonomous Robots, volume 14(2-3), pp. 255-263, 2003.

[10] W. Shu, “Optimal resource allocation on grid computing using a quantum chromosomes

genetic algorithm”, IET Conference on Wireless, Mobile and Sensor Networks (CCWMSN). pp.

1059-1062, 2007.

[11] M. Younis, K. Akkaya, and A. Kunjithapatham, “Optimization of task allocation in a cluster

based sensor network”, In the Proceedings of Eighth IEEE International Symposium

on Computers and Communication (ISCC), 2003.

[12] Y. Yu and V. Prasanna, “Energy-balanced task allocation for collaborative processing in

wireless sensor networks”, Mobile Networks and Applications, volume 10 (1-2), pp. 115-131,

2005.

http://www.optimization-online.org/db_file/2008/10/2115.pdf

65

[13] B. Zhao, M. Wang, Z. Shao, and J. Cao, “Topology-Aware Energy Efficient Task

Assignment for Collaborative In-Network Processing in Distributed Sensor Systems”, chapter

Distributed Embedded Systems: Design, Middleware and Resources, Springer Boston, volume

271, pp. 201-211, 2008.

[14] S. Ahmed, T. Pongthawornkamol, K. Nahrstedt, M. Caesar, and G. Wang, "Topology

Aware Optimal Task Allocation for Publish/Subscribe Based Mission Critical

Environment,” In the Proceedings of the 28th IEEE conference on Military communications

(MILCOM), pp. 2431-2437, 2009.

[15] M. Caleffi, “Mobile Ad Hoc Networks: the DHT paradigm,” In the Proceedings of

seventh IEEE International Conference on Pervasive Computing and Communications

(PerCom), 2009.

[16] M. Caleffi and L. Paura, “P2P over MANET: Indirect Tree-based Routing,” In the

Proceedings of seventh IEEE International Conference on Pervasive Computing and

Communications (PerCom), 2009.

[17] J. Eriksson, M. Faloutsos, and S.V. Krishnamurthy, “DART: Dynamic Address RouTing for

Scalable Ad Hoc and Mesh Networks,” IEEE/ACM Transactions on Networking (TON), volume

15 (1), pp. 119–132, 2007.

[18] M. Caleffi, G. Ferraiuolo, and L. Paura, “Augmented tree-based routing protocol for

scalable ad hoc networks,” In the Proceedings of IEEE Internatonal Conference on Mobile

Adhoc and Sensor Systems (MASS), pp. 1-6, 2007.

[19] H. Pucha, S. Das, and Y. C. Hu, “Ekta: an efficient DHT substrate for distributed

applications in mobile ad hoc networks,” In the Proceedings of Sixth IEEE Workshop on Mobile

Computing Systems and Applications (WMCSA), pp.163-173, 2004.

[20] T. Zahn and J. Schiller, “MADPastry: A DHT Substrate for Practicably Sized MANETs,”

In the Proceedings of fifth Workshop on Applications and Services in Wireless Networks

(ASWN), 2005.

[21] F. Delmastro, “From pastry to crossroad: Cross-layer ring overlay for ad hoc networks,”

In the Proceedings of Third IEEE International Conference on Pervasive Computing and

Communications Workshops (PERCOMW), pp. 60–64, 2005.

[22] Tutorial for the Network Simulator ns: URL: http://www.isi.edu/nsnam/ns/tutorial/

[23] Publish/Subscribe System: URL: http://en.wikipedia.org/wiki/Publish/subscribe

[24] Haiti Earthquake: URL: goo.gl/0RLaE

[25] Japan Disaster: URL: http://goo.gl/upa8B

http://www.isi.edu/nsnam/ns/tutorial/
http://en.wikipedia.org/wiki/Publish/subscribe
http://goo.gl/0RLaE
http://goo.gl/upa8B

66

[26] Firefighting: URL: goo.gl/2Yyi2

[27] Post-Disaster Rescue: URL: goo.gl/uOrrn

[28] S. Sariel-Talay, T. Balch, and N. Erdogan, “Multiple Traveling Robot Problem: A Solution

Based on Dynamic Task Selection and Robust Execution”, IEEE/ASME Transactions on

Mechatronics, Special Issue on Mechatronics in Multirobot Systems, volume 14(2), pp. 198-206,

2009.

[29] S. Sariel, T. Balch, and N. Erdogan, “Naval Mine Countermeasure Missions: A Distributed,

Incremental Multirobot Task Selection Scheme”, IEEE Robotics & Automation Magazine,

Special Issue on Design, Control, and Applications of Real-World Multirobot Systems, volume

15(1), pp. 45-52, 2008.

[30] S. Sariel, T. Balch, and N. Erdogan, “Robust Multi-Robot Cooperation through Dynamic

Task Allocation and Precaution Routines”, In the Proceedings of third International Conference

on Informatics in Control, Automation and Robotics (ICINCO), 2006, pp. 196-201.

[31] S. Sariel and T. Balch, “Dynamic and Distributed Allocation of Resource Constrained

Project Tasks to Robots”, Multi-Agent Robotic Systems (MARS) Workshop at the Third

International Conference on Informatics in Control, Automation and Robotics, 2006, pp. 34-43.

[32] L. Bertuccelli, H. Choi, P. Cho, and J. How, ''”Real-Time Multi-UAV Task Assignment in

Dynamic and Uncertain Environments”, AIAA Guidance, Navigation, and Control Conference,

2009.

[33] H. Choi, L. Brunet, and J. How, '”Consensus-Based Decentralized Auctions for Robust Task

Allocation”, IEEE Transactions on Robotics, volume 25(4), pp. 912 - 926, 2009.

[34] F. Araújo, L. Rodrigues, J. Kaiser, C. Liu, and C. Mitidieri, “CHR: A Distributed Hash

Table for Wireless Ad Hoc Networks”, In the Proceedings of the Fourth International Workshop

on Distributed Event-Based Systems (DEBS), 2005, Columbus, Ohio, USA, June 2005. pp. 407-

413.

[35] M. Caramia and S. Giordani, “Resource allocation in grid computing: an economic model”,

World Scientific and Engineering Academy and Society (WSEAS) Transactions on Computer

Research, volume 3(1), pp. 19-27, 2008.

[36] D. Gordon, “The organization of work in social insect colonies”, Nature 380:121-124, 1996.

[37] T. Pongthawornkamol, K. Nahrstedt, and G. Wang, “The Analysis of Publish/Subscribe

Systems over Mobile Wireless Ad Hoc Networks”, In the Proceedings Fourth Annual

International Conference on Mobile and Ubiquitous Systems: Computing, Networking and

Services (MobiQuitous), pp. 1-8, 2007.

http://goo.gl/2Yyi2
http://goo.gl/uOrrn

67

APPENDIX A: CODE FOR SHELL SCRIPTS

Script for run-mobile.sh (COTAA)

#!/bin/bash

outdir=boeing_mobile

outname=boeing-out.tr

scdir=scen_out

for nnode in 40 80 120 160 200

do

for nattr in 32

do

for ntask in 1 2 4 8 16 32

do

for spd in 1 5 10 15 20

do

for pt in 50

do

for seed in 3 4 5

do

scfile=$scdir/scen-1000x1000-$nnode-$pt-$spd-$seed

../ns boeing_mobile.tcl $nnode $nattr $ntask $seed $scfile >/dev/null 2>err

rep=`grep "Repair at" err | wc`

grep "^s\|^f" $outname | grep "RTR" | cut -d' ' -f9 > load

sum=`./count ./load`

mv err $outdir/err-$nnode-$ntask-$spd-$pt-$seed

echo $nnode $ntask $spd $pt $seed $sum $rep >> $outdir/result_mobile

done

done

done

done

done

done

68

Script for run-static.sh (COTAA)

#!/bin/bash

outdir=boeing_static

outname=boeing-out.tr

for nnode in 16

do

for nattr in 32

do

for ntask in 1 2 4 8 16

do

for seed in 1 2 3 4 5

do

../ns boeing_mobile.tcl $nnode $nattr $ntask $seed >/dev/null 2>err

comp=`grep "computation" err | cut -d' ' -f5`

comm=`grep "rcvd TASK" err | tail -n 1 | cut -d' ' -f7`

rel=`grep "rcvd TASK" err | wc`

grep "^s\|^f" $outname | grep "RTR" | cut -d' ' -f9 > load

sum=`./count ./load`

mv err $outdir/err-$nnode-$nattr-$ntask-$seed

echo $nnode $nattr $ntask $seed $comp $comm $sum $rel >> $outdir/result_static

done

done

done

done

69

Script for run-static.sh (DOTAA)

#!/bin/bash

outdir=boeing_static_result
outname=boeing-out.tr
scdir=Static
area=10000x10000

for nnode in 4 20 60 80 100 120 140
do
for seed in 3
do
for ntask_per_grp in 2 3 5 10 20 25 30
do

scfile=$scdir/scen-$area-$nnode
../ns boeing_ota.tcl $nnode $ntask_per_grp $seed $scfile >/dev/null 2>output_static
ntask=$(($ntask_per_grp * $nnode/4))

grep "Elapsed" output_static | cut -d ' ' -f3 > time
avg_time=`./average ./time`
mv time $outdir/time-$nnode-$ntask_per_grp
echo $nnode $ntask_per_grp $avg_time >> figs_static/result_time_$area

grep "^s\|^f" $outname | grep "RTR" | cut -d' ' -f9 > load
sum=`./count ./load`
mv load $outdir/load-$nnode-$ntask_per_grp
echo $nnode $ntask_per_grp $sum >> figs_static/result_load_$area

done
done
done

70

Script for run-mobile.sh (DOTAA)

#!/bin/bash

outdir=boeing_result
outname=boeing-out.tr
scdir=Mobility
area=1000x1000

for nnode in 4 20 40 60 80 100
do
for pt in 20
do
for spd in 1 5 10 15 20 25 30 35 40 45 50
do
for seed in 3
do
for ntask_per_grp in 2
do

scfile=$scdir/scen-$area-$nnode-$pt-$spd-$seed
../ns boeing_ota.tcl $nnode $ntask_per_grp $seed $scfile >/dev/null 2>output
ntask=$(($ntask_per_grp * $nnode/4))

grep "Elapsed" output | cut -d ' ' -f3 > time
avg_time=`./average ./time`
mv time $outdir/time-$nnode-$ntask-$spd-$pt-$seed
echo $nnode $ntask $spd $pt $seed $avg_time >> figs/result_time_$area

grep "^s\|^f" $outname | grep "RTR" | cut -d' ' -f9 > load
sum=`./count ./load`
mv load $outdir/load-$nnode-$ntask_per_grp-$spd-$pt-$seed
echo $nnode $ntask_per_grp $spd $pt $seed $sum >> figs/result_load_$area

done
done
done
done
done

