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ABSTRACT

In many sensor network applications, one is interested only in computing some relevant function of

the sensor measurements. In this thesis, we study optimal strategies for in-network computation

and communication in such wireless sensor networks.

We begin by considering a directed graph G = (V , E) on the sensor nodes, with a designated

collector node, where the goal is to characterize the rate region in R|E|, i.e., the set of vector rates

for which there exist feasible encoders and decoders which achieve zero-error computation for large

enough block length. For directed tree graphs, we determine a necessary and sufficient condition

for each edge that yields the optimal alphabet, from which we then calculate the minimum worst

case and average case complexity. For general directed acyclic graphs, we provide an outer bound

on the rate region by finding the disambiguation requirements for each cut, and describe examples

where this outer bound is tight.

Next, we consider undirected tree networks, where each node has an integer measurement, and

all nodes want to compute a symmetric Boolean function. For a class of functions called sum-

threshold functions, we derive an optimal strategy which minimizes the worst-case number of bits

exchanged on each edge. In the case of general graphs, we present a cut-set lower bound, and an

achievable scheme based on aggregation along trees. For complete graphs, the complexity of this

scheme is no more than twice that of the optimal scheme.

We then turn to a collocated network of nodes, where each node has a Boolean measurement

and we wish to compute a symmetric Boolean function of these measurements with zero error.

Our objective is to determine the minimum worst-case total number of bits to be communicated to

perform the desired computation. We define three classes of functions, namely threshold functions,

delta functions and interval functions. We provide exactly optimal strategies for the first two classes,

and an order-optimal strategy with optimal preconstant for interval functions. Using these results,

we can characterize the complexity of computing percentile type functions. The results also extend
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to the case of integer measurements and certain integer-valued functions. We use lower bounds from

communication complexity theory, and provide an achievable scheme using information theoretic

tools.

In the collocated network scenario, minimizing the average case complexity presents a variety of

interesting problems. We show that the average case complexity of computing a Boolean threshold

function of i.i.d. measurements, with threshold θ, is O(θ), in comparison to the worst case com-

plexity of Ω(log n), where n is the number of nodes. In the case of independent but not identically

distributed measurements, we show that the optimal order of transmissions is determined by a sur-

prisingly simple rule that depends in a trivial way on the values of the previously transmitted bits

and the ordering, but not the exact values of the marginal probabilities. The approach presented

can be generalized to the case of block computation, and to alternate models of communication.

We also determine the optimal strategy when the number of bits to be communicated is fixed, and

one wants to minimize the conditional entropy of the parity function.

Finally, we consider the problem of determining the connectivity of a random graph by sequen-

tially sampling edges. We present optimal strategies for determining connectivity in series graphs,

parallel graphs, series-parallel graphs and parallel-series graphs. In the case of general graphs, we

consider the related problem of finding a certificate for connectivity, and conjecture the optimal

strategy.
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CHAPTER 1

INTRODUCTION

Wireless sensor networks are composed of nodes with sensing, wireless communication and com-

putation capabilities. These networks are designed for applications like fault monitoring, data

harvesting and environmental monitoring; tasks which can be broadly classified as information

aggregation. Sensor networks should be distinguished from general wireless ad-hoc networks in

this regard. While traditional data networks are concerned with end-to-end information transfer,

sensor networks may only be interested in gathering certain aggregate functions of distributed data.

For example, one might want to compute the average temperature for environmental monitoring,

or the maximum temperature in fire alarm systems.

In this context, communicating all the relevant data to a central collector node which sub-

sequently computes the function might be inefficient since it requires excessive data transfer or

energy. This suggests moving away from a data forwarding paradigm, and focusing on efficient

in-network computation and communication strategies for the function of interest. This is particu-

larly important since sensor nodes may be severely limited in terms of power and bandwidth, and

can potentially generate enormous volumes of data. Such in-network processing and aggregation

is made possible by the fact that sensor networks are often application specific, that is, deployed

to achieve a specific goal, and hence nodes may look into the contents of packets and create new

packets or discard others. This is in sharp contrast to data networks where nodes only process the

headers of the packets, but never the contents of the payload of the packets.

The problem of computing functions of distributed data in sensor networks presents several

challenges. A fundamental challenge is to exploit the structure of the particular function, so as to

optimally combine transmissions at intermediate nodes. Thus, the problem of function computation

could be regarded as being more complex than finding the capacity of a wireless network, since the

traditional decode and forward model does not capture the possibility of combining information at
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intermediate nodes. Second, we have to contend with the broadcast nature of the wireless medium.

On the one hand, nodes have to deal with interference from other transmissions, while on the other

hand, nodes can exploit these overheard transmissions to achieve a more efficient description of

their own data. Further, the strategy for computation may benefit from interactive information

exchange between nodes, which presents an additional degree of freedom vis-a-vis the standard

point-to-point communication set-up.

In order to make progress on this general problem, we present a rich array of specific results

by considering different architectures, network topologies and computation paradigms. To begin

with, there are two possible architectures for sensor networks that one might consider. First, one

can designate a single collector node/fusion center which seeks to compute the function, as we

consider in Chapters 3 - 4. This goal is more appropriate for data harvesting and centralized

fault monitoring, where the collector alone makes decisions. Alternately, one can suppose that

every node in the network wants to compute the function, as we consider in Chapters 5 - 7. The

latter goal can be viewed as providing situational awareness to each sensor node, which could be

very useful in applications like distributed fault monitoring, adaptive sensing and sensor-actuator

networks. For example, sensor nodes might want to modify their sampling rate depending on the

value of the function.

We consider two specific network scenarios in which we study the problem of function compu-

tation. In Chapters 3 and 4, we abstract out the medium access control problem associated with

a wireless network, and view the network as a directed graph with edges representing essentially

noiseless wired links between nodes. We assume implicitly that there is a transmission schedule

which ensures no collisions, and reliable transmission of information on each edge. Thereby, we

focus specifically on strategies for combining information at intermediate nodes, and optimal codes

for transmissions on each edge. In comparison, in Chapters 5, 6 and 7, we consider a collocated

network where each node’s transmissions can be heard by every other node. Thus, in order to

avoid collisions, nodes must transmit one at a time. In this scenario, we study interactive strate-

gies where the content of previously transmitted messages could determine both the identity of the

next transmitting node as well as the content of its transmitted message.

In this thesis, we present results for both the block computation and one-shot computation
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paradigms. In Chapters 3 - 5, we consider the zero error block computation framework. We allow

for nodes to accumulate a block of measurements and realize greater efficiency using block coding

strategies. However, we require the function to be computed with zero error for the block. This

corresponds to the zero-error information theoretic paradigm. In contrast, in Chapters 7-8, we

consider the problem of single-instance computation.

Throughout this thesis, we consider a packet capture model as in [1] and suppose that collisions

do not convey information. Further, we suppose that there is a joint distribution on the node

measurements and we consider both worst case and average case performance metrics. Under this

framework, we address three fundamental questions.

• Since nodes may possess heterogeneous data which could affect the function to different

degrees, we study the problem of identifying which node should transmit next. This could

depend on the structure of the function as well as side information gained from overheard

transmissions.

• In order to minimize the communication footprint, we study the minimum information that

must be conveyed by nodes so as to compute a particular function. Further, we study strate-

gies for combining transmissions at intermediate nodes.

• Given the information that must be conveyed, we study optimal coding strategies that mini-

mize worst-case and average case metrics.

It is particularly interesting to study the benefit of multi-round protocols, possibly involving com-

plex interaction between nodes, versus single round protocols, where each node only transmits

once.

The rest of the thesis is organized as follows. In Chapter 3, we consider the problem of general

function computation in a directed graph G = (V , E) with a designated collector node that wants

to compute the function. We focus specifically on optimal coding strategies for transmissions on

each edge, and strategies for combining information at intermediate nodes. We suppose that there

is a joint probability distribution on the node measurements, and consider both the worst case

and the average case complexity for zero error block computation. Our goal is to characterize the

rate region in R|E|, i.e., the set of points for which there exist feasible encoders with given rates
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which achieve zero-error computation for large enough block length. In the case of tree graphs, we

derive a necessary and sufficient condition for the encoder on each edge, which provides a complete

characterization of the rate region. The extension of these results to directed acyclic graphs is

harder. However, we provide an outer bound on the rate region by finding the disambiguation

requirements for each cut, and describe examples where this outer bound is tight.

In Chapter 4, we address the problem of computing symmetric Boolean functions in undirected

graphs. The key difference from Chapter 3 is that we consider bidirectional links and study the

benefit of interaction between nodes. We show how the approach described in Chapter 3, together

with ideas from communication complexity theory, can be synthesized to develop a theory of optimal

computation of symmetric Boolean functions in undirected graphs. In the case of tree networks,

each edge is a cut-edge, and this allows us to derive a lower bound on the number of bits exchanged

on each edge, by considering an equivalent two node problem. Further, we show that a protocol of

recursive in-network aggregation along with a smart interactive coding strategy, achieves this lower

bound for the class of sum-threshold functions in tree networks. The optimal strategy has a simple

structure that is reminiscent of message passing, where messages flow from the leaves towards an

interior node, and then flow back from the interior node to the leaves. In the case of general graphs,

we present a cut-set lower bound, and an achievable scheme based on aggregation along trees. For

complete graphs, the complexity of this scheme is no more than twice that of the optimal scheme.

In Chapter 5, we study the problem of computing symmetric Boolean functions in a collocated

network, where each node’s transmissions can be heard by every other node. The key challenge is

for nodes to systematically exploit previous transmissions to compress their own data. We suppose

that each node has a Boolean measurement and we wish to compute a given symmetric Boolean

function of these measurements with zero error. We define three classes of functions, namely

threshold functions which evaluate to 1 if the number of 1s exceeds a certain threshold, delta

functions which evaluate to 1 if the number of 1s is exactly equal to a given value, and interval

functions which evaluate to 1 if the number of 1s is between two given lower and upper values.

For worst-case computation, we provide exactly optimal strategies for the first two classes, and

an order-optimal strategy, as the number of nodes increases, with optimal preconstant for interval

functions. In our analysis, we use lower bounds from communication complexity theory, and provide
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an achievable scheme using information theoretic tools. Using these results, we can characterize the

complexity of computing percentile type functions, which is of great interest. Further, the approach

presented can be generalized to compute functions of non-Boolean measurements, as shown in our

treatment of general threshold functions and the MAX function. In Chapter 6, we consider the

problem of minimizing the average-case complexity of computing a Boolean threshold function in a

collocated network. We show that the average-case complexity of computing a Boolean threshold

function in a collocated network is O(θ), where θ is the threshold.

In Chapter 7, we address a class of sequential decision problems that arise in the context of

computing symmetric Boolean functions of distributed data. We consider a collocated network,

where each node’s transmissions can be heard by every other node. Each node has a Boolean

measurement and we wish to compute a given Boolean function of these measurements. We suppose

that the measurements are independent and Bernoulli distributed. We address the problem of

optimal computation of the function so as to minimize the total number of bits that are transmitted.

We solve the problem for the class of Boolean threshold functions. The problem reduces to one

of determining the optimal order in which the nodes should transmit. We show the surprising

result that the optimal order of transmissions depends in an extremely simple way on the values of

previously transmitted bits, and the ordering, but not the exact values, of the marginal probabilities

of the Boolean variables, according to the k-th least likely rule: At any transmission, the node that

has the k-th least likely value of its Boolean variable transmits, where k reduces by one each

time any node transmits a one. Initially the value of k is (n + 1 - Threshold). The approach

presented can be generalized to the case where each node has a block of measurements, though

the resulting problem is somewhat harder, and we conjecture the optimal strategy. We also show

how to generalize to a pulse model of communication. One can also consider the related problem

of approximate computation given a fixed number of bits. We show that in this case, the optimal

strategy can be significantly different. However, for the special case of the parity function, we show

that the greedy strategy is optimal.

Finally, in Chapter 8, we consider the interesting problem of determining s − t connectivity

in a random graph G where each edge occurs independently of the others with a given Bernoulli

probability. We suppose that each edge is equipped with a sensor that can be queried for existence of
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the edge, at an associated sampling cost. Our objective is to determine connectivity by sequentially

sampling edges, while incurring minimum expected total cost. This problem arises in the practical

context of fault detection in a communication network or a chemical plant. Since we do not know

a priori if the graph is connected or not, there is a natural tension between showing the existence

of an s− t path and showing the absence of an s− t cut. We present some special classes of graphs

for which this tension can be resolved, yielding optimal strategies for determining connectivity.

In the case of series graphs, we prove that the optimal strategy is to sample the edge with the

maximum ratio of probability of absence of the edge to the cost of sampling the edge. Analogously,

in the case of parallel graphs, we prove that the optimal strategy is to sample the edge with the

maximum ratio of probability of existence of the edge to the cost of sampling the edge. Next, we

present optimal strategies for series-parallel graphs and parallel-series graphs. In the former case,

the optimal strategy focuses exclusively on s− t cuts, while in the latter case, the optimal strategy

focuses exclusivley on s − t paths. The extension to general graphs is harder, and the optimal

strategy remains elusive. However, we formulate a conditional subproblem for which we conjecture

the optimal strategy.

The results described in this dissertation have appeared in various conference and journal papers

[2], [3], [4], [5], [6].
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CHAPTER 2

RELATED WORK

The general problem of computing a function of correlated data, over a distributed network of nodes

with wireless links, admits a variety of approaches. It is related to fundamental problems in several

fields – multi-terminal information theory, distributed source coding, communication complexity

and distributed computation. We present a summary of the related literature.

2.1 Zero-Error Block Computation of Functions

Consider a general network of n nodes, with a designated collector node to which the value of the

aggregate function of interest needs to be communicated. Each node has a certain transmission

range, and can transmit directly to any other node within that range, provided no other trans-

mission is interfering. Two networks of interest are the collocated network, where the connectivity

graph is complete, and the random multihop network where the connectivity graph is a random

geometric graph. In [1], the authors have formulated the problem of worst-case block function

computation with zero error. Nodes make a block of N measurements, and the collector or fusion

node seeks to compute the block of function values. It should be noted that communicating a block

of measurements has been shown by Shannon [7] to be critical to achieving reliability with high

throughput in point-to-point communication channels. In the multinode function computation

problem, the appropriate measure of efficiency is the computational throughput, which is defined as

the reciprocal of the minimum number of time units required per computation, over all schemes,

and over all block lengths. In [1], an order optimal strategy for computing divisible functions is

derived, given the constraints of the wireless medium,

In sensor networks, we are often interested in symmetric functions which only depend on the

data of a sensor, not its identity. They include statistical functions like mean, median, maxi-
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mum/minimum, and others which are completely determined by the histogram of the set of node

measurements. A key property is that the histogram of two disjoint sets can be combined to give

the histogram of the union. Among the class of symmetric functions, not all functions are equally

hard to compute. For a function like Maximum, if a node knows that the maximum temperature

recorded until now is at least 100, then the node need not transmit any further reading unless it

has a higher value. Thus the previous transmissions provide side information about the function

value, even if the measurements are independent. On the other hand, for a function like Average, if

even a single measurement is missing, we could have incorrect function computation, if the goal is

zero-error block function computation. The results do change significantly if we allow a vanishing

error as block length increases.

In [1], the authors identify two classes of symmetric functions, namely type-sensitive functions

like Average, Median, Majority and Histogram, and type-threshold functions, such as Maximum

and Minimum. The maximum rates for computation of type-sensitive and type-threshold functions

in a collocated network is shown to be Θ( 1
n
) and Θ( 1

logn) respectively, where n is the number of

nodes. The upper bound on the computational throughput in each case is obtained by generalizing

the concept of fooling sets in communication complexity [8]. In random planar networks, spatial

reuse of the wireless medium leads to an exponential speedup, and the maximum rates for com-

putation of type-sensitive and type-threshold are shown to be Θ( 1
logn) and Θ( 1

log logn) respectively.

Some extensions in the case of finite degree graphs are presented in [9]. If we assume that the

measurements are drawn independently and identically from some distribution, one can obtain an

even higher computational throughput as shown in Chapter 6.

The assumption of block codes which ensure zero error for the block corresponds to the zero-error

information theoretic paradigm [10]. The problem of source coding with side information ensuring

zero error for finite block length has been studied in [11] and [12]. The problem reduces to the task

of coloring a probabilistic graph defined on the set of source samples. The minimum entropy of

such a coloring approaches the graph entropy or Korner entropy, as block length goes to infinity.

In Chapter 3, we revisit these ideas in the context of partitioning input blocks into equivalence

classes. Further, we extend this simple approach to zero error function computation on graphs.

In the zero-error framework, the effect of multi-round interaction on two party communication
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complexity has been studied [13]. For the problem of source coding with side information, it is

shown that single round schemes are almost optimal [14], [15].

2.2 Multi-Party Computation

The problem of communication complexity was introduced by Yao in [16]. In communication com-

plexity, one seeks to minimize the number of bits that must be exchanged in the worst case between

two nodes to achieve zero-error computation of a function of the node variables. A thorough expo-

sition of fundamental results in communication complexity can be found in [8]. The communication

complexity of Boolean functions has been studied in [17], [18]. One can go further and consider

the direct-sum problem [19] where several instances of the problem are considered together to ob-

tain savings. This block computation approach is used to compute the exact complexity of the

Boolean AND function in [20]. In this thesis, we generalize this result, which allows us to derive

optimal strategies for computing more general classes of symmetric Boolean functions in collocated

networks (Chapter 5) and tree networks (Chapter 4).

In Chapters 3 and 4, we consider function computation on graphs obtained after abstracting

out medium access control, effectively resulting in wired links between nodes. This resembles the

network coding paradigm, except that we are now computing functions. In the simplest case,

assuming independent measurements xi and the function f(x1, x2, . . . , xn) = (x1, x2, . . . , xn), we

have the reverse of the multicast problem studied in [21]. For the particular case where a set of

terminal nodes want to compute the sum of source measurements, ideas from network coding can be

used to derive the rate region for some special cases [22],[23]. Computing a function of independent

measurements is a network computation problem as opposed to a network coding problem. In [24],

the min-cut upper bound on the rate of computation is shown to be tight for the computation of

divisible functions on tree graphs. In Chapter 3, we generalize this result using a different approach.

Further, the simplicity of the approach presented allows extensions in the case of general graphs

and collocated networks.

Another approach to the problem of function computation comes from the literature on message

passing. Here, one is interested in computing a function efficiently by exploiting the structure of

the domains. There are two broad approaches: one using factor graphs [25] and the other using

9



the generalized distributive law [26]. These approaches have been applied very effectively to the

problems of computing marginals and probabilistic inference. This has resulted in low complexity

iterative algorithms for decoding of turbo codes. For the specific problem of computing the aver-

age, randomized gossip algorithms have been proposed in [27] and shown to be computationally

inexpensive and resilient to failures. These algorithms consist of nearest neighbor update rules [28]

which eventually result in dissemination of the average value to all nodes in the network. A similar

iterative approach is used to design distributed randomized algorithms for computing separable

functions in [29]. It must be noted that the above approaches do not address the communication

problem and suppose that nodes can communicate real numbers to their neighbors. In [30], the

problem of quantized consensus is studied, where nodes seek to compute the average value by

communicating over finite capacity channels.

In this thesis, we do not consider communication and computation strategies that are robust

to an eavesdropper that is overhearing transmissions and seeks to compute the function. In [31],

the problem of Boolean function computation by two nodes using a public channel and a secret

private channel was considered. The objective is to minimize the number of bits transmitted over

the secret channel to compute the function. An extension to the case where there is noise in the

eavesdropper’s channel was studied in [32] and the extension to general distributions was studied

in [33]. In [34], necessary and sufficient conditions for the secure computability of a function of

correlated sources were derived.

Throughout this thesis, we assume implicitly that nodes have identities, and each message trans-

mitted by a node contains a header that identifies the node. Alternately, one can consider the

problem of anonymous computation where n indistinguishable processors seek to compute the

function. In [35], the authors characterize which functions are computable on an anonymous ring,

and show how they can be computed using O(n2) messages. The results have been generalized to

the problem of distributed function computation in a general network of anonymous nodes [36].

2.3 Information Theoretic Formulation

To study the ultimate performance limits of function computation as well as optimal function

computation strategies, one needs to turn to an information theoretic formulation. There are
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two features that can be incorporated in this most general formulation. First, we can allow for a

vanishing error of computation, in contrast with the previous formulation which considers zero-error

block computation. Second, we can exploit the correlation in sensor measurements, and achieve

higher efficiency. However, there are very few results for this most general framework. We now

review some of the basic information theoretic results, which lead to a more general formulation

that incorporates computation over wireless networks. An information-theoretic formulation of

this problem combines the complexity of source coding of correlated sources with rate distortion,

together with the complications introduced by the function structure; see [37]. There is little or no

work that addresses this most general framework.

This problem of decentralized compression of correlated sources was studied by Slepian and

Wolf [38]. Consider two sensors with correlated measurements X,Y drawn according to the joint

distribution p(X,Y ). One wishes to determine the rate region, i.e., the set of all possible pairs

of rates (R1, R2) at which the sources can be individually compressed so that the receiver can

reconstruct the original sources with vanishing probability of error. The region defined by the cut-

set bounds was remarkably shown to be achievable using the technique of random binning to exploit

correlation. The Slepian-Wolf problem can be easily extended to the case of multiple correlated

sources communicating to a receiver. However, the extension to tree networks, with the receiver as

root, has not been solved.

Another interesting variation of the problem arises if we only desire the reconstruction of sources

to some fidelity, i.e., the receiver wishes to recover estimates X, Y such that E[D(X,X ′)] ≤ d,

E[D(Y, Y ′)] ≤ d, where D(·, ·) is a given distortion measure. This problem is open as well. The

special case of this problem in which one of the sources is known to the receiver as side information,

was solved by Wyner and Ziv [39]. It is important to note that function computation can be viewed

as a special case of the rate-distortion problem, by defining an appropriate distortion metric that

is function-dependent. For example,

D(X, X̂) := |f(X,Y )− f̂(X̂, Y )|2.

This has been extended in [40] to the case in which the receiver desires to know a certain function

f(X,Y ) of the single source X and the side information Y ; the authors determined the required
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capacity of the channel between the source and receiver to be the conditional graph entropy, which

is a measure defined on the two random variables and the characteristic graph [11] defined by the

function f . Recently, there have been some extensions to the case of two nodes [41] and to the case

of tree networks [42]. However, a general single-letter characterization has remained elusive.

Another interesting stand-alone problem was studied in [43], where two correlated binary sources

need to encode their sequences in distributed fashion, so that the receiver can compute the XOR

function of the two sequences. It is shown that, in some cases, the sum rate required may be

substantially less than the joint entropy of the two sources. This clearly displays the advantage of

function-aware encoding strategies over standard distributed source coding.

The above formulation considers a single round protocol, where only X communicates with Y .

One can further seek the information theoretic limits for interactive computation. The rate region

for multi-round interactive function computation has been characterized for two nodes in [44], and

for collocated networks in [45]. The characterization closely resembles the Wyner-Ziv result and

some interesting connections with communication complexity are made.

2.4 Modeling Channel Noise

In our work, we assume that the channel is a noiseless wired link, resulting possibly after the medium

access control problem is solved. However, in practice, all channels are noisy, and one needs to

study the rate of computation over noisy channels. In [46], the problem of computing parity in

a broadcast network was studied, assuming independent binary symmetric channels between each

pair of nodes. In the noiseless case, one would require n bits, and in the noisy case, one can achieve

O(n logn) using repetition coding. However, this approach does not make use of the broadcast

nature of wireless medium. For each bit that is transmitted, all the other nodes in the network

hear a noisy version of it. The key contribution of [46] is a strategy which systematically uses this

side-information to compute the parity function. The hierarchical strategy proposed requires only

Θ(n log log n) bits. Remarkably, this upper bound of n log logn was shown to be sharp in [47], using

noisy binary decision trees. The problem of computing a threshold function in a noisy broadcast

network was studied in [48] and the OR function was studed in [49].

In [50], the problem of distributed symmetric function computation in noisy wireless networks
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is considered. It is shown that the energy usage for computing a symmetric function in a network

with binary symmetric channels is Θ

(

n(log logn)

(

√

logn
n

)α)

, where α is the path loss exponent.

In [51], this approach is extended to derive an order optimal strategy for computing the MAX

function in a random planar network.

While the information theoretic formulation described above only considers distributed source

coding, one would like to generalize the formulation to incorporate a more general channel model.

For example, consider two sources S1 and S2, which have access to channel inputs X and Y of a

multiple access channel, with output Z = X + Y + N being available to a receiver, where N is

Gaussian noise. The receiver wishes to compute the sum X + Y . The question of interest is to

find the optimal power-distortion curve; i.e., for a given pair of transmit powers P1 and P2, what

is the minimum distortion D at which the sum X+Y can be communicated to the receiver? Thus,

the channel operation itself can be viewed as an implicit computation, as argued in [52].

Finally, the above described solution to the medium access problem can be described broadly

as interference avoidance, since we assume that collisions do not convey information. We could

generalize the formulation further by assuming an interference network. However, the solution to

such a problem is very far from the current frontiers of knowledge in information theory.

2.5 Sequential Decision Making

Due to the broadcast nature of the wireless medium, two nodes which are close to each other cannot

transmit simultaneously. Thus, nodes need to schedule their transmissions to avoid interfering with

one another. The challenge now is to order nodes’ transmissions so as to exploit the structure of

the function, the side-information gained from previously transmitted bits, and the knowledge

of the underlying distribution. Sequential decision problems have been studied in various forms.

The most well known problem of designing sequential experiments is the bandit problem [53],

[54], [55]. We have N parallel projects evolving according to Markov processes, and generating

instantaneous rewards. At each time-step, the player chooses to activate one project so as to

maximize the expected discounted reward. Under the optimal strategy, each arm is assigned a

dynamic allocation index and the maximum index arm is chosen.

Search problems present another interesting class of sequential decision problems. Due to various
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constraints, one might be forced to conduct a sequential search. Thus, the challenge is to design a

search strategy that terminates in minimum time or minimum expected time, as per the context.

A thorough review of various formulations of search problems is presented in [56]. A class of

one-dimensional search problems is studied in [57].

In [58], an interesting problem in sequential decision making is studied, where n nodes have

i.i.d. measurements, and a central agent wishes to know the identities of the nodes with the k

largest values. One is allowed questions of the type “Is X ≥ t”, in response to which the central

agent receives the list of all nodes which satisfy the condition. Under this framework, the optimal

recursive strategy of querying the nodes is found. In Chapters 7 and 8, we will consider some

problems in optimal sequential sampling. A key difference in our formulation is that we are only

allowed to query particular nodes, and not all nodes at once. The problem of minimizing the depth

of decision trees for Boolean threshold queries is considered in [59].
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CHAPTER 3

FUNCTION COMPUTATION IN DIRECTED GRAPHS

In this chapter, we formulate the problem of zero error block computation on graphs. We abstract

out the medium access control problem, and view the network as a directed graph with edges

representing noiseless wired links allowing reliable transmission of information between nodes. We

suppose that there is a joint probability distribution on the node measurements, and consider

both the worst case and the average case complexity. Further, instead of restricting a strategy to

compute just one instance of the problem, we allow for a block of N independent instances for

which the function is to be computed. Thus nodes can accumulate a block of N measurements,

and realize greater efficiency by using block codes, while still ensuring zero error for the block.

Given a graph, the problem we address is to determine the set of rates on the edges which will

allow zero error function computation for a large enough block length. In essence, we are exploring

the interaction between the function structure and the structure of the graph; how information

needs to be routed and combined at intermediate nodes to achieve certain rate vectors. We start

with a simple two node example and build up to directed trees and directed acyclic graphs.

In Section 3.1, we begin with the two node problem. We compute the number of bits that node

vX needs to communicate to node vY so that the latter can compute a function f(X,Y ) with zero

error. For correct function computation, an encoder must disambiguate certain pairs of source

symbols of node vX , on which the function disagrees. We show by explicit construction of a code

that this necessary condition is in fact sufficient. This yields the optimal alphabet and we calculate

the minimum worst case and average case complexity, with the latter obtained by Huffman coding

over the optimal alphabet. In Section 3.2, we extend this result to directed trees with the collector

as root, exploiting the fact that each edge is a cut-edge. This yields the optimal alphabet for each

edge, and we separately optimize the encoders for the worst case and the average case. Thus the

rate region consists of all rate points dominating a single point that is coordinate-wise optimal.
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In Section 3.3, we consider directed acyclic graphs. A key difference from the tree case is the

presence of multiple paths to route the data, which present different opportunities to combine

information at intermediate nodes. We arrive at an outer bound to the rate region by finding the

disambiguation requirements for each cut of the directed graph. This outer bound is not always

tight as we show in Example 12. However, for the worst case computation of finite field parity,

and the maximum or minimum functions, the outer bound is shown to be indeed tight. Further,

the only extreme points of the rate region are rate points corresponding to activating only a tree

subset of edges.

3.1 Two Node Setting

3.1.1 Worst case complexity

We begin by considering the simple two node problem. Suppose nodes vX and vY have measure-

ments x ∈ X and y ∈ Y, where the alphabets X and Y are finite sets. Node vX needs to optimally

communicate its information to node vY so that a function f(x, y), which takes values in D, can

be computed at vY with zero error. We do not consider the case where vX and vY interactively

compute the function. Thus node vX has an encoder C : X → {0, 1}∗, which maps its measurement

x to the codeword C(x), and node vY has a decoder g : {0, 1}∗ × Y → D which maps the received

codeword C(x) and its own measurement y to a function estimate, g(C(x), y). The set of all possible

codewords is called the codebook, denoted by C(X )

Definition 1 (Feasible Encoder). An encoder C is feasible if there exists a decoder g : {0, 1}∗×Y →

D such that g(C(x), y) = f(x, y) for all (x, y) ∈ X ×Y. Thus, a feasible encoder is one that achieves

error-free function computation.

Theorem 1 (Characterization of Feasible Encoders). An encoder C is feasible if and only if given

x1, x2 ∈ X , C(x1) = C(x2) implies f(x1, y) = f(x2, y) for all y ∈ Y.

Proof: By definition, if C is a feasible encoder, then there exists a corresponding decoder g such

that g(C(x1), y) = f(x1, y) and g(C(x2), y) = f(x2, y), for all y ∈ Y. Further, if C(x1) = C(x2), we

have f(x1, y) = f(x2, y) for all y ∈ Y.
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To prove the converse, we need to construct a decoding function g : {0, 1}∗ × Y → D. For each

codeword C∗ in the codebook, define C−1(C∗) := {x ∈ X : C(x) = C∗}. For fixed y ∈ Y and

fixed codeword C∗ ∈ C(X ), the decoder mapping is given by g(C∗, y) := f(xnom(C∗), y) for any

arbitrary xnom(C∗) ∈ C−1(C∗). We show that this decoder works for any fixed x and y . Indeed,

g(C(x), y) = f(xnom, y) where xnom ∈ C−1(C(x)). Thus, C(xnom) = C(x) and by assumption

f(xnom, y) = f(x, y). Hence, g(C(x), y) = f(xnom, y) = f(x, y) for all y ∈ Y. �

Any feasible encoder C can be viewed as partitioning the set X into Π(C) := {S1, S2, . . . , Sk}

such that for x1 ∈ Ci, x
2 ∈ Cj , we have C(x1) = C(x2) if and only if i = j. Define an equivalence

relation “↔” between x1, x2 ∈ X by:

x1 ↔ x2 if and only if f(x1, y) = f(x2, y) for all y ∈ Y.

Consider the encoder COPT which assigns a distinct codeword to each resulting equivalence class.

Clearly, COPT is a feasible encoder, since COPT (x1) = COPT (x2) implies x1 ↔ x2, and hence

f(x1, y) = f(x2, y) for all y ∈ Y. COPT is optimal in the sense that any other feasible encoder C

must have at least as many codewords as COPT :

Theorem 2 (Optimality of COPT ). Let Π(COPT ) := {SOPT
1 , SOPT

2 , . . . , SOPT
k } be the partition of

X generated by COPT , and let Π(C) := {S1, S2, . . . , Sl} be the partition of X generated by any other

feasible encoder C. Then,

(i) Π(C) must be a finer partition than Π(COPT ).

(ii) The minimum number of bits that node vX needs to communicate is ⌈log |Π(COPT )|⌉.

Proof: First we claim that any subset Si ∈ Π(C) can have nonempty intersection with exactly

one subset SOPT
j ∈ Π(COPT ). Suppose not. Then there exist x1, x2 ∈ Si such that x1 ∈ SOPT

j1

and x2 ∈ SOPT
j2

. Since C(x1) = C(x2), by Theorem 1, we must have f(x1, y) = f(x2, y) for all

y ∈ Y. However, by construction of COPT , x1 and x2 must belong to distinct equivalence classes

i.e., x1 = x2. Hence, there exists y∗ such that f(x1, y∗) 6= f(x2, y∗), which is a contradiction.

This shows that the partition generated by any encoder C must be a further subdivision of the

partition generated by COPT , i.e., finer than Π(COPT ). So node vX needs to communicate at least

⌈log |Π(COPT )|⌉ bits. �
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We can extend this to the case where vX collects a block ofN measurements x = (x1, x2, . . . , xN ) ∈

XN , and vY collects a block of N measurements y = (y1, y2, . . . , yN ) ∈ YN . We want to find a block

encoder CN : XN → {0, 1}∗ so that the vector function f (N)(x, y) = (f(x1, y1), . . . , f(xN , yN )) can

be computed without error, for all x ∈ XN , y ∈ YN . All the above results carry over to the

error-free block computation case. As before, we define an equivalence ↔ between x1, x2 ∈ XN if

f (N)(x1, y) = f (N)(x2, y) for all y ∈ YN . The optimal encoder CN,OPT is once again obtained by as-

signing distinct codewords to each equivalence class. Since we are stringing together N independent

instances, we have |Π(CN,OPT )| = |Π(COPT )|N . Hence the minimum number of bits per compu-

tation that node vX needs to communicate is ⌈N log |Π(COPT )|⌉
N

which converges to log |Π(COPT )| as

N → ∞.

3.1.2 Average case complexity

Suppose now that the measurements X, Y are drawn from the joint probability distribution

p(X,Y ), with the goal being to minimize the average number of bits that need to be commu-

nicated, i.e., the average case complexity.

Definition 2 (Feasible Encoder). An encoder C : X → {0, 1}∗ is feasible if there exists a decoder

g : {0, 1}∗ × Y → D such that g(C(x), y) = f(x, y) for all {(x, y) ∈ X × Y : p(x, y) > 0}.

Theorem 3. An encoder C is feasible if and only if, given x1, x2 ∈ X , C(x1) = C(x2) implies

f(x1, y) = f(x2, y) for {y ∈ Y : p(x1, y)p(x2, y) > 0}.

Proof: By definition, if C is a feasible encoder, then there exists a corresponding decoder g

such that g(C(x1), y) = f(x1, y) and g(C(x2), y) = f(x2, y), for all {y ∈ Y : p(x1, y)p(x2, y) > 0}.

Further, if C(x1) = C(x2), we have f(x1, y) = f(x2, y) for {y ∈ Y : p(x1, y)p(x2, y) > 0}.

To prove the converse, for fixed y ∈ Y and fixed codeword C∗ ∈ C(X ), define the decoder by

g(C∗, y) := f(xnom(C∗, y), y) for any arbitrary xnom(C∗, y) ∈ C−1(C∗) with p(xnom(C∗, y), y) > 0.

We show that this decoder works for any fixed x and y with p(x, y) > 0. Indeed, g(C(x), y) =

f(xnom, y) where xnom ∈ C−1(C(x)) with p(xnom, y) > 0. Thus, C(xnom) = C(x) and by assumption

f(xnom, y) = f(x, y) since p(xnom, y)p(x, y) > 0. Hence, g(C(x), y) = f(xnom, y) = f(x, y). �

We now define “x1 ↔ x2” when f(x1, y) = f(x2, y) for {y ∈ Y : p(x1, y)p(x2, y) > 0}. Now the
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↔ relation is reflexive and symmetric, but not necessarily transitive. This upsets the equivalence

class structure and the problem of finding the optimal encoder is much harder as we see in Section

3.1.3. However, if p(x, y) > 0 for all (x, y) ∈ X × Y, then ↔ is an equivalence relation. We

can construct an encoder COPT which assigns a distinct codeword to each equivalence class. Let

Π(COPT ) := {SOPT
1 , SOPT

2 , . . . , SOPT
k } be the partition of X generated by COPT . Analogous to

Theorem 2, we can show that the encoder COPT has the optimal alphabet A, with the probability

distribution vector q = {q1, q2, . . . , qk} where qi :=
∑

x∈SOPT
i

∑

y∈Y p(x, y).

Once the optimal alphabet is fixed, the optimal code COPT is the binary Huffman code for the

probability vector q. Since the Huffman code has an average code length within one bit of the

entropy,

H(q1, q2, . . . , qk) ≤ E[l(COPT )] ≤ H(q1, q2, . . . , qk) + 1.

The extension to the case where nodes vX ,vY collect a block of N i.i.d. measurements is straight-

forward. We want to find a block encoder CN : XN → {0, 1}∗ so that the vector function f (N)(x, y)

can be computed with zero probability of error, using CN (x) and y. As before, if p(x, y) > 0 for

all x, y ∈ XN × YN , we define x1 ↔ x2 if f (N)(x1, y) = f (N)(x2, y) for all y ∈ YN . The optimal

alphabet is AN , which has the product distribution qN . The optimal encoder is obtained via the

Huffman code for the optimal alphabet. Its expected length satisfies

H(qN )

N
≤

E[l(CN,OPT )]

N
≤

H(qN ) + 1

N
.

Hence the minimum number of bits per computation that node vX needs to communicate converges

to H(q) as N → ∞.

3.1.3 Graphical interpretation

The problem of source coding with side information can also be viewed in graph-theoretic terms.

The contrapositive of the statement of Theorem 3 tells us which pairs x1, x2 ∈ X must be separated

for any feasible encoder.

Consider a graphG = (V,E) with vertex set V = X , where (x1, x2) ∈ E if there exists y∗ ∈ Y such

that f(x1, y∗) = f(x2, y∗) and p(x1, y∗)p(x2, y∗) > 0. Note that we have an induced distribution
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on the vertices, i.e., for x ∈ X , we have pX(x) =
∑

y∈Y p(x, y). This graph is referred to as the

Witsenhausen characteristic graph [11]. Clearly, an encoder is feasible if and only if it corresponds to

a proper coloring of G. Further, we want to find colorings which minimize average case complexity,

i.e., colorings which minimize the entropy of colors. The minimum entropy of colors is called the

chromatic entropy of the graph, denoted by Hχ
G(X). After finding the minimum entropy coloring,

we can construct the Huffman code for the colors, which achieves an average code length within

one bit of Hχ
G(X)). When we consider a block of N measurements, the characteristic graph is

the OR-graph GN := G ∨ G ∨ . . . ∨ G, with chromatic entropy Hχ

GN (X). Thus, the optimal

coloring requires at most
H

χ

GN
(X)+1

N
bits per computation. From a result in [12], we know that

limN→∞
1
N
Hχ

GN (X) = HG(X), where HG(X) is the graph entropy or Korner entropy. Thus the

asymptotic rate for zero-error function computation is HG(X). If, however, we allow a vanishing

error-rate, the minimum rate required is the conditional graph entropy HG(X|Y ) [40].

For a general graph, finding the minimum entropy coloring is NP-hard. However, under the

simplifying condition p(x, y) > 0 for all (x, y) ∈ X × Y, the graph becomes a complete k-partite

graph, for which greedy coloring achieves a χ(G)-coloring, where χ(G) is the chromatic number of

the graph G. Further, any other proper χ(G)-coloring is merely a relabelling of the colors in the

greedy coloring. This is analogous to the result in Theorem 2. Thus the optimal coloring can be

found in polynomial time, and the optimal encoder can be obtained by constructing a Huffman

code for the colors in the optimal coloring. Further, by considering long blocks of N measurements,

we can achieve an asymptotic rate of H(c(X)), while still ensuring zero error for the block. Here,

c(X) denotes the color class to which X belongs.

3.2 Function Computation on Directed Trees

Let us now consider computation on a tree graph. Consider a directed tree G = (V , E) with nodes

V := {v1, v2, . . . , vn} and root node v1. Edges represent communication links, so that node vj can

transmit to node vi if (vj , vi) ∈ E . Each node vi makes a measurement xi ∈ Xi, and the collector

node v1 wants to compute a function f(x1, x2, . . . , xn) with no error. We seek to minimize the

worst case complexity on each edge.

For each node i, let π(vi) be the unique node to which node i has an outgoing edge, and let
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N−(vi) := {vj ∈ V : (vj , vi) ∈ E}. The height of a node vi is the length of the longest directed path

from a leaf node to vi. Define the descendant set D(vi) to be the subset of nodes in V from which

there exist directed paths to node vi. The graph induced on D(vi) is a tree with node vi as root.

Each node transmits exactly once and the computation proceeds in a bottom-up fashion, starting

from the leaf nodes and proceeding up the tree. Each leaf node vi has an encoder Ci : Xi → {0, 1}∗

that maps its measurement xi to a codeword Ci(xi) which is transmitted on the edge (vi, π(vi)).

Each non-leaf node vj for j 6= 1 has an encoder Cj which maps its measurement xj as well as the

codewords received from N−(vj), to a codeword transmitted on the edge (vj , π(vj)). Thus the

computation proceeds in a bottom-up fashion. Let Ci denote the codeword transmitted by node

vi, and CS := {Ci : vi ∈ S} denote the set of codewords transmitted by nodes in S. Thus the

codeword Ci is implicitly a function of xD(vi) := {xj : vj ∈ D(vi)}.

Definition 3. A set of encoders {Ci : 2 ≤ i ≤ n} is said to be feasible if there is a decoding function

g1 at the collector node v1 such that g(x1, CN−(v1)) = f(x1, x2, . . . , xn) for all (x1, x2, . . . , xn) ∈

X1 ×X2 × . . .×Xn.

Lemma 4. If a set of encoders {Ci : 2 ≤ i ≤ n} is feasible, then the encoder Ci at node vi must

separate1 x1
D(vi)

∈ XD(vi) from x2
D(vi)

∈ XD(vi), if there exists an assignment x∗V\D(vi)
such that

f(x1
D(vi)

, x∗V\D(vi)
) 6= f(x2

D(vi)
, x∗V\D(vi)

).

Proof: The removal of edge (vi, π(vi)) separates the graph into two disconnected subtrees D(vi)

and V\D(vi). We combine all the nodes in D(vi) into a supernode vα, and all the nodes in V\D(vi)

into a supernode vβ . The result now follows from Theorem 1. �

To prove the converse, we explicitly define the encoders C2, C3, . . . , Cn and a decoding function

g, and prove that it achieves correct function computation. Define the alphabet for encoder Ci on

edge (vi, π(vi)) as,

Ai := {hi : XV\D(vi) → D s.t. ∃x∗D(vi)
∈ XD(vi) satisfying

hi(xV\D(vi)) = f(x∗D(vi)
, xV\D(vi)) ∀xV\D(vi) ∈ XV\D(vi)}.

1Node vi does not have access to xD(vi) directly but only the codewords received from N
−(vi). When we say that

the encoder Ci must separate xD(vi), x̃D(vi), we are considering Ci as an implicit function of xD(vi).
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Thus codewords sent by node vi can be viewed as normal forms on variables XV\D(vi), or as partial

functions on XV\D(vi).

Encoder at node vi: On receiving the codeword corresponding to hj : XV\D(vj) → D, on incoming

edge (vj , vi), node vi assigns nominal values, xnom
D(vj)

to variables XD(vj) such that

f(xnomD(vj)
, xV\D(vj)) = hj(xV\D(vj)) ∀xV\D(vj) ∈ XV\D(vj). (3.1)

Given nominal values for all nodes in D(vi)\{vi}, and its own measurement xi, node vi substitutes

these values to obtain a function hi : XV\D(vi) → D such that hi(xV\D(vi)) = f(xnom
D(vi)\{vi}

, xi, xV\D(vi))

for all xV\D(vi) ∈ XV\D(vi).

If vi 6= v1, node vi then transmits the codeword Ci corresponding to function hi ∈ Ai on the edge

(vi, π(vi)) .

Decoding function g: The collector node v1 assigns nominal values to the variables XD(v1)\{v1}.

The decoding function g is given by g(x1, CN−(v1)) := h1 = f(x1, x
nom
D(v1)\{v1}

).

Theorem 5. Let xfix1 , xfix2 , . . . , xfixn be any fixed assignment of node values. Let the encoders at

node v2, v3, . . . , vn be as above. Then function hi computed by node vi is

hi(xV\D(vi)) = f(xfix
D(v(i)), xV\D(vi)) ∀xV\D(vi) ∈ XV\D(vi).

Consequently the decoding function g satisfies g(xfix1 , CN−(v1)) = f(xfix1 , xfix2 , . . . , xfixn ).

Proof: The proof proceeds by induction. The theorem is trivially true for all leaf nodes vi, since

by assumption hi(xV\D(vi)) = f(xfixvi , xV\D(vi)) for all xV\D(vi) ∈ XV\D(vi). Suppose it is true for all

nodes with height less than κ. Consider a node vi with height κ. All the nodes in N−(vi) must have

height less than κ. On receiving the codeword corresponding to hj on edge (vj , vi), node vi assigns

nominal values to variables in XD(vj) so that (3.1) is satisfied. From the induction assumption, we

have

hj(xV\D(vj)) = f(xfix
D(vj)

, xV\D(vj)) ∀xV\D(vj) ∈ XV\D(vj). (3.2)

Since (3.2) is true for all vj ∈ N−(vi), we can simultaneously substitute the nominal values

xnom
D(vi)\{vi}

for the variables XD(vi)\{vi} and the value xfixi for the variable X{vi}, to obtain a function
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hi satisfying

hi(xV\D(vi)) = f(xnomD(v(i))\{vi}
, xfixvi

, xV\D(vi)) ∀xV\D(vi)

= f(xfix
D(v(i)), xV\D(vi)) ∀xV\D(vi), (3.3)

where (3.3) follows from (3.1) and (3.2). This establishes the induction step and completes the

proof. For the special case of the collector node vi, we have

g(xfix1 , CN−(v1)) = h1 = f(xfix
D(v1)

) = f(xfix1 , xfix2 , . . . , xfixn ).

Since this is true for every fixed assignment of the node values, we can achieve error-free computa-

tion of the function. Hence the set of encoders described above is feasible. �

For node vi, consider the equivalence relation “↔i” where x
1
D(vi)

↔i x
2
D(vi)

if f(x1
D(vi)

, xV\D(vi)) =

f(x2
D(vi)

, xV\D(vi)) for all xV\D(vi) ∈ XV\D(vi). It is easy to check that the equivalence classes

generated by ↔i are captured exactly by the alphabet Ai. Thus the above encoders use exactly

the optimal alphabet. Hence, the minimum worst case complexity for encoder Ci is ⌈log(|Ai|)⌉ on

the edge (vi, π(vi)).

The extension to the case where node vi collects a block of N independent measurements Xi ∈

XN
i , and the collector node v1 wants to compute the vector function f (N)(X1, X2, . . . , Xn), is

straightforward. We can thus achieve a minimum worst case complexity arbitrarily close to log |Ai|

bits for encoder Ci. It should be noted that the minimum worst case complexity of encoder Ci does

not depend on the encoders of the other nodes.

If there is a probability distribution p(X1, X2, . . . , Xn) on the measurements, then we can obtain

a necessary and sufficient condition by considering all edge cuts.

Lemma 6. Consider a cut which partitions the nodes into S and V \S with v1 ∈ V \S. Let δ+(S)

be the set of all edges from nodes in S to nodes in V \ S. Then the set of encoders {Ci : 2 ≤

i ≤ n} is feasible if and only if for every cut, the encoder on at least one of the edges in δ+(S)

separates x1S , x
2
S ∈ XS if there exists an assignment x∗V\S such that f(x1S , x

∗
V\S) 6= f(x2S , x

∗
V\S) and

p(x1S , x
∗
V\S)p(x

2
S , x

∗
V\S) > 0.

23



Proof: Necessity is as before. For the converse, suppose the set of encoders is not feasible. Then

there exist (x∗1, x
A
V\v1

) and (x∗1, x
B
V\v1

) such that

f(x∗1, x
A
V\v1

) 6= f(x∗1, x
B
V\v1

) and p(x∗1, x
A
V\v1

)p(x∗1, x
B
V\v1

) > 0.

However, the codewords received from nodes in N−(v1) are the same for both assignments. For

the cut which separates v1 from V \ v1, there is no encoder on δ+(S) which separates xAV\v1 and

xBV\v1 . �

The above proof of the converse is not constructive. The construction is much harder now since

the encoders are coupled, as shown by the following example.

Example 7. Consider the three node network G = (V , E) with V = {v1, v2, v3} and E = {(v2, v1),

(v3, v1)} (see Figure 3.1(a)). Let X1 = {x1a},X2 = {x2a, x2b},X3 = {x3a, x3b}. Let us suppose

p(x1a, x2a, x3a) = p(x1a, x2b, x3b) = 1
2 . The function is given by f(X1, X2, X3) = (X1, X2, X3).

Considering the cut ({v2, v3}, {v1}), either v2 or v3 needs to separate its two values. Thus the two

encoders are no longer independent.

(a) (b)

Figure 3.1: Two simple networks of Examples 1 and 2

In general, we can trade off between the encoders on different edges and it may not be possible to

simultaneously minimize the average description lengths of all encoders. However, if we assume that

p(x1, x2, . . . , xn) > 0 for all (x1, x2, . . . , xn), we can separately minimize the average description

length of each encoder. The optimal encoder constructs a Huffman code on the optimal alphabet

Ai. Suppose q
i
is the probability vector induced on the alphabet Ai. Then, by taking long blocks
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of measurements, we can achieve a minimum average case complexity arbitrarily close to H(q
i
) for

encoder Ci.

It is worth noting that we have considered zero error function computation, and shown optimal

strategies for function computation on tree graphs, where node measurements may be correlated,

but p(x1, x2, . . . , xn) > 0 for all (x1, x2, . . . , xn). In contrast, in the vanishing error paradigm, the

extension of Slepian-Wolf coding to tree graphs with more than three nodes is not known. As an

aside, we note that under some additional assumptions, we can do recursive Slepian-Wolf coding

to obtain the rate region for computing the function f(X1, X2, . . . , Xn) = (X1, X2, . . . , Xn).

Theorem 8 (Distributed Source Coding on a Tree). Consider a directed tree G = (V , E) with

collector node v1. The node measurements X1, X2, . . . , Xn are drawn from the probability distribu-

tion p(X1, X2, . . . , Xn) which satisfies the following condition: if (vi, vj), (vj , vk) are edges in the

undirected tree G̃, then Xi is conditionally independent of Xk, given Xj. That is, the edges of the

undirected tree G̃ specify Markov chain constraints on the variables (X1, X2, . . . Xn). If Ri is the

rate of the encoder on the edge (vi, π(vi)), then the rate region is described by

Ri ≥ H(XD(vi)|X{π(vi)}) for every node vi ∈ V \ {v1}

3.3 Function Computation on Directed Acyclic Graphs

The extension from trees to directed acyclic graphs presents significant challenges, since there is

no longer a unique path from every node to the collector. Consider a weakly connected directed

acyclic graph (DAG) G = (V , E), where each node vi collects a block of N measurements Xi ∈ XN
i .

The collector node v1 is the unique node with only incoming edges, which wants to compute the

vector function fN (X1, X2, . . . , Xn) with zero error.

Let the encoder mapping on edge (vj , vi) be denoted by CN
ji , which maps the measurement vector

Xj and the codewords received thus far, to a codeword transmitted on edge (vj , vi). Since there are

no cycles in G, function computation proceeds in a bottom-up fashion. Node vi receives codewords

CN
ji on each incoming edge (vj , vi) and then transmits a codeword Cik on each outgoing edge (vi, vk).

A set of encoders is said to be feasible if there is a decoding function at the collector node v1 which

maps the received codewords to the correct function value. Let lwc(C
N
ij ) and lavg(C

N
ij ) denote the
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worst case and average case complexity, respectively, of the encoder CN
ij . The rate of encoder CN

ij

is given by

Rwc(C
N
ij ) =

lwc(C
N
ij )

N
and Ravg(C

N
ij ) =

lavg(C
N
ij )

N
.

Thus we can assign a rate vector in R|E| to every feasible set of encoders. Let R
(N)
wc in the worst

case (or R
(N)
avg in the average case) be the set of feasible rate vectors for encoders of block length

N . Then the rate region Rwc (or Ravg) is given by the closure in R|E| of the finite block length

rate vectors:

Rwc :=
⋃

N≥1

R
(N)
wc and Ravg :=

⋃

N≥1

R
(N)
avg .

Consider the following example.

Example 9. We have three nodes {v1, v2, v3} connected as shown in Figure 3.1(b). Let X1 = X2 =

X3 = {0, 1, 2, 3}, and suppose node v1 wants to compute f(X1, X2, X3) = (X1 + X2 + X3)mod4.

It is easy to check that (2, 0, 2) and (2, 2, 0) are feasible rate vectors for (l1, l2, l3). These are rate

vectors associated with the two tree subgraphs. Further, one can also check that (2, 1, 1) is also

feasible. This is achieved by node 3 dividing its measurement by 2, and transmitting the quotient

on l3 and the remainder on l2. Alternately, in the block computation setting, the rate (2, 1, 1) is

achievable by time-sharing between (2, 0, 2) and (2, 2, 0).

3.3.1 Outer bound on the rate region

Consider any cut of the graph G which partitions nodes into subsets S and V \ S with v1 ∈ V \ S.

Let δ+(S) be the set of edges from some node in S to some node in V \ S.

Lemma 10. Consider a set of encoders which achieve error free block function computation with

rate vector {Rwc(i, j)}(vi,vj)∈E . Given any assignments x1S and x2S of the nodes in S, if there exists

an assignment xV\S such that f (N)(xV\S , x
1
S) 6= f (N)(xV\S , x

2
S), then the encoders on at least one

of the edges in δ+(S) must separate x1S and x2S.

(i) In the worst case block computation scenario, an outer bound on the rate region is given by

∑

(vi,vj)∈δ+(S)

Rij ≥ log |Π(C1
S)| for all cuts (S,V \ S),
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where Π(C1
S) is the partition of XS into the appropriate equivalence classes.

(ii) Suppose we have a probability distribution with p(X1, X2, . . . , Xn) > 0. Given a cut (S,V \S),

let R ⊂ V \ S be the subset of nodes which have a directed path to some node in S. In the average

case block computation scenario, an outer bound on the rate region is given by

∑

(vi,vj)∈δ+(S)

Rij ≥ H([XS ]|XR) for all cuts (S,V \ S),

where [XS ]|XR is the equivalence class to which XS belongs, given XR and a particular function.

3.3.2 Achievable region

Lemma 11. Consider any directed tree subgraph GT with root node v1. Let us suppose that only

the edges in GT can be used for communication. Then we can construct encoders on each edge,

which minimize worst case or average case complexity. The rate vector corresponding to a tree GT

is the limit of the rate vectors for the optimal finite block length encoders for GT . Thus, for a given

tree GT :

(i) The worst case rate vector corresponding to the tree GT is an extreme point of the worst case

rate region Rwc .

(ii) If p(x1, x2, . . . , xn) > 0 for all (x1, x2, . . . , xn), the rate vector corresponding to the tree GT is

an extreme point of the average case rate region Ravg.

The convex hull of the rate points corresponding to trees is achievable. However, we do not know

if these are the only extreme points of the rate region R.

3.3.3 Some examples

Example 12 (Arithmetic Sum). Consider three nodes v1, v2, v3 connected as in Figure 3.1(b).

Let X2 = X3 = {0, 1}, with node v1 having no measurements. Suppose node v1 wants to compute

f(X1, X2, X3) = X2 + X3. Let (R21, R31, R32) be the rate vector associated with edges (l1, l2, l3).

The outer bound on Rwc is:

R21 ≥ 1; R21 +R31 ≥ log 3; R32 +R31 ≥ 1.

27



The subset of the rate region achievable by trees is:

R21 = λ+ (1− λ) log 3, R31 = λ,R32 = (1− λ) for 0 ≤ λ ≤ 1.

Suppose that X1, X2 are i.i.d. with p(X1 = 0) = p(X1 = 1) = 0.5. The outer bound on Ravg is:

R21 ≥ 1; R21 +R31 ≥
3

2
; R32 +R31 ≥ 1.

The subset of the rate region achievable by trees is:

R21 = λ+ (1− λ)
3

2
, R31 = λ,R32 = (1− λ) for 0 ≤ λ ≤ 1.

Example 13 (Finite field parity). Let Xi = {0, 1, . . . , D−1} for each node vi. Suppose the collector

node v1 wants to compute the function (X1 +X2 + . . .+Xn) mod D. In this case, the outer bound

on the worst case rate region described in Lemma 10 is tight. Indeed, since the set of all outgoing

links from a node is a valid cut, we have
∑

(vi,vj)∈E
Rij ≥ log2D

An obvious achievable strategy is for every leaf node vi to split its block and transmit it on the

outgoing edges from vi. Next, we move to a node at height 1. This node receives partial blocks from

various leaf nodes, and can hence compute an intermediate parity for some instances of the block.

It then splits its block along the various outgoing edges. The crucial point is that the worst case

description length per instance remains log2D. Proceeding recursively up the DAG, we see that we

can achieve the outer bound.

Example 14 (Max/Min). Let Xi = {0, 1, . . . , D − 1} for each node vi. Suppose the collector node

v1 wants to compute max(X1, X2, . . . , Xn). The outer bound to the worst case rate region described

in Lemma 10 is tight. The achievable strategy is similar to the parity case, where nodes compute

intermediate maximum values and split their blocks on the outgoing edges. Once again, we utilize

the fact that the range of the Max function remains constant irrespective of the number of nodes.
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3.4 Concluding Remarks

We have addressed the problem of zero error function computation on graphs, and analyzed both

worst case and average case metrics. We have provided necessary and sufficient conditions for the

computation of a general function of correlated measurements on a directed acyclic graph. For

tree graphs, this leads to finding the optimal encoders on each edge. For general DAGs, we have

provided an outer bound on the rate region, and an achievable region based on aggregating along

subtrees.

29



CHAPTER 4

COMPUTING SYMMETRIC BOOLEAN FUNCTIONS IN

UNDIRECTED GRAPHS

In this chapter, we consider a network where each node has a Boolean variable and all nodes

want to compute a given symmetric Boolean function. We abstract out the medium access control

problem, and view the network as an undirected graph with edges representing essentially noiseless

wired links between nodes. We adopt a deterministic formulation of the problem of function

computation, requiring zero error. We consider the problem of worst-case function computation,

without imposing a probability distribution on the node measurements. As in the previous chapter,

we allow nodes to accumulate a block of N measurements, and realize greater efficiency by using

block codes.

The key difference from Chapter 3 is that we consider undirected graphs with bidirectional links

which allow interactive information exchange. Thus, the set of admissible strategies includes all

interactive strategies, where a node may exchange several messages with other nodes, with node i’s

transmission being allowed to depend on all previous transmissions heard by node i, and node i’s

block of measurements. Our objective is to determine the set of rate vectors that achieve zero error

block computation. In essence, we are exploring how the function structure and the structure of the

graph affect the communication strategy. We can further study the benefit of interactive strategies

versus single-round strategies. In particular, we would like to study the nature of interaction that

is appropriate on a graph.

In this chapter, we are particularly interested in computing functions which depend only on the

sum of nodes’ measurements. We begin by reviewing a toy problem from [20] where the exact

communication complexity of the AND function of two variables is shown to be log2 3 bits, for

block computation. The lower bound was established using fooling sets, and a novel achievable

scheme was presented which minimizes the worst case total number of bits exchanged.

In Section 4.1, we generalize the approach described in [20] to the two node problem where each
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node i has an integer variable Xi and both nodes want to compute a function f(X1, X2) which

only depends on X1 +X2. Once again, we establish a lower bound by constructing an appropriate

fooling set. For achievability, we devise a single-round strategy as follows. Node 1 constructs an

effective alphabet based on separation requirements of the function, and then uses a prefix-free

codebook. Node 2 simply replies with the value of the function block. The codebook for node 1

is chosen so as to minimize the worst-case total number of bits exchanged. The existence of this

codebook is guaranteed by the Kraft inequality. We also construct a similar achievable strategy

starting with node 2. We define a class of functions called sum-threshold functions, which evaluate

to 1 if X1 + X2 exceeds a threshold. For this class, we show that this single-round strategy is

indeed optimal. However, for a class of functions called sum-interval functions, which evaluate to

1 if a ≤ X1+X2 ≤ b, the upper and lower bounds do not match. However, the achievable strategy

involving separation, followed by coding, can be used for any general function.

In Section 4.2, we consider Boolean symmetric function computation on trees. Since every edge

is a cut-edge, we can obtain a lower bound for the number of bits that must be exchanged on

an edge, by reducing it to a two node problem. This lower bound is, in fact, a cut-set bound.

For the class of sum-threshold functions, we construct an achievable strategy which achieves the

cut-set bound. In fact, we use exactly the same achievable strategy as in the two node example,

but we order the transmissions so that information flows up the tree to the root node and then

back down the tree to the leaves. This is reminiscent of message passing algorithms. This result

can be generalized to the case where nodes have non-binary measurements, and want to compute

a sum-threshold function.

In Section 4.3, for general graphs, we can still derive a cut-set lower bound by considering all

partitions of the vertices. We also propose an achievable scheme that consists of activating a subtree

of edges and using the optimal strategy for transmissions on the tree. While the upper and lower

bounds do not seem to match even for very simple functions, for complete graphs, we are able

to show that the minimum symmetric rate point which satisfies the cut-set constraints is no less

than one-half of the symmetric rate point achieved by employing star graphs. Thus, for complete

graphs, aggregation along trees provides a 2-OPT solution.
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4.1 The Two Node Problem

Our objective in this chapter is to derive provably optimal strategies for the computation of sym-

metric Boolean functions in tree networks, and, further, in general network topologies. The value

of a symmetric Boolean function of n variables only depends on the number of 1s, or viewed dif-

ferently, the sum of the n variables. A key component in the solution of the main problem is the

understanding of the two node problem.

Consider two nodes 1 and 2 with variables X1 ∈ {0, 1, . . . ,m1} and X2 ∈ {0, 1, . . . ,m2}. Both

nodes wish to compute a function f(X1, X2) which only depends on the value of X1 + X2. To

put this in context, one can suppose there are m1 Boolean variables collocated at node 1 and m2

Boolean variables at node 2, and both nodes wish to compute a symmetric Boolean function of the

n := m1+m2 variables. We pose the problem in a block computation setting, where each node i has

a block of N independent measurements, denoted by XN
i . We consider the class of all interactive

strategies, where nodes 1 and 2 transmit messages alternately with the value of each subsequent

message being allowed to depend on all previous transmissions, and the block of measurements

available at the transmitting node. We define a round to include one transmission by each node.

A strategy is said to achieve correct block computation if for every choice of input (XN
1 , XN

2 ),

each node i can correctly decode the value of the function block fN (X1, X2) using the sequence

of transmissions b1, b2, . . . and its own measurement block XN
i . This is the direct-sum problem in

communication complexity.

Let SN be the set of strategies for block length N , which achieve zero-error block computation,

and let C(f, SN , N) be the worst-case total number of bits exchanged under strategy SN ∈ SN .

The worst-case per-instance complexity of computing a function f(X1, X2) is defined as

C(f) := lim
N→∞

min
SN∈SN

C(f, SN , N)

N
.

4.1.1 Complexity of sum-threshold functions

In this chapter, we are interested in functions f(X1, X2) which only depend on X1 + X2. Let us

suppose without loss of generality that m1 ≤ m2. We define an interesting class of {0, 1}-valued
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functions called sum-threshold functions.

Definition 4 (sum-threshold functions). A sum-threshold function Πθ(X1, X2) with threshold θ

is defined as follows:

Πθ(X1, X2) =











1 if X1 +X2,≥ θ

0 otherwise.

For the special case where m1 = 1,m2 = 1 and θ = 2, we recover the Boolean AND function,

which was studied in [20]. It is critical to understand this problem before we can address the general

problem of computing symmetric Boolean functions. Consider two nodes with measurement blocks

XN
1 ∈ {0, 1}N and XN

2 ∈ {0, 1}N , which want to compute the element-wise AND of the two blocks,

denoted by ∧N (X1, X2).

Theorem 15. Given any strategy SN for block computation of X1 ∧X2,

C(X1 ∧X2, SN , N) ≥ N log2 3.

Further, there exists a strategy S∗
N which satisfies

C(X1 ∧X2, S
∗
N , N) ≤ ⌈N log2 3⌉.

Thus, the complexity of computing X1 ∧X2 is given by C(X1 ∧X2) = log23.

Proof of achievability: Suppose node 1 transmits first using a prefix-free codebook. Let the

length of the codeword transmitted be l(XN
1 ). At the end of this transmission, both nodes know

the value of the function at the instances where X1 = 0. Thus node 2 only needs to indicate its

bits for the instances of the block where X1 = 1. Thus the total number of bits exchanged under

this scheme is l(XN
1 ) + w(XN

1 ), where w(XN
1 ) is the number of 1s in XN

1 . For a given scheme, let

us define

L := max
XN

1

(l(XN
1 ) + w(XN

1 ))

to be the worst case total number of bits exchanged. We are interested in finding the codebook

which will result in the minimum worst-case number of bits.
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Any prefix-free code must satisfy the Kraft inequality given by
∑

XN
1

2−l(XN
1 ) ≤ 1. Consider a code-

book with l(XN
1 ) = ⌈N log2 3⌉−w(xN1 ). This satisfies the Kraft inequality since

∑

XN
1
w(XN

1 ) = 3N .

Hence there exists a valid prefix free code for which the worst case number of bits exchanged is

⌈N log2 3⌉, which establishes that C(X1 ∧X2) ≤ log2 3.

The lower bound is shown by constructing a fooling set [8] of the appropriate size. We digress

briefly to introduce the concept of fooling sets in the context of two-party communication complexity

[8]. Consider two nodes X and Y , each of which take values in finite sets X and Y, and both nodes

want to compute some function f(X,Y ) with zero error.

Definition 5 (Fooling Set). A set E ⊆ X × Y is said to be a fooling set, if for any two distinct

elements (x1, y1), (x2, y2) in E, we have either

• f(x1, y1) 6= f(x2, y2), or

• f(x1, y1) = f(x2, y2), but either f(x1, y2) 6= f(x1, y1) or f(x2, y1) 6= f(x1, y1).

Given a fooling set E for a function f(X1, X2), we have C(f(X1, X2)) ≥ log2 |E|. We have

described two dimensional fooling sets above. The extension to multi-dimensional fooling sets

is straightforward and gives a lower bound on the communication complexity of the function

f(X1, X2, . . . , Xn). We will encounter multi-dimensional fooling sets in Chapter 5.

Lower bound for Theorem 15: We define the measurement matrix M to be the matrix ob-

tained by stacking the row XN
1 over the row XN

2 . Thus we need to find a subset of the set of all

measurement matrices which forms a fooling set. Let E be the set of all measurement matrices

which are made up of only the column vectors {







1

0






,







0

1






,







1

1






}. We claim that E is the

appropriate fooling set. Consider two distinct measurement matrices M1,M2 ∈ E. Let fN (M1)

and fN (M2) be the block function values obtained from these two matrices. If fN (M1) 6= fN (M2),

we are done. Let us suppose fN (M1) = fN (M2) and since M1 6= M2, there must exist one column

where M1 has







0

1






but M2 has







1

0






. Now if we replace the first row of M1 with the first row

of M2, the resulting measurement matrix, say M∗, is such that f(M∗) 6= f(M1). Thus, the set E

is a valid fooling set. It is easy to verify that the E has cardinality 3N . Thus, for any strategy
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SN ∈ SN , we must have C(X1 ∧X2, SN , N) ≥ N log2 3, implying that C(X1 ∧X2) ≥ log2 3. This

concludes the proof of Theorem 15. �

We now return to the general two node problem withX1 ∈ {0, 1, . . . ,m1} andX2 ∈ {0, 1, . . . ,m2}

and the sum-threshold function Πθ(X1, X2). We will extend the approach presented above to this

general scenario.

Theorem 16. Given any strategy SN for block computation of the function Πθ(X1, X2),

C(Πθ(X1, X2), SN , N) ≥ N log2{min(2θ + 1, 2m1 + 2, 2(n− θ + 1) + 1)}.

Further, there exist single-round strategies S∗
N and S∗∗

N , starting with nodes 1 and 2 respectively,

which satisfy

C(Πθ(X1, X2), S
∗
N , N) ≤ ⌈N log2{min(2θ + 1, 2m1 + 2, 2(n− θ + 1) + 1)}⌉.

C(Πθ(X1, X2), S
∗∗
N , N) ≤ ⌈N log2{min(2θ + 1, 2m1 + 2, 2(n− θ + 1) + 1)}⌉.

Thus, the complexity of computing Πθ(X1, X2) is given by C(Πθ(X1, X2)) = log2{min(2θ+1, 2m1+

2, 2(n− θ + 1) + 1)}.

Proof of achievability: We consider three cases:

(a) Suppose θ ≤ m1 ≤ m2. We specify a strategy S∗
N in which node 1 transmits first. We begin

by observing that inputs X1 = θ,X1 = (θ + 1) . . . , X1 = m1 need not be separated. By this we

mean that, for each of these values of X1, Πθ(X1, X2) = 1 for all values of X2. Loosely speaking,

we can replace any instance of X1 ≥ θ with X1 = θ without affecting the value of the function.

Thus node 1 has an effective alphabet of {0, 1, . . . , θ}. Suppose node 1 transmits using a prefix-free

codebook on this reduced alphabet. Let the length of the codeword transmitted be l(XN
1 ). At the

end of this transmission, node 2 only needs to indicate one bit for the instances of the block where

X1 = 0, 1, . . . , (θ − 1). Thus the worst-case total number of bits is

L := max
XN

1

(l(XN
1 ) + w0(XN

1 ) + w1(XN
1 ) + . . .+ wθ−1(XN

1 )),

where wj(XN
1 ) is the number of instances in the block where X1 = j. We are interested in
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finding the codebook which will result in the minimum worst-case number of bits. From the Kraft

inequality for prefix-free codes we have

∑

XN
1 ∈{0,1,...,θ}N

2−l(XN
1 ) ≤ 1 ⇒

∑

XN
1 ∈{0,1,...,θ}N

2−L+w0(XN
1 )+w1(XN

1 )+...+wθ−1(XN
1 )) ≤ 1.

Consider a codebook with l(XN
1 ) = ⌈N log2(2θ + 1)⌉ − w(xN1 ). This satisfies the Kraft inequality

since
∑

XN
1 ∈{0,1,...,θ}N

2w
0(XN

1 )+w1(XN
1 )+...+wθ−1(XN

1 )).1w
θ(XN

1 ) = (2θ + 1)N .

Hence there exists a valid prefix-free code for which the worst-case number of bits exchanged is

⌈N log2(2θ + 1)⌉. Since θ ≤ m1 ≤ m2, we have

C(Πθ(X1, X2), S
∗
N , N) ≤ ⌈N log2{min(2θ + 1, 2m1 + 2, 2(n− θ + 1) + 1)}⌉.

Clearly the strategy S∗
N has exactly one round. An analogous achievable strategy S∗∗

N can be

derived with node 2 transmitting first. Again, node 2 does not need to separate the inputs X2 =

θ, (θ + 1), . . . ,m2, yielding an effective alphabet of {0, 1, . . . , θ}, which gives

C(Πθ(X1, X2), S
∗∗
N , N) ≤ ⌈N log2(2θ + 1)⌉.

(b) Suppose m1 ≤ m2 ≤ θ. Consider a strategy S∗
N in which node 1 transmits first. We begin by

observing that inputs X1 = 0, X1 = 1, . . . , X1 = θ−m2 − 1 need not be separated since for each of

these values of X1, Πθ(X1, X2) = 0 for all values of X2. Thus node 1 has an effective alphabet of

{θ−m2−1, θ−m2, . . . ,m1}. Suppose node 1 transmits using a prefix-free codebook on this reduced

alphabet. Let the length of the codeword transmitted be l(XN
1 ). At the end of this transmission,

node 2 only needs to indicate one bit for the instances of the block where X1 = θ − m2, . . . ,m1.

Thus the worst-case total number of bits is

L := max
XN

1

(l(XN
1 ) + wθ−m2(XN

1 ) + . . .+ wm1(XN
1 )).
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From the Kraft inequality for prefix-free codes we have

∑

XN
1 ∈{θ−m1−1,θ−m1,...,m1}N

2−L+wθ−m2 (XN
1 )+...+wm1 (XN

1 ) ≤ 1.

Consider a codebook with l(XN
1 ) = ⌈N log2(2(m1+m2−θ+1)+1)⌉−wθ−m2(XN

1 )−. . .−wm1(XN
1 ).

This satisfies the Kraft inequality since

∑

XN
1 ∈{θ−m2−1,θ−m2,...,m1}N

2w
θ−m2 (XN

1 )+...+wm1 (XN
1 ).1w

θ−m2−1(XN
1 ) = (2(m1 +m2 − θ + 1) + 1)N .

Hence there exists a valid prefix free code for which L = ⌈N log2(2(n − θ + 1) + 1)⌉. Since

m1 ≤ m2 ≤ θ, we have that

C(Πθ(X1, X2), S
∗
N , N) ≤ ⌈N log2{min(2θ + 1, 2m1 + 2, 2(n− θ + 1) + 1)}⌉.

Clearly, S∗
N is a single-round strategy, and the strategy S∗∗

N which starts with node 2 can be

analogously derived.

(c) Suppose m1 ≤ θ ≤ m2. For the case where node 1 transmits first, we construct a trivial strategy

S∗
N where node 1 uses a codeword of length ⌈N log2(m1 + 1)⌉ bits and node 2 replies with a string

of N bits indicating the function block. Thus we have C(Πθ(X1, X2), S
∗
N , N) ≤ ⌈N log2(2m1+2)⌉.

Now consider a strategy S∗∗
N where node 2 transmits first. Observe that the inputs X2 = 0, X2 =

1, . . . , X2 = θ−m1 − 1 need not be separated since for each of these values of X2, Πθ(X1, X2) = 0

for all values of X2. Further, the inputs X2 = θ,X2 = θ + 1, . . . , X2 = m2 need not be separated.

Thus node 1 has an effective alphabet of {θ − m1 − 1, θ − m1, . . . , θ}. Suppose node 2 transmits

using a prefix-free codebook on this reduced alphabet. Then, node 1 only needs to indicate one bit

for the instances of the block where X1 = θ −m1, . . . , θ − 1. Thus the worst-case total number of

bits is

L := max
XN

2

(l(XN
2 ) + wθ−m1(XN

2 ) + . . .+ wθ−1(XN
2 )).
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From the Kraft inequality for prefix-free codes we have

∑

XN
1 ∈{θ−m1−1,θ−m1,...,θ}N

2−L+wθ−m1 (XN
1 )+...+wθ(XN

1 ) ≤ 1.

Consider a codebook with l(XN
1 ) = ⌈N log2(2m1 + 2)⌉ − wθ−m1(XN

1 ) − . . . − wθ−1(XN
1 ). This

satisfies the Kraft inequality since

∑

XN
1 ∈{θ−m1−1,θ−m1,...,θ}N

2w
θ−m1 (XN

1 )+...+wm2 (XN
1 ) = (2m1 + 2)N .

Hence there exists a valid prefix-free code for which L = ⌈N log2(2(n − θ + 1) + 1)⌉. Since m1 ≤

θ ≤ m2, we have that

C(Πθ(X1, X2), S
∗∗
N , N) ≤ ⌈N log2{min(2θ + 1, 2m1 + 2, 2(n− θ + 1) + 1)}⌉.

Proof of Lower Bound: The lower bound is shown by constructing a fooling set of the appropriate

size. Define the measurement matrix M to be the matrix obtained by stacking the row XN
1 over

the row XN
2 . We need to find a subset of the set of all measurement matrices, which form a fooling

set. Let E denote the set of all measurement matrices which are made up only of the column

vectors from the set

Z = {







z1

z2






: 0 ≤ z1 ≤ m1, 0 ≤ z2 ≤ m2, (θ − 1) ≤ z1 + z2 ≤ θ}.

We claim that E is the appropriate fooling set. Consider two distinct measurement matrices

M1,M2 ∈ E. Let fN (M1) and fN (M2) be the block function values obtained from these two

matrices. If fN (M1) 6= fN (M2), we are done. Let us suppose fN (M1) = fN (M2), and note that

since M1 6= M2, there must exist one column where M1 and M2 differ. Suppose M1 has







z1a

z2a







while M2 has







z1b

z2b






, where z1a + z2a = z1b + z2b. We can assume without loss of generality that

z1a < z1b and z2a > z2b.
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• If z1a + z2a = z1b + z2b = θ− 1, then the diagonal element f(z1b, z2a) = 1 since z1b + z2a ≥ θ.

Thus, if we replace the first row of M1 with the first row of M2, the resulting measurement

matrix, say M∗, is such that f(M∗) 6= f(M1).

• If z1a+z2a = z1b+z2b = θ, then the diagonal element f(z1a, z2b) = 0 since z1b+z2a < θ. Thus,

if we replace the second row of M1 with the second row of M2, the resulting measurement

matrix, say M∗, is such that f(M∗) 6= f(M1).

Thus, the set E is a valid fooling set. It is easy to verify that the E has cardinality |Z|N . Thus,

for any strategy SN ∈ SN , we must have C(Πθ(X1, X2), SN , N) ≥ N log2 |Z| implying that C(f) ≥

log2 |Z|. We are left with the task of computing the cardinality of the set Z. This can be modeled

as finding the sum of the coefficients of Y θ and Y θ−1 in a carefully constructed polynomial:

|Z| =
[

Y θ
]

+
[

Y θ−1
]

(1 + Y + . . .+ Y m1)(1 + Y + . . .+ Y m2)

=
[

Y θ
]

+
[

Y θ−1
] (1− Y m1+1)(1− Y m2+1)

(1− Y )2
.

Using the binomial expansion for 1
(1−Y )k

(see [60]),

|Z| =
[

Y θ
]

+
[

Y θ−1
]

(1− Y m1+1)(1− Y m2+1)
∞
∑

k=0







k + 1

1






Y k.

(a) Suppose θ ≤ m1 ≤ m2. Then |Z| = θ + θ + 1.

(b) Suppose m1 ≤ θ ≤ m2. Then |Z| = (2θ + 1)− θ +m1 − θ +m1 + 1 = 2m1 + 2.

(c) Suppose m1 ≤ m2 ≤ θ. Then |Z| = 2m1 + 2− 2θ + 2m2 + 1 = 2(n− θ + 1) + 1.

This completes the proof of Theorem 16. �

39



4.1.2 Complexity of sum-interval functions

Definition 6 (sum-interval functions). A sum-interval function Π[a,b](X1, X2) on the interval [a, b]

is defined as follows:

Π[a,b](X1, X2) :=











1 if a ≤ X1 +X2 ≤ b,

0 otherwise.

Theorem 17. Given any strategy SN for block computation of Π[a,b](X1, X2) where b ≤ n/2,

C(Π[a,b](X1, X2), SN , N) ≥ N log2{min(2b− a+ 3,m1 + 1)}.

Further, there exists a single-round strategy S∗
N which satisfies

C(Π[a,b](X1, X2), S
∗
N , N) ≤ ⌈N log2{min(2(b+ 1) + 1, 2m1 + 2)}⌉.

Thus, we have obtained the complexity of computing Πθ(X1, X2) to within one bit.

Proof of Achievability:

(a) Suppose b ≤ m1 ≤ m2. Node 1 has an effective alphabet of {0, 1, . . . , b+1}. Then the worst-case

total number of bits exchanged is given by

L := max
XN

1

(l(XN
1 ) + w0(XN

1 ) + . . .+ wb(XN
1 )).

From the Kraft inequality, we can obtain a prefix free codebook with L = ⌈N log2(2b + 1) + 1)⌉.

Thus we have

C(Π[a,b](X1, X2), S
∗
N , N) ≤ ⌈N log2(2(b+ 1) + 1)⌉.

(b) Suppose m1 ≤ a ≤ b ≤ m2 or a ≤ m1 ≤ b ≤ m2. In either of these scenarios, node 1 has an

effective alphabet of {0, 1, . . . ,m1}. Then the worst-case total number of bits exchanged is given

by

L := max
XN

1

(l(XN
1 ) + wa−m2(XN

1 ) + . . .+ wm1(XN
1 ))

From the Kraft inequality, we can obtain a prefix free codebook with L = ⌈N log2(2m1+2)⌉. Thus

we have C(Π[a,b](X1, X2), S
∗
N , N) ≤ ⌈N log2(2m1 + 2)⌉.
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Proof of Lower Bound: We attempt to find a fooling subset E of the set of measurement

matrices. Our first guess would be the set of measurement matrices which are composed of only

column vectors which sum up to b or b+1. However we see that this is not necessarily a fooling set,

because if [z1a, z2a]
T and [z1b, z2b]

T are two columns which sum to b+1, and if z1a ≤ z1b−(b−a+2),

then neither of the diagonal elements evaluate to function value 1. Thus, we can pick a maximum

of (b− a+ 2) consecutive elements along the line z1 + z2 = b+ 1, and, as before, all the elements

on the line z1 + z2 = b. It is easy to check that this modified set of columns indeed yields a fooling

set of measurement matrices. Now we need to compute the number of such columns.

(a) Suppose b ≤ m1 ≤ m2. The number of columns which sum up to b is equal to b + 1. Thus

the size of the fooling set is given by (2b− a+ 3)N .

(b) Suppose a ≤ m1 ≤ b ≤ m2 or m1 ≤ a ≤ b ≤ m2. The number of columns which sum up to

b is equal to m1 + 1 and the number of columns which sum up to b + 1 is equal to m1 + 1.

Thus, the size of the fooling set is given by {(m1 + 1) + min(m1 + 1, b− a+ 2)}N .

4.1.3 A general strategy for achievability

The strategy for achievability used in Theorems 16 and 17 suggests an achievable scheme for any

general function f(X1, X2) of variables X1 ∈ X1 and X2 ∈ X2 which depends only on the value of

X1 +X2. This is done in two stages.

• Separation: Two inputs x1a and x1b need not be separated if f(x1a, x2) = f(x1b, x2) for all

values x2. By checking this condition for each pair (x1a, x1b), we can arrive at a partition

of {0, 1 . . . ,m1} into equivalence classes, which can be considered a reduced alphabet, say

A := {a1, . . . , al}.

• Coding: Let A0 denote the subset of the alphabet A for which the function evaluates only

to 0, irrespective of the value of X2, and let A1 denote the subset of A which always evaluates

to 1. Clearly, from the equivalence class structure, we have |A0| ≤ 1 and |A1| ≤ 1. Using

the Kraft inequality as in Theorems 16 and 17, we obtain a scheme S∗
N with complexity

log2(2l − |A0| − |A1|).
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4.2 Computing Symmetric Boolean Functions on Tree Networks

Consider a tree graph T = (V,E), with node set V = {0, 1, . . . , n} and edge set E. Each node i

has a Boolean variable Xi ∈ {0, 1}, and every node wants to compute a given symmetric Boolean

function f(X1, X2, . . . , Xn). Again, we allow for block computation and consider all strategies

where nodes can transmit in any sequence with possible repititions, subject to:

• On any edge e = (i, j), either node i transmits or node j transmits, or neither, and this is

determined from the previous transmissions.

• Node i’s transmission can depend on the previous transmissions and the measurement block

XN
i .

The following theorem provides a computation and communication strategy for sum-threshold

functions that is optimal for each link.

Theorem 18. Consider a tree network where we want to compute the function Πθ(X1, . . . , Xn).

Let us focus on a single edge e ≡ (i, j) whose removal disconnects the graph into components Ae

and V \ Ae, with |Ae| ≤ |V \ Ae|. For any strategy SN ∈ SN , the number of bits exchanged along

edge e ≡ (i, j), denoted by Ce(Πθ(X1, . . . , Xn), SN , N), is lower bounded by

Ce(Πθ(X1, . . . , Xn), SN , N) ≥ N log2{min(2θ + 1, 2|Ae|+ 2, 2(n− θ + 1) + 1)}.

Further, there exists a strategy S∗
N such that for any edge e,

Ce(Πθ(X1, . . . , Xn), S
∗
N , N) ≤ ⌈N log2{min(2θ + 1, 2|Ae|+ 2, 2(n− θ + 1) + 1)}⌉.

Thus the complexity of computing Πθ(X1, . . . , Xn) is given by

Ce(Πθ(X1, . . . , Xn)) = log2{min(2θ + 1, 2|Ae|+ 2, 2(n− θ + 1) + 1)}.

Proof: Given a tree network T , every edge e is a cut edge. Consider an edge e whose removal

creates components Ae and V \ Ae, with |Ae| ≤ |V \ Ae|. Now let us aggregate the nodes in Ae

and also those in V \Ae, and view this as a problem with two nodes connected by edge e. Clearly
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the complexity of computing the function Πθ(XAe , XV \Ae
) is a lower bound on the worst-case total

number of bits that must be exchanged on edge e under any strategy SN . Hence we obtain

Ce(Πθ(X1, . . . , Xn), SN , N) ≥ N log2{min(2θ + 1, 2|Ae|+ 2, 2(n− θ + 1) + 1)}.

The achievable strategy S∗
N is derived from the achievable strategy for the two node case in

Theorem 16. That is to say, the transmissions back and forth along any edge will be exactly

the same as in the two node case. However, we need to orchestrate these transmissions so that

conditions of causality are maintained. Pick any node, say r, to be the root. This induces a partial

order on the tree network. We start with each leaf in the network transmitting its codeword to

the parent. Once a parent node obtains a codeword from each of its children, it has knowledge of

the number of 1s in its subtree, and can transmit a codeword to its parent. Thus codewords are

transmitted from child nodes to parent nodes until the root is reached. The root can then compute

the value of the function and now sends the appropriate replies to its children. The children then

compute the function and send appropriate replies, and so on. This sequential strategy depends

critically on the fact that, in the two node problem, we derived optimal strategies starting from

either node. Under the strategy described above, for any edge e, the worst-case total number of

bits exchanged is given by

Ce(Πθ(X1, . . . , Xn), S
∗
N , N) ≤ ⌈N log2{min(2θ + 1, 2|Ae|+ 2, 2(n− θ + 1) + 1)}⌉.�

Using Theorem 17, one can similarly derive an approximately optimal strategy for sum-interval

functions, which we state here without proof.

Theorem 19. Consider a tree network where we want to compute the function Π[a,b](X1, . . . , Xn),

with b ≤ n
2 . Let us focus on a single edge e ≡ (i, j) whose removal disconnects the graph into

components Ae and V \ Ae, with |Ae| ≤ |V \ Ae|. For any strategy SN ∈ SN , the number of bits

exchanged along edge e ≡ (i, j), denoted by Ce(f, SN , N), is lower bounded by

Ce(Π[a,b](X1, . . . , Xn), SN , N) ≥ N log2{min(2b− a+ 3, |Ae|+ 1)}.
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Further there exists a strategy S∗
N such that for any edge e,

Ce(Π[a,b](X1, . . . , Xn), S
∗
N , N) ≤ ⌈N log2{min(2(b+ 1) + 1, 2|Ae|+ 2)}⌉.

4.2.1 Extension to non-binary alphabets

The extension to the case where each node draws measurements from a non-binary alphabet is

immediate, since we have already solved the two node problem for a general integer alphabet.

Consider a tree network with n nodes where node i has a measurement Xi ∈ {0, 1, . . . , li − 1}.

Suppose all nodes want to compute a given function which only depends on the value of X1+X2+

. . . Xn. We can define sum-threshold functions in analogous fashion and derive an optimal strategy

for computation, along the lines of Theorem 18. We state the following theorem without proof.

Theorem 20. Consider a tree network where we want to compute a sum-threshold function,

Πθ(X1, . . . , Xn), of non-binary measurements. Let us focus on a single edge e whose removal

disconnects the graph into components Ae and V \ Ae. Let us define lAe :=
∑

i∈Ae
li. Then the

complexity of computing Πθ(X1, . . . , Xn) is given by

Ce(Πθ(X1, . . . , Xn)) = log2{min(2θ + 1, 2min(lAe , lV \Ae
) + 2, 2(lV − θ + 1) + 1)}.

We can similarly extend Theorem 19 to the case of non-binary alphabets.

4.3 Computing Sum-Threshold Functions in General Graphs

We now consider the computation of sum-threshold functions in general graphs where node mea-

surements can take more than two values, i.e., the alphabet is not restricted to be binary. A cut

is defined to be a set of edges F ⊆ E which disconnect the network into two components AF and

V \ AF . The lower bound for the two node problem yields a general cut-set bound for any given

cut.

Lemma 21 (Cut-set bound). Consider a general network G = (V,E), where node i has measure-

ment Xi ∈ {0, 1, . . . , li − 1} and all nodes want to compute the function Πθ(X1, . . . , Xn). Given a
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cut F which separates AF from V \ AF , the cut-set lower bound specifies that: For any strategy

SN , the number of bits exchanged on the edges in F is lower bounded by

CF (Πθ(X1, . . . , Xn), SN , N) ≥ N log2(min{2θ + 1, 2min(lAF
, lV \AF

) + 2, 2(lV − θ + 1) + 1)},

where lAF
=
∑

i∈AF
li.

A natural achievable strategy is to pick a spanning subtree of edges and use the optimal strategy

on this spanning subtree. Suppose we plot the vector of rates on each edge as a point in R|E|.

Then the convex hull of the rate vectors of the subtree aggregation schemes is an achievable region.

We would like to study how far this is from the cut-set region.

To simplify matters, let us consider a complete graph G and suppose each node i has a measure-

ment Xi ∈ {0, 1, . . . , li−1}. Define the minimum symmetric achievable rate Rach to be the smallest

value of R such that (R,R, . . . , R) is achievable by aggregating along trees. Similarly, define the

minimum symmetric cutset point Rcut to be the minimum R such that (R,R, . . . , R) satisfies the

cut-set constraints.

Theorem 22. For the computation of sum-threshold functions on complete graphs,

Rach ≤ 2

(

1−
1

n

)

Rcut.

In fact, this approximation ratio is tight.

Proof: For simplicity of treatment, let us suppose that θ ≤
∑n

i=1 li
2 . Consider all cuts of the type

({i}, V \ {i}). This yields

Rcut ≥ max
i∈V

(

min(log2(2θ + 1), log2(2li + 2))

n− 1

)

.

Now consider the achievable scheme which employs each of the n star graphs for equal sized sub-

blocks of measurements. In a given star graph with i as root, each of the activated edges (i, j)

needs min(log2(2θ+1), log2(2li +2)) bits. Further, each edge in the graph G belongs to 2 of the n
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star graphs. Hence, the rate on edge (i, j) is given by

1

n
(min(log2(2θ + 1), log2(2li + 2)) + min(log2(2θ + 1), log2(2lj + 2))) .

Hence we have

Rach ≤
2

n
(min(log2(2θ + 1),max

i∈V
{log2(2li + 2)})) ≤ 2

(

1−
1

n

)

Rcut.

Tight Example: Suppose l1 = l2 = . . . = ln = l and θ > l, then

Rcut =
1

n− 1
min(log2(2θ + 1), log2(2l + 2)).

Further, from the symmetry of the problem, it is clear that the optimal scheme is to employ the n

star graphs for equal sub-blocks of measurements. This gives a symmetric achievable point of

Rach =
2

n
min(log2(2θ + 1), log2(2l + 2)) = 2

(

1−
1

n

)

Rcut.

4.3.1 LP formulation for tree aggregation

The above approach of restricting attention to aggregation along star graphs leads to a convenient

LP formulation. Consider a complete graph G. Let us define the rate region achievable by star

graphs in the following way:

R̃ach = {Aλ : ||λ||1 = 1},

where A is a n× n(n−1)
2 matrix where the aieth entry is the minimum number of bits that must be

sent along edge e under tree aggregation scheme Ti. Let the vector λ represent the time fractions

assigned to different trees. We want to compare the rate vectors achieved by this scheme with the

rate vectors that satisfy the cut constraints. Let r ∈ Rcut be a given rate vector which satisfies

the cut constraints of Lemma 1. Now, we seek to find an achievable rate vector that is within a θ

factor of r, and further, we want to find the minimum value of such a θ. This can be formulated

as a linear program.
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Min. θ

s.t. Aλ ≤ θr

||λ||1 ≥ 1

λ ≥ 0, θ ≥ 0

Thus we can obtain the optimal assignment λ∗ and the optimal factor θ∗. Note that this assignment

depends on the given rate vector r ∈ Rcut. We can also write similar such LPs for other classes of

trees.

4.4 Concluding Remarks

In this chapter, we have addressed the computation of symmetric Boolean functions in tree net-

works, where all nodes want to compute the function. Toward this objective, we derived lower

bounds on the number of bits that must be exchanged on each edge of the tree, using communi-

cation complexity theory. Further, for each edge, we have devised an achievable scheme for block

computation that involves separation followed by prefix-free coding. We then sequence the trans-

missions so that information flows up the tree to a root node and then back down to the leaves. For

the case of sum-threshold functions, we have provided an optmal in-network information processing

strategy.

The approach presented also provides lower and upper bounds for the complexity of other func-

tions like sum-interval functions. Our framework can be generalized to handle functions of integer

measurements which only depend on the sum of the measurements. The extension to general

graphs is very interesting and appears significantly harder. However, a cut-set lower bound can

be immediately derived, and in some special cases we can show that subtree aggregation schemes

provide a 2-OPT solution.
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CHAPTER 5

COMPUTING SYMMETRIC BOOLEAN FUNCTIONS IN

COLLOCATED NETWORKS - WORST CASE

In this chapter, we consider a collocated network where each node’s transmissions can be heard

by every other node. This could correspond to a collocated subnet in a sensor network. We

restrict attention to the problem where all nodes want to compute a given function of the sensor

measurements. This formulation might be more appropriate in the context of sensor-actuator

networks, distributed fault monitoring and adaptive sensing. Each node has a Boolean variable

and we focus on the specific problem of symmetric Boolean function computation. As in Chapter

4, we adopt a deterministic formulation of the problem of function computation, requiring zero

error. We consider the problem of worst-case block function computation where we allow nodes to

accumulate a block of N measurements, and realize greater efficiency by using block codes.

We assume a packet capture model as in [1], where collisions do not convey information. Thus,

the problem of medium access is resolved by allowing at most one node to transmit successfully

at any time. The set of admissible strategies includes all interactive strategies, where a node may

exchange several messages with other nodes, with node i’s transmission being allowed to depend

on all previous transmissions, and node i’s block of measurements. However, since exactly one

node can access the wireless medium at a time, the identity of the node which transmits the next

bit must be a function of all previous transmissions. This ensures a collision free strategy [1]. It

is of particular interest to study the benefit of interactive strategies versus single-round strategies,

where each node transmits only one message.

In this chapter, we are particularly interested in computing symmetric Boolean functions. We

begin by recalling Theorem 15, which states that, for the AND function of two variables, the

exact communication complexity is log2 3 bits. In Section 5.2, we generalize this result to obtain

the broadcast communication complexity of the AND function of n variables. In Section 5.3, we

consider threshold functions, which evaluate to 1 if and only if the total number of 1s are above a
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certain threshold. For this class of functions, we devise an achievable strategy which involves each

node transmitting in turn using a prefix-free codebook. Further, by intelligent construction of a

fooling set, we obtain a matching lower bound for the complexity of computing threshold functions.

It is interesting to note that the optimal strategy requires no back-and-forth interaction between

nodes.

In Section 5.4, we derive the exact complexity of computing delta functions which evaluate to

1 if and only if there are a certain number of 1s. As a natural generalization, in Section 5.5, we

study the complexity of computing interval functions, which evaluate to 1 if and only if the total

number of 1s belong to a given interval [a, b]. For a fixed interval [a, b], we propose a strategy for

achievability that is order-optimal with optimal preconstant. Additionally, for the interesting class

of percentile functions, the proposed single-round strategy is order optimal. Finally, in Section 5.6,

we present some extensions to the case of non-Boolean measurements and to the case of non-Boolean

functions. Using the intuition gained from the Boolean case, we show how the achievability scheme

and fooling set lower bounds can be adapted. In particular we study general threshold functions

and the MAX function. While the proposed achievability strategy is exactly optimal for general

threshold functions, it is only order-optimal for the MAX function.

5.1 General Problem Setting

Consider a collocated network with nodes 1 through n, where each node i has a Boolean mea-

surement Xi ∈ {0, 1}. Every node wants to compute the same function f(X1, X2, . . . , Xn) of the

measurements. We seek to find communication schemes which achieve correct function computa-

tion at each node, with minimum worst-case total number of bits exchanged. We allow for the

efficiencies of block computation, where each node i has a block of N independent measurements,

denoted by XN
i . We consider the broadcast scenario, and restrict ourselves to collision-free strate-

gies. This means that for the kth bit bk, the identity of the transmitting node Tk depends only on

previously broadcast bits b1, b2, . . . , bk−1, while the value of the bit it sends can depend arbitrarily

on all previous broadcast bits as well as its block of measurements XN
Tk
.

It is important to note that all interactive strategies are subsumed within the class of collision-

free strategies. A collision-free strategy is said to achieve correct block computation if each node i
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can correctly determine the value of the function block fN (X1, X2, . . . , Xn) using the sequence of

bits b1, b2, . . . and its own measurement block XN
i . Let SN be the class of collision-free strategies for

block length N which achieve zero-error block computation, and let C(f, SN , N) be the worst-case

total number of bits exchanged under strategy SN ∈ SN . The worst-case per-instance complexity

of computing a function f(X1, X2, . . . , Xn) is defined by

C(f) = lim
N→∞

min
SN∈SN

C(f, SN , N)

N
.

We call this the broadcast computation complexity of the function f .

5.2 Complexity of Computing the AND Function

Before we can address the general problem of computing symmetric Boolean functions, we consider

the specific problem of computing the AND function, which is 1 if all its arguments are 1, and 0

otherwise. The AND function of two variables was studied in [20] where it was shown that the exact

communication complexity is log2 3 bits, for block computation. We presented an elaborate proof

of this result in Theorem 15 in Chapter 4. We now proceed to consider a collocated network with

n nodes, where each node wants to compute the AND function, denoted by ∧(X1, X2, . . . , Xn).

We have the following result.

Theorem 23. For any strategy SN ,

C(∧(X1, X2, . . . , Xn), SN , N) ≥ N log2(n+ 1).

Further, there exists a strategy S∗
N such that

C(∧(X1, X2, . . . , Xn), S
∗
N , N) ≤ ⌈N log2(n+ 1)⌉+ (n− 2).

Thus, the complexity of the multiple node AND function is given by C(∧(X1, X2, . . . Xn)) = log2(n+

1).

Proof of Achievability: The upper bound is established using induction on the number of
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nodes n. From Theorem 15, the result is true for n = 2 which is the basis step. Suppose the

result is true for a collocated network of (n − 1) nodes. Consider an achievable scheme in which

node n transmits first, using a prefix free codebook. Let the length of the codeword transmitted be

l(XN
n ). After this transmission, the function is determined for the instances where Xn = 0. For the

instances where Xn = 1, the remaining (n− 1) nodes need to compute ∧(X1, X2, . . . , Xn−1). From

the induction hypothesis, we know that this can be done using ⌈w(XN
n ) log2 n⌉+(n−3) bits. Thus

the worst-case total number of bits exchanged is L := maxXN
n
(l(XN

n ) + ⌈w(XN
n ) log2 n+ (n− 3)⌉).

As before, we want to minimize this quantity subject to the Kraft inequality. Consider a prefix-free

codebook for node n which satisfies

l(XN
n ) = ⌈N log2(n+ 1)⌉+ (n− 2)− ⌈w(XN

n ) log2 n⌉ − (n− 3).

This satisfies Kraft inequality since

∑

XN
n

2⌈w(XN
n ) log2 n⌉ ≤

∑

XN
n

2w(XN
n ) log2 n+1 ≤ 2(n+ 1)N ≤ 2⌈N log2(n+1)⌉+1.

Proof of lower bound: We need to devise a subset of the set of all n×N measurement matrices

which is a valid fooling set. Consider the subset E of measurement matrices which are only

comprised of columns which sum to (n − 1) or n. Since there are N columns, there are (n + 1)N

such matrices. Let M1, M2 be two distinct matrices in this subset. If fN (M1) 6= fN (M2), then

we are done. Suppose not. Then there must exist one instance where the function evaluates to

zero and for which M1 and M2 have different columns. Let us suppose M1 has 1n − ei and M2 has

1n − ej . Now if we replace the ith row of M1 with the ith row of M2, the resulting measurement

matrix, say M∗, is such that f(M∗) 6= f(M1). Thus, the set E is a valid fooling set. From the

fooling set lower bound, for any strategy SN ∈ SN , we must have C(∧(X1, X2), SN , N) ≥ N log2 3,

implying that C(f) ≥ log2 3. This concludes the proof of Theorem 23. �

By symmetry, we can derive the complexity of the OR function, which is defined to be 0 if all

its arguments are 0, and 1 otherwise. Consider a collocated network with n nodes, each of which

wants to compute the OR function, denoted by ∨(X1, X2, . . . , Xn).

Corollary 24. The complexity of the OR function is given by C(∨(X1, X2, . . . , Xn)) = log2(n+1),
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since we can view it as ∧(X1, X2, . . . , Xn), by deMorgan’s laws.

Note: Throughout the rest of this chapter, for ease of exposition, we will ignore the fact that

terms like N log2(n + 1) may not be integer. Since our achievability strategy involves each node

transmitting exactly once, this will result in a maximum of one extra bit per node, and since we

are amortizing this over a long block length N , it will not affect any of the results.

5.3 Complexity of Computing Boolean Threshold Functions

Definition 7 (Boolean threshold functions). A Boolean threshold function Πθ(X1, X2, . . . , Xn) is

defined as

Πθ(X1, X2, . . . , Xn) =











1 if
∑

iXi ≥ θ

0 otherwise.

Theorem 25. The complexity of computing a Boolean threshold function is C(Πθ(X1, X2, . . . Xn)) =

log2







n+ 1

θ






.

Proof of Achievability: The upper bound is established by induction on n. For n = 2 and

for all 1 ≤ θ ≤ n, the result follows from Theorem 23 and Corollary 24. This establishes the

basis step of the induction. Suppose the upper bound is true for a collocated network of (n − 1)

nodes, for all 1 ≤ θ ≤ (n − 1). Given a function Πθ(X1, X2, . . . , Xn) of n variables, consider

an achievable strategy in which node n transmits first, using a prefix free codeword of length

l(XN
n ). After this transmission, nodes 1 through n−1 can decode the block XN

n . For the instances

where Xn = 0, these (n− 1) nodes now need to compute Πθ(X1, X2, . . . , Xn−1). For the instances

where Xn = 1, the remaining (n − 1) nodes need to compute Πθ−1(X1, X2, . . . , Xn−1). From

the induction hypothesis, we have optimal strategies for computing these functions. Let wi(XN
n )

denote the number of instances of i in the block XN
n . Under the above strategy, the worst-case

total number of bits exchanged is

L = max
XN

n






l(XN

n ) + w0(XN
n ) log2







n

θ






+ w1(XN

n ) log2







n

θ − 1












.
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We want to minimize this quantity subject to the Kraft inequality. Consider a prefix-free codebook

which satisfies

l(XN
n ) = N log2







n+ 1

θ






− w0(XN

n ) log2







n

θ






− w1(XN

n ) log2







n

θ − 1






.

This assignment of codelengths satisfies the Kraft inequality since

∑

XN
n

2−l(XN
n ) =







n+ 1

θ







−N

∑

XN
n







n

θ







w0(XN
n )





n

θ − 1







w1(XN
n )

=







n+ 1

θ







−N 











n

θ






+







n

θ − 1













N

= 1.

Hence there exists a prefix-free code which satisfies the specified codelengths. The worst case total

number of bits exchanged under this strategy is given by L = N log2







n+ 1

θ






. This establishes

the induction step and completes the proof of the upper bound.

Proof of lower bound: We need to find a subset of the set of all n ×N measurement matrices

which is a valid fooling set. Consider the subset E of measurement matrices which consist of only

columns which sum to (θ−1) or θ. Since there are N columns, there are













n

θ






+







n

θ − 1













N

such matrices. We claim that the set E is a valid fooling set. Let M1, M2 be two distinct matrices

in this subset. If fN (M1) 6= fN (M2), then we are done. Suppose not. Then there must exist at

least one column at which M1 and M2 disagree, say M
(j)
1 6= M

(j)
2 . However, both M

(j)
1 and M

(j)
2

have the same number of ones. Thus there must exist some row, say i∗, where M
(j)
1 has a zero, but

M
(j)
2 has a one.

• Suppose f(M
(j)
1 ) = f(M

(j)
2 ) = 0. Then, consider the matrix M∗

1 obtained by replacing the

i∗th row of M1 with the i∗th row of M2. The jth column of M∗
1 has θ ones, and hence

f(M
∗(j)
1 ) = 1. Hence we have f(M∗

1 ) 6= f(M1).

• Suppose f(M
(j)
1 ) = f(M

(j)
2 ) = 1. Then, consider the matrix M∗

2 obtained by replacing the
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i∗th row of M2 with the i∗th row of M1. The jth column of M∗
2 has θ − 1 ones, and hence

f(M
∗(j)
2 ) = 1. Hence we have f(M∗

2 ) 6= f(M2).

Thus, E is a valid fooling set. From the fooling set lower bound, for any strategy SN ∈ SN , we must

have C(Πθ(X1, X2, . . . , Xn), SN , N) ≥ N log2







n+ 1

θ






implying that C(Πθ(X1, X2, . . . , Xn)) ≥

log2







n+ 1

θ






. This concludes the proof of Theorem 25. �

5.4 Complexity of Boolean Delta Functions

Definition 8 (Boolean delta function). A Boolean delta function Π{θ}(X1, X2, . . . , Xn) is defined

as:

Π{θ}(X1, X2, . . . , Xn) =











1 if
∑

iXi = θ

0 otherwise.

Theorem 26. The complexity of computing Π{θ}(X1, X2, . . . , Xn) is given by

C(Π{θ}(X1, X2, . . . , Xn)) = log2













n+ 1

θ






+







n

θ + 1












.

Sketch of Proof: The proof of achievability follows from an inductive argument as before. The

fooling set E consists of measurement matrices composed of only columns which sum up to θ − 1,

θ or θ + 1. Thus the size of the fooling set is













n

θ − 1






+







n

θ






+







n

θ + 1













N

.�
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5.5 Complexity of Computing Boolean Interval Functions

A Boolean interval function Π[a,b](X1, . . . , Xn) is defined as:

Π[a,b](X1, X2, . . . , Xn) =











1 if a ≤
∑

iXi ≤ b

0 otherwise.

A naive strategy to compute the function Π[a,b](X1, . . . , Xn) is to compute the threshold functions

Πa(X1, . . . , Xn) and Πb+1(X1, X2, . . . , Xn). However, this strategy gives us more information than

we seek; i.e., if
∑

iXi ∈ [a, b]C , then we also know if
∑

iXi < a, which is superfluous information

and perhaps costly to obtain. Alternately, we can derive a strategy which explicitly deals with

intervals, as against thresholds. This strategy has significantly lower complexity.

Theorem 27. The complexity of computing a Boolean interval function Π[a,b](X1, X2, . . . , Xn) with

a+ b ≤ n is bounded as follows:

log2













n+ 1

b+ 1






+







n

a− 1












≤ C(Π[a,b](X1, X2, . . . Xn))

≤ log2













n+ 1

b+ 1






+ (b− a+ 1)







n

a− 1












. (5.1)

The complexity of computing a Boolean interval function Π[a,b](X1, . . . , Xn) with a + b ≥ n is

bounded as follows:

log2













n+ 1

a






+







n

b+ 1












≤ C(Π[a,b](X1, X2, . . . Xn))

≤ log2













n+ 1

a






+ (b− a+ 1)







n

b+ 1












. (5.2)

Proof of lower bound: Suppose a + b ≤ n. Consider the subset E of measurement matrices

which consist of only columns which sum to (a − 1), b or (b + 1). We claim that the set E is a

valid fooling set. Let M1, M2 be two distinct matrices in this subset. If fN (M1) 6= fN (M2), we
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are done. Suppose not. Then there must exist at least one column at which M1 and M2 disagree,

say M
(j)
1 6= M

(j)
2 .

• Suppose f(M
(j)
1 ) = f(M

(j)
2 ) = 1. Then, both M

(j)
1 and M

(j)
2 have exactly b 1s. Thus there

exists some row, say i∗, where M
(j)
1 has a 0, but M

(j)
2 has a 1. Consider the matrix M∗

1

obtained by replacing the i∗th row of M1 with the i∗th row of M2. The jth column of M∗
1

has (b+ 1) 1s, and hence f(M
∗(j)
1 ) = 0, which means f(M∗

1 ) 6= f(M1).

• Suppose f(M
(j)
1 ) = f(M

(j)
2 ) = 0. If both M

(j)
1 and M

(j)
2 have the same number of 1s, then the

same argument as in (i) applies. However, if M
(j)
1 has (a−1) 1s and M

(j)
2 has (b+1) 1s, then

there exists some row i∗ where M
(j)
1 has a 0, but M

(j)
2 has a 1. Then, the matrix M∗

2 obtained

by replacing the i∗th row of M2 with the i∗th row of M1 is such that f(M∗
2 ) 6= f(M2).

Thus, the set E is a valid fooling set and |E| =













n

b+ 1






+







n

a− 1






+







n

b













N

. This

gives us the required lower bound in (5.1).

For the case where a+ b ≥ n, we consider the fooling set E′ of matrices which are comprised of

only columns which sum to a− 1, a or b+ 1. This gives us the lower bound in (5.2).

Proof of achievability: Consider the general strategy for achievability where node n transmits

a prefix-free codeword of length l(XN
1 ), leaving the remaining (n− 1) nodes the task of computing

a residual function. This approach yields a recursion for computing the complexity of interval

functions.

C(Π[a,b](X1, . . . , Xn)) ≤ log2[2
C(Π[a−1,b−1](X1,...,Xn−1)) + 2C(Π[a,b](X1,...,Xn−1)].

The boundary conditions for this recursion are obtained from the result for Boolean threshold

functions in Theorem 25. We could simply solve this recursion computationally, but we want to

study the behavior of the complexity as we vary a, b and n. Define fa,b,n := 2C(Π[a,b](X1,...,Xn)). We

have the following recursion for f(a, b, n):

f(a, b, n) ≤ f(a− 1, b− 1, n− 1) + f(a, b, n− 1). (5.3)

We proceed by induction on n. From Theorems 25 and 26, the upper bounds in (5.1) and (5.2)
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are true for n = 2 and all intervals [a, b]. Suppose the upper bound is true for all intervals [a, b] for

(n− 1) nodes. Consider the following cases.

(i) Suppose a+ b ≤ n− 1. Substituting the induction hypothesis in (5.3), we get

f(a, b, n) ≤







n

b






+ (b− a+ 1)







n− 1

a− 2







+







n

b+ 1






+ (b− a+ 1)







n− 1

a− 1







=







n+ 1

b+ 1






+ (b− a+ 1)







n

a− 1






.

(ii) Suppose a+ b ≥ n+ 1. Proof is similar to case (i).

(iii) Suppose a+ b = n. Substituting the induction hypothesis in (5.3), we get

f(a, b, n) ≤







n

b






+ (b− a+ 1)







n− 1

a− 2







+







n

a






+ (b− a+ 1)







n− 1

b+ 1







≤







n+ 1

b+ 1






+ (b− a+ 1)







n

a− 1







=







n+ 1

a






+ (b− a+ 1)







n

b+ 1






,

where some steps have been omitted in the proof of the last inequality. This establishes the

induction step and completes the proof. �
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5.5.1 Discussion of Theorem 27

(a) The gap between the lower and upper bounds in (5.1) and (5.2) is additive, and is upper

bounded by log2(b− a+ 2) which is log2(n+ 2) in the worst case.

(b) For fixed a and b, as the number of nodes increases, we have a + b ≤ n for large enough n.

Consider the residual term, (b− a+ 1)







n

a− 1






on the RHS in (5.1). We have

(b− a+ 1)







n

a− 1






= o













n+ 1

b+ 1












.

Hence, C(Π[a,b](X1, . . . , Xn)) = log2













n+ 1

b+ 1






(1 + o(1))






. Thus, for any fixed interval

[a, b], we have derived an order optimal strategy with optimal preconstant. The orderwise

complexity of this strategy is the same as that of the threshold function Πb+1(X1, . . . , Xn).

Similarly, we can derive order optimal strategies for computing C(Πl[n− a, n− b](X1, . . . , Xn))

and C(Π[a,n−b](X1, . . . , Xn)), for fixed a and b.

(c) Consider a percentile type function where [a, b] = [αn, βn], with (α+β) ≤ 1. Using Stirling’s

approximation, we can still show that

(β − α)n







n

αn− 1






= o













n+ 1

βn+ 1












.

Thus we have derived an order optimal strategy with optimal preconstant for percentile

functions.

(d) Consider the function f := Π∪i[ai,bi](X1, . . . , Xn) where the intervals [ai, bi] are disjoint, and

may be fixed or percentile type. We can piece together the result for single intervals and

show that

C(f(X1, . . . , Xn)) = log2

(

m
∑

i=1

g(ai, bi, n)(1 + o(1))

)

,
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where g(ai, bi, n) =













































n+ 1

bi + 1






if ai + bi ≤ n







n+ 1

ai






if ai + bi ≥ n.

5.6 Extension to General Alphabets

In Sections 5.3 - 5.5, we studied optimal strategies for computing threshold functions, delta

functions and interval functions of Boolean measurements. In this section, we will show that

these results can be generalized to the case where nodes have general integer alphabets, i.e.,

Xi ∈ {0, 1, . . . ,mi}. The proofs are more tedious in this case, and to maintain clarity of pre-

sentation, we will focus on threshold functions and the MAX function.

5.6.1 Complexity of general threshold functions

Consider a collocated network of n nodes, where node i has measurement Xi ∈ {0, 1, . . . ,mi}.

Definition 9. A general threshold function Πθ(X1, X2, . . . , Xn) is defined as below.

Πθ(X1, X2, . . . , Xn) :=











1 if
∑n

i=1Xi ≥ θ

0 otherwise
.

We employ the same notation as for Boolean threshold functions, which constitute a special case

of general threshold functions.

Theorem 28. The complexity of computing Πθ(X1, . . . , Xn) is given by

C(Πθ(X1, . . . , Xn)) = log2

(

[

Y θ
]

+
[

Y θ−1
]

(

n
∏

i=1

1− Y mi+1

1− Y

))

= log2







[

Y θ
]

+
[

Y θ−1
]

(

n
∏

i=1

(1− Y mi+1)

)







∞
∑

k=1







n+ k − 1

n− 1






Y k












,

where the notation [Y θ] refers to the coefficient of Y θ in the expression on the RHS.
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Proof: The proof proceeds by induction on the number of nodes n. From Theorem 16 in

Chapter 4, we know that the result is true for n = 2 and all choices of m1,m2 and θ. This serves

as a basis step for the induction. Let us suppose the result is true for a collocated network of n− 1

nodes and all choices of m1,m2, . . . ,mn−1 and θ. We now proceed to prove the result for a network

of n nodes.

We specify a strategy S∗
N in which node n transmits first. As described in Chapter 4, the optimal

strategy consists of two stages, namely separation and coding. We begin by identifying the symbols

in {0, 1, . . . ,mn} that need to be separated by node n. Let X̃n be the mapping of Xn to the reduced

alphabet given by {an, . . . , bn}. Subsequently, we construct a prefix-free codeword on the reduced

alphabet. Let the length of the codeword transmitted be l(XN
1 ). At the end of this transmission,

the remaining n − 1 nodes need to compute a residual threshold function for each instance of the

block. For example, if Xn = k, we are left with the task of computing Πθ−k(X1, . . . , Xn−1). By the

induction hypothesis, there is an achievable strategy to compute this residual threshold function,

with complexity C(Πθ−k(X1, . . . , Xn−1)). Thus the worst case total number of bits exchanged

under this strategy is given by

L := max
X̃N

n

(l(X̃N
n ) + wan(X̃N

n )C(Πθ−an(X1, . . . , Xn−1)) + wan+1(X̃N
n )C(Πθ−an−1(X1, . . . , Xn−1))

+ . . .+ wbn(X̃N
n )C(Πθ−bn(X1, . . . , Xn−1)),

where wj(X̃N
n ) is the number of instances in the block where X̃n = j. Our objective is to find the

smallest L that satisfies the Kraft inequality for prefix free codes, which states that
∑

X̃N
n
2−l(X̃N

n ) ≤

1. From the definition of L, we can lower bound the LHS of the Kraft inequality.

∑

XN
n

2−l(X̃N
n ) ≥ 2L

∑

X̃N
n

(

2−wan (X̃N
n )C(Πθ−an(X1,...,Xn−1)) . . . 2−wbn (X̃N

n )C(Πθ−bn(X1,...,Xn−1))
)

.

From the induction hypothesis, we have that

C(Πθ−k(X1, . . . , Xn−1)) = log2

(

[

Y θ−k
]

+
[

Y θ−k−1
]

(

n−1
∏

i=1

(1− Y mi+1)

1− Y

))

.
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Thus, the smallest feasible value of L is given by

2L =
∑

X̃N
n

(

[

Y θ−an
]

+
[

Y θ−an−1
]

n−1
∏

i=1

(

1− Y mi+1

1− Y

)

)wan (X̃N
n )

· . . .

· . . . ·

(

[

Y θ−bn
]

+
[

Y θ−bn−1
]

n−1
∏

i=1

(

1− Y mi+1

1− Y

)

)wbn (X̃N
n )

=





bn
∑

k=an

(

[

Y θ−k
]

+
[

Y θ−k−1
]

n−1
∏

i=1

(

1− Y mi+1

1− Y

)

)





N

=

(

mn
∑

k=0

(

[

Y θ−k
]

+
[

Y θ−k−1
]

n−1
∏

i=1

(

1− Y mi+1

1− Y

)

))N

(5.4)

=

(

[

Y θ
]

+
[

Y θ−1
]

(1 + Y + . . .+ Y mn)
n−1
∏

i=1

(

1− Y mi+1

1− Y

)

)N

=

(

[

Y θ
]

+
[

Y θ−1
]

n
∏

i=1

(

1− Y mi+1

1− Y

)

)N

.

L = N log2

(

[

Y θ
]

+
[

Y θ−1
]

n
∏

i=1

(

1− Y mi+1

1− Y

)

)

, (5.5)

where (5.4) follows from the fact that for k < an and k > bn, the coefficients of Y θ−k and Y θ−k−1

are both zero. Thus, we have derived an upper bound on the complexity of computing general

threshold functions in collocated networks.

Proof of lower bound: We need to find a subset of the set of all n ×N measurement matrices

which is a valid fooling set. Consider the subset E of measurement matrices which are made up

only of the column vectors which sum to (θ− 1) or θ. Consider two distinct measurement matrices

M1,M2 ∈ E. Let fN (M1) and fN (M2) be the block function values obtained from these two

matrices. If fN (M1) 6= fN (M2), we are done. Let us suppose fN (M1) = fN (M2), and note that

sinceM1 6= M2, there must exist one column, say column j, whereM1 andM2 differ. However, since

fN (M1) = fN (M2), each column of M1 must sum to the same value as the corresponding column in

M2. Thus there must exist rows i1 and i2 such that M1(i1, j) < M2(i1, j) and M1(i2, j) < M2(i2, j).

• If column j in M1 and M2 sum to θ− 1, then consider the new measurement matrix M∗ got

by replacing the ith1 row of M1 with the ith1 row of M2. The j
th column of M∗ sums to a value

that is greater than θ − 1. Thus, we have f(M∗) 6= f(M1).
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• If column j in M1 and M2 sum to θ, then consider the new measurement matrix M∗ got by

replacing the ith2 row of M1 with the ith2 row of M2. The jth column of M∗ sums to a value

that is less than θ. Thus, we have f(M∗) 6= f(M1).

Thus, the set E is a valid fooling set. We now need to evaluate the size of E. The number of

columns which sum to θ − 1 and θ respectively, can be evaluated by looking at the coefficients at

a carefully constructed generating polynomial given by

(1 + Y + . . .+ Y m1)(1 + Y + . . .+ Y m2) . . . (1 + Y + . . .+ Y mn).

This polynomial models all possible measurement vectors (X1, X2, . . . , Xn). Thus, we can now

calculate the size of E by looking at the coefficients of Y θ and Y θ−1 in this polynomial.

|E| =
[

Y θ
]

+
[

Y θ−1
]

(

n
∏

i=1

(1 + Y + . . .+ Y mi)

)

(5.6)

=
[

Y θ
]

+
[

Y θ−1
]

(

n
∏

i=1

1− Y mi+1

1− Y

)

(5.7)

=
[

Y θ
]

+
[

Y θ−1
]

(

n
∏

i=1

(1− Y mi+1)

)







∞
∑

k=1







n+ k − 1

n− 1






Y k






, (5.8)

where the last equation follows from the binomial expansion for negative exponents. Thus, we have

established the required lower bound.�

5.6.2 The MAX function

In this section, we use the tools that we have developed to study a particular example, namely the

MAX function. However, we no longer obtain exact results, which is to say that the single-round

achievable scheme does not match the fooling set lower bound. This suggests that single round

strategies are no longer optimal and it might be necessary to consider multi-round block compu-

tation strategies. Indeed, previous work in the area of communication complexity has shown a

multi-round protocol that does better that our single-round scheme for the two node case. How-

ever, our proposed strategy is still exponentially better than the naive strategy of communicating

all measurements. Further, it provides reasonably tight bounds and achieves the optimal scaling
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as the number of nodes increases.

Consider nodes 1 through n organized in a collocated network as before. For simplicity, let us

suppose that for each node i, Xi ∈ {0, 1, . . . ,m}. The MAX function of n measurements is defined

in the natural way and is denoted by MAXm(X1, X2, . . . , Xn). We want to determine the worst

case complexity of computing the MAX function.

Theorem 29. The complexity of the MAX function of n variables from the alphabet {0, 1, . . . ,m}

is bounded as follows.

log2(mn+ 1) ≤ C(MAXm(X1, . . . , Xn)) ≤ log2







n+m

m






.

Proof: We prove the result by induction on the number of nodes n. For the basis step, we

consider the two node problem. Consider the general achievable scheme where node 1 sends a

prefix free codeword of length l(XN
1 ), and node 2 indicates its exact value for each of the instances

of the block where X1 < X2. For example, if X1 = k, node 2 needs to indicate its value in the set

{k, k + 1, . . . ,m}. Thus, the worst case total number of bits exchanged under this scheme is given

by

L = max
XN

1

(

l(XN
1 ) + w0(XN

1 ) log2(m+ 1) + w1(XN
1 ) log2m+ . . .+ wm(XN

1 ) log2 1
)

.

Proceeding as before, we can show that, in order to ensure a valid prefix free code with codelengths

l(XN
1 ) that satisfy Kraft inequality, the minimum L is given by

L = log2(m+ 1 +m+ . . .+ 1) = N log2







m+ 2

2






.

For the lower bound, we can verify that the set of measurement matrices with columns exclusively

from the set E := {(0, 0), (0, 1), (1, 0), . . . , (0,m), (m, 0)} is a valid fooling set. Thus we have

log2(2m+ 1) ≤ C(MAXm(X1, X2)) ≤ log2







m+ 2

2






,

which establishes the basis step for the induction.
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Now, let us suppose that the result is true for a network of (n − 1) nodes. Consider the fol-

lowing achievable scheme for the n node network. Node n transmits a prefix-free codeword of

length l(XN
n ). At the end of this transmission, the remaining (n − 1) nodes need to compute

the residual MAX function for each instance of the block. For example, if Xn = k, we are

left with the task of computing the MAX function of (n − 1) nodes on the reduced alphabet

{k, k + 1, . . . , n}. Since {k, k + 1, . . . , n} is isomorphic to {0, 1, . . . , n − k}, this is equivalent to

computing MAXn−k(X1, . . . , Xn−1). By the induction hypothesis, there is an achievable strategy

to compute this residual MAX function, which we can unroll recursively. Thus the worst case total

number of bits exchanged under this strategy is given by

L = max
XN

n

(

l(XN
n ) + w0(XN

n )C(MAXm(X1, . . . , Xn−1)) + . . .+ wm(XN
n )C(MAX0(X1, . . . , Xn−1))

)

.

In order to satisfy the Kraft inequality, the smallest L that is feasible is given by

L = N log2

m
∑

i=0

2C(MAXm−i(X1,...,Xn−1))

≤ N log2

m
∑

i=0







m+ n− i− 1

m− i







= N log2







m+ n

m







which establishes the upper bound in the induction step.

In order to prove the lower bound, we need to construct a fooling set of the appropriate size.

Consider the set of n×N measurement matrices which consist of columns from the set E defined

by

E =





















































0

0

...

0



















,



















1

0

...

0



















,



















0

1

...

0



















, . . . ,



















0

0

...

1



















, . . . ,



















m

0

...

0



















,



















0

m

...

0



















, . . . ,



















0

0

...

m





















































.

It is easy to check that this is a valid fooling set of size (mn + 1)N which gives us the required
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lower bound for the induction step. �

We make some observations regarding the result in Theorem 29

• For fixed m, we have that C(MAXm(X1, X2, . . . , Xn)) = Θ(log2 n). This agrees with the

result in [1] that the maximum rate of computing a type-threshold function is Θ( 1
log2 n

).

Thus, the proposed achievable strategy is order-optimal. Further, we obtain better bounds

on the complexity.

log2(mn+1) ≤ C(MAXm(X1, X2, . . . , Xn)) ≤ log2







n+m

m






≤ min(n log2(m+1),m log2(n+1)).

• The naive strategy for computing the MAX function consists of each node communicating

its measurement which has a complexity of n log2(m+1). For fixed m, the complexity of the

proposed scheme is upper bounded by m log2(n+ 1), which is exponentially better than the

naive strategy (O(log2 n) vs. O(n)).

5.7 Concluding Remarks

We have addressed the problem of computing symmetric Boolean functions in a collocated network.

We have derived optimal strategies for computing threshold functions and order optimal strategies

with optimal preconstant for interval functions. Thus, we have sharply characterized the complexity

of various classes of symmetric Boolean functions. Further, since the thresholds and intervals are

allowed to depend on n, we have provided a unified treatment of type-sensitive and type-threshold

functions.

The results can be extended in two directions. First, we have considered non-Boolean alphabets

and general threshold functions which depend only on
∑

iXi. Second, we have considered a partic-

ular example of a non-Boolean valued function, namely the MAX function. The fooling set lower

bound and the strategy for achievability can be generalized to both these cases.
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CHAPTER 6

COMPUTING SYMMETRIC BOOLEAN FUNCTIONS IN

COLLOCATED NETWORKS - AVERAGE CASE

In this chapter, we consider the collocated network scenario where all nodes can hear all trans-

missions. Its symmetry makes it a desirable starting point for studying random planar networks.

However, in contrast with Chapter 5 where we consider the worst case scenario, here we impose a

joint probability distribution on the node measurements. Since we have random data, the evolution

of the computation depends on the particular instances of measurements, and the time of termi-

nation of the computation is random. Thus, we seek to minimize the total expected number of

bits exchanged to achieve zero error block computation. The linearity of the expectation operator

means that we cannot trade off between transmissions as in Chapter 5. However, there are some

interesting problems that arise.

We first consider a collocated network with a prespecified order of transmission in Section 6.1,

and derive a necessary and sufficient condition for each encoder based on transmissions received.

This is similar in spirit to the results in Chapter 3. In Section 6.1.1, we show that the average case

complexity of the Boolean threshold functions is O(θ), where θ is the threshold. Thus, if θ = O(1),

we have that the average case complexity is Θ(1) in comparison to the worst case complexity of

Θ(log n) implied by Theorem 25 in Chapter 5.

6.1 General Function Computation in Collocated Networks

Consider a set of nodes V := {v1, v2, . . . , vn} in a collocated network, with measurement vectors

X1, X2, . . . , Xn, drawn i.i.d. from a distribution p(X1, X2, . . . , Xn) > 0. There is a collector node

v1 which wants to compute the vector function f (N)(X1, X2, . . . , Xn). We consider a restricted class

of strategies, with a prespecified order of transmissions, assumed to be vn, vn−1, . . . , v1 without loss

of generality. Further, the block code CN
i for node vi must be prefix-free, so that all nodes know
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when node vi’s transmission is complete. Let RN
i be the rate of encoder CN

i . The following result

characterizes when error-free function computation is feasible.

Lemma 30. View codeword CN
i transmitted by node i as a random variable that depends on

{CN
j : (i + 1) ≤ j ≤ n} and the measurement vector Xi. For a set of encoders which achieves

correct computation, the following is a necessary and sufficient condition for encoder CN
i given

Cn, Cn−1, . . . , Ci+1. Encoder Ci separates x1i , x
2
i ∈ XN

i whenever there exists x∗{1,2,...,i−1} such that

f (N)(x∗{1,...,i−1}, x
1
i , x

nom
{i+1,...,n}) 6= f (N)(x∗{1,...,i−1}, x

2
i , x

nom
{i+1,...,n}).

Though we have a necessary and sufficient condition, we can trade off between encoders to obtain

different rate points. Thus finding the coding scheme for minimum sum rate is not straightforward.

The worst case scenario has been studied in [1] establishing a Θ(logn) complexity for type-threshold

functions in collocated networks and a Θ(n) complexity for type-sensitive functions.

6.1.1 Average case complexity of computing Boolean threshold functions

In this section, we consider the specific problem of computing Boolean threshold functions in

collocated networks. For simplicity, we suppose that nodes’ measurements are independent and

identically distributed, and propose a natural block computation strategy and quantify its average

case complexity.

Theorem 31. Suppose that the nodes’ measurements X1, X2, . . . , Xn are independent and iden-

tically distributed with p(Xi = 1) = p. Then, the average case complexity of zero error block

computation of the threshold function Πθ(X1, X2, . . . , Xn) is O(θ) bits.

Proof: We need to describe a coding strategy which achieves zero error block computation,

as block length N goes to infinity. Let us suppose that nodes communicate in reverse order

starting with node n. Node n encodes its block of N measurements using a Huffman code which

requires ⌈NH(p)⌉ bits. Having heard all previous transmissions, each successive node discards

the instances of the block that are already determined, i.e., those instances of the block that have

already recorded θ ones. It then constructs the Huffman code for the remaining instances of the
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block. Let the number of determined instances after node i + 1 transmits be denoted by random

variable Zi. Then, the average complexity of computing a function block of length N is given by

n
∑

i=1

(N −E(Zi))H(p) = θNH(p) +NH(p)

n−1
∑

i=θ

θ−1
∑

j=0







i

j






pj(1− p)i−j . (6.1)

We need to intelligently upper bound the RHS in the (6.1). We start by establishing the following

lemma.

Lemma 32. Define gθ :=
xθ

1−x
for θ a positive integer. Then

f
(θ−1)
θ :=

d(θ−1)gθ
dx(θ−1)

= (θ − 1)!

(

1

(1− x)θ
− 1

)

.

Proof of lemma: The proof is by induction on θ. For θ = 1, we have g1 =
x

1−x
= g

(0)
1 trivially.

For θ > 1, observe that gθ−1 − gθ = xθ−1 and hence g
(θ−1)
θ = g

(θ−1)
θ−1 − (θ − 1)!. By the induction

assumption, we have

g
(θ−1)
θ =

d

dx

(

(θ − 2)!

(1− x)θ−1

)

− (θ − 1)! =

(

(θ − 1)!

(1− x)θ
− 1

)

,

which completes the induction. �

We now proceed to show that the second term on the RHS in (6.1) is smaller than θNH(p)
(

1−p
p

)

for each n. The proof is by induction on θ. For θ = 1, the second term is given by

n−1
∑

i=1

NH(p)pθ(1− p)i = NH(p)
(1− p)− (1− p)n

p
<

NH(p)(1− p)

p
.

Define Rn
θ :=

∑n−1
i=θ

∑θ−1
j=0







i

j






pj(1− p)i−j . Then, we have the following recursion:

Rn
θ = Rn

θ−1 +
n−1
∑

i=θ







i

θ − 1






pθ−1(1− p)i−θ+1 −

θ−2
∑

j=0







θ − 1

j






pj(1− p)θ−1−j .
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From the induction hypothesis, we have that

Rn
θ ≤

(θ − 1)(1− p)

p
+







n−1
∑

i=θ







i

θ − 1






pθ−1(1− p)i−θ+1






− 1 + pθ−1

≤
(θ − 1)(1− p)

p
+

(

pθ−1

(θ − 1)!

∞
∑

i=θ

i(i− 1) . . . (i− θ + 2)(1− p)i−θ+1

)

− 1 + pθ−1

=
(θ − 1)(1− p)

p
+

pθ−1

(θ − 1)!

d(θ−1)

dx(θ−1)

(

xθ

1− x

)

− 1 + pθ−1. (6.2)

Now, applying Lemma 32 in (6.2), we can show Rn
θ ≤ θ(1−p)

p
, which establishes the induction step.

Substituting the upper bound for the second term in the RHS of (6.1), we obtain that the total

number of bits transmitted is less than θNH(p)
p

for all n. This yields a sum rate of θH(p)
p

which

completes the proof. �

We make some observations regarding the above result.

(i) For a type-threshold function [1] with threshold vector [θ1, θ2], we can run two parallel schemes

with thresholds [θ1, 0] and [0, θ2], thus attaining a sum rate (θ1+θ2)H(p)
p

. Since we typically

consider θ1, θ2 to be constants independent of n, we obtain that the average case complexity

of computing Boolean threshold functions is O(1).

(ii) As a special case, the average case complexity of computing a symmetric Boolean Disjunctive

Normal Form with bounded minterms is Θ(1).

6.2 Concluding Remarks

In this chapter, we derived necessary and sufficient conditions for function computation in collocated

networks with a prespecified order of transmission. We also showed that the average case complexity

of computing a Boolean threshold function with threshold θ, isO(θ) bits. The special case where θ =

Θ(1), corresponding to Boolean type-threshold functions, was studied in [1]. Thus, we have shown

that the average case complexity of computing a type-threshold function is Θ(1) is in comparison

with the worst case complexity of Θ(log n).
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CHAPTER 7

OPTIMAL ORDERING OF TRANSMISSIONS FOR

COMPUTING SYMMETRIC BOOLEAN FUNCTIONS

In this chapter, we consider the collocated network scenario where each node’s transmissions can

be heard by every other node. The medium access problem is trivially resolved by allowing at most

one node to transmit successfully at any time. Each node has a Boolean variable and we focus on

the problem of symmetric Boolean function computation with zero error, as in Chapters 5 and 6.

We suppose that node measurements are independent and distributed according to given marginal

Bernoulli distributions. In this chapter, we primarily focus on optimal strategies for Boolean

threshold functions, which are equal to 1 if and only if the number of nodes with measurement 1 is

greater than a certain threshold. The set of admissible strategies includes all interactive strategies,

where a node may exchange several messages with other nodes.

Let us consider the case where each node has a single bit; the communication problem is rendered

trivial, since it is optimal for the transmitting node to simply indicate its bit value. Thus, it only

remains to determine the optimal ordering of nodes’ transmissions so as to minimize the expected

total number of bits exchanged. For the class of Boolean threshold functions, we present a simple

policy for ordering the transmissions and prove its optimality. The optimal policy is dynamic,

depending in a particularly simple way on the previously transmitted bits, and on the relative

ordering of the marginal probabilities, but surprisingly not on their values.

The problem of optimally ordering transmissions of nodes is a sequential decision problem and can

in principle be solved by dynamic programming. However, this would require solving the dynamic

program for all thresholds and all probability distributions, which is computationally hard. We

avoid this, and establish a more insightful solution, in the form of a simple rule defining the optimal

policy. The proposed solution solves a more general dynamic program, thus permitting a unified

treatment of the problems of single instance computation, block computation and computation

under alternate communication models.
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In Section 7.2, we turn to the case where each node has a block of bits, and we seek to compute

the Boolean threshold function for each instance of the block. Nodes are allowed to employ block

coding to achieve greater efficiency, thus adding another layer of complexity. This problem appears

formidable due to the plethora of possibilities, and due to a far more complex class of interactive

strategies for computation. However, for a certain natural restricted class of strategies, we can

establish that an analogous policy is optimal, thus establishing an upper bound on the optimal cost.

In order to establish a lower bound across all strategies, we propose the approach of calculating

the minimum entropy over all valid protocol partitions which respect fooling set constraints. While

this lower bound matches the upper bound for small examples, a proof has remained elusive.

In Section 7.3, we proceed to consider an alternate model of communication, where nodes use

pulses of unit energy to convey information. Binary information can be encoded by the presence

or absence of a pulse. This model represents a paradigm where silence can be used to convey

information. We show the generalizability of our proof technique by deriving a similar result for

computing Boolean threshold functions under this model of communication.

When we consider exact computation of functions of random data, we note that the time of

termination is a random variable. While the optimal strategy minimizes the expected time of

termination, some instances of computation might terminate earlier and some much later. This

behavior might be inconvenient for certain applications with deterministic constraints on the time of

termination. Thus, it becomes necessary to study the problem of approximate function computation

given a fixed number of timeslots. In Section 7.4, we show that the optimal strategy for the

approximate computation of threshold functions lacks the same elegant structure as in the case of

exact computation. However, for the special case of the parity function, we show that the logical

strategy of first querying the node with maximum uncertainty (i.e., entropy) is optimal.

7.1 Single Instance Computation of Boolean Threshold Functions

Consider a collocated network with nodes 1 through n, where each node i has a Boolean measure-

ment Xi ∈ {0, 1}. Xi is drawn from a Bernoulli distribution with P (Xi = 1) =: pi, and {Xi}
n
i=1

are independent of each other. Without loss of generality, we assume that p1 ≤ p2 ≤ . . . ≤ pn.

We address the following problem. Every node wants to compute the same function f(X1, . . . , Xn)
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of the measurements. Given a strategy for computing f(X1, . . . , Xn), the time of termination is a

random variable. Our objective is to find communication strategies which achieve correct function

computation at each node, with minimum expected total number of bits exchanged. Throughout

this chapter, we consider the broadcast scenario where each node’s transmission can be heard by

every other node. We also suppose that collisions do not convey information, thus restricting our-

selves to collision-free strategies as in [1]. This means that for the kth bit bk, the identity of the

transmitting node Tk depends only on previously broadcast bits b1, b2, . . . , bk−1, while the value of

bk can depend arbitrarily on all previous broadcast bits as well as its own measurement XTk
.

First, we note that since each node has exactly one bit of information, it is optimal to set bk =

XTk
. Indeed, for any other choice b′k = g(b1, . . . , bk−1, XTk

), the remaining nodes can reconstruct b′k

since they already know bi, . . . , bk−1. Thus the only freedom available is in choosing the transmitting

node Tk as a function of b1, b2, . . . , bk−1, for otherwise the transmission itself could be avoided. We

call this the ordering problem. Thus, by definition, the order can dynamically depend on the

previous broadcast bits. In this section, we address the ordering problem for a class of Boolean

functions, namely threshold functions.

We begin by establishing some notation. The set of measurements of nodes 1 through n is

denoted by (X1, X2, . . . , Xn) which is abbreviated as Xn. In the sequel, we will use Xn
−i to denote

the set of measurements (X1, . . . , Xi−1, Xi+1, . . . , Xn). As a natural extension, we use Xn
−(i,j) to

denote the set of measurements (X1, . . . , Xi−1, Xi+1, . . . , Xj−1, Xj+1, . . . , Xn), where i < j.

We recall that a Boolean threshold function Πθ(X1, X2, . . . , Xn) is defined by

Πθ(X1, X2, . . . , Xn) =











1 if
∑

iXi ≥ θ,

0 otherwise.

The class of threshold functions has the property that, if one of the nodes’ measurements is known,

the residual function is still a threshold function. Given a function Πn−k(X
n), if node i transmits its

bit, we are left with the residual task of computing Πn−k−1(X
n
−i) if Xi = 1, and Πn−k(X

n
−i) if Xi =

0. Thus, the ordering problem can be solved using dynamic programming. Let C(Πn−k(X
n)) denote

the minimum expected number of bits required to compute Πn−k(X
n). The dynamic programming

72



equation is

C(Πn−k(X
n)) = min

i
{1 + piC(Πn−k−1(X

n
−i)) + (1− pi)C(Πn−k(X

n
−i))} (7.1)

with boundary condition C(Πa(X
m)) = 0 if a = 0 or a > m.

To begin with, we argue that solving (7.1) for each n and k does indeed yield the optimal

strategy for computing Boolean threshold functions. In particular, to derive the optimal strategy

for computing Πn−k(X
n), we first determine which node must transmit first, by solving (7.1) for

n, k. Then, depending on whether XT (1) = 0 or XT (1) = 1, we are left with the residual task

of computing Πn−k(X
n
−T (1)) or Πn−k−1(X

n
−T (1)). We can determine which node should transmit

next in either case, from the solution of (7.1) for n − 1, k − 1 or n − 1, k respectively. Proceeding

recursively, one can unroll the optimal strategy for computing Πn−k(X1, X2, . . . Xn).

In (7.1), we recognize that the single-stage cost is uniformly 1. More generally, given a function

f(·) : [0, 1] → R+, one can write down a more general dynamic programming equation.

C(Πn−k(X
n)) = min

i
{f(pi) + piC(Πn−k−1(X

n
−i)) + (1− pi)C(Πn−k(X

n
−i))}. (7.2)

Here, one can view f(pi) as the cost of communicating the information of node i which has P (Xi =

1) = pi. Indeed, for the case of single instance computation, we have f(p) ≡ 1. In the sequel, we

will see how this general dynamic programming formulation will allow us to study other problems

of interest.

For general f(·), solving the dynamic programing equation (7.2) may be intractable. Further,

it is unclear at the outset if the optimal strategy will depend only on the ordering of the pis, or

their particular values. This makes the explicit solution of (7.2), or even (7.1), for all n, k and

(p1, p2, . . . pn) notoriously hard. However, under some conditions on f(·), we can derive a very

simple characterization of the optimal strategy for each n and 0 ≤ k ≤ n− 1. Further, we observe

that optimal strategy is independent of the particular values of the pis, but only depends on their

relative ordering.

Lemma 33. Let f(·) : [0, 1] → R+ be a function such that

• f(p) = f(1− p).
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• f(p)
p

is a monotone non-increasing function of p.

Then the minimum in (7.2) is attained by k + 1. That is,

k + 1 ∈ argmin
i

{

f(pi) + piC(Πn−k−1(X
n
−i)) + (1− pi)C(Πn−k(X

n
−i)
}

. (7.3)

This result is true for all n and all 0 ≤ k ≤ n − 1 and all probability distributions with p1 ≤ p2 ≤

. . . ≤ pn.

Proof: We define the following expressions.

Tm,k,i(X
m) = pk+1C(Πm−k−1(X

m
−(k+1)) + (1− pk+1)C(Πm−k(X

m
−(k+1))

− piC(Πm−k−1(X
m
−i)− (1− pi)C(Πm−k(X

m
−i)

S
(1)
m,k,i(X

m) := (pk+1 − pi)C(Πm−k−1(X
m
−(k+1,i))) + (1− pk+1)C(Πm−k(X

m
−(k+1)))

− (1− pi)C(Πm−k(X
m
−i)).

S
(2)
m,k,i(X

m) := (pi−pk+1)C(Πm−k−1(X
m
−(i,k+1)))+pk+1C(Πm−k−1(X

m
−(k+1)))−piC(Πm−k−1(X

m
−i)).

We establish the above theorem by induction on the number of nodes n. However, we need to

load the induction hypothesis. Consider the following induction hypothesis.

(a) Tm,k,i(X
m) ≤ f(pi)− f(pk+1) for all 0 ≤ k ≤ (m− 1), 1 ≤ i ≤ m

(b) S
(1)
m,k,i(X

m) ≤ (1− pk+1)f(pi)− (1− pi)f(pk+1) for all 0 ≤ k + 1 ≤ (m− 1), k + 2 ≤ i ≤ m

(c) S
(2)
m,k,i(X

m) ≤ pk+1f(pi)− pif(pk+1) for all 0 ≤ k ≤ (m− 1), 1 ≤ i < k + 1

Observe that part (a) immediately establishes (7.3).

The basis step for m = 1 is trivially true. Let us suppose the induction hypothesis is true for all

m ≤ n. We now proceed to prove the hypothesis for m = n+ 1.

Lemma 34. For fixed k and i ≥ k+2, we have S
(1)
n+1,k,i(X

n+1) ≤ (1−pk+1)f(pi)− (1−pi)f(pk+1).

Proof: See Section 7.1.1.
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Lemma 35. For fixed k and i ≤ k, we have S
(2)
n+1,k,i(X

n+1) ≤ pk+1f(pi)− pif(pk+1).

Proof: See Section 7.1.1.

Lemmas 34 and 35 establish the induction step for parts (b) and (c) of the induction hypothesis.

We now proceed to show the induction step for part (a).

Lemma 36. For fixed k and i ≥ k + 2, we have Tn+1,k,i(X
n+1) ≤ S

(1)
n+1,k,i(X

n+1) + pk+1f(pi) −

pif(pk+1).

Proof: See Section 7.1.1.

Lemma 37. For fixed k and i ≤ k, we have Tn+1,k,i(X
n+1) ≤ S

(2)
n+1,k,i(X

n+1) + (1− pk+1)f(pi)−

(1− pi)f(pk+1).

Proof: See Section 7.1.1.

Applying Lemmas 36 and 37 together with Lemmas 34 and 35, we see that Tn+1,k,i(X
n+1) ≤ 0

for all 0 ≤ k ≤ n and i 6= k + 1. For the case i = k + 1, we have T (n + 1, k, k + 1) = 0 trivially.

This completes the induction step for part (a), and the proof of the Theorem. �

Using Lemma 33, we can now simply derive the optimal sequential communication strategy for

computing a single instance of the Boolean threshold function Πn−k(X
n).

Theorem 38. In order to compute a single instance of the Boolean threshold function Πn−k(X
n),

it is optimal for node (k + 1) to transmit its bit first.

Proof: In the case of single instance computation, we have f(p) ≡ 1. Hence, trivially, we have

that f(p) = f(1 − p), and that f(p)
p

is a monotone non-increasing function of p. From Lemma 33,

we have

k + 1 ∈ argmin
i

{

f(pi) + piC(Πn−k−1(X
n
−i)) + (1− pi)C(Πn−k(X

n
−i)
}

.

Thus, in order to compute the Boolean threshold function Πn−k(X
n), it is optimal for node k + 1

to transmit first. �

Note: At the outset, there are two heuristics that one may apply to the ordering problem.

First, if we believe that Πn−k(X
n) evaluates to 0, the conditional optimal strategy is for nodes

to transmit in order starting with node 1. Alternately, if we believe that Πn−k(X
n) evaluates to
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1, the conditional optimal strategy is for nodes to transmit in reverse order starting with node n.

Thus, the result in Theorem 38 can be viewed as an appropriate hedging solution which safeguards

against the event that Πn−k(X
n) could evaluate to 0 or 1. It is indeed surprising that a particularly

simple hedging strategy is optimal for all n, all k and all probability distributions.

7.1.1 Proofs of Lemma 33

Proof of Lemma 34

First, let us suppose k = 0. In this case

S
(1)
n+1,0,i(X

n+1) = (p1 − pi)C(Πn(X
n+1
−(1,i))) + (1− p1)C(Πn+1(X

n+1
−1 ))− (1− pi)C(Πn+1(X

n+1
−i )) = 0

However, by assumption, we have 0 ≤ (1− p1)f(pi)− (1− pi)f(p1).

Next, consider the case where k 6= 0.

(pk+1 − pi)C(Πn−k(X
n+1
−(k+1,i))) + (1− pk+1)C(Πn−k+1(X

n+1
−(k+1)))− (1− pi)C(Πn−k+1(X

n+1
−i ))

= (pk+1 − pi)
[

f(pk) + pkC(Πn−k−1(X
n+1
−(k,k+1,i))) + (1− pk)C(Πn−k(X

n+1
−(k,k+1,i)))

]

+(1− pk+1)
[

f(pk) + pkC(Πn−k(X
n+1
−(k,k+1))) + (1− pk)C(Πn−k+1(X

n+1
−(k,k+1)))

]

−(1− pi)
[

f(pk) + pkC(Πn−k(X
n+1
−(k,i))) + (1− pk)C(Πn−k+1(X

n+1
−(k,i)))

]

(7.4)

= pk

[

(pk+1 − pi)C(Πn−k−1(X
n+1
−(k,k+1,i)))

+(1− pk+1)C(Πn−k(X
n+1
−(k,k+1)))− (1− pi)C(Πn−k(X

n+1
−(k,i)))

]

+(1− pk)
[

(pk+1 − pi)C(Πn−k(X
n+1
−(k,k+1,i))) (7.5)

+(1− pk+1)C(Πn−k+1(X
n+1
−(k,k+1)))− (1− pi)C(Πn−k+1(X

n+1
−(k,i)))

]

≤ pk

[

(pk+1 − pi)C(Πn−k−1(X
n+1
−(k,k+1,i)))

+(1− pk+1)C(Πn−k(X
n+1
−(k,k+1)))− (1− pi)C(Πn−k(X

n+1
−(k,i)))

]

+ (1− pk)S
(1)
n,k−1,i−1(X

n+1
−k )

≤ pk

[

(pk+1 − pi)C(Πn−k−1(X
n+1
−(k,k+1,i)))

+(1− pk+1)C(Πn−k(X
n+1
−(k,k+1)))− (1− pi)C(Πn−k(X

n+1
−(k,i)))

]

+(1− pk) [(1− pk+1)f(pi)− (1− pi)f(pk+1)] (7.6)
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= pk

[

(pk+1 − pi)C(Πn−k−1(X
n+1
−(k,k+1,i))) + (1− pk+1)C(Πn−k(X

n+1
−(k,k+1)))

−(1− pi)[f(pk+1 + pk+1C(Πn−k−1(X
n+1
−(k,k+1,i))) + (1− pk+1)C(Πn−k(X

n+1
−(k,k+1,i)))]

]

+(1− pk) [(1− pk+1)f(pi)− (1− pi)f(pk+1)] (7.7)

= pk(1− pk+1)
[

C(Πn−k(X
n+1
−(k,k+1)))− piC(Πn−k−1(X

n+1
−(k,k+1,i))) − (1− pi)C(Πn−k(X

n+1
−(k,k+1,i)))

]

−pk(1− pi)f(pk+1) + (1− pk) [(1− pk+1)f(pi)− (1− pi)f(pk+1)]

≤ pk(1− pk+1)f(pi)− (1− pi)f(pk+1) + (1− pk)(1− pk+1)f(pi) (7.8)

= (1− pk+1)f(pi)− (1− pi)f(pk+1)

Equation (7.4) follows from the optimal ordering for computing Πn−k(X
n+1
−(k+1,i)), Πn−k+1(X

n+1
−(k+1))

and Πn−k+1(X
n+1
−i ), which is true by the induction hypothesis for m = n. The inequality (7.6)

follows from the induction hypothesis that S
(1)
n,k−1,i(X

n+1
−k ) ≤ (1 − pk+1)f(pi) − (1 − pi)f(pk+1).

Equality in (7.7) and (7.8) follows from the optimal ordering for computing Πn−k(X
n+1
−(k,i)) and

Πn−k(X
n+1
−(k,k+1)) respectively. �

Proof of Lemma 35

First, let us suppose k = n. In this case

S
(2)
n+1,n,i(X

n+1) = (pi − pn+1)C(Π0(X
n+1
−(i,n+1))) + pn+1C(Π0(X

n+1
−(n+1)))− piC(Π0(X

n+1
−i )) = 0.

However, by assumption, we have 0 ≤ pn+1f(pi)− pif(pn+1).

Next, consider the case where k < n.

(pi − pk+1)C(Πn−k(X
n+1
−(i,k+1))) + pk+1C(Πn−k(X

n+1
−(k+1)))− piC(Πn−k(X

n+1
−i ))

= (pi − pk+1)
[

f(pk+2) + pk+2C(Πn−k−1(X
n+1
−(i,k+1,k+2))) + (1− pk+2)C(Πn−k(X

n+1
−(i,k+1,k+2)))

]

+pk+1

[

f(pk+2) + pk+2C(Πn−k−1(X
n+1
−(k+1,k+2))) + (1− pk+2)C(Πn−k(X

n+1
−(k+1,k+2)))

]

−pi

[

f(pk+2) + pk+2C(Πn−k−1(X
n+1
−(i,k+2))) + (1− pk+2)C(Πn−k(X

n+1
−(i,k+2)))

]

(7.9)
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= pk+2

[

(pi − pk+1)C(Πn−k−1(X
n+1
−(i,k+1,k+2)))

+pk+1C(Πn−k−1(X
n+1
−(k+1,k+2)))− piC(Πn−k−1(X

n+1
−(i,k+2)))

]

+(1− pk+2)
[

(pi − pk+1)C(Πn−k(X
n+1
−(i,k+1,k+2))) + pk+1C(Πn−k(X

n+1
−(k+1,k+2)))

+pk+1C(Πn−k(X
n+1
−(k+1,k+2)))− piC(Πn−k(X

n+1
−(i,k+2)))

]

≤ (1− pk+2)
[

(pi − pk+1)C(Πn−k(X
n+1
−(i,k+1,k+2)))

+ pk+1C(Πn−k(X
n+1
−(k+1,k+2)))− piC(Πn−k(X

n+1
−(i,k+2)))

]

+ pk+2

[

S
(2)
n,k,i(X

n+1
−(k+2))

]

≤ (1− pk+2)
[

(pi − pk+1)C(Πn−k(X
n+1
−(i,k+1,k+2)))

+pk+1C(Πn−k(X
n+1
−(k+1,k+2)))− piC(Πn−k(X

n+1
−(i,k+2)))

]

+pk+2 [pk+1f(pi)− pif(pk+1)] (7.10)

= (1− pk+2)
[

(pi − pk+1)C(Πn−k(X
n+1
−(i,k+1,k+2))) + pk+1C(Πn−k(X

n+1
−(k+1,k+2)))

−pi[f(pk+1) + pk+1C(Πn−k−1(X
n+1
−(i,k+1,k+2))) + (1− pk+1)C(Πn−k(X

n+1
−(i,k+1,k+2)))]

]

+pk+2 [pk+1f(pi)− pif(pk+1)] (7.11)

= (1− pk+2)pk+1

[

C(Πn−k(X
n+1
−(k+1,k+2)))− piC(Πn−k−1(X

n+1
−(i,k+1,k+2)))

− (1− pi)C(Πn−k(X
n+1
−(i,k+1,k+2)))

]

−(1− pk+2)pif(pk+1) + pk+2 [pk+1f(pi)− pif(pk+1)]

≤ (1− pk+2)pk+1f(pi)− pif(pk+1) + pk+2pk+1f(pi) (7.12)

= pk+1f(pi)− pif(pk+1)

Equation (7.9) follows from the optimal ordering for computing Πn−k(X
n+1
−(i,k+1)), Πn−k(X

n+1
−(k+1))

and Πn−k(X
n+1
−i ), which follows from the induction hypothesis for m = n. The inequality (7.10) fol-

lows from the induction hypothesis that S
(2)
n,k,i(X

n+1
−(k+2)) ≤ pk+1f(pi)−pif(pk+1). Equations (7.11)

and (7.12) follow from the optimal ordering for computing Πn−k(X
n+1
−(i,k+2)) and Πn−k(X

n+1
−(k+1,k+2))

respectively. �
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Proof of Lemma 36

First, we observe that

Tn+1,k,i(X
n+1)− S

(1)
n+1,k,i(X

n+1) = pk+1C(Πn−k(X
n+1
−(k+1)))− piC(Πn−k(X

n+1
−i ))

− (pk+1 − pi)C(Πn−k(X
n+1
−(k+1,i))).

Thus it is enough to show that

pk+1C(Πn−k(X
n+1
−(k+1)))− piC(Πn−k(X

n+1
−i ))

≤ (pk+1 − pi)C(Πn−k(X
n+1
−(k+1,i))) + pk+1f(pi)− pif(pk+1) for i ≥ k + 2.

First, observe that for k = n, the statement is vacuously true since i ≥ n+ 2 is impossible. Hence,

let us suppose that k < n. We have

pk+1C(Πn−k(X
n+1
−(k+1)))− piC(Πn−k(X

n+1
−i ))

= pk+1

[

f(pk+2) + pk+2C(Πn−k−1(X
n+1
−(k+1,k+2))) + (1− pk+2)C(Πn−k(X

n+1
−(k+1,k+2)))

]

−pi

[

f(pk+1 + pk+1C(Πn−k−1(X
n+1
−(k+1,i))) + (1− pk+1)C(Πn−k(X

n+1
−(k+1,i)))

]

(7.13)

= pk+1

[

f(pk+2) + pk+2C(Πn−k−1(X
n+1
−(k+1,k+2)))− piC(Πn−k−1(X

n+1
−(k+1,i)))

]

+pk+1(1− pk+2)C(Πn−k(X
n+1
−(k+1,k+2)))− pi(1− pk+1)C(Πn−k(X

n+1
−(k+1,i)))− pif(pk+1)

≤ pk+1

[

f(pi) + (1− pi)C(Πn−k(X
n+1
−(k+1,i)))− (1− pk+2)C(Πn−k(X

n+1
−(k+1,k+2)))

]

+pk+1(1− pk+2)C(Πn−k(X
n+1
−(k+1,k+2)))− pi(1− pk+1)C(Πn−k(X

n+1
−(k+1,i)))− pif(pk+1) (7.14)

= (pk+1 − pi)C(Πn−k(X
n+1
−(k+1,i))) + pk+1f(pi)− pif(pk+1)

Equation 7.13 follows from the optimal order for computing Πn−k(X
n+1
−(k+1)) and Πn−k(X

n+1
−i ). The

inequality in 7.14 follows from the induction hypothesis Tn,k,i(X
n+1
−(k+1)) ≤ f(pi)− f(pk+2). �
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Proof of Lemma 37

First, we observe that

Tn+1,k,i(X
n+1)− S

(2)
n+1,k,i(X

n+1) = (1− pk+1)C(Πn−k+1(X
n+1
−(k+1)))− (1− pi)C(Πn−k+1(X

n+1
−i ))

− (pi − pk+1)C(Πn−k(X
n+1
−(i,k+1))).

Thus it is enough to show that

(1− pk+1)C(Πn−k+1(X
n+1
−(k+1)))− (1− pi)C(Πn−k+1(X

n+1
−i ))

≤ (pi − pk+1)C(Πn−k(X
n+1
−(i,k+1))) + (1− pk+1)f(pi)− (1− pi)f(pk+1) for i ≤ k.

First, observe that for k = 0, the statement is vacuously true since i ≤ 0 is impossible. Hence, let

us suppose that k > 0. We have

(1− pk+1)C(Πn−k+1(X
n+1
−(k+1)))− (1− pi)C(Πn−k+1(X

n+1
−i ))

= (1− pk+1)
[

f(pk) + pkC(Πn−k(X
n+1
−(k,k+1))) + (1− pk)C(Πn−k+1(X

n+1
−(k,k+1)))

]

−(1− pi)
[

f(pk+1) + pk+1C(Πn−k(X
n+1
−(i,k+1))) + (1− pk+1)C(Πn−k+1(X

n+1
−(i,k+1)))

]

(7.15)

= (1− pk+1)
[

f(pk) + (1− pk)C(Πn−k+1(X
n+1
−(k,k+1)))− (1− pi)C(Πn−k+1(X

n+1
−(i,k+1)))

]

+pk(1− pk+1)C(Πn−k(X
n+1
−(k,k+1)))− pk+1(1− pi)C(Πn−k(X

n+1
−(i,k+1)))− (1− pi)f(pk+1)

≤ (1− pk+1)
[

f(pi) + piC(Πn−k(X
n+1
−(i,k+1)))− pkC(Πn−k(X

n+1
−(k,k+1)))

]

+pk(1− pk+1)C(Πn−k(X
n+1
−(k,k+1)))− pk+1(1− pi)C(Πn−k(X

n+1
−(i,k+1))) (7.16)

= (pi − pk+1)C(Πn−k(X
n+1
−(i,k+1))) + (1− pk+1)f(pi)− (1− pi)f(pk+1)

Equation (7.15) follows from the optimal order for computing Πn−k+1(X
n+1
−(k+1)) and Πn−k+1(X

n+1
−i ).

The inequality in (7.16) follows from the induction hypothesis Tn,k−1,i(X
n+1
−(k+1)) ≤ f(pi) − f(pk)

�.
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7.2 Block Computation of Boolean Threshold Functions

We now shift attention to the case where we allow nodes to accumulate a block of N measurements,

and thus achieve improved efficiency by using block codes. The most general class of interactive

strategies are those where the identity of the node transmitting the kth bit, say Tk, can depend

arbitrarily on all previously broadcast bits, and the kth bit itself can depend arbitrarily on all

previously broadcast bits as well as Tk’s block of measurements. We require that all nodes compute

the function with zero error for the block, and wish to minimize the expected number of bits

exchanged per instance of computation, denoted C(Πn−k(X
n)). While the problem of finding the

optimal strategy in this general class of strategies appears intractable, we derive the optimal solution

under a restricted class of strategies. The restriction we impose is natural, and we conjecture that

the optimal strategy in this restricted class is also optimal among all interactive strategies.

Theorem 39. Consider the following restricted class of strategies. When we compute Πn−k(X
n) for

a block of N measurements, we mandate that the first node to transmit, say node T (1), must declare

its entire block using a Huffman code. Note that this does not exclude interactive strategies, since,

subsequent to node T (1)’s transmission, we have two subproblems over sub-blocks of measurements

corresponding to instances where XT (1) = 0 and XT (1) = 1. For each of these subproblems, we

could potentially have different nodes transmitting first. However each of these nodes are again

constrained to communicate their entire subblock of measurements. Under this restricted class of

strategies, in order to compute Πn−k(X
n) for a block of measurements, it is optimal for node k+1

to transmit its entire block first, using the Huffman code. This result is true for asymptotically long

block lengths, for all n, all 0 ≤ k ≤ n− 1, and all probability distributions with p1 ≤ p2 ≤ . . . ≤ pn.

Proof: Let us suppose node i transmits first. Under this restricted class of strategies, node i

must communicate its entire block which requires an average description length of H(pi) bits per

instance. This can be achieved asymptotically by using the Huffman code to compress node i’s

block of measurements. Subsequent to node i’s transmission, we are left with the residual tasks of

computing Πn−k−1(X
n
−i) for the subblock where Xi = 1, and Πn−k(X

n
−i) for the subblock where

Xi = 0. These are two block computation problems again. Let CU (Πn−k(X
n) denote the minimum

number of bits per instance, that must be exchanged under this restricted class of strategies. We
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can write a dynamic programming equation as before.

CU (Πn−k(X
n)) = min

i
{H(pi) + piCU (Πn−k−1(X

n
−i)) + (1− pi)CU (Πn−k(X

n
−i))} (7.17)

whereH(p) is the standard binary entropy function defined byH(p) = −p log2(p)−(1−p) log2(1−p).

The boundary condition for (7.2) is given by CU (Πa(X
m)) = 0 if a = 0 or a > m.

Observe that (7.17) is a special case of (7.2) where f(p) = H(p). Thus, for this restricted class of

strategies, the problem of optimal computation once again reduces to an ordering problem. If we

can show that H(p) satisfies the conditions in Lemma 33, the result follows immediately. Clearly

H(p) = H(1− p) and one can verify that

d
(

H(p)
p

)

dp
=

log2(1− p)

p2
≤ 0.

Thus, we have that H(p)
p

is a non-decreasing function of p. Hence, from Lemma 33, the optimal

strategy for computing Πn−k(X
n) for a block of measurements is for node k + 1 to transmit its

entire block first, using the Huffman code. �

Note 1: The proposed optimal strategy is inherently interactive, since nodes do transmit more

than once. This is due to the recursive division of the original block of measurements depending

on nodes’ transmissions. In practice, all nodes need to agree a priori on a traversal order in the

computation tree, e.g., depth-first traversal or breadth-first traversal.

Note 2: The proposed optimal strategy is asymptotically optimal in the limit of long blocks.

This is necessary to achieve an average description length of H(pi) bits per instance. In practice,

one could simply choose a large enough block lengthN so that the average description length is close

enough to the entropy. In this context, it is important to note that, as the computation proceeds,

the original block gets recursively subdivided into smaller and smaller subblocks of measurements.

Each of these subblocks need to be large enough to achieve an average description length that

is close enough to the entropy of the transmitting node. Thus, in the worst case, we could have

up to 2n subblocks in the computation tree, and one must take care to ensure that each of these

subblocks are large enough by choosing N to be suitably large.
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7.2.1 A strategy-independent lower bound

Next, we would like to determine if the restricted class of strategies considered above is rich enough

to include the absolute optimal strategy for interactive block computation without any restrictions

on a node encoding all its information using a Huffman code. Intuitively, since all the instances

of the block are independent and identically distributed, it appears suboptimal for nodes to com-

municate only partial information regarding their blocks at any stage. Thus, it is plausible that,

under the optimal strategy, one node communicates its entire block, and the computation proceeds

recursively from there. However, establishing this fact rigorously is a formidable challenge. In this

subsection, we describe a possible approach toward establishing this result, by adapting the con-

cept of fooling sets. Fooling sets are a classical tool for establishing lower bounds in communication

complexity [8], and have been used to establish tight lower bounds on the minimum number of bits

exchanged in the worst-case in collocated networks (Chapter 5), and tree networks (Chapter 4).

We describe an extension of fooling sets to the scenario where we have probability distributions on

nodes’ measurements, and use this to establish a lower bound. This is done as follows.

We recall from Theorem 25 in Chapter 5 that, for the threshold function Πn−k(X
n), a valid

fooling set of maximum size is given by

En,n−k := {Xn :
n
∑

i=1

Xi = n− k or
n
∑

i=1

Xi = n− k − 1}.

Any correct protocol for distributed computation of Πn−k(X
n) partitions the function matrix into

monochromatic rectangles [8]. Further, each rectangle in the partition can contain at most one

element of En,n−k. Let D(Πn−k(X
n)) be the set of all protocol partitions of the function matrix

of Πn−k(X
n) which respect the fooling set constraints. Suppose we use a protocol with associated

partition d; the number of bits that must be exchanged under this protocol is lower bounded by the

entropy of this partition, denoted by H(p(d)), where p(d) is the implied probability distribution on

the elements of the partition. Thus, the number of bits that must be exchanged under any protocol

is bounded by

C(Πn−k(X
n)) ≥ min

d∈D(Πn−k(Xn))
H(p(d)) =: CL(Πn−k(X

n)). (7.18)

We conjecture that this lower bound is achievable and, in particular, the optimal strategy described
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in Theorem 39 achieves it.

Conjecture 40. The lower bound described in (7.18) satisfies the dynamic programming equation

in (7.17).

CL(Πn−k(X
n)) = min

i
{H(pi) + piCL(Πn−k−1(X

n
−i)) + (1− pi)CL(Πn−k(X

n
−i))}.

Since CL(Πn−k(X
n)) ≤ C(Πn−k(X

n)) ≤ CU (Πn−k(X
n)), we conjecture that the optimal strategy

described in Theorem 39 is in fact optimal among all interactive strategies.

We note that the above conjecture has been verified by hand for all threshold functions of three

variables. A formal proof of the conjecture, however, remains a challenge for the future.

7.3 Computation under an Alternate Communication Model

In this section, we illustrate how we can adapt the solution to the general dynamic programming

equation described in Lemma 33 to a different communication model. We return to the problem of

computing a single instance of a Boolean threshold function Πn−k(X
n) in the broadcast scenario.

Let us suppose that time is slotted, and that nodes transmit information in the form of pulses,

which have unit energy cost. Under this alternate communication model, our modified objective is

to minimize the expected total energy expended in transmissions.

In contrast to Section 7.1 where the cost of transmitting a bit is uniformly 1, under the pulse

model of communication, silence can be used to convey information with zero cost. This is similar

to the model for silence-based communication studied in [61]. Thus, the communication problem

is no longer trivial. However, since each node makes a Boolean measurement, the value of its bit

can be mapped to the presence or absence of a pulse in two ways. Either node i transmits a pulse

to indicate Xi = 1 and remains silent to indicate Xi = 0, or vice versa. Clearly, the optimal

communication strategy is as follows:

• If pi ≤
1
2 , then node i transmits a pulse to indicate Xi = 1.

• If pi ≥
1
2 , then node i transmits a pulse to indicate Xi = 0.
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We are still left with the problem of determining the optimal ordering of transmissions.

Let E(Πn−k(X
n)) be the minimum expected total energy required in order to compute the

threshold function Πn−k(X
n) under this communication model. The problem of minimizing the

expected total energy can be formulated as a dynamic programming equation as follows:

E(Πn−k(X
n)) = min

i
{min(pi, 1− pi) + piE(Πn−k−1(X

n
−i)) + (1− pi)E(Πn−k(X

n
−i))}. (7.19)

From Lemma 33, we have the following result.

Theorem 41. In order to compute a single instance of the Boolean threshold function Πn−k(X
n)

under the pulse communication model, it is optimal for node k + 1 to transmit first.

Proof: Observe that (7.19) is a special case of (7.2) where f(p) = min(p, 1− p). Hence, in order

to establish the result, it is sufficient to show that min(p, 1− p) satisfies the conditions in Lemma

33. Indeed, min(p, 1− p) is symmetric about p = 1
2 and we have

g(p) =
min(p, 1− p)

p
=











1 if p ≤ 1
2 ,

1−p
p

if p > 1
2.

Thus, min(p,1−p)
p

is a monotone non-increasing function of p. The theorem then follows directly

from Lemma 33. �

7.4 Approximate Function Computation

In Sections 7.1 - 7.3, we considered the problem of computing Boolean threshold functions with zero

error. While we focused on constructing optimal strategies to minimize the expected total number

of bits exchanged during computation, we note that the worst-case total number of bits exchanged

might still be n. In some applications however, we might have a constraint on the number of bits

exchanged, or equivalently, the number of timeslots available for computation. In this case, one

cannot always hope to compute the function exactly. Instead, we consider approximate function

computation where we seek to minimize certain error metrics.

To begin with, let us consider the class of Boolean threshold functions. As before, we permit
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all interactive strategies where the choice of next transmitting node can depend arbitrarily on all

previously broadcast bits. Let us suppose that we are allowed to exchange at most (n − θ) bits

in order to compute the threshold function Πn−k(X
n). We propose two metrics of error, namely

probability of error and conditional entropy of the function.

• Probability of error: Let P
(θ)
e (Πn−k(X

n)) denote the minimum probability of error

after at most (n − θ) bits are exchanged. Note that these bits are exchanged in sequential

fashion, since we are computing in a broadcast network. Hence, the identity of each successive

transmitting node can depend on the previously transmitted bits. The sequential nature of

this problem permits a dynamic programming formulation analogous to (7.2).

P (θ)
e (Πn−k(X

n)) = min
i
{piP

(θ)
e (Πn−k−1(X

n
−i) + (1− pi)P

(θ)
e (Πn−k(X

n
−i)}, (7.20)

with the boundary condition P
(θ)
e (Πθ−k(X

θ)) = min(P (Πθ−k(X
θ) = 1), P (Πθ−k(X

θ) = 0)).

• Conditional entropy of function: Let H(θ)(Πn−k(X
n)) denote the minimum conditional

entropy of the function after at most (n − θ) bits are exchanged. As before, the identity

of each successive transmitting node can depend on the previously transmitted bits. Once

again, the sequential nature of this problem permits a dynamic programming formulation

analogous to (7.2).

H(θ)(Πn−k(X
n)) = min

i
{piH

(θ)(Πn−k−1(X
n
−i) + (1− pi)H

(θ)(Πn−k(X
n
−i)}, (7.21)

with the boundary condition H(θ)(Πθ−k(X
θ)) = H(Πθ−k(X

θ)).

7.4.1 Counter-example

At first glance, one would expect that the optimal strategy for approximate function computation

would match the strategy for exact function computation, thus verifying that the strategy proposed

in Theorem 38 is increasingly correct. Unfortunately, this is not true as shown by the following

counter-example.

Let us suppose that we want to compute Π2(X1, X2, X3) and we are allowed to exchange exactly

86



one bit. We have exactly three choices of strategy. Either node 1 transmits first, or node 2, or node

3. Consider the case where p1 = 0.7, p2 = 0.82, p3 = 0.84; then one can calculate the conditional

entropy when node 1 transmits first (respectively node 2 and node 3).

H(2)(Π2(X1, X2, X3)|X1) = p1H((1− p2)(1− p3)) + (1− p1)H(p2p3) = 0.4002.

H(2)(Π2(X1, X2, X3)|X2) = p2H((1− p1)(1− p3)) + (1− p2)H(p1p3) = 0.4991.

H(2)(Π2(X1, X2, X3)|X3) = p3H((1− p1)(1− p2)) + (1− p3)H(p1p2) = 0.4121.

Contrary to our expectation, it is not always optimal for node 2 to transmit first. This is also true

for the probability of error metric. Again, consider the approximate computation of Π2(X1, X2, X3)

where we are only allowed to exchange exactly one bit. For the case where p1 = 0.6, p2 = 0.72, p3 =

0.84; the probability of error expressions for the three strategies are given by

P (2)
e (Π2(X1, X2, X3)|X1) = p1min((1− p2)(1− p3), 1− (1− p2)(1− p3))

+(1− p1)min(p2p3, 1− p2p3) = 0.1850,

P (2)
e (Π2(X1, X2, X3)|X2) = p2min((1− p1)(1− p3), 1− (1− p1)(1− p3))

+(1− p2)min(p1p3, 1− p1p3) = 0.1850,

P (2)
e (Π2(X1, X2, X3)|X3) = p3min((1− p1)(1− p2), 1− (1− p1)(1− p2))

+(1− p3)min(p1p2, 1− p1p2) = 0.1632.

Thus, it appears that the structure of the optimal solution when we seek approximate compu-

tation given a fixed number of bits, is somewhat different from the optimal strategy for zero error

computation.

7.4.2 Special case of the parity function

While the structure of the optimal strategy for the approximate computation of threshold functions

remains elusive, the case of the parity function is solvable. In this section, we show that an intuitive

greedy strategy is optimal for the approximate computation of the parity function. To begin with,
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the parity function of n Boolean variables labeled X1 through Xn is defined as follows:

Φ(Xn) :=











0 if
∑

iXi is even

1 if
∑

iXi is odd.

We consider the computation of Φ(Xn) in a broadcast scenario where Xi ∼ Bern(pi). If we

seek exact computation, the problem becomes trivial since each node must transmit its bit. Hence,

we will consider approximate computation of parity under the conditional entropy metric. Let us

suppose that nodes are allowed to exchange up to (n−θ) bits. LetH(θ)(Φ(Xn)) denote the minimum

conditional entropy of the function after (n − θ) bits are exchanged. The dynamic programming

equation analogous to (7.21) is

H(θ)(Φ(Xn)) = min
i

{

piH
(θ)(Φ(Xn

−i)) + (1− pi)H
(θ)(Φ(Xn

−i))
}

= min
i

{

H(θ)(Φ(Xn
−i))

}

(7.22)

with the boundary condition H(θ)(Φ(Xθ)) = h(P (Φ(Xθ) = 1)). One can derive the solution to

(7.22) and hence deduce the optimal strategy for approximate computation of parity.

Theorem 42. In order to minimize the conditional entropy of Φ(Xn) after (n − θ) bits are ex-

changed, it is optimal for the node with highest binary entropy to transmit first. Subsequently, the

node with the next highest entropy transmits, and so on until (n− θ) bits are transmitted.

Proof: First, we note that (7.21) implies that the optimal strategy for approximate computation

of Φ(Xn) is not data-dependent. Indeed, if node i transmits first, irrespective of whether Xi = 0

or Xi = 1, we have the residual task of computing Φ(Xn
−i) given at most (n−θ−1) bits. Thus, the

optimal strategy can be specified a priori and does not depend on the particular values of the bits

exchanged. Further, if our objective is to minimize the conditional entropy after (n − θ) bits, we

are only interested in determining the optimal subset of nodes that must transmit, and the order

of transmission within this set is irrelevant. Thus, we have

H(θ)(Φ(Xn)) = min

S ⊆ {1, . . . , n}

|S| = n− θ

H(Φ(Xn)|XS).
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Let A = {a1, a2, . . . , an−θ} be an optimal set of nodes. We claim that A consists of nodes with

the (n − θ) highest entropies among the n nodes. Suppose not. Then there exists a node a∗ /∈ A

and ai ∈ A such that H(pa∗) > H(pai). Consider the set A∗ := (A \ {ai})
⋃

{a∗}.

H(Φ(Xn)|XA∗) = H(Φ(Xn)|XA\{ai}, Xa∗)

= H(Φ(Xn
−((A\{ai}),a∗)

))

= H(paiP (Φ(Xn
−(A,a∗))) = 1) + (1− pai)P (Φ(Xn

−(A,a∗))) = 0))

≤ H(pa∗P (Φ(Xn
−(A,a∗))) = 1) + (1− pa∗)P (Φ(Xn

−(A,a∗))) = 0))

= H(Φ(Xn
−((A\a∗),ai)

)),

which contradicts the assumption that A is an optimal subset. Thus, under the toptimal strategy,

the set of transmitting nodes must be those with the highest entropies. A candidate strategy which

achieves this is one where nodes transmit in decreasing order of their binary entropies. �

7.5 Concluding Remarks

We have considered some sequential decision problems that arise in the context of optimal com-

putation of Boolean functions in collocated networks. The broadcast nature of the medium forces

nodes to communicate sequentially, and the challenge is to order nodes’ transmissions so as to

exploit both the structure of the function and the knowledge of the underlying distribution.

For single instance computation of Boolean threshold functions, we showed that the optimal

strategy has an elegant structure, which depends only on the ordering of the marginal probabil-

ities, and not on their exact values. The extension to the case of block computation is harder.

However, we have derived the optimal strategy in a logical restricted class of strategies, which we

conjecture to be optimal in general. The proof technique presented allows a unified treatment of

these two problems, and also allows extension to alternate pulse models of communication where

nodes transmit pulses of energy.

Finally, we have considered the problem of approximate function computation, where we are

given a fixed number of bits and seek to minimize the error in the estimate of the function. We
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have shown that this problem is more complicated and the optimal strategy lacks the structure that

we observed in the case of exact computation. However, for the special case of the parity function, a

simple greedy strategy is optimal. There are several directions for future work including extending

these results to the case of correlated measurements, and generalizing the sequential decision making

approach to handle general functions.
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CHAPTER 8

DETERMINING THE CONNECTIVITY OF RANDOM

GRAPHS

In this chapter, we consider the problem of determining the s − t connectivity of a given random

graph. We suppose that one can sample the edges of the graph. Each sample has an associated cost

and we consider the optimization problem of minimizing the expected total cost incurred, in order

to determine if the graph is s − t connected. Such a problem arises in a network where each link

has a sensor and we wish to determine connectivity in minimum expected time. The problem of

determing s− t connectivity can be formulated as the computation of a Boolean disjunctive normal

form, corresponding to the presence of at least one s − t path. Alternately, it can be formulated

as the computation of a Boolean conjunctive normal form, corresponding to the absence of every

s − t cut. Thus, we are faced with the problem of computing an asymmetric Boolean function

of Boolean measurements. This is in contrast with Chapter 7 where we considered a class of

symmetric Boolean functions. However, the inherent sequential nature of the problem leads to a

similar framework.

The general problem can be formulated as follows. Consider a graph G = (V,E), with designated

source node s, and terminal node t. Edges occur independently of each other, and each edge e ∈ E

is present with probability pe. Thus, a particular instance of the random graph will have vertex set

V and edge set equal to a subset of E. Our objective is to construct a sequential sampling strategy

to determine if the given instance of a random graph is s − t connected or not. We consider the

most general class of strategies where the choice of which edge to sample next is allowed to depend

on all previous samples. We suppose that the cost of sampling an edge e is given by te. Any correct

sampling strategy terminates with one of two possible outcomes, namely

• Connectivity, when we have verified the existence of all edges on an s− t path, and

• Disconnectivity, when we have verified the absence of all edges on an s− t cut.
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Since we do not know a priori if the graph is connected or not, the strategy possibly alternates

between trying to show the existence of an s − t path and the absence of an s − t cut. Since the

underlying graph is random, the cost of a strategy is a random variable and we seek to minimize

the expected cost. Let C(G) denote the minimum expected cost to check connectivity of G. We

can write a dynamic programming equation for C(G).

C(G) = min
e∈E

(te + peC(G · e) + (1− pe)C(G \ e)) (8.1)

where G · e is the graph obtained by contracting the edge e in G, and G \ e is the graph obtained

by removing the edge e from G. Note that both these graphs are random graphs. The boundary

condition for the above recursion is given by C(e) = te which is obtained by considering graphs

with a single edge. The recursion in (8.1) is much more complicated than the recursion for Boolean

threshold functions. This is due to the fact that the set of possible graphs with a given skeleton

structure is far more complex than the set of threshold functions. We have not been able to solve

(8.1) for general graphs. However, for some specific classes of graphs, we obtain an elegant structure

for the optimal policy of sampling edges. The intuition gained from these specific examples can be

instructive in constructing heuristics for verifying connectivity of general graphs.

We start by considering the simplest class of graphs. In Section 8.1, we consider series graphs

and parallel graphs where a set of links are arranged in series and parallel, respectively, between the

source node s and terminal node t. We derive optimal sequential sampling strategies for determining

the connectivity of these graphs. We then add another layer of complexity, and consider series-

parallel graphs and parallel-series graphs in Section 8.2. In the former case, the optimal strategy

involves indexing all the s−t cuts in the graph, while in the latter case, the optimal strategy involves

indexing all the s−t paths. The extension to general graphs is harder, and could potentially involve

hybrid strategies where we consider both paths and cuts.

Further, we show that the general problem is composed of two subproblems which are possibly

simpler to analyze. The first problem is one of minimizing the expected cost of finding a valid

s − t path conditioned on the fact that the graph is connected. The second problem is one of

minimizing the expected cost of finding a valid s − t cut conditioned on the fact that the graph

is disconnected. We conjecture the structure of the optimal solution for these two problems. The
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optimal strategy for determining connectivity in general graphs could be a hedging strategy, which

alternates between the optimal approaches for the two conditional subproblems.

8.1 Checking Connectivity in Series Graphs and Parallel Graphs

Consider a graph Sn which consists of n links in series, with source node at the leftmost end and

terminal node at the rightmost end, as shown in Figure 8.1. Let us suppose that the edges are

labeled e1 through en, where edge ei is present with probability pi and has sampling cost ti. The

following theorem describes the optimal strategy for sequentially sampling a series graph.

e1 e2 e3 e
n

t…
e
n-1

s

Figure 8.1: Series graph Sn

Theorem 43. In order to determine the s− t connectivity of the series graph Sn, it is optimal to

first sample the edge ei with the largest value of 1−pi
ti

.

Proof: We proceed by induction on the number of edges n. For n = 1, the result is trivially

true. Let us suppose that the result is true for the series graph Sn−1. Consider a series graph Sn

with n edges. When we sample edge ei, there are two possible outcomes.

• Either edge ei is absent and hence Sn is disconnected, or

• edge ei is present and we need to determine the connectivity of Sn · ei, for which we know

the optimal strategy from the induction hypothesis.

Without loss of generality, we suppose that edges are indexed in decreasing order of 1−pi
ti

to begin

with. Thus, we are left to prove that it is optimal to sample the edge e1 first. Let us denote the

expected cost of a strategy where ei is sampled first by C(Sn|ei is sampled first).

C(Sn|e1 is sampled first) = t1 + p1C(Sn · e1)

≤ t1 + p1(ti + piC(Sn · {e1, ei}))

= t1 + p1ti + p1piC(Sn · {e1, ei})
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C(Sn|e1 is sampled first) ≤ ti + pit1 + p1piC(Sn · {e1, ei}) (8.2)

= ti + pi(t1 + p1C(Sn · {e1, ei}))

= C(Sn|ei is sampled first),

where (8.2) follows from the assumption that 1−p1
t1

≥ 1−pi
ti

. Thus we have shown that the expected

cost is minimized when e1 is sampled first, which establishes the induction step. �

In series graphs, the optimal strategy can be interpreted as follows. Each s− t cut in the graph

is indexed by the ratio of the probability of absence of the cut to the expected cost to check the

cut. We then pick the cut with the highest index.

Analogously, one can define the parallel graph Pm as a graph with m parallel edges between

nodes s and t. Edges are labeled e1 through em as shown in Figure 8.2. In exactly analogous

fashion, one can describe the optimal strategy for sequentially sampling a parallel graph.

s t

e1

e2

e
m

e3

.

.

.

Figure 8.2: Parallel graph Pm

Theorem 44. In order to determine the s− t connectivity of the parallel graph Pm, it is optimal

to first sample the edge ei with the largest value of pi
ti
.

Proof: We proceed by induction on the number of edges m. For m = 1, the result is trivially

true. Let us suppose that the result is true for the parallel graph Pm−1. Consider a parallel graph

Pm with m edges. When we sample edge ei, there are two possibilities. Either ei is present and

we immediately know that Pm is connected, or ei is absent and we are left with the problem of

determining the connectivity of Pm \ ei. In the latter case, the optimal strategy is known from the

induction hypothesis.
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Without loss of generality, we suppose that edges are indexed in decreasing order of pi
ti

to begin

with. Thus, we are left to prove that it is optimal to sample the edge e1 first. Let us denote the

expected cost of a strategy where ei is sampled first by C(Pm|ei is sampled first).

C(Pm|e1 is sampled first) = t1 + (1− p1)C(Pm \ e1)

≤ t1 + (1− p1)(ti + (1− pi)C(Pm \ {e1, ei}))

= t1 + (1− p1)ti + (1− p1)(1− pi)C(Pm \ {e1, ei})

≤ ti + (1− pi)t1 + (1− p1)(1− pi)C(Pm \ {e1, ei}) (8.3)

= ti + (1− pi)(t1 + (1− p1)C(Pm \ {e1, ei}))

= C(Pm|ei is sampled first),

where (8.3) follows from the assumption that p1
t1

≥ pi
ti
. Thus we have shown that the expected cost

is minimized when e1 is sampled first, which establishes the induction step. �

In parallel graphs, the optimal strategy can be interpreted as follows. Each s − t path in the

graph is indexed by the ratio of the probability of existence of the path to the expected cost to

check the path. We then pick the path with the highest index.

8.2 Checking Connectivity of Series-Parallel Graphs and Parallel-Series

Graphs

We now proceed to study optimal strategies for determining connectivity in slightly more compli-

cated random graphs obtained from composing series and parallel graphs in prescribed ways.

8.2.1 Series-parallel graphs

We begin by considering series-parallel graphs, which consist of several parallel graphs arranged in

series as shown in Figure 8.3. The series-parallel graph SPn consists of n parallel graphs labeled

P1
m1

, . . . ,Pn
mn

, arranged in series. Further let the edges in the graph be labeled {eij : 1 ≤ j ≤ n, 1 ≤

i ≤ mj}, where eij is the ith edge in the jth parallel graph. Edge eij is present with probability
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pij , and has sampling cost tij . Further, suppose that within each cut Pj
mj , edges are indexed in

decreasing order of
1−pij
tij

, i.e.
1−p1j
t1j

≥
1−p2j
t2j

≥ . . . ≥
1−pmjj

tmjj
.

ts …

e11

e
m11

e
m22

e12 e1n

e
m
n
n

Figure 8.3: Series-parallel graph SPn

Theorem 45. Consider the problem of determining the s− t connectivity of a series parallel graph

SPn. Index each s − t cut in SPn, equivalently each component parallel graph, in the following

way:

Jα(P
j
mj

) =
(1− p1j)(1− p2j) · · · (1− pmjj)

t1j + (1− p1j)t2j + . . .+ (1− p1j) · · · (1− p(mj−1)j)tmjj
.

An optimal strategy is to sample the edge e with the maximum value of pe
te

on the maximum index

cut.

Proof: We first present a lemma regarding the behavior of the indexing function Jα, which

will be critical to the proof.

Lemma 46. Let A = {a1, a2, . . . am} be a set of edges, where edge ai is present with probability pi

and incurs sampling cost ti. Then, the Jα index of any subset of A is greater than or equal to the

Jα index of A. Equivalently, we have Jα(A \ ai) ≥ Jα(A).

Proof: Without loss of generality, we can suppose that pi
ti

≥
pj
tj

if i ≤ j. Then, we have

Jα(A \ ai) =
(1− p1) · · · (1− pi−1)(1− pi+1) . . . (1− pm)

(

t1 + (1− p1)t2 + . . .+ (1− p1) · · · (1− pi−1)ti+1

+ . . .+ (1− p1) · · · (1− pi−1)(1− pi+1) · · · (1− pm−1)tm

)

=
Jα(A)

(1− pi)

t1 + (1− p1)t2 + . . .+ (1− p1) · · · (1− pm−1)tm
(

t1 + (1− p1)t2 + . . .+ (1− p1) · · · (1− pi−1)ti+1

+ . . .+ (1− p1) · · · (1− pi−1)(1− pi+1) · · · (1− pm−1)tm

)

≥ Jα(A).
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From Lemma 46, we can decipher the proposed structure of the optimal strategy. Since the index of

a cut only increases when we sample an edge, the optimal strategy begins with the maximum index

cut and sequentially samples edges in decreasing order of pe
te
. Upon finding an edge, we proceed to

the next highest index cut and repeat the same procedure.

The proof of Theorem 45 proceeds by induction on the number of edges in E. For a graph with

one edge, the result is trivial. Let us suppose that the result is true for all graphs with |E| < k.

Consider a graph with |E| = k. Without loss of generality, we can suppose that

Jα(P
1
m1

) ≥ Jα(P
2
m2

) ≥ . . . Jα(P
n
mn

).

Hence, P1
m1

is the maximum index cut and e11 is the prescribed edge to sample. Let eij be some

other edge. When we sample edge eij , it could be present or absent, resulting in two residual

graphs. Both these graphs have a smaller edge set than the original graph. From the induction

hypothesis, we know the optimal strategy for each of these smaller graphs. There are two cases we

need to consider.

(i) First, suppose j = 1. In this case, both e11 and eij are in the same cut. Let C(SPn|eij is

sampled first) denote the minimum expected cost of the strategy where we sample edge eij first

and proceed optimally from there on. Suppose we sample the wrong edge ei1 first. Then, the index

of the cut increases, and the next optimal edge to sample is e11 from the induction hypothesis. We

have the following series of inequalities:

C(SPn|ei1 is sampled first)

= ti1 + pi1C(SPn · ei1) + (1− pi1)C(SPn \ ei1)

= ti1 + pi1C(SPn · ei1) + (1− pi1)(t11 + p11C(SPn · e11 \ ei1) + (1− p11)C(SPn \ {ei1, e11})

= ti1 + (1− pi1)t11 + (p11 + pi1 − pi1p11)C(SPn · e11) + (1− pi1)(1− p11)C(SPn \ {ei1, e11})

≥ t11 + (1− p11)ti1 + (p11 + pi1 − pi1p11)C(SPn · e11) + (1− pi1)(1− p11)C(SPn \ {ei1, e11})(8.4)

= t11 + p11C(SPn · e11) + (1− p11)(ti1 + pi1C(SPn · ei1 \ e11) + (1− pi1)C(SPn \ {ei1, e11}))(8.5)

≥ t11 + p11C(SPn · e11) + (1− p11)C(SPn \ e11)

= C(SPn|e11 is sampled first),
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where (8.4) follows from the fact that p11
t11

≥ pi1
ti1

, and (8.5) follows from the fact that the graphs

(SPn · e11), (SPn · ei1), (SPn · e11 \ ei1), (SPn · ei1 \ e11) are all the same. Thus we have shown that

the strategy of sampling edge e11 first minimizes the expected cost of determining connectivity of

SPn. This completes the induction step for the case when j = 1.

(ii) Second, suppose j 6= 1. In this case, e11 and eij are in different cuts, with e11 ∈ P1
m1

and

eij ∈ Pj
mj . Suppose we sample edge eij first. We have two subcases.

• Jα(P
j
mj \ eij) ≤ Jα(P

1
m1

). Then, by the induction hypothesis, the optimal strategy is to

return to the cut P1
m1

and sequentially sample edges until we find one. Upon finding an edge,

we move to the next highest indexed cut, and repeat the procedure. At some point we will

return to cut Pj
mj and run through the rest of the edges. The expected cost of this strategy

is given by

C(SPn|eij is sampled first) = tij + pijC(SPn · eij) + (1− pij)C(SPn \ eij).

To simplify the notation, we define two quantities Pj and Tj which represent the probability

that Pj
mj is connected and the minimum expected cost to check Pj

mj respectively:

1− Pj := (1− p1j)(1− p2j) . . . (1− pmjj)

Tj := t1j + (1− p1j)t2j + . . .+ (1− p1j) . . . (1− p(mj−1)j)tmjj = C(Pj
mj

).

By definition, we see that Jα(P
j
mj ) =

1−Pj

Tj
. We have the following series of inequalities:

tij + pijC(SPn · eij) + (1− pij)C(SPn \ eij)

= tij + pij (T1 + . . .+ P1 · · ·Pj−1Tj+1 + P1 · · ·Pj−1Pj+1Tj+2

+ . . .+ P1 · · ·Pj−1Pj+1 · · ·Pn−1Tn)

+(1− pij)

(

T1 + P1T2 + . . .+ P1 · · ·PaC(Pj
mj

\ eij) + P1 · · ·Pa

(

Pj − pij
1− pij

)

Ta+1

+ . . .+ P1 · · ·Pa

(

Pj − pij
1− pij

)

Pa+1 · · ·Pj−1Pj+1 · · ·Pn−1Tn

)
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= (T1 + P1T2 + . . .+ P1 · · ·Pa−1Ta) + P1P2 · · ·Pa(1− pij)C(Pj
mj

\ eij) + tij

+(pij + Pj − pij) (P1 · · ·PaTa+1 + . . .+ P1 · · ·Pj−1Tj+1 + P1 · · ·Pj−1Pj+1Tj+2

+ . . .+ P1 · · ·Pj−1Pj+1 · · ·Pn−1Tn)

≥ (T1 + P1T2 + . . .+ P1 · · ·Pa−1Ta) + P1P2 · · ·Pa(Tj − tij) + tij

+P1 · · ·PaPjTa+1 + P1 · · ·PaPjPa+1Ta+2 + . . .+ P1 · · ·PjTj+1 + . . .+ P1 · · ·Pn−1Tn (8.6)

≥ T1 + P1T2 + . . .+ P1 · · ·Pa−1Ta + P1P2 · · ·PaTj + P1 · · ·PaPjTa+1 + P1 · · ·PaPjPa+1Ta+2

+ . . .+ P1 · · ·Pj−1Tj+1 + P1 · · ·Pj−1Pj+1Tj+2 + . . .+ P1 · · ·Pj−1Pj+1 · · ·Pn−1Tn.

≥ T1 + P1T2 + . . .+ P1 · · ·Pn−1Tn (8.7)

= C(SPn|e11 is sampled first),

where (8.6) follows from the fact that C(Pj
mj ) ≤ tij + (1− pij)C(Pj

mj \ eij), and (8.7) follows

from Theorem 43 and the assumption that 1−P1
T1

≥ 1−P2
T2

≥ . . . ≥ 1−Pn

Tn
. This completes the

induction step.

• Jα(P
j
mj \ eij) > Jα(P

1
m1

). Then, by the induction hypothesis, the optimal strategy is to

continue to sample the cut Pj
mj until we find an edge. Upon finding an edge, we proceed to

check the remaining cuts in the indexed order, viz., (1, 2, . . . , j−1, j+1, . . . n). The expected

cost of this strategy is given by

C(SPn|eij is sampled first)

= Tj + PjT1 + PjP1T2 + . . .+ PjP1 · · ·Pj−1Tj+1 + . . .+ P1 · · ·Pn−1Tn

≥ T1 + P1T2 + P1P2T3 + . . .+ P1 · · ·Pn−1Tn (8.8)

= C(SPn|e11 is sampled first),

where (8.8) follows from the optimal strategy for series graphs described in Theorem 43 and

the assumption that 1−P1
T1

≥ 1−P2
T2

≥ . . . ≥ 1−Pn

Tn
. This completes the induction step. �

The optimal strategy for series-parallel graphs has a logical interpretation. We index each s− t

cut in the graph by the ratio of the probability that the cut is absent to the expected cost incurred

to check the cut. We pick the maximum index cut and treat this like a parallel graph where we
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pick the edge with the maximum value of pe
te
. Thus, the strategy exclusively focuses on cuts, and

completely ignores paths.

8.2.2 Parallel - series graphs

The case of parallel-series graphs is exactly analgous. The parallel-series graph PSm consists of

m series graphs labeled S1
n1
, . . . ,Sn

nm
, arranged in parallel as shown in Figure 8.4. Further let the

edges in the graph be labeled {eij : 1 ≤ i ≤ m, 1 ≤ j ≤ ni}, where eij is the jth edge in the ith

series graph. Edge eij is present with probability pij , and has sampling cost tij . Further, suppose

that within path Si
ni
, edges are indexed in decreasing order of

pij
tij

, i.e. pi1
ti1

≥ pi2
ti2

≥ . . . ≥
pini

tini

.

e11

e12 e13

e1n1

…
e1(n1-1)

e21
e22 e23 e2n2

t

…

s

e
m2 e

m3 …
e
m(n

m
-1)

.

.

.

e2(n2-1)

e
mn
me

m1

.

.

.

.

.

.

Figure 8.4: Parallel-series graph PSm

Theorem 47. Consider the problem of determining the s− t connectivity of a parallel-series graph

PSm. Index each s − t path in PSm, equivalently each component series graph, in the following

way:

Jβ(S
i
ni
) =

pi1pi2 · · · pini

ti1 + pi1ti2 + . . .+ pi1 · · · pi(ni−1)tini

.

The optimal strategy is to sample the edge e with the maximum value of 1−pe
te

on the maximum

index path.

Proof: We first present a lemma regarding the behavior of the indexing function Jβ , that will

be critical to the proof.

Lemma 48. Let A = {a1, a2, . . . an} be a set of edges, where edge ai is present with probability pi

and incurs sampling cost ti. Then, the Jβ index of any subset of A is greater than or equal to the
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Jβ index of A. Equivalently, we have Jβ(A \ ai) ≥ Jβ(A).

Proof: Without loss of generality, we can suppose that 1−pi
ti

≥
1−pj
tj

if i ≤ j. Then, we have

Jβ(A \ ai) =
p1 · · · pi−1pi+1 · · · pn

t1 + p1t2 + . . .+ p1 · · · pi−1ti+1 + . . .+ p1 · · · pi−1pi+1 · · · pn−1tn

=
Jβ(A)

pi

t1 + p1t2 + . . .+ p1 · · · pn−1tn
t1 + p1t2 + . . .+ p1 · · · pi−1ti+1 + . . .+ p1 · · · pi−1pi+1 · · · pn−1tn

.

≥ Jβ(A).

From Lemma 48, we can decipher the proposed structure of the optimal strategy. Since the index

of a path only increases when we sample an edge, the optimal strategy begins with the maximum

index path and sequentially samples edges in decreasing order of 1−pe
te

. Upon finding a missing

edge, we proceed to the next highest index path and repeat the same procedure.

The proof of Theorem 47 proceeds by induction on the number of edges in E. For a graph with

one edge, the result is trivial. Let us suppose that the result is true for all graphs with |E| < k.

Consider a graph with |E| = k. Without loss of generality, we can suppose that

Jβ(S
1
n1
) ≥ Jβ(S

2
n2
) ≥ . . . Jβ(s

m
nm

).

Hence, S1
n1

is the maximum index path and e11 is the prescribed edge to sample. Let eij be some

other edge. When we sample edge eij , it could be present or absent, resulting in two residual

graphs. Both these graphs have a smaller edge set than the original graph. From the induction

hypothesis, we know the optimal strategy for each of these smaller graphs. There are two cases we

need to consider.

(i) First, suppose i = 1. In this case, both e11 and eij are on the same path. Let C(SPn|eij is

sampled first) denote the minimum expected cost of the strategy where we sample edge eij first

and proceed optimally from there on. Suppose we sample the wrong edge e1j first. Then, the index

of path increases, and the next optimal edge to sample is e11 from the induction hypothesis. We
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have the following series of inequalities:

C(PSm|e1j is sampled first)

= t1j + (1− p1j)C(PSm \ e1j) + p1jC(PSm · e1j)

= t1j + (1− p1j)C(PSm \ e1j) + p1j(t11 + (1− p11)C(PSm · e1j \ e11) + p11C(PSm · {e11, e1j}))

= t1j + p1jt11 + (1− p1jp11)C(PSm · e11) + p1jp11C(PSm · {e11, e1j})

≥ t11 + p11t1j + (1− p1jp11)C(PSm · e1j \ e11) + p1jp11C(PSm · {e11, e1j}) (8.9)

= t11 + (1− p11)C(PSm \ e11) + p11(t1j + (1− p1j)C(PSm · e11 \ e1j) + p1jC(PSm · {e11, e1j})

(8.10)

≥ t11 + (1− p11)C(PSm \ e11) + p11C(PSm · e11)

= C(PSm|e11 is sampled first),

where (8.9) follows from the fact that 1−p11
t11

≥
1−p1j
t1j

, and (8.10) follows from the fact that the

graphs (PSm \ e11), (PSm \ ei1), (PSm · e1j \ e11), (SPn · e11 \ e1j) are all the same. Thus we have

shown that the strategy of sampling edge e11 first minimizes the expected cost of determining the

s− t connectivity of PSm. This completes the induction step for the case when i = 1.

(ii) Second, suppose i 6= 1. In this case, e11 and eij are on different paths, with e11 ∈ S1
n1

and

eij ∈ Si
ni
. Suppose we sample edge eij first. We have two subcases.

• Jβ(S
i
ni
\ eij) ≤ Jβ(S

1
n1
). Then, by the induction hypothesis, the optimal strategy is to return

to the path S1
n1

and sequentially sample edges until we find a missing edge. Upon finding a

missing edge, we move to the next highest indexed path, and repeat the procedure. At some

point, we will return to path Si
ni

and run through the rest of the edges. The expected cost

of this strategy is given by

C(PSm|eij is sampled first) = tij + pijC(PSm · eij) + (1− pij)C(PSm \ eij).

To simplify the notation, we define two quantities Pi and Ti which represent the probability
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that Si
ni

is connected and the minimum expected cost to check Si
ni

respectively:

Pi := pi1pi2 . . . pini

Ti := ti1 + pi1ti2 + . . .+ pi1 . . . pi(ni−1))tini
= C(Si

ni
).

By definition, we see that Jβ(S
i
ni
) = Pi

Ti
. Let us also define Qi := 1−Pi. We have the following

series of inequalities:

tij + pijC(PSm · eij) + (1− pij)C(PSm \ eij)

= tij + (1− pij) (T1 + . . .+Q1 · · ·Qi−1Ti+1 +Q1 · · ·Qi−1Qi+1Ti+2

+ . . .+Q1 · · ·Qi−1Qi+1 · · ·Qm−1Tm)

+pij

(

T1 +Q1T2 + . . .+Q1 · · ·QaC(Si
ni

· eij) +Q1 · · ·Qa

(

pij − Pi

pij

)

Ta+1

+ . . .+Q1 · · ·Qa

(

pij − Pi

pij

)

Qa+1 · · ·Qi−1Qi+1 · · ·Qm−1Tm

)

= (T1 +Q1T2 + . . .+Q1 · · ·Qa−1Ta) +Q1 · · ·QapijC(Si
ni

· eij) + tij

+(pij − Pi + 1− pij) (Q1 · · ·QaTa+1 + . . .+Q1 · · ·Qi−1Ti+1 +Q1 · · ·Qi−1Qi+1Ti+2

+ . . .+Q1 · · ·Qi−1Qi+1 · · ·Qm−1Tm)

≥ (T1 +Q1T2 + . . .+Q1 · · ·Qa−1Ta) +Q1Q2 · · ·Qa(Tj − tij) + tij +Q1 · · ·QaQjTa+1

+Q1 · · ·QaQjQa+1Ta+2 + . . .+Q1 · · ·QiTi+1 + . . .+Q1 · · ·Qm−1Tn. (8.11)

≥ T1 +Q1T2 + . . .+Q1 · · ·Qa−1Ta +Q1 · · ·QaQjTa+1 +Q1 · · ·QaQjQa+1Ta+2

+ . . .+Q1 · · ·Qj−1Tj+1 +Q1 · · ·Qj−1Qj+1Tj+2 + . . .+Q1 · · ·Qj−1Qj+1 · · ·Qm−1Tm.

≥ T1 +Q1T2 + . . .+Q1 · · ·Qm−1Tm (8.12)

= C(PSm|e11 is sampled first),

where (8.11) follows from the fact that C(Si
ni
) ≤ tij + pijC(Si

ni
\ eij), and (8.12) follows from

Theorem 44 and the assumption that P1
T1

≥ P2
T2

≥ . . . ≥ Pn

Tn
. This completes the induction

step.

• Jβ(S
i
ni
\eij) > Jβ(S

1
n1
). Then, by the induction hypothesis, the optimal strategy is to continue

to sample the path Si
ni

until we find a missing edge. Upon finding a missing edge, we proceed
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to check the remaining paths in the indexed order, viz., (1, 2, . . . , i − 1, i + 1, . . . n). The

expected cost of this strategy is given by

C(PSm|eij is sampled first)

= Ti +QiT1 +QiQ1T2 + . . .+QiQ1 · · ·Qi−1Ti+1 + . . .+Q1 · · ·Qn−1Tn

≥ T1 +Q1T2 +Q1Q2T3 + . . .+Q1 · · ·Qn−1Tn (8.13)

= C(PSm|e11 is sampled first),

where (8.13) follows from the optimal strategy for series graphs described in Theorem 43 and

the assumption that 1−P1
T1

≥ 1−P2
T2

≥ . . . ≥ 1−Pn

Tn
. This completes the induction step. �

The optimal strategy for parallel-series graphs has the following interpretation. We index each

s − t path in the graph by the ratio of the probability that the path is present to the minimum

expected cost incurred to check the path. We pick the maximum index path and treat this like a

series graph where we pick the edge with the maximum value of 1−pe
te

. Thus the strategy exclusively

focuses on paths and completely ignores cuts.

8.3 Extension to General Graphs

Paths and cuts are natural primitives to consider when we speak of connectivity. The question

of whether a graph is connected can be resolved if we can display an s − t path or an s − t cut.

Indeed, any strategy which successfully determines connectivity by sequentially sampling edges,

will also deduce an s− t path or s− t cut as a certificate. However, since we do not know a priori

whether the given instance of the random graph is connected or not, any strategy for determining

connectivity oscillates between trying to show that all edges of some s−t cut are absent, and trying

to show that all edges of an s − t path are present. Further, the optimal strategy is likely to be

dynamic, changing based on the presence or absence of previously sampled edges. This inherent

tension in the problem of determining connectivity makes the problem intractable in general.

However, in the case of series-parallel and parallel-series graphs, it is possible to find the optimal

strategy as shown in Section 8.2. In these cases, one can resolve the tension between displaying a
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cut and displaying a path. For series-parallel graphs, the optimal strategy focuses entirely on cuts,

while for parallel-series graphs, the optimal strategy focuses entirely on paths. Unfortunately, for

even the smallest graph which is not series-parallel or parallel-series (e.g., the graph in Figure 8.5),

the optimal strategy remains elusive.

e1

e2

e3

e4s t

Figure 8.5: Smallest graph for which optimal strategy is unknown

In order to make progress on the problem of verifying connectivity in general graphs, one can

consider the following approach. Let us suppose we know if the graph is connected to start with.

Our task is to find an s− t cut or an s− t path which serves as a certificate. This is equivalent to

minimizing the conditional expected cost of verifying the s − t connectivity given that the graph

is s− t connected or s− t disconnected. We formulate the following two conditional problems that

are intimately connected with the original problem of determining s − t connectivity in a general

graph.

• Given that the particular instance of the random graph is s− t disconnected, we want to find

an s− t cut using a sequential sampling strategy that incurs minimum expected cost. Mathe-

matically speaking, for a given graph G, we seek to minimize E(C(G)|G is s− t disconnected).

• Given that the particular instance of the random graph is s− t connected, we would like to

find an s − t path using a sequential sampling strategy that incurs minimum expected cost.

Mathematically speaking, for a given graph G, we seek to minimize E(C(G)|G is connected).

Aside from the fact that the solution of the above problems sheds some light on the nature of the

solution for the unconditional problem, the conditional subproblem is also interesting in its own

right. For instance, given a communication network or a network of valves in a chemical plant,

one would like to construct a strategy which discovers if the network is disconnected in minimum

time. On the other hand, we can afford to ignore the time consumed in the case that the network

is connected.
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The devolution of the general problem into two conditional problems resolves the tension between

checking paths and cuts. We conjecture that these problems admit an optimal solution that focuses

exclusively on cuts, or paths. However, a formal rigorous proof of this fact remains a challenge for

the future.

Conjecture 49. Consider a graph G with source node s and terminal node t.

• In order to minimize E(C(G)|G is s− t disconnected), the following strategy is optimal. Index

each s− t cut in the graph by the ratio of the probability that the edges in the cut are absent

to the expected cost incurred to check the cut. We first sample the edge with the maximum

value of 1−pe
te

on the maximum index cut.

• In order to minimize E(C(G)|G is s− t connected), the following strategy is optimal. Index

each s − t path in the graph by the ratio of the probability that the path is present to the

expected cost incurred to check the path. We first sample the edge with the maximum value

of pe
te

on the maximum index path.

8.4 Concluding Remarks

In this chapter, we have considered the problem of determining s−t connectivity in a random graph

G, by sampling edges one-by-one. A key aspect of the problem is that since we do not know if the

graph is connected or not, so we are torn between proving the absence of an s− t cut and proving

the existence of an s− t path. In some special cases, this tension can be resolved, yielding optimal

strategies for series graphs, parallel graphs, series-parallel graphs and parallel series graphs. While

the optimal solution has an elegant intuitive interpretation, the extension to general graphs remains

a challenge. We have formulated a related conditional problem for which we have conjectured the

nature of the optimal strategy.
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CHAPTER 9

CONCLUDING REMARKS

In this thesis, we have addressed a variety of problems that arise in the context of information ag-

gregation in sensor networks. While the general problem of devising optimal strategies for function

computation in wireless networks appears formidable, we have addressed different aspects of the

problem and presented optimal strategies for computing specific classes of functions and specific

network topologies. We have addressed three key questions that arise, namely which node should

transmit, what information it should send, and how that information must be encoded.

Beginning with the problem of zero error function computation in directed graphs, we have

analyzed both worst case and average case metrics. For directed tree graphs, we have constructed

optimal encoding schemes on each edge. This matches the cut-set lower bounds. For general DAGs,

we have provided an outer bound on the rate region, and an achievable region based on aggregating

along subtrees. It remains a challenge to quantify the sub-optimality of tree aggregation schemes

in general, and to develop better lower bounds for computation on graphs.

Next, we have addressed the problem of computing sum-threshold functions in undirected trees,

where all nodes seek to compute the function. In this case, the optimal strategy for block com-

putation involves a layering of transmissions that is reminiscent of message passing. For general

undirected graphs, we have presented cut-set lower bounds and a subtree-based aggregation scheme

for achievability. While we have shown that tree aggregation is a 2-OPT solution for complete

graphs, it remains a challenge to bound their suboptimality in general graphs.

Next, we have addressed the problem of computing symmetric Boolean functions in collocated

networks. We have derived optimal strategies for computing threshold functions and order op-

timal strategies with optimal preconstant for interval functions. The approach presented can be

extended to non-Boolean alphabets and non-Boolean valued functions. It remains a challenge to

derive optimal strategies for other classes of functions, and to study examples where multi-round
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interaction is beneficial.

Finally, we have addressed some sequential decision problems that arise in the context of com-

puting Boolean functions of random data. We have derived the optimal transmission policy for

computing a single instance of a Boolean threshold function in a collocated network. The proof of

an analogous result for block computation remains a challenge. We have also considered the prob-

lem of determining connectivity in random graphs by sampling edges, and have presented optimal

sampling strategies for some special classes of graphs. For general graphs, there are several open

problems that remain.
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