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Abstract  

This thesis covers a variety of topics and analyses related to early nutrition on the 

impact it has on the development of lung immunity in the piglet.  In the first section, an 

introduction is given.  In short, neonates are susceptible to infection early in life, 

especially respiratory infections (Murphy et al. 2008).  Respiratory infections are a major 

cause of morbidity and mortality in infants and children world-wide.  The immune 

system exists to protect the host against infection and to help the neonate respond 

appropriately to critical transition periods of life, namely birth and weaning where the 

infant is exposed to a variety of new environmental and food antigens.  Deficiencies of 

the immune system, both innate and adaptive immunity contribute to impaired host 

defense (Marodi and Notarangelo 2007) which can lead to increased susceptibility to 

infection.  Exposure to dietary antigens influences the rate of maturation of the immune 

system (Kelly and Coutts 2000) and can even help provide a protective effect against 

infection.  Breast milk is the optimal form of nutrition and is thought to help the immune 

system develop by providing signals to the immune system (Kelly and Coutts 2000), 

contributing bioactive components and stimulating the release of cytokines in peripheral 

blood mononuclear cells (PBMC) (Bessler et al. 1996) thus decreasing the risk of 

pneumonia (Chantry et al. 2006), upper respiratory, lower respiratory and gastrointestinal 

infections (Duijts et al. 2010).  Despite the benefits of breast milk, only about 13% of 

infants are exclusively breastfed by 6 months of age (CDC 2010), therefore, increased 

understanding of lung immune characteristics and how they differ between breastfed and 

formula infants is necessitated. 
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The next section of the thesis looks at developmental differences in lung, 

mediastinal lymph nodes, and thoracic lymph nodes in breastfed compared to formula-fed 

piglets.  In this study, colostrum-fed newborn piglets were either fed medicated sow milk 

replacer formula beginning at 48 hours of life (n=11) or remained with the sow (n=12) 

throughout the duration of the study.  On d7 and d21 postpartum, approximately half of 

the piglets in each group were euthanized and blood and tissue samples were collected.  

Immune cells in the lungs, MSLN and TLN were analyzed through a variety of 

techniques.  T lymphocyte subpopulations were identified using flow cytometry, cytokine 

mRNA expression was evaluated via RT-PCR, and total IgG, IgM, and IgA 

concentrations in serum were analyzed using enzyme linked immunoabsorbant assay 

(ELISA).  Both dietary (SR vs. FF) and developmental effects on immunological 

development were observed.  Through flow cytometry, it was found that NK cells were 

affected by diet in TLN, but not in PBMC or MSLN.  However, an effect of day (e.g. 

development) was seen in PBMC NK cells.  CD4+CD8+ T cell ratios were not different 

between FF and SR piglets in PBMC; however, diet affected MSLN at d21 and TLN at 

d7.  Expression of CD4+CD8+ double positive T cells in PBMC were affected by day, 

while diet effects were seen in TLN on d7 and MSLN on d21.  mRNA expression was 

investigated in whole tissue samples from the lung, TLN, and MSLN.  Diet also affected 

the mRNA expression of IL-1β and TNF-α in TLN, dectin, IFN-α, and TGF-β2, in 

MSLN and IFN-β in lung tissue in which FF animals had higher mRNA expression than 

the SR counterpart.  In addition, the expression of TLN IL-12 and dectin and MSLN IFN-

α decreased over time while lung IL-6, TGF-β1, INF-α, and TNF-α increased over time.  

Turning to systemic immunity, serum IgG concentrations were lower in the SR piglets 
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than FF piglets (p<0.05), and IgG levels in d7 animals were higher than at d14 and d21 

(p<0.05).  Serum IgM concentrations were not significantly different in SR piglets 

compared to FF piglets nor did the concentrations exhibit developmental changes.  Serum 

IgA levels were lower in the SR piglets when compared to the FF piglets (p<0.05), and 

IgA levels in d7 animals were higher than on d14 and d21 (P<0.05).  The findings of this 

study have established a set of baseline measurements that establish the developmental 

changes in immune cells populations and cytokine expression in bronchial associated 

lymph tissues.  Furthermore, these data demonstrated that differences exist between SR 

and FF piglets and provide a framework for future respiratory challenge studies to 

continue to pinpoint diet/immunological factors that increase the neonate‟s ability to 

resist respiratory infections and recover more quickly from pathogenic invasion.   

 This developmental study also established a foundation of normative changes 

over time for future studies to probe effectiveness of various formula components on 

mucosal lung immune development.  The next section of the thesis discusses one 

component, β-glucan, and the effect it has on mucosal lung immune development.  In this 

study, piglets (n=5-6/group) were fed formula containing 0 (control), 5 (WGP5), 50 

(WGP50), or 250 (WGP250) mg/L formula.  Half of the piglets in each treatment were 

vaccinated (FV) by i.m. injection against influenza (Fluzone™, Sanofi Pasteur, 

Swiftwater, PA) on d7 and received a booster on d14. Piglets were euthanized on d7 and 

d21. Weight gain and formula intake were unaffected by diet or vaccination. Fluzone-

specific serum IgG concentrations was measured by ELISA.  FV piglets had higher 

(p<0.0001) fluzone-specific IgG titer at d14 and 21 than non-V piglets independent of 

diet. Vaccination response were unaffected by oral WGP supplementation.  TNF-α, 



v 

 

dectin, IL-1α, -2, -4, and -12 mRNA expression in lung were unaffected by age or dietary 

WGP.  Lung TGFβ-1 mRNA expression was greater (p<0.05) at d21 than d7, and lung 

TGFβ-2 mRNA was lower (p<0.01) in all WGP diets compared to control. TNF-α, 

dectin, TGFβ-1, IL-2, -4, -6, or -12 mRNA in mediastinal lymph nodes (MSLN) were 

unaffected by age or dietary WGP. In MSLN, TGFβ-2 mRNA expression increased from 

d7 to d21 (p<0.05).  TNF-α, TGFβ-1, TGFβ-2, IL-4, -6, or -12 mRNA in thorasic lymph 

nodes (TLN) were unaffected by age or dietary WGP.  Dectin mRNA expression in TLN 

was lower at d21 compared to d7 (p<0.05). T-cell phenotypes were examined in MSLN 

and TLN by flow cytometry.  In MSLN and TLN, CD4+ T-cells decreased, while CD8+ 

T-cells increased between d7 and d21 piglets (p<0.001), but these developmental patterns 

were unaffected by dietary WGP.  Total serum IgG, IgM and IgA concentrations were 

also analyzed via ELISA.  Total serum IgG, IgM and IgA were unaffected by WGP but 

followed typical developmental patterns.  Thus, with the exception of reducing TGFβ-2 

mRNA in lung, dietary WGP did not affect cytokine expression, T-cell phenotypes or 

vaccination response in piglets.  The thesis comes to a close with a discussion of overall 

conclusions and future directions for this work.  
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Chapter 1 

Literature Review 

Neonatal Immune Development  

The immune system exists to protect the host against pathogenic organisms.  This 

defense is particularly critical during periods of transition when neonates are subjected to 

major stressful events such as birth and weaning.  Neonates are susceptible to infections 

early in life, especially respiratory infections.  Deficiencies of both innate and adaptive 

immunity contribute to impaired host defense (Marodi and Notarangelo 2007). Highly 

complex pathways of recognition, response, elimination and memory have evolved in 

order to help protect the host especially at these vulnerable times in life. In addition to 

protecting the infant from infection, the immune system acts to ensure tolerance to „self‟, 

to food, and to other environmental components.  Development and maintenance of 

tolerance begins at an early age, sometimes even prenatally (Calder et al. 2006). A 

breakdown of tolerance can lead to inflammatory diseases 

Neonates are born with an impaired production of TH1-T-cell associated cytokines 

due to a maternal TH2 bias during pregnancy, which is necessary to prevent the mother 

from generating an immune response against the developing fetus.  This TH2 bias creates 

a TH2 dominance in the fetus.  However, this bias against TH1 cytokines leaves the 

newborn susceptible to microbial infection and, if the neonate is not able to effectively 

down-regulate the pre-existing TH2 dominance and overcome low levels of allergen-

specific IgE antibodies, an allergic phenotype may develop (Calder et al. 2006). Classic 
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TH1 cytokines are interleukin (IL)-2, IL-12, and IFN-γ whereas the classic TH2cytokines 

are IL-4 and IL-10. 

Exposure to bacteria during delivery and on the mother‟s skin, as well as the 

introduction to formula and eventually solid foods, are key events in stimulating the 

maturation of the infant‟s gastrointestinal and immune systems.  Early nutrition exposes 

the infant to novel food antigens and may be the source to which the immune system 

must become tolerant.  These factors influence the development of the intestinal 

microbiota, which, in turn, affects antigen exposure, immune maturation, and immune 

responses (Calder et al. 2006).   

  

Neonatal Piglet Immune System  

The piglet is a good model to study neonatal immune development for several 

reasons.  Unlike some other mammals, the pig can be reared independently of their 

mothers and can survive on bovine milk-based sow-milk replacer formula.  They are 

sufficiently large in body size at birth, which allows for extensive surgical manipulation 

and long-term dietary treatment protocols (Calder et al. 2006).  Piglets have similar 

respiratory and digestive system physiology and development as human infants.  

Furthermore, due to the piglet‟s rapid growth rate compared to the infant, the effects of 

experimental dietary treatments can be observed more rapidly.   

Piglets are susceptible to similar diseases and pathogens as humans.  For example, 

clinical signs of influenza in pigs are comparable to those in humans (Haesebrouck and 

Pensaert 1986).  Pigs are a particularly good model because they are susceptible to 

human and avian influenza viruses (Ito et al. 1998).  
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Piglets secrete defense proteins, peptides, cytokines, and chemokines that are 

homologous to those of other mammals (Butler et al. 2009).  The lymphoid cell 

populations, cells that mediate the production of immunity, of the pig are shown to be 

consistent to other vertebrates, especially humans (Boeker et al. 1999), with the 

exception of expressing greater proportions of CD4+/CD8+ double positive (DP) 

lymphocytes, comprising between 8 to 64% of the circulating pool of small resting T-

lymphocytes (Pescovitz et al. 1985; Pescovitz et al. 1994; Zuckermann and Husmann 

1996; Zuckermann and Husmann 1996) compared to <3% (Zuckermann 1999) in the 

human counterpart, in peripheral blood and secondary lymphoid organs.  

One primary difference between the piglet and the human infant involves the 

transfer of passive immunity.  The pig is born with virtually no serum immunoglobulins 

(Ig) due to the lack of placenta transfer (Gaskins and Kelley 1995) and, therefore, are 

dependent upon ingestion of colostrum and milk to obtain Ig (Bourne 1976). In contrast,  

human infants receive passive immunity both in utero via placental transfer of Ig and 

postnatally via consumption of colostrum and milk postpartum (Bourne 1976; Sangild 

2006).   

Maternal immunity, including specific systemic humoral immunity, involving 

mostly IgG, is transferred from the maternal circulation into colostrum and is typically 

absorbed within the neonatal intestine by macromolecular absorption.  In addition, 

secretory IgA (sIgA), produced by the mammary gland, provides local immune 

protection within the piglet intestine. These antibodies are produced by the sow in 

response to intestinal and respiratory antigens and are passed on to the piglet to help 

protect the piglet against local pathogens (Salmon et al. 2009).  Immunoglobulins play a 

http://www.biology-online.org/dictionary/Cells
http://www.biology-online.org/dictionary/Immunity
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key role in host defense by forming IgA and antigen complexes in the lumen of the 

intestine.  The content of IgA antibodies from milk gradually declines throughout 

lactation, allowing bacterial colonization to occur (Salmon et al. 2009).  In addition to 

IgG, transfer of cytokines from colostrum to the bloodstream of the piglet peaks at two 

days after birth, which coincides with gut permeability; typically, gut closure occurs 24-

36 h after birth (Nguyen et al. 2007).  

 

Lung Mucosal Immunology 

The first point of contact for inhaled substances such as environmental pollutants, 

cigarette smoke, airborne allergens and microorganisms are the epithelial lining of the 

upper airways and lungs (Diamond et al. 2000).  The lungs and upper airways are 

mucosal surfaces that have dual function; they protect the organism from invasion of 

foreign antigens and bacteria, while allowing for the exchange of materials with the 

environment.  Due to the high exposure of the lungs and upper airways to airborne 

pathogens, they are common sites for infection.  Mucosal defense mechanisms are, 

therefore, critical for preventing colonization of the respiratory tract by pathogens and 

penetration of antigens through the epithelial barrier.   

The mucosal surfaces provide both nonimmune and immune mucosal defense.  

Tight junctions connect the epithelial cell layer covering most of the mucosal surfaces 

creating a physical barrier for pathogens and antigens.  A mucus layer forms that retards 

the movement of microorganisms and allows for the sequestering of pathogens and 

antigens.  If bacteria stick to the mucus layer before they can reach the target cell 
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receptor, they are swept away from the organism by other nonspecific defense 

mechanisms such as coughing, sneezing and mucociliary clearance.    

The goal of the mucosal innate immune system is to discriminate between 

pathogen-associated and „harmless‟ antigens, expressing active responses against 

pathogens and tolerance to harmless antigens (Bailey et al. 2005). Components of the 

innate immune system include phagocytes, such as neutrophils and macrophages (mø), 

natural killer (NK) cells, basophils, mast cells and eosinophils (Bals and Hiemstra 2004).  

The mucosal immune system is organized such that lymphoid elements of different 

mucosal tissues are collectively known as mucosal-associated lymphoid tissue (MALT), 

which then is separated into several components.  These components included gut-

associated lymphoid tissue (GALT), the bronchus-associated lymphoid tissue (BALT), 

the nasopharynx-associated lymphoid tissues (NALT), the mammary glands, and the 

genitourinary lymphoid tissue (Mestecky and McGhee 1987). BALT is made up of 

peribronchial, mediastinal, and cervical lymph nodes, mucosal epithelia, and lymphoid 

follicles sites, where foreign antigens are encountered and selectively taken up for 

initiation of immune responses (Vancikova 2002).  

In recent years, it has become clear that airway epithelial cells not only provide a 

passive barrier function, but also actively contribute to the innate immune system 

(Diamond et al. 2000; Holgate et al. 2000).  The airway epithelium senses bacterial 

exposure and responds by increasing its defenses. This response consists of an increase in 

the release of antimicrobial peptides into the lumen of the airways, and the release of 

chemokines and cytokines into the submucosa that initiate an inflammatory reaction. This 

inflammatory reaction includes the recruitment of phagocytes that serve to remove 



6 

 

microorganisms, and dendritic cells and lymphocytes that may aid in mounting an 

adaptive immune response (Bals and Hiemstra 2004).   

There are several proposed mechanisms by which pathogens are recognized by 

the airway epithelium that lead to a protective response of the innate immune system.  

Cells of the innate immune system use pattern recognition molecules to bind to conserved 

molecular patterns that are present on microorganisms.  Toll-like receptors (TLR) are one 

such family of pattern recognition receptors.  The TLRs help shape the adaptive immune 

response by directing the way that DC „educate‟ T-cells.  Activation of TLRs also 

regulates the expression of a variety of genes, including cytokines and chemokines. 

Airway epithelial cells secrete molecules that are involved in inflammatory and immune 

processes (Diamond et al. 2000; Holgate et al. 2000).  These include cytokines, 

chemokines, leukotrienes, calprotectin, β-defensins and other factors (Bals and Hiemstra 

2004).  By secreting these molecules, the airway epithelium is capable to chemoattract 

and activate cells of the innate and adaptive immune system, to immobilize and kill 

microorganisms, to induce wound healing and angiogenesis in response to injury and to 

orchestrate the initiation of and adaptive immune response (Bals and Hiemstra 2004).   

 

Porcine Response to Vaccination 

  While the immune system of the piglet is anatomically developed at birth, it is 

functionally immature and several weeks are necessary for full functional maturation for 

many components of the immune system (Gaskins 1998).  It is important that active 

immunity develops rapidly and appropriately in the piglet as immune protection acquired 

from colostrum does not confer protection against antigens to which the sow had not been 
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exposed.  The rate of maturation of the immune system is influenced by exposure to the 

intestinal microflora and to dietary antigens (Kelly and Coutts 2000).  The components of 

the immune system are present before birth as the piglet has the ability to synthesize IgG 

in response to an antigen challenge in utero and spontaneously IgG-secreting thymic B-

cells are detectable in 67-day-old pig fetuses (Gaskins 1998; Rooke and Bland 2002).  

The age at which the suckling piglet accumulates appreciable concentrations of IgG by de 

novo synthesis appears to be at ~7 days of age in both naturally-suckled (Rooke et al. 

2003) and artificially-reared piglets (Drew and Owen 1988).  

Vaccines can play an integral role in protecting the young pig against various 

diseases. It requires 10 to 21 days after vaccination for the pig to mount a protective 

immune response.  The exact length of time depends on the pig‟s age, the vaccine 

administered, and whether the pig had been vaccinated with the same vaccination before 

(Haesebrouck et al. 2004).  Vaccination against swine influenza virus can greatly reduce 

or prevent virus replication after challenge and the resulting disease (Van Reeth et al. 

2002).  Reeth and colleagues (2002) showed that piglets vaccinated against swine 

influenza virus (SIV) and then challenged had lower virus titers than the non-vaccinated 

pigs, reduced production of cytokines in the lungs upon challenge, and had clear 

reductions in disease severity.  

 

Influenza Vaccination 

 Influenza is primarily a respiratory tract infection involving the inflammation of 

the respiratory tract, which can progress to life-threatening pneumonia, 

hypercytokinemia, edema, acute lung injury, respiratory failure and death.  Influenza is 
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contagious and occurs worldwide.  About 20% of children and 5% of adults develop 

influenza A or B every year (Nicholson et al. 2003), which kills about 36,000 Americans 

every year (Fiore et al. 2008).  Young children are more likely to catch influenza than 

older children or adults (Nicholson et al. 2003).  Symptoms of influenza include croup, 

bronchiolitis, asthma, bronchitis, and otitis media.  

There are three types of influenza viruses: A, B and C.  Human influenza A and B 

viruses cause seasonal epidemics of disease while influenza type C infections cause a 

mild respiratory illness and are not generally associated with seasonal epidemics [CDC 

http://www.cdc.gov/flu/about/viruses/types.htm accessed Feb. 2, 2011].  Influenza type A 

viruses can be divided into two subtypes based on two proteins on the surface of the 

virus: the hemagglutinin (HA) and the neuraminidase (N).  There are two different 

subtypes of influenza A recognized in people at this time.  They are influenza A (H1N1) 

and influenza A (H3N2) viruses.   

Vaccination remains the most effective first line of defense for people of all age 

groups against seasonal influenza (Wong et al. 2010). The risk of infection and 

associated morbidity and mortality is significantly reduced by vaccination against the 

pathogen Haemophilus influenza (H. influenza) (Fiore 2010).  The benefits of annual 

immunization via intramuscular injection of high-risk populations with injectable 

trivalent inactivated influenza vaccines have been well established over the years.  

Fluzone® vaccines (Sanofi Pasteur, Swiftwater, PA) are given for active 

immunization against influenza disease caused by influenza viruses: influenza A (H1N1), 

influenza A (H3N2), and type B (Fiore 2010).  Fluzone® is an inactivated vaccine, also 

known as the flu shot, which is given by injection into the muscle.  Influenza vaccines 

http://www.cdc.gov/flu/about/viruses/types.htm
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have been known to produce a protective effect, which is largely dependent on the 

vaccine's ability to stimulate circulating antibody to the HA (Hobson et al. 1972). 

Vaccination against H. influenza is currently recommended for all children 6 months and 

older. In addition, a recent randomized double blind placebo controlled study conducted 

in 1375 healthy U.S. infants demonstrated that Fluzone® administered to young infants 

beginning at 6 to 12 weeks of age was safe and immunogenic (Englund et al. 2010).  

Another option for vaccination delivery is through a nasal spray FluMist® (MedImmune 

Vaccines, Inc. Gaithersburg, MD).  The FluMist® offers an effective line of defense 

against seasonal influenza without having needle shots.  In contrast to the injectable 

vaccine, FluMist® is a live trivalent vaccine which has been shown to induce protective 

immunity in the respiratory tract (McCarthy and Kockler 2004).   

 

Nutritional Regulation of Immune Function 

 Evidence suggests that the composition of the diet influences the functioning of 

our immune system (Volman et al. 2008).  Innate immune defenses are critical, especially 

immediately following birth and during the weaning period when the neonate is subject 

to a vast array of potentially pathogenic microorganisms that were not encountered in 

utero or during the first few months of life, respectively.  The intestine is the largest 

immune organ in the body and, therefore, is a location that is exposed to vast quantities of 

dietary and microbial antigens (Kelly and Coutts 2000).  The development of the normal 

immune function of the intestine is, therefore, vital for survival and is dependent on 

appropriate dietary and pathogenic antigen exposure among other things (Kelly and 

Coutts 2000).   
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It is generally accepted that the generation of appropriate immune responses and 

the development of immune regulatory networks in the neonate are dependent on the 

development of a normal intestinal flora as well as exposure to dietary antigen 

(Brandtzaeg 1996).  Furthermore, immunological response following antigen exposure is 

determined by a number of factors including genetic background, nature, timing, and 

dose of the administered antigen (Strobel and Mowat 1998).  As previously mentioned, 

the innate immune system plays an important role in the elimination of infectious agents 

while minimizing the damage they cause and, at the same time, they play an equally 

important role in processing harmless antigens.  Failure to regulate the processing of 

harmless antigens correctly can lead to disease such as food-related allergy, 

autoimmunity, and inflammatory bowel disorders (Kelly and Coutts 2000).  Due to the 

impact that antigens have on development of the immune system, it is critical that 

neonates are exposed to appropriate antigens through nutrition suited for immune 

development. 

It is generally accepted that infants who are breast-fed have fewer infections 

compared with those who are formula fed. There is consistent evidence, in both 

developed and developing countries, that breast-feeding provides a protective effect in 

the first 4-6 months of life (Golding et al. 1997).  In addition to supplying  nutrition, 

maternal colostrum and milk also protect the neonate against gastrointestinal and 

respiratory diseases (Kelly and Coutts 2000) and have been shown to promote the 

maturation of the developing intestinal epithelium (Burrin et al. 1992; Wang and Xu 

1996).  
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There is also a considerable body of literature describing immunosuppressive 

effects of breast-feeding and maternal antibodies on the development of active immune 

responses (Rennels 1996; Hodgins et al. 1999).  During the early stages of life, maternal 

milk provides signals to the immune system that help develop appropriate response to 

antigens (Kelly and Coutts 2000).  Breast milk also contains several bioactive 

components including human milk oligosaccharides (HMO), cytokines such as 

interleukin (IL)-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, IL-18, IFN-γ, TNF-α, and 

TGF-β, as well as, immune cells.  Breast-fed infants also have increased NK cells counts 

and higher antibody titres than formula-fed infants (Grimble and Westwood 2001).  The 

majority of lymphocytes in milk are activated T-cells that express the surface antigen 

CD45RO+ and are often associated with immunological memory (Goldman and 

Goldblum 1997).  There is evidence to suggest that the lymphocytes from milk can attach 

and traverse the neonatal intestine, and can remain locally with the intestine or migrate to 

enter circulation (Goldman and Goldblum 1997; Xanthou 1997).   

 

Bioactive Components in Human Milk 

Human colostrum has been shown to stimulate the release of cytokines from 

peripheral blood mononuclear cells (PBMC), thus altering the cytokine background 

against which immunological events are instigated (Bessler et al. 1996).  The CDC report 

card suggests that 75% of infants in the U.S. are breastfed at birth but within the first 6 

months it drops to 43% and only 33% of infants in the U.S. are exclusively breastfed for 

the first 3 months of life (CDC 2010).  Therefore, it is important to supplement formula 

in such a way that neonates can experience similar immunological advantages to those 
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that are breast-fed.  Several bioactive components are being investigated to more closely 

mimic human milk. 

Lactoferrin:  Lactoferrin (Lf), an iron-binding glycoprotein functions to transport 

iron in milk and other secretions (Gonzalez-Chavez et al. 2009).  It is found in most 

biological fluids such as saliva, tears, bile, nasal and bronchial secretions, urine, and most 

highly in milk and colostrum (7 g/L) (Gonzalez-Chavez et al. 2009) and is considered an 

innate defense protein.  It is synthesized by epithelial cells and granuloctyes (Kruzel et al. 

2007) and is released by mucosal epithelia and neutrophils during inflammation (Puddu 

et al. 2009).    

Lactoferrin is involved in several physiological functions, including immune 

response, antioxidant and anti-inflammatory properties, and protection against microbial 

infection (Gonzalez-Chavez et al. 2009). It also aids in controlling the initial reactions to 

infections, trauma, and injury (Kruzel et al. 2007).  It is recognized by low-density 

lipoprotein receptor-related protein-1 and -2 (LRP1 and LRP2) receptors that have been 

identified on macrophages, platelets, and intestinal cells (Kruzel et al. 2007).   

Lactoferrin acts as an antimicrobial agent by limiting the proliferation and 

adhesion of microbes and/or by phagocytosis (Puddu et al. 2009) due to the interaction of 

Lf with anionic molecules on some bacterial, viral, fungal, and parasite surfaces 

(Gonzalez-Chavez et al. 2009).  These properties are mainly related to its ability to 

sequester iron in biological fluids, to destabilize the membranes of microorganisms 

(Puddu et al. 2009), or to bind exogenous pro-inflammatory bacterial components, such 

as lipopolysaccharides and their receptors (Legrand and Mazurier 2010).  Lactoferrin 

seems to exert its antibacterial properties by direct interaction with microbes or by 
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competition with bacteria for iron which then inhibits the growth of the bacteria (Jenssen 

and Hancock 2009; Lonnerdal 2009).  Lactoferrin also exerts anti-viral activity against 

several viruses that infect the gastrointestinal tract including rotaviruses, enteroviruses, 

and adenoviruses (Oguchi et al. 1995; Firth et al. 2005).  Lactoferrin has also been shown 

to stimulate mucosal cell proliferation and differentiation in Caco-2 cells (Oguchi et al. 

1995) which may enhance nutrient uptake. 

Nucleotides:  Nucleotides are low molecular weight intracellular compounds that 

consist of a nitrogenous base (purine and pyrimideine bases), a five-carbon sugar, and 

one to three phosphate groups, and are considered the foundation of RNA and DNA. 

Nucleotides are sources of cellular energy, signal transduction, physiologic mediators, 

coenzyme factors, and regulation of enzyme activity. They are naturally found in all 

foods of animal and vegetable origin as free nucleotides and nucleic acids (Gil 2002) and 

are also commonly found in human breast milk and cow‟s milk.  Bovine milk has 

significantly lower nucleotide content than human milk resulting in infant formula with 

significantly lower nucleotide content than human milk.  Since the goal is to mimic 

human milk as closely as possible, nucleotides have been added to infant formulas.  

Although 13 nucleotides have been described in human milk, only five of them have been 

added to formula (Yu 2002). 

Proteases and nucleases degrade dietary nucleoproteins and nucleic acids into 

nucleotides.  Intestinal alkaline phosphatases and nucleotidases cleave the phosphate 

groups from nucleotides to from nucleosides which are absorbed in the small gut.  The 

absorbed nucleosides are mainly degraded to uric acid and allantoin, but some are 

reconverted to nucleotides (Yu 2002).  Nucleotides also can be synthesized de novo but 
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this process is metabolically costly.  Supplementation of formula with nucleotides may 

prevent the neonate from resorting to the de novo synthesis of nucleotides therefore 

optimizing physiological function.   

Dietary nucleotides have been reported to be beneficial for infants since they 

positively influence lipid metabolism, immunity, and tissue growth, development and 

repair (Gil 2002).  Dietary nucleotides have also been shown to play a significant role in 

the immunological development of neonates.  Research indicates that supplementation of 

infant formula with nucleotides leads to improved growth and reduced susceptibility to 

infection (Grimble and Westwood 2001).  In animal research, nucelotides have been 

shown to increase immune responses and beneficially affect gastrointestinal 

development.    

In particular, it has been demonstrated, in a rat model, that nucleosides contribute 

to enhanced growth and maturation of the gut by increasing villus height and enzyme 

activities (Iwasa et al. 2000).  Another study showed that mice that were fed a diet 

supplemented with 0.5% nucleotide mixture were less susceptible to mortality, had 

increased cell proliferation, greater production of Il-2 and IFN-γ when exposed to 

Cryptosporidium parvum given orally when compared to the counterpart non-nucleotide 

supplemented mice (Adjei et al. 1999).  In another study, weanling mice fed chow plus 

water supplemented with 0.035% nucleotides exhibited increased NK cell activity and 

lower mø activation compared to the mice fed chow plus nonsupplemented water (Carver 

et al. 1990).  Other animal studies have shown that mucosal DNA and protein synthesis, 

disaccharidase activity, villus cell number and height (Uauy et al. 1990) and small 
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intestinal wall thickness and weight are increased (Carver 1994) with nucleotide 

supplementation. 

Human milk oligosaccharides (HMO):  These complex carbohydrates are unique 

because of their structural diversity and high concentrations in human milk.  Human milk 

contains 7-12 g HMO/L, making them the third largest component of human milk 

(Newburg 1997). The oligosaccharide content in the milk of most domestic mammals is 

10- to 100-times lower than that found in human milk (Boehm and Stahl 2003).   

 HMOs are synthesized in the mammary gland starting with lactose at the reducing 

end and are comprised of D-glucose, D-galactose, N-acetylglucosamine, L-fucose, and 

sialic acid (Bode 2009).  The type of oligosaccharides produced in the mammary gland is 

believed to be influenced by maternal genetics, including the mother‟s Lewis blood group 

(Macfarlane et al. 2008).   There are thought to be 12 core structures made up of glucose, 

galactose, and N-acetylglucosamine (Newburg et al. 2005), with over 200 structures 

characterized by mass spectroscopy (Ninonuevo et al. 2006).  HMOs differ not only in 

structure but also in size, charge, sequence, and abundance (Ninonuevo et al. 2006).  

Human milk contains mainly neutral compared to the acidic HMO (Boehm et al. 2005). 

Neutral HMOs contain galactose, N-acetylglucosamine, fucose, and lactose core or 

anionic, whereas acidic HMOs contain the same oligosaccharide composition with N-

acetylneuraminic acid (Ninonuevo et al. 2006). 

Oligosaccharides in human milk are not digestible by small intestinal enzymes 

(German et al. 2008).  The nutritional function that is most associated with HMOs is to 

serve as a prebiotic or indigestible carbohydrate that is fermented by the gut microbiota 

(German et al. 2008).  Microbial degradation and fermentation of HMOs takes place in 
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the colon, providing the resident bacterial flora with the required carbon and energy for 

growth (Crociani et al. 1994).  Evidence suggests that HMOs also act as receptor analogs 

to inhibit the adhesion of pathogens on the epithelial surface and interact directly with 

immune cells (Boehm and Stahl 2007), and protect the breastfed infant against infections 

and diarrhea (Newburg et al. 2005).  HMOs have been demonstrated to selectively 

nourish the growth of highly specific strains of bifidobacteria, thus establishing the 

means to guide the development of the unique gut microbiota in infants fed breast milk 

(Ward et al. 2006).  The presence of bifidobacteria in the infant gastrointestinal tract 

(GIT) has been associated with a number of important health-promoting effects, 

including reduced incidence of diarrheal illnesses, improved lactose digestion, and 

enhanced immunomodulatory functions  (Leahy et al. 2005).   

 

(1,3/1,6)-β-D-Glucan 

Although β-Glucans are not normally found in human milk, they are thought to 

potentially influence neonatal immune development.  The focus of my research was to 

determine the bioactivity of (1,3/1,6)-β-D-Glucan added to formula fed to piglets. 

β-glucans are polysaccharides that occur as a principal component of cellular 

walls.  Yeast, fungi, seaweeds, mushrooms, and some cereals such as oats and barley 

contain large amounts of β-glucans.  β-glucans have been shown to lead to a variety of 

biological responses, including activation of neutrophils (Zhang and Petty 1994), 

macrophages (Adachi et al. 1994; Lebron et al. 2003), complement (Saito et al. 1992) 

and possibly eosinophils (Mahauthaman et al. 1988).  
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β-glucans stimulate the immune system, modulate humoral and cellular immunity, 

and, therefore, help the host to fight infections.  β-(1,3)-glucans belong to the group of 

“Biological Response Modifiers” (BRM), meaning that they do not have direct cytotoxic 

activities, but are able to boost the natural defense mechanisms of the host (Zekovic et al. 

2005; Descroix et al. 2006).  The biological effects of β-glucans are measured through 

activation of natural killer (NK) cells, T-cells, and nuclear factor-kappaB (NF-kB), 

phagocytic activity, stimulation of secretion of cytokines, and production of reactive 

oxygen species (Descroix et al. 2006).  

β-glucans are also antigenic substances that contain pathogen-associated 

molecular patterns (PAMPS), which are identified by pattern-recognition receptors (PRR) 

present on immune cells.  These PRRs include at least four receptors that recognize β-

glucans and allow the innate immune system to mount an immune response against it, 

including dectin-1, complement receptor 3 (CR3; CD11b/CD18), lactosylceramide, and 

scavenger receptors (Descroix et al. 2006).  Several studies support the CR3 receptor as 

the primary receptor mediating the physiological response to yeast (1,3/1,6)- β-D-glucan 

(Baran et al. 2007; Li et al. 2007).   Factors such as solubility, degree of branching, and 

primary structure impact the biological activity of β-glucans.  β-glucans with a degree of 

branching between 0.2 and 0.33, a molecular weight between 100 and 200 kDa, and a 

triple-helix structure are most biologically effective (Zekovic et al. 2005).   

 Further, Beier and Gebert have shown that the uptake of particulate antigenic 

matter, including microorganisms and vaccine-bearing microspheres, by the intestinal 

mucosa is achieved by membranous (M) cells in the domes of Peyer‟s patches (PP) 

(Beier and Gebert 1998).  Following uptake, the particles continue through the dome 
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epithelium into the subepithelial lymphoid tissue where an immune response is often 

initiated (Beier and Gebert 1998).  Using Baker‟s yeast (Saccharomyces cerevisiae) as a 

tracer, Beier and Gebert investigated the kinetics of particle uptake in the PP of pigs 

(Beier and Gebert 1998). Transcytosis of yeast particles by M cells occurred within 1 h.  

Without significant phagocytosis by intraepithelial macrophages, the particles migrated 

across the basal lamina within 2.5-4 h where they were quickly phagocytosed and 

transported out of the PP domes (Beier and Gebert 1998).   

In our study, Wellmune WGP® (Biothera, Eagan, MN) was extracted from cell 

walls of purified Saccharromyces cerevisiae using a proprietary technology, which 

produced a whole glucan particle in which the outer surface of mannoprotein and inner 

cellular contents were removed to expose the β 1,3/1,6 glucan.  WGP is a linear glucose 

molecule with a beta 1,3/1,6 branch point extended by a long β 1,3 oligosaccharide 

[http://immunehealthbasics.com/HowItWorks.cfm, accessed Feb 2, 2011].  WGP yeast 

particles are approximately 2-5 mm in size, which is ideal for uptake into M-cells and PP. 

When WGP is ingested, it is transported to immune organs where it is taken up by PP. 

Macrophages then digest the WGP into smaller fragments that are released over a few 

days [http://immunehealthbasics.com/HowItWorks.cfm, accessed Feb 2, 2011].  Yeast β-

glucan binds to the CR3 receptor (Thornton et al. 1996) and activates or enhances 

neutrophil anti-microbial activity, including migration of immune cells to the site of a 

foreign challenge and increased phagocytosis and oxidative burst. Several animal studies 

have shown beneficial effects of β-glucan. In one such study, mice were given a 

subcutaneous injection of yeast β-glucan (PGG-glucan) and whole glucan particle (WGP) 

β-glucan (Kournikakis et al. 2003).  β-glucan increased survival rate, diminished 

http://immunehealthbasics.com/HowItWorks.cfm
http://immunehealthbasics.com/HowItWorks.cfm
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bacterial load in the lungs, and increased the proportion of bacteria-free animals after 

infection with anthrax in mice (Kournikakis et al. 2003).  In another study, bacterial 

counts in blood of Staphylococcus. aureus (S. aureus)-challenged rats treated 

intramuscularly with PGG-glucan were lower than in control rats, and also the number of 

monocytes and neutrophils were increased (Liang et al. 1998).  Additionally, Rice and 

colleagues (2005) found an increased survival in mice challenged with S. aureus or 

Candida albicans after oral administration of glucan phosphate (GluP). Furthermore, 

Kournikakis et al. (2003) showed that orally administrated WGP β-glucan increased 

survival in mice challenged with the anthrax bacteria. 

In addition, yeast β-glucans have been shown to improve the humoral immunity 

of pigs and modulate cellular immunity of weanling pigs.  Li and coworkers (2005) 

supplemented pigs diets with 50 mg/kg β-glucan.  Pigs were injected with ovalbumin on 

day 14 and lymphocytes were isolated on day 28 and challenged with lipopolysaccharide 

(LPS) ex vivo to assess the impact of β-glucan on cellular immunity of pigs (Li et al. 

2005). They found that β-glucan mitigated the elevation of pro-inflammatory cytokines, 

IL-6, and tumor necrosis factor-alpha (TNF-α), and enhanced the increase of an anti-

inflammatory cytokine (IL-10) after LPS challenge (Li et al. 2005).   

In another study, dietary yeast β-glucans exerted anti-viral effects against SIV in 

piglets that were fed 50 mg/kg β-glucan daily (Jung et al. 2004). On day 3, piglets were 

inoculated intra-nasally with SIV.  Piglets that received the oral β-glucan had 

significantly lower microscopic lung lesion scores and significantly less nucleic acid in 

the lungs than those that did not receive the supplemented feed. Pre-administered β-

glucan also reduced the pulmonary lesion score and viral replication scores in SIV-
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infected piglets (Jung et al. 2004). Yeast β-glucans also had an anti-viral effect against 

porcine reproductive and respiratory virus (PPRS) in weanling pigs (Xiao et al. 2004).  In 

both studies, yeast β-glucan administration was associated with an up-regulation of the 

TH1 cytokine IFN-gamma.  Indeed, a hallmark of WGP therapy is a switch from a TH2 to 

a TH1 response.   

β-D-Glucan has had mixed effects on lung function and airway responsiveness.  

In one study, S. cerevisiae β-glucan fed orally (50 mg/pig) reduced the pulmonary lesion 

score and viral replication rate on pneumonia induced by swine SIV in piglets (Jung et al. 

2004).  In another study, pigs were fed diets with 0.025 or 0.5% β-glucan.  Dietary β -

glucan increased average daily food intake and average daily growth compared to control 

animals; however, pigs fed β-glucan had decreased plasma haptoglobin but more pigs fed 

0.025% β -glucan died by d12 after Streptococcus suis challenge (Dritz et al. 1995).   
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Chapter 2 

Research Objective, Specific Aims, and Hypothesis 

 

Respiratory infections are a major cause of morbidity and mortality in infants and 

children world-wide. Nutrition during infancy impacts the infant‟s immunological 

development and ability to ward off respiratory infections and respond appropriately to 

antigens.  Epidemiological evidence and clinical studies support the concept that 'breast is 

best', due in part to the effects of maternal milk on the immunological development of the 

neonate.  Maternal milk provides signals to the immune system that support development 

of an appropriate antigen response (Kelly and Coutts 2000), as well as contributing 

several bioactive components including HMO, cytokines, and immune cells.  Human 

colostrum has been shown to stimulate the release of cytokines from PBMC, thus altering 

the cytokine background against which immunological events are instigated (Bessler et 

al. 1996). Breastfed infants also have been acknowledged to have increased natural killer 

cells counts, higher antibody titers (Grimble and Westwood 2001), and activated T-cells 

that are often associated with immunological memory (Goldman and Goldblum 1997).  

Despite the clear immunological advantages of breast feeding infants and the 

implications associated with those advantages, not every infant is breastfed, thus, 

establishing a need to identify not only how immune development differs between 

breastfed and formula-fed neonates, but also which bioactive components trigger these 

immunological benefits.  

The overall goal of this thesis research was to investigate how early nutrition 

influences immune development.  The overall hypothesis guiding this research was that 
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immune development differs between breast- and formula-fed neonates and that the 

addition of the BMR β-glucan to formula would mediate immune development of 

formula-fed piglets.  

Specific Aim 1 investigated the development of immune cells in the lungs, 

mediastinal (MSLN) and thoracic lymph nodes (TLN), serum Ig profiles, and tissue 

cytokine mRNA expression in sow-reared (SR) pigs compared to those that were 

formula-fed (FF).  The working hypothesis of this specific aim was that SR piglets would 

exhibit an earlier and more robust immunological development than the FF counterpart, 

which would be manifest through greater percentages of double positive T cell 

populations, greater percentages of NK cells, higher expression of TH1 related cytokines, 

and greater concentrations of total serum IgG, IgA and IgM in SR piglets compared to FF 

piglets.  It is also hypothesized that developmental changes will be observed; double 

positive T cells will likely increase over time, while CD4+ T cells will likely decrease 

over time, CD8+ T cells will likely increase over time, NK cells will likely increase over 

time.  It is also hypothesized that TH1-associated cytokines will likely increase over time, 

while TH2-assoicated cytokines will decrease over time.  It is also likely that total serum 

IgG, IgM and IgA concentrations will decrease from initial d7 concentrations and then at 

some point begin to increase towards d7 concentrations.  Chapter 3 compared serum IgG, 

IgA and IgM concentrations, T-cell subpopulations and NK cells, and cytokine gene 

expression in lung, MSLN and TLN tissue.   

Specific Aim 2 investigated the effect of yeast β-glucan supplemented to infant 

formula on the development of mucosal immunity in the lung as well as the immune 

response to immunization with an influenza vaccine.  The working hypothesis of this aim 
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was that the addition of yeast β-glucan would enhance the immune response by enabling 

a switch from a TH2 to a TH1 response and increase cytokine secretion.  Chapter 4 

compared T-cell subpopulations in TLN and MSLN, gene expression in lung, TLN and 

MSLN tissues, total and Fluzone-specific IgG concentrations in serum, lung 

histomorphology and T-cell immunohistochemistry, and ex vivo proliferation of T-cells 

isolated from the TLN of 7-and 21-day-old piglets fed formula or formula supplements 

with WGP β-glucan.  
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Chapter 3 

Impact of Diet on Development of Lung Immunity in the Neonatal Piglet 

 

Abstract 

Lung immune development is critically important in order to protect neonates 

from foreign pathogens that could lead to respiratory infection. We hypothesized the 

development of immune cells in the lungs of sow-reared piglets differs from that of 

formula-fed piglets.  In this study, colostrum-fed newborn piglets were either fed 

medicated sow milk replacer formula beginning at 48 hours of life (n=11) or remained 

with the sow (n=12) throughout the duration of the study.  On d7 and d21 postpartum, 

approximately half of the piglets in each group were euthanized and blood and tissue 

samples were collected.  Immune cells in the lungs, MSLN and TLN were analyzed 

through a variety of techniques.  T lymphocyte subpopulations were identified using flow 

cytometry, cytokine mRNA expression was evaluated via RT-PCR, and total IgG, IgM, 

and IgA concentrations in serum were analyzed using enzyme linked immunoabsorbant 

assay (ELISA).  Both dietary (SR vs. FF) and developmental effects on immunological 

development were observed.  Through flow cytometry, it was found that NK cells were 

affected by diet in TLN, but not in PBMC or MSLN.  However, an effect of day (e.g. 

development) was seen in PBMC NK cells.  CD4+CD8+ T cell ratios were not different 

between FF and SR piglets in PBMC; however, diet affected MSLN at d21 and TLN at 

d7.  Expression of CD4+CD8+ double positive T cells in PBMC were affected by day, 

while diet effects were seen in TLN on d7 and MSLN on d21.  mRNA expression was 

investigated in whole tissue samples from the lung, TLN, and MSLN.  Diet also affected 
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the mRNA expression of IL-1β and TNF-α in TLN, dectin, IFN-α, and TGF-β2, in 

MSLN and IFN-β in lung tissue in which FF animals had higher mRNA expression than 

the SR counterpart.  In addition, the expression of TLN IL-12 and dectin and MSLN IFN-

α decreased over time while lung IL-6, TGF-β1, INF-α, and TNF-α increased over time.  

Turning to systemic immunity, serum IgG concentrations were lower in the SR piglets 

than FF piglets (p<0.05), and IgG levels in d7 animals were higher than at d14 and d21 

(p<0.05).  Serum IgM concentrations were not significantly different in SR piglets 

compared to FF piglets nor did the concentrations exhibit developmental changes.  Serum 

IgA levels were lower in the SR piglets when compared to the FF piglets (p<0.05), and 

IgA levels in d7 animals were higher than on d14 and d21 (P<0.05).  The findings of this 

study have established a set of baseline measurements that establish the developmental 

changes in immune cells populations and cytokine expression in bronchial associated 

lymph tissues.  Furthermore, these data demonstrated that differences exist between SR 

and FF piglets and provide a framework for future respiratory challenge studies to 

continue to pinpoint diet/immunological factors that increase the neonate‟s ability to 

resist respiratory infections and recover more quickly from pathogenic invasion. 
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Introduction 

Neonates are susceptible to infection early in life, especially respiratory infections 

(Murphy et al. 2008).  In fact, respiratory infections are one of the leading causes of 

morbidity in children (Duijts et al. 2010).  Breastfeeding has been shown to provide a 

protective effect against respiratory infections compared to formula feeding in infants 

(Chantry et al. 2006; Duijts et al. 2010).  Breast milk plays several roles in regulating the 

immune system.  It provides signals to the immune system to help initial immune 

development (Kelly and Coutts 2000), contributes bioactive components such as 

cytokines and human milk oligosaccharides, and stimulates the release of cytokines in 

PBMC(Bessler et al. 1996).  Infants that are breastfed have also been shown to have 

increased natural killer cell counts (Grimble and Westwood 2001), higher antibody titers 

(Grimble and Westwood 2001), greater T helper cell phenotype development (Murphy et 

al. 2008), increased vaccination response (Dorea 2009) and lower morbidity and 

mortality rates (Kelly and Coutts 2000).   

The piglet is an excellent model in which to study development of the BALT, 

because they have similar immune and respiratory system physiology and development 

when compared to human infants.  In addition, piglets are susceptible to similar diseases 

and pathogens as humans (Haesebrouck and Pensaert 1986; Ito et al. 1998). Lastly, the 

pig can be easily reared independently of their mothers and can survive on bovine milk-

based sow-milk replacer formula, which provides an exceptional opportunity to screen 

potential additives to human infant formula.   

Piglets secrete defense proteins, peptides, cytokines and chemokines that are 

homologous to those of other mammals (Butler et al. 2009).  The lymphoid cell 
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populations in the pig are shown to be consistent to other vertebrates, especially humans 

(Boeker et al. 1999).  An exception is the fact that pigs express greater proportions of 

CD4+CD8+ double positive (DP) lymphocytes.  In pigs, this population comprises 

between 8 to 64% of the circulating pool of small resting T-lymphocytes (Pescovitz et al. 

1985; Pescovitz et al. 1994; Zuckermann and Husmann 1996; Zuckermann and Husmann 

1996) compared to <3%  in the human counterpart (Zuckermann 1999).  

In one analysis it was shown that infants who were fully breastfed for 4 to <6 

months were at greater risk for pneumonia than those who were fully breastfed for ≥ 6 

months (Chantry et al. 2006).  Another study showed that infants who were breastfed 

exclusively until 4 months of age and partially thereafter had lower risks of infections in 

the upper respiratory, lower respiratory and gastrointestinal tracts in infancy (Duijts et al. 

2010).  Approximately 80% of infants in the U.S. receive infant formula at some time in 

their first year of life.  Optimally, bovine milk-based formulas should be formulated to 

mimic, as closely as possible, the biological actions of breast milk on immune system 

development.  This is particularly important in achieving optimal development of 

mucosal immunity.  However, a detailed analysis of the development of the lungs and 

BALT of breast-fed and formula-fed infants is lacking.  The purpose of this study was to 

use the neonatal piglet model to gain a better understanding of the development of 

immune cellularity and cytokine expression in the lung and investigate the impact of 

neonatal nutrition by comparing SR and FF piglets.  This model then can be used to 

probe the effectiveness of various formula components on mucosal lung immune 

development.  In addition, peripheral blood cells and serum immunoglobulins were 

included as markers of systemic immune development.   
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Materials and Methods 

Chemicals 

All chemicals were purchased from Sigma-Aldrich (St. Louis, MO), unless 

otherwise indicated.  

 

Dietary Treatment and Animal Protocol 

Piglets or sows were obtained from the Imported Swine Research Lab (ISRL) on 

the University of Illinois campus.  The formula fed (FF) piglets (n=11) were obtained at 

48 h postpartum to allow for consumption of colostrum.  They were transferred to ERML 

animal care facility.  Piglets were individually housed in environmentally controlled 

rooms (25°C) in cages, that maintain six piglets separated by Plexiglas partitions. Radiant 

heaters were attached to the tops of the cages to maintain an ambient temperature of 

30°C.  A commercially-available medicated sow milk-replacer formula (Advance Baby 

Pig Liquiwean, Milk Specialties Global Animal Nutrition, Carpentersville, IL) was 

provided as 14 equal feedings at a total volume of 360 ml/kg BW/day.  Sow-reared (SR) 

piglets (n=12) were vaginally-delivered and remained with their birth mother in an 

environmentally-controlled room at ERML.  Piglets were allowed to nurse ad libitum and 

were not given creep feed. However, by d21 piglets could be observed consuming small 

amounts of feed from the sow‟s bin.  All animal procedures were approved by the 

Institutional Animal Care and Use Committee of the University of Illinois. 
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Sample Collection 

On d7 (FF, n=5, SR, n=5) or d21 (FF, n=6, SR, n=7) postpartum, piglets were 

sedated with intramuscular injection of Telazol (3.5 mg/kg BW each tiletamine HCl and 

zolazepam HCl, Pfizer Animal Health, Fort Dodge, IA).  After sedation, blood was 

collected by cardiac puncture into non-coated vacutainer tubes (BD Biosciences, Franklin 

Lakes, NJ) for serum isolation.  Piglets were then euthanized by an intravenous injection 

of sodium pentobarbital (72 mg/kg BW Fatal Plus, Vortech Pharmaceuticals, Dearborn, 

MI).  After death, a thoracotomy was performed and mediastinal lymph nodes (MSLN) 

and thoracic lymph nodes (TLN) were quickly excised. A portion of the lung, MSLN and 

TLN were snap frozen in liquid nitrogen. The remaining MSLN and TLN were collected 

for isolation of mononuclear cells.  

 

Isolation and Phenotypic Identification of Mononuclear Cells from Tissues 

Mononuclear cells from TLN and MSLN were obtained by cutting tissues into 

pieces and dissociating using a GentleMACS Dissociator (Miltenyi Biotec, Auburn, CA).  

Cells then were sequentially passed through 100 µm and 40 µm cell strainers (BD 

Biosciences, Bedford, MA) to form single cell suspensions.  Cells were counted using a 

Countess automated cell counter (Invitrogen, Carlsbad, CA).  The number of viable cells 

was assessed by trypan blue (Invitrogen Gibco) exclusion.  The phenotype of T 

lymphocyte subpopulations from MSLN and TLN were monitored by flow cytometry 

using a panel of fluorescently labeled mAbs.  Lymphocytes were identified by anti-swine 

CD45 (Clone K252-1E4, AbD Serotec, Raleigh, NC).  Anti-CD45 was conjugated to 
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Alexa 647 with a Zenon Mouse Antibody Labeling Kit (Invitrogen Molecular Probes, 

Eugene, OR).  T lymphocytes were identified by mouse anti-pig CD3:biotin (Clone 

BB23-8E6, Southern Biotech, Birmingham, AL) that was visualized with 

streptavidin:PE-Cy7 (Southern Biotech). To further differentiate T cell populations, cells 

were stained with mouse anti-pig CD4:FITC (Clone 74-12-4, Southern Biotech) and 

mouse anti-pig CD8:PE (Clone 76-2-11, Southern Biotech). All staining procedures took 

place on ice and care was taken to prevent unnecessary exposure to light.  Briefly, one 

million cells per well were blocked with a mixture of 5% mouse serum (Southern 

Biotech) and 200 ug/ml purified mouse IgG (Invitrogen) for 5min. CD3 was added to the 

wells, incubated for 20 min, centrifuged, and then fluid was then aspirated. Cells were 

then incubated for 20 min in a total volume of 40 µl (10 µl of each: CD45, Strep-PECy7, 

CD4 and CD8). Cells were washed twice with PBS/1% BSA/0.1% sodium azide, and 

then fixed with 2% paraformaldehyde.  Staining was assessed using an LSRII flow 

cytometer (BD™, Biosciences, San Jose, CA).  The relative number of T cell 

subpopulations was determined using FlowJo 7.0 software (FlowJo, Ashland, OR).  

CD3+ events were considered T cells.  CD45+CD3+CD4+ events were considered T 

helper cells.  CD8+CD3+CD8+ events were considered cytotoxic T cells. NK cells were 

identified at CD3-CD4-CD8+ events. 

 

Cytokine Expression 

Total RNA was isolated and purified from snap frozen TLN, MSLN and lung 

samples with the TRIzol reagent (Invitrogen) following the manufacturer‟s protocol.  

RNA was quantified by spectrophotometry using a Nanodrop 1000 (Thermo Scientific, 
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Rockford, IL) at 260 nm.  RNA concentration was adjusted to 0.25 µg/ml using RNase 

free water (Invitrogen).  RNA quality was analyzed by a bioanalyzer (2100 Bioanalyzer, 

Agilent Technologies, Inc., Santa Clara, CA).  All samples had an RNA integrity number 

(RIN) greater than 6.0. 

Reverse transcription (RT) was performed on 3 μg of total RNA in a reaction 

involving 100 mM deoxyribonucleotide triphosphate (dNTP), 10X RT Buffer, 10X RT 

Random Primers, MultiScribe Reverse Transciptase, RNAse inhibitor (High Capacity 

cDNA Reverse Transcription Kit, Applied Biosystems, Foster City, CA) and 

Diethylpyrocarbonate-treated (DEPC) water (Invitrogen). The final RT product was 

quantified by spectrophotometry as above.  The final RT product was adjusted to a 

concentration of 1:150 or 1:200 using RNase-free water. Quantitative real-time PCR was 

conducted using SYBR-Green (Roche Diagnostics GmbH, Mannheim, Germany) and 

fluorescence intensity was collected using the Taqman ABI 7900 machine (Applied 

Biosystems Inc., Foster City, CA). A total of 40 PCR cycles were run.  The primers used 

are listed in Table 3.1, and final primer concentrations were 300nM.  Beta-actin was used 

as an internal standard reporter gene.  Results are expressed using the Relative Standard 

Curve Method.  In short, serial dilutions from a stock of pooled porcine spleen cDNA 

(range: 1:5 to 1:15,625) were made and run on each plate. Each sample was run with 

primers to assess the target gene and beta-actin. Normalized values for each target were 

calculated by dividing the target quantity mean by the β-actin quantity mean.  A fold-

difference was calculated for each measurement by dividing the normalized target values 

by the normalized calibrator sample (in this case the formula fed group average). All 

samples that were statistically compared to each other were run on the same plate.  
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Isolation of Mononuclear Cells from Peripheral Blood 

Peripheral blood mononuclear cells (PBMC) were isolated by density gradient 

centrifugation.  Briefly 10 ml of heparinized blood was diluted in 25 ml of RPMI and 

layered over Ficoll-Paque PLUS lymphocyte separation medium (GE Healthcare, 

Uppsala, Sweden). The peripheral blood mononuclear cells (PBMC) were recovered after 

centrifugation (400 x g, 30 min) across the density gradient.  Isolated PBMC were placed 

in complete culture medium (RPMI 1640 (Gibco Invitrogen, Grand Island, NY) 

containing 10% fetal calf serum (Gibco Invitrogen, Grand Island, NY), 2 mM L-

glutamine, 100 μg/ml penicillin, 100 μg/ml streptomycin, and 50 μg/mL gentamycin). 

 

Serum Immunoglobulin Levels 

Total serum immunoglobulin levels were detected by ELISA using assays specific 

for porcine IgG, IgM and IgA Quantification Sets (Bethyl Laboratories, Montgomery, 

TX, USA).  A 96-well, flat-bottomed ELISA plate (Nunc, Rochester, NY) was coated 

with 100 µl coating antibody (µg coating antibody as suggested by the manufacturer 

diluted in 0.05M carbonate-bicarbonate buffer, pH 9.6) and incubated overnight at 4°C. 

The antibody solution was poured off, and the plate was washed three times with 

PBS/0.05% Tween20.  The plates were blocked with 300 µl of 3% BSA/PBS for 1 h at 

room temperature (RT). The plates were washed as before. Serum samples were serially 

diluted in 0.05% gelatin/PBS, added to the wells in duplicate (100 µl per well), and plates 

were incubated for 1 h at RT. Samples for standard curves were included with the 

quantification sets and were used as directed.  Plates were washed as before, and 100 µl 
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HRP-conjugated detection antibody (concentration as recommended by the manufacturer) 

in 0.05% gelatin/PBS was added to each well.  Plates were protected from light and 

incubated for 1 h at RT.  Plates were washed four times with PBS-Tween 20. 100 µl 

TMB reagent solution (OptEIA, BD Biosciences, San Diego, CA) was added to each well 

and allowed to develop protected from light at RT for the time recommended by the 

manufacturer.  The reaction was stopped with 100 µl 2N H2SO4 per well.  The 

absorbance was then read at 450 nm with 570 nm correction using a microplate reader 

(SpectraMax M2
e
, Molecular Devices, Sunnyvale, CA). Total immunoglobulin values 

were determined based on a standard curve that was run on each plate. 

 

Statistical Analysis 

Analyses were performed using the PROC GLM (generalized linear model) 

procedure within SAS (Version 9.2, SAS Institute, Cary, NC).  The initial model was 

day, diet and day*diet interaction.  If the model was not significant, d7 and d21 data were 

combined.  If diet was not significant, diet was excluded and SR and FF at d7 data were 

combined and SR and FF at d21 were combined.  Statistical significance was defined as 

p<0.05, with trends reported as p<0.10.  All data are expressed as mean ± SD.   
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Results 

T Lymphocyte Populations  

 Flow cytometry was used to analyze T cell phenotype as well as NK cells in 

PBMC, MSLN and TLN.  PBMC NK cell populations and CD4:CD8 ratios did not differ 

between SR and FF piglets, thus SR and FF samples were pooled at both d7 and d21 in 

order to make developmental comparisons. CD4+CD8+ double positive T cell data were 

not pooled because the model was significant.  There were more CD4+CD8+ double 

positive T cells in the PBMC populations from d21 pigs than d7 pigs (p<0.05) (Figure 

3.1A). NK cells were higher in the PBMC populations from d7 than those from d21 

piglets (p<0.05) (Figure 3.1B).  CD4:CD8 ratios did not differ between d7 and d21 

piglets.  Thus, diet did not significantly affect developmental profiles of T cell and NK 

cells in PBMC. 

This was not true in the BALT.  On d7, MSLN CD4:CD8 T cell ratios did not 

differ between SR and FF pigs.  By d21, CD4:CD8 T cell ratios were higher (p<0.0001) 

in SR (7.9 ± 1.7%) than in FF piglets (4.2 ± 1.3%) at d21 (p<0.0001) (Figure 3.2).  

CD4+CD8- T cells were higher (p<0.05) at d7 than d21 and CD4+CD8- T cells were 

higher (p<0.05) in SR compared to FF piglets (Figure 3.3A).  CD4-CD8+ T cells were 

higher (p<0.01) at d21 than d7 (Figure 3.3B).  FF piglets had more double positive T 

cells compared to SR piglets (p<0.01) (Figure 3.4).  NK cells were not significantly 

different between SR and FF piglets in MSLN at either age.  

Diet effects were also observed in the TLN T cell populations.  These effects, 

however, were observed earlier than those in the MSLN.  Day 7 TLN CD4:CD8 T cell 

ratios were higher (p<0.05) in SR (10.5 ± 2.6%) than FF piglets (6.7 ± 1.9%) (p<0.05) 
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(Figure 3.5A).  Additionally, d7 TLN double positive CD4+CD8+ T cells were higher 

(p<0.05) in SR (9.9 ± 0.02%) than in FF piglets (7.4 ± 0.01%) (Figure 3.5B).  There 

were no differences between FF and SR groups for CD4:CD8 T cell ratio (p=0.09) or 

percentages of CD4+CD8+ T cells (p=0.28) in TLN at d21.  Diet and developmental 

changes were observed in CD4-CD8+ T cells; CD8+ T cells were higher (p<0.01) at d21 

than d7 and FF were greater (p<0.01) than SR (Figure 3.6).  There were no differences in 

CD4+CD8- T cell populations.  Diet also affected NK cells; NK cells were higher 

(p<0.05) in SR (7.4 ± 2.8%) than in FF piglets (3.4±3.1%) (Figure 3.7). 

 

Cytokines mRNA Expression 

 The mRNA expression of various genes was investigated in whole tissue samples 

from the lung, TLN and MSLN in order to gain a better understanding of gene expression 

profiles in these tissues (see Table 3.2 for a summary of the roles of these 

cytokines/receptor).  No differences were observed between FF and SR piglets in mRNA 

expression of IL-6, TGF-β1, IFN-α, IFN-β or TGF-β2 in TLN. However, there were 

developmental differences seen in the expression of IL-12 (Figure 3.8A) and dectin 

(Figure 3.8B), as well as, diet effects for IL-1β (Figure 3.9A), and TNF-α (Figure 3.9B) 

expression.  TLN IL-12 and dectin mRNA were higher (p<0.05) at d7 than at d21.  TLN 

IL-1β and TNF-α were higher (p<0.05) in FF animals than in SR animals.  

In MSLN, mRNA expression of IL-6, IL-12, TGF-β1, IL-1β, IFN-β, and TNF-α 

were not significantly different between SR and FF piglets.  However, dectin mRNA 

expression was higher (p<0.01) in FF compared to SR piglets (Figure 3.10A).  Dectin 

expression also tended (p=0.051) to be decreased from d7 to d21.  A day*diet interaction 
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was also significant (p<0.05) in mRNA expression of dectin. TGF-β2 and IFN-α mRNA 

expression were higher (p<0.05) in FF compared to SR piglets (Figures 3.10B and 3.11).   

In lung, mRNA expression of dectin, IL-12, TGF-β2, and IL-1β were not 

significantly different between SR and FF piglets.  However, IL-6 (Figure 3.12A), TGF-

β1 (Figure 3.12B), TNF-α (Figure 3.13A), and IFN-α (Figure 3.13B) mRNA expression 

were higher (p<0.05) at d21 than at d7.  IFN-β mRNA expression was higher (p<0.05) in 

FF piglets compared to SR piglets (Figure 3.14).  (See Table 3.3 for a summary of 

cytokine/receptor results.) 

 

Total Serum Immunoglobulin Levels 

In order to determine if circulating immunoglobulins differed in SR and FF 

piglets, sera from both groups were analyzed for IgG, IgM, and IgA concentrations at d7, 

d14 and d21.  The serum IgG concentrations were lower (p<0.05) in the SR piglets when 

compared to the FF piglets.  IgG concentrations in d7 animals were higher (p<0.05) than 

in d14 and d21 animals (Figure 3.15).  Serum IgG concentrations ranged from 16.0 ±7.9 

mg/ml to 26.1 ± 12.4 mg/ml in d7, whereas d14 ranged from 12.6 ± 4.8 mg/ml to 15.3 ± 

5.2 mg/ml.  Day 21 total serum IgG ranged from 9.5 ± 4.3 mg/ml to 15.2 ± 10.2 mg/ml.  

Serum IgM levels were not significantly different in SR piglets compared to FF piglets. 

Day 7 total serum IgM ranged from 6.8 ± 3.0 mg/ml to 11.9 ± 4.4 mg/ml while day 14 

was 10.3 ± 4.6 mg/ml to 13.0 ± 7.6 mg/ml, and d21 ranged from 7.6 ± 1.6 mg/ml, to 12.2 

± 3.7 mg/ml. The serum IgA concentrations were lower in the SR piglets when compared 

to the FF piglets (p<0.05), while IgA concentrations on d7 animals were higher than 
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those on d14 and d21 (p<0.05) (Figure 3.16).  Serum IgA concentrations averaged 2.5 ± 

1.2 mg/ml at d7, 0.5 ± 0.4 mg/ml at d14, and 0.2 ± 0.1 mg/ml at d21.  
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Discussion 

The immune system is functionally immature at birth, the immediate postnatal 

period and during weaning are the developmental periods when the neonate is subjected 

to a vast array of potentially pathogenic microorganisms, especially respiratory 

infections, that were not encountered in utero or during the first few months of life, 

respectively.  At these especially vulnerable times in the neonate‟s life, highly complex 

pathways of recognition, response, elimination and memory are important in order to help 

protect the host (Calder et al. 2006).  Composition of the diet influences the development 

and competence of the immune system (Volman et al. 2008).  In this study, we examined 

developmental differences in the BALT of SR and FF piglets.  

Flow cytometry was used to assess immune development by characterizing the T 

cell subpopulations and NK cells present in PBMC, TLN and MSLN. Hawkes and 

colleagues compared PBMC from breast-fed and formula-fed human infants at 6 months 

of age.  They found that the relative frequency of NK cells was greater in breast-fed than 

in formula-fed infants (9.7% vs. 7.1%; p < 0.001) (Hawkes et al. 1999).  The population 

of NK cells within the PBMC in our study was not significantly different between SR 

was compared to FF, but were observed to decrease over time.  In the same study, 

Hawkes and co-workers found that the CD4:CD8 ratio in breast-fed infants was lower 

than that in formula-fed infants (2.8 vs. 3.3; p < 0.005) (Hawkes et al. 1999). In contrast, 

the results of our study found that the CD4:CD8 ratio was not statistically different in SR 

compared to FF PBMC.  However, the CD4:CD8 ratio was higher in SR piglets 

compared to FF piglets at d21 in MSLN and at d7 in TLN.   
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As expected (Zuckermann 1999), CD4+CD8+ double positive T lymphocytes 

increased from d7 to d21 in PBMC.  While MSLN CD4+CD8+ double positive T 

lymphocytes were higher in FF piglets compared to SR piglets at d21, TLN CD4+CD8+ 

cells were higher in SR compared to FF piglets at d7.  One possible explanation is that 

the TLN and MSLN drain different internal structures possibly resulting in varying levels 

of expression. 

In both humans and swine, neonates are born with an impaired production of TH1-

cell associated cytokines due to a maternal TH2 bias during pregnancy that protects the 

fetus from immune response or rejection (Calder et al. 2006).  This TH2 bias creates TH2 

dominance in the fetus.  Because this comes at the expense of TH1 cytokine production, it 

leaves the newborn susceptible to microbial infection.  Additionally, if the neonate is not 

able to effectively down-regulate the pre-existing TH2 dominance and overcome low 

levels of allergen-specific IgE antibodies, an allergic phenotype may develop (Calder et 

al. 2006).   

In order to gain an overview of cytokine production in the lungs of SR versus FF 

piglets, mRNA expression was analyzed.  This analysis included TH1-associated 

cytokines (interleukin (IL)-12), pro-inflammatory cytokines (IL-6 and TNF-α), and TH3 

cytokines (TGF-β1, and TGF-β2).  Expression of both dectin and IL-12 decreased over 

time in TLN.  This may correspond with an initial aggressive attempt to establish TH1 

development, once a balance has been created between TH1 and TH2 expression the drive 

to establish this switch is decreased resulting in decreased expression of both dectin and 

IL-12.  Expression of IL-6, TGF-β1, TNF-α, and IFN-α in lung all increased overtime as 

expected.  These cytokines likely increased over time due to greater exposure of the lung 
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to various antigens. IL-1β, and TNF-α in TLN, dectin, TGF-β2, and IFN-α  in MSLN, as 

well as IFN-β in lung all had greater expression in FF animals compared to SR animals.  

Perhaps this is due to stress associated with birth and subsequent separation from their 

mother a birth, or perhaps this pattern is due to an underlying inflammation since the FF 

piglets are less protected from environmental pathogens than the SR counterpart.  These 

differences in expression could also be due to the differences in colostrum each piglet 

received. 

In each tissue, we saw differing patterns of cytokine mRNA expression.  These 

differences could be due to location of each tissue in the body and the proximity of each 

tissue to pathogens.  Lung tissue would likely be the furthest target on the pathogen‟s 

route from the oral/naso-pharynx route into the body.  Thus, lung tissue would be 

exposed to fewer foreign microorganisms leading it to mount a different type of immune 

response than the MSLN, which are closer to the point of airway branching and therefore 

in closer proximity to the foreign microorganisms route of entry.   TLN are located 

superior to both the lung and MSLN and, therefore, encounter pathogens before the 

others in the course of ingestion/inhalation. TLN and MSLN also drain different internal 

structures and may therefore be exposed to different organisms causing dissimilar 

strengths of expression. Each lymph node excised in the TLN and MSLN groups differ in 

its location and therefore each may differ in level of expression thus causing noticeable 

variation around the mean.   

To gain a perspective of systemic immune development of piglets in each of the 

dietary treatment groups, total serum IgG, IgM and IgA concentrations were measured.  

We found that the serum IgG concentrations were lower in the SR piglets when compared 
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to the FF piglets (p<0.05). Overall, IgG concentrations were higher on d7 than on d14 

and d21 (P<0.05). Previous research suggested that concentrations of IgG in colostrum 

decrease 5-fold in the first 24 h of lactation and then IgG concentration in the sow‟s milk 

decreases 30-fold in the first week (Bourne 1973).  The IgG concentrations in serum of 

young piglets followed this same pattern (Bourne 1973).  It is likely that the sows that 

nursed the piglets that were eventually FF provided varying levels of IgG that 

subsequently created variation in immunoglobulin levels in the piglet serum.  

Serum IgM concentrations were not significantly different in SR piglets compared 

to FF piglets. Bourne‟s research suggests that concentrations of IgM in colostrum 

decrease 2-fold in the first 24 h of lactation and then drop slightly through the course of 

the next 35 days (Bourne 1973). The IgM concentrations in the serum of young piglets 

decreased rapidly following the first 24 h of life to their lowest level at 8-14 d of age.  

IgA then began to increase (Bourne 1973).  

Serum IgA concentrations were lower in the SR piglets when compared to the FF 

piglets (p<0.05). Overall, IgA serum concentrations were higher on d7 than on d14 and 

d21 (P<0.05). Bourne‟s research suggests that concentrations of IgA in colostrum 

decrease 3-fold in the first 24 h of lactation and then tend to fluctuate through the course 

of the next 35 days of age (Bourne 1973). The IgA concentrations in serum of young 

piglets varied in the first 24 h but then decreased rapidly after 24 h to their lowest values 

at 17-22 d of age (Bourne 1973).  Curtis and Bourne concluded, based on half-life studies 

of naturally absorbed colostral immunoglobulins and 
125

I-labelled immunoglobulins, that 

IgA production in the piglet did not contribute significantly to serum IgA concentrations 

in the first 7-12 d of life nor did IgG production during the first 2-3 weeks of life.  
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However, IgM produced in the first week of life contributed significantly to circulating 

IgM levels (Bourne and Curtis 1973). Ogawa and co-workers found that TGF-β1 and 

TGF-β2 in colostrum correlated with increased serum IgA concentrations in human 

infants during the first month of life (Ogawa et al. 2004).  It was also found that high 

concentrations (10 ng/ml) of TGF-β1 suppressed immunoglobulin-secreting cell 

responses to LPS and rotavirus while low concentrations (0.1 ng/ml) promoted isotype 

switching to IgA antibody (Nguyen et al. 2007). 

It has been generally recognized that infants who are breast-fed have fewer 

infections compared with those who are formula fed.  There is consistent evidence, in 

both developed and developing countries, that breast-feeding provides a protective effect 

in the first 4-6 months of life (Golding et al. 1997).  Maternal colostrum and milk, in 

addition to supplying the neonate with nutrition, also protect against gastrointestinal and 

respiratory diseases (Kelly and Coutts 2000) and have been shown to promote the 

maturation of the developing intestinal epithelium (Burrin et al. 1992; Wang and Xu 

1996).    

In conclusion, this research supports previous research that diet does, in fact, 

impact immune development.  This research helps identify some of the lung-specific 

immunological differences associated with diet and development.  Thus, this study has 

established a set of baseline measurements from which it will be possible to look at 

effects of pathogens or other insults to the system as well as dietary components that may 

bring the FF piglets bronchial-associated immune development more in line with that 

seen in the SR piglets.  Through this study, we have established a foundation of 

normative changes over time for future studies to probe effectiveness of various formula 
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components on mucosal lung immune development and to identify potential effects of 

diet in a respiratory challenge model.  These challenge experiments will determine if the 

difference in immune development seen in piglets fed sow-milk replacer or sow‟s milk 

itself affects the neonate‟s ability to resist respiratory infections or enables them to 

recover more quickly. 
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Table 3.1: Primers Used for Quantitative Real Time-PCR. 

 

Gene Forward Primer (5‟ to 3‟) Reverse Primer (5‟ to 3‟) Gene Bank Accession ID 

β-actin CACGCCATCCTGCGTCTGGA AGCACCGTGTTGGCGTAGAG DQ845171.1 

Dectin CTCTCACAACCTCACCAGGAGAT CAGTAATGGGTCGCCAATAAGG FJ386384.1 

IL-12 CGTGCCTCGGGCAATTATAA CAGGTGAGGTCGCTAGTTTGG NM_213993.1 

IL-6 CTGGCAGAAAACAACCTGAACC TGATTCTCATCAAGCAGGTCTCC AB194100.1 

IL-1β AACGTGCAGTCTATGGAGT GAACACCACTTCTCTCTTCA NM_214055.1 

IFN-α TCTCATGCACCAGAGCCA CCTGGACCACAGAAGGGA NM_001166311.1 

IFN-β AGTGCATCCTCCAAATCGCT GCTCATGGAAAGAGCTGTGGT GQ415073.1 

TGF-β1 CCTGCAAGACCATCGACATG GCCGAAGCTTGGACAGAATC AF461808.1 

TGF-β2 TGTGTGCTGAGCGCTTTTCT GAGCGTGCTGCAGGTAGACA L08375.1 

TNF-α AACCTCAGATAAGCCCGTCG ACCACCAGCTGGTTGTCTTT EU682384.1 

 

  

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=112980806&dopt=GenBank&RID=VEASGN1201S&log$=nucltop&blast_rank=5
http://www.ncbi.nlm.nih.gov/nucleotide/224466281
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=47522811&dopt=GenBank&RID=VEB0715P01S&log$=nucltop&blast_rank=2
http://www.ncbi.nlm.nih.gov/UniGene/seq.cgi?ORG=Ssc&SID=22341986
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Figure 3.1: T cells and NK cells in PBMC.  Samples were analyzed by flow cytometry, as described in Materials and Methods.  SR 

and FF NK cells in PBMC were not significantly different; thus, both day 7 SR and FF samples were pooled and day 21 SR and FF 

samples were pooled for statistical analysis of NK cells.  Data are presented as mean ± SD. Data with different letters are significantly 

different (p<0.01).  A) PBMC CD45+CD3+CD4+CD8+ T cells were significantly higher at d21 compared to d7. B) NK cells 

were significantly higher at d7 compared to d21 (p<0.05). 
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Figure 3.2: MSLN CD4:CD8 T cell ratios CD4+CD8+ cells are significantly different on d21 but not on d7.  Piglets were 

euthanized on d7 or d21.  MSLN were collected.  Cells were isolated and stained with a panel of fluorescently labeled mAb including 

CD45, CD3, CD4, and CD8.  Data are expressed as mean ± SD.  Data with different letters are significantly different (p<0.05).  

MSLN CD4:CD8 T cell ratios were significantly higher in SR compared to FF on d21 (p=0.0256).  The overall model was 

significant and d7 was higher than d21 (p<0.1) and a day x diet interaction (p<0.05).  Data are presented as CD4+events: CD8+ events 

ratio as a percentage of CD45+CD3+ lymphocytes.  
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Figure 3.3: MSLN CD4+CD8- T cells are significantly higher at d7 than d21 and in SR compared to FF while CD4-CD8+ T 

cells are significantly higher at d21 than d7.  Piglets were euthanized on d7 or d21.  MSLN were collected.  Cells were isolated and 

stained with a panel of fluorescently labeled mAb including CD45, CD3, CD4, and CD8.  Data are expressed as mean ± SD.  Data 

with different letters are significantly different (p<0.05).  A) MSLN CD4+CD8- T cells were higher on d7 than d21.  CD4+CD8- 

were also higher in SR compared to FF animals.  B) MSLN CD4-CD8+ T cells were higher on d21 than d7. 
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Figure 3.4: MSLN CD4+CD8+ cells are significantly higher in FF compared to SR.  Piglets were euthanized on d7 or d21.  

MSLN were collected.  Cells were isolated and stained with a panel of fluorescently labeled mAb including CD45, CD3, CD4, and 

CD8.  Data are expressed as mean ± SD.  Data with different letters are significantly different (p<0.05).  MSLN 

CD45+CD3+CD4+CD8+ T cells were significantly higher in FF piglets compared to SR (p<0.01). 
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Figure 3.5: TLN CD4:CD8 T cell ratios and CD4+CD8+ cells are significantly different on d7 but not on d21. Piglets were 

euthanized on d7 or d21.  TLN were collected.  Data are expressed as mean ± SD.  Data with different letters are significantly different 

(p<0.05).   A) TLN CD4:CD8 T cell ratios were significantly higher in FF than SR piglets at d7 (p=0.028).  Data are expressed as 

CD4+events: CD8+ events ratio as a percentage of CD45+CD3+ lymphocytes. B) TLN CD4+CD8+ T cells were significantly 

higher in SR than FF piglets at d7 (p= 0.023).  
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Figure 3.6: TLN CD4-CD8+ T cell populations were greater in FF compared to SR and were higher at d21 than d7. Piglets 

were euthanized on d7 or d21.  TLN were collected.  Data are expressed as mean ± SD.  Data with different letters are significantly 

different (p<0.05).  TLN CD4-CD8+ T cell populations were significantly higher in FF than SR piglets and were higher at d21 

than d7.  
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Figure 3.7: TLN NK cells are significantly higher in SR compared to FF piglets. Piglets were euthanized on d7 or d21.  TLN were 

collected.  Data are expressed as mean ± SD.  Data with different letters are significantly different (p<0.05).   NK cells are CD4-CD8+ 

events as a percentage of CD3- events. 
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Table 3.2: Summary of the roles of cytokines/receptor. 

 

 

Gene/Receptor Major Roles 

IL-12 TH1-cell development activation
1
 

Dectin Pattern recognition receptor, binds fungal species
2
, 

role phagocytosis of apoptotic cells
2
, mediates 

production of various cytokines and chemokines
2
, 

stimulation of Dectin drives TH1 development
2
 

IL-1β Phagocyte activation
1
, increases endothelial adhesion 

molecules
1
, T-cell and macrophage activation

1
 

TNF-α Promotes inflammation and endothelial activation
1
, 

early inflammatory cytokine 

TGF-β1 Inhibits cell growth and induces switch to IgA 

production
1
, regulatory cytokine 

TGF-β2 Promotes oral tolerance 

IL-6 Lymphocyte growth and B-cell differentiation
1
, early 

inflammatory cytokine  

IFN-α Antiviral, increased MHC class I expression
1
 

IFN-β Antiviral
1
, increased MHC class I expression

1
 

 

1
(Murphy et al. 2008)

  2
(Willment and Brown 2010)
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Figure 3.8: IL-12 and Dectin mRNA expression in TLN.  Piglets were sow-reared or formula-fed and euthanized on d7 or d21.  

TLN were excised and snap frozen.  TLN mRNA was isolated, purified, and quantified using qRT-PCR.  Normalized values for each 

target gene were calculated by dividing the target quantity mean by the β-actin quantity mean.  A fold difference was calculated for 

each measurement by dividing the normalized target values by the average normalized target value for day 7 formula fed animals. All 

samples that were statistically compared to each other were run on the same plate.  Data are expressed as mean ± SD of the fold 

difference relative to formula-fed animals.  Data with different letters are significantly different (p<0.05).  A) IL-12 mRNA 

expression in TLN was greater on d7 than on d21. B) Dectin mRNA in TLN was higher on d7 than on d21.   
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Figure 3.9: IL-1β and TNF-α mRNA expression in TLN.  Piglets were sow-reared or formula-fed and euthanized on d7 or d21.  

TLN were excised and snap frozen.  TLN mRNA was isolated, purified, and quantified using qRT-PCR.  Normalized values for each 

target gene were calculated by dividing the target quantity mean by the β-actin quantity mean.  A fold difference was calculated for 

each measurement by dividing the normalized target values by the average normalized target value for day 7 formula fed animals. All 

samples that were statistically compared to each other were run on the same plate.  Data are expressed as mean ± SD of the fold 

difference relative to formula-fed animals.  Data with different letters are significantly different (p<0.05).  A) TLN IL-1β expression 

was higher in formula-fed animals than in sow-reared animals.  B) TLN TNF-α expression was higher in formula-fed animals 

than in sow-reared animals. 
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Figure 3.10: Dectin and TGFβ-2 mRNA expression in MSLN.  Piglets were sow-reared or formula-fed and euthanized on d7 or 

d21.  TLN were excised and snap frozen.  MSLN mRNA was isolated, purified, and quantified using qRT-PCR.  Normalized values 

for each target gene were calculated by dividing the target quantity mean by the β-actin quantity mean.  A fold difference was 

calculated for each measurement by dividing the normalized target values by the average normalized target value for day 7 formula 

fed animals. All samples that were statistically compared to each other were run on the same plate.  Data are expressed as mean ± SD 

of the fold difference relative to formula-fed animals.  Data with different letters are significantly different (p<0.05).  A) Dectin 

mRNA expression was higher in formula fed piglets compared to sow reared piglets and was trending towards a difference in 

day where d7 was higher than d21 (p=0.0505).  Day*diet interaction was also significant.   B) TGFβ-2 mRNA expression was 

significantly higher in formula fed piglets compared to sow reared piglets. 
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Figure 3.11: IFN-α mRNA expression in MSLN.  Piglets were sow-reared or formula-fed and euthanized on d7 or d21.  TLN were 

excised and snap frozen.  MSLN mRNA was isolated, purified, and quantified using qRT-PCR.  Normalized values for each target 

gene were calculated by dividing the target quantity mean by the β-actin quantity mean.  A fold difference was calculated for each 

measurement by dividing the normalized target values by the average normalized target value for day 7 formula fed animals. All 

samples that were statistically compared to each other were run on the same plate.  Data are expressed as mean ± SD of the fold 

difference relative to formula-fed animals.  Data with different letters are significantly different (p<0.05).  IFN-α mRNA expression 

was significantly higher in formula fed piglets compared to sow reared piglets. 
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Figure 3.12: IL-6 and TGFβ-1 expression in Lung.  Piglets were sow-reared or formula-fed and euthanized on d7 or d21.  Lung 

were excised and snap frozen.  Lung mRNA was isolated, purified, and quantified using qRT-PCR.  Normalized values for each target 

gene were calculated by dividing the target quantity mean by the β-actin quantity mean.  A fold difference was calculated for each 

measurement by dividing the normalized target values by the average normalized target value for day 7 formula fed animals. All 

samples that were statistically compared to each other were run on the same plate.  Data are expressed as mean ± SD of the fold 

difference relative to formula-fed animals.  Data with different letters are significantly different (p<0.05).  A) IL-6 mRNA expression 

was higher at d21 compared to d7.  B) TGF-β1 mRNA expression was higher at d21 compared to d7.   
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Figure 3.13: TNF-α and IFN-α mRNA expression in Lung.  Piglets were sow-reared or formula-fed and euthanized on d7 or d21.  

Lung tissue were excised and snap frozen.  Lung mRNA was isolated, purified, and quantified using qRT-PCR.  Normalized values 

for each target gene were calculated by dividing the target quantity mean by the β-actin quantity mean.  A fold difference was 

calculated for each measurement by dividing the normalized target values by the average normalized target value for day 7 formula 

fed animals. All samples that were statistically compared to each other were run on the same plate.  Data are expressed as mean ± SD 

of the fold difference relative to formula-fed animals.  Data with different letters are significantly different (p<0.05).  A) TNF-α 

mRNA expression was higher on d21 compared to d7.  B) INF-α mRNA expression was higher on d21 compared to d7.   
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Table 3.3: Summary of cytokine/receptor results. 

 

 

Tissue Cytokine/Receptor Day Diet Interaction 

TLN IL-12 7>21 None No 

TLN Dectin 7>21 None Yes 

TLN IL-1β None FF>SR No 

TLN TNF-α None FF>SR No 

MSLN Dectin None FF>SR No 

MSLN TGF-β2 None FF>SR No 

MSLN IFN-α 7>21 None No 

Lung IL-6 7<21 None No 

Lung TGF-β1 7<21 None No 

Lung TNF-α 7<21 None No 

Lung IFN-α 7<21 None No 

Lung IFN-β None FF>SR No 
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Figure 3.14: IFN-β mRNA expression in lung.  Piglets were sow-reared or formula-fed and euthanized on d7 or d21.  Lung 

tissue sections were excised and snap frozen.  Lung mRNA was isolated, purified, and quantified using qRT-PCR.  Normalized 

values for each target gene were calculated by dividing the target quantity mean by the β-actin quantity mean.  A fold 

difference was calculated for each measurement by dividing the normalized target values by the average normalized target 

value for day 7 formula fed animals. All samples that were statistically compared to each other were run on the same plate.  

Data are expressed as mean ± SD of the fold difference relative to formula-fed animals.  Data with different letters are 

significantly different (p<0.05). IFN-β mRNA expression was higher in FF compared to SR piglets. 
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Figure 3.15: Serum IgG concentrations in SR and FF piglets.  Sera were collected on day 7, 14, and 21. Data are expressed 

as mean ± SD.  Serum IgG concentrations were lower in the SR piglets when compared to the FF piglets.  IgG 

concentrations on day 7 were higher than on day 14 and day 21. 
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Figure 3.16: Serum IgA concentrations in SR and FF piglets.  Sera were collected on day 7, 14, and 21. Data are expressed 

as mean ± SD.  Serum IgA concentrations were lower in the SR piglets when compared to the FF piglets.  IgA 

concentrations on day 7 were higher than on day 14 and day 21. 
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Chapter 4 

Dietary Yeast β-glucan Minimally Impacts Development of Lung Immunity in the 

Neonatal Piglet 

 

Abstract 

Purified yeast (1,3/1,6)-β-D-glucan (WGP) has been shown to enhance immune 

responsiveness. Herein, the hypothesis that WGP would modulate the lung immune 

development and improve influenza vaccination response was tested.  Piglets (n=5-

6/group) were fed formula containing 0 (control), 5 (WGP5), 50 (WGP50), or 250 

(WGP250) mg/L formula.  Half of the piglets in each treatment were vaccinated (FV) by 

i.m. injection against influenza (Fluzone™, Sanofi Pasteur, Swiftwater, PA) on d7 and 

received a booster on d14. Piglets were euthanized on d7 and d21. Weight gain and 

formula intake were unaffected by diet or vaccination. Fluzone-specific serum IgG 

concentrations was measured by ELISA.  FV piglets had higher (p<0.0001) fluzone-

specific IgG titer at d14 and 21 than non-V piglets independent of diet. Vaccination 

response were unaffected by oral WGP supplementation.  TNF-α, dectin, IL-1α, -2, -4, 

and -12 mRNA expression in lung were unaffected by age or dietary WGP.  Lung TGFβ-

1 mRNA expression was greater (p<0.05) at d21 than d7, and lung TGFβ-2 mRNA was 

lower (p<0.01) in all WGP diets compared to control. TNF-α, dectin, TGFβ-1, IL-2, -4, -

6, or -12 mRNA in mediastinal lymph nodes (MSLN) were unaffected by age or dietary 

WGP. In MSLN, TGFβ-2 mRNA expression increased from d7 to d21 (p<0.05).  TNF-α, 

TGFβ-1, TGFβ-2, IL-4, -6, or -12 mRNA in thorasic lymph nodes (TLN) were unaffected 

by age or dietary WGP.  Dectin mRNA expression in TLN was lower at d21 compared to 
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d7 (p<0.05). T-cell phenotypes were examined in MSLN and TLN by flow cytometry.  In 

MSLN and TLN, CD4+ T-cells decreased, while CD8+ T-cells increased between d7 and 

d21 piglets (p<0.001), but these developmental patterns were unaffected by dietary WGP.  

Total serum IgG, IgM and IgA concentrations were also analyzed via ELISA.  Total 

serum IgG, IgM and IgA were unaffected by WGP but followed typical developmental 

patterns.  Thus, with the exception of reducing TGFβ-2 mRNA in lung, dietary WGP did 

not affect cytokine expression, T-cell phenotypes or vaccination response in piglets. 
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Introduction 

A continuing challenge in medicine today is finding the optimal diet for an infant 

who is unable to breastfeed.  Thus, the identification and characterization of compounds 

that enhance the growth, development and health of those infants continues to be a goal 

for nutritional science.  Newborns are transitioning into a world rich in foreign 

substances.  They must rapidly develop immune protection to defend against infection 

while avoiding harmful inflammatory responses.  Their immune systems develop in 

response not only to innate developmental signals, but also to signals from commensal 

bacteria and dietary components (Kelly and Coutts 2000). Herein, we explore the effects 

of one dietary component, yeast β-glucan (βG), on lung immune system development 

using the neonatal piglet as a model for human infants. 

Β-glucans are polysaccharides that occur as a principal component of cellular 

walls in  yeast, fungi, seaweeds, mushrooms, and some cereals such as oats and barley. β-

(1,3)-glucans belong to the group of Biological Response Modifiers (BRM) meaning that 

they do not have direct cytotoxic activities but are able to boost the natural defense 

mechanisms of the host. The immune system identifies βG by signaling through pattern-

recognition receptors (PRR) present on immune cells.  These PRRs include at least four 

receptors including dectin-1, complement receptor 3 (CR3; CD11b/CD18), 

lactosylceramide receptors, and scavenger receptors (Descroix et al. 2006). Through 

these receptors βG stimulate the innate immune system as well as modulate humoral and 

cellular immunity and may improve an individual‟s ability to fight infections 

(Mahauthaman et al. 1988; Saito et al. 1992; Adachi et al. 1994; Zhang and Petty 1994; 

Lebron et al. 2003). 
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The first point of contact for inhaled substances such as environmental pollutants, 

cigarette smoke, airborne allergens, and microorganisms is the epithelial lining of the 

upper airways and lungs (Diamond et al. 2000).  Therefore, mucosal defense mechanisms 

are critical in preventing colonization of the respiratory tract by pathogens and 

penetration of antigens through the epithelial barrier.  In recent years, it has become clear 

that airway epithelial cells not only function as a passive barrier, but also actively 

participate in innate immune responses (Diamond et al. 2000; Holgate et al. 2000).  One 

of the ways by which is it posited they do this is through PRR signaling which in turn 

regulates the expression of a variety of genes including cytokines and chemokines.  In 

fact, airway epithelial cells have been shown to secrete a large variety of molecules that 

are involved in inflammatory and immune processes including cytokines, chemokines, 

leukotrienes, calprotectin, β-defensins and other factors (Diamond et al. 2000; Holgate et 

al. 2000; Bals and Hiemstra 2004).  Through the secretion of these substances, the airway 

epithelium is able to chemoattract and activate cells of the innate and adaptive immune 

system, to immobilize and kill microorganisms, to induce would healing and 

angiogenesis in response to injury and to orchestrate the initiation of and adaptive 

immune response (Bals and Hiemstra 2004). 

β-D-Glucans have mixed effects on lung function and airway responsiveness.  

Generally, they appear to protect against microbial challenges. In one study, 

Saccharmyces cerevisiae βG fed orally (50 mg/day/pig) reduced the pulmonary lesion 

score and viral replication rate of pneumonia induced by swine influenza virus (SIV) in 

piglets (Jung et al. 2004).  In another study, yeast β-(1,3)-glucan administered by 

subcutaneous injection increased survival rate, diminished bacterial load in the lungs and 
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increased the proportion of bacteria-free animals after infection with anthrax in mice 

(Kournikakis et al. 2003). Yeast βG also had an anti-viral effect against porcine 

reproductive and respiratory virus (PPRS) in weanling pigs and was associated with an 

up-regulation of the TH1 cytokine IFN-gamma (Xiao et al. 2004).  In contrast, pigs fed 

diets with 0.025 or 0.5% βG had decreased plasma haptoglobin and more pigs fed 

0.025% βG died by d12 after Streptococcus suis challenge than control pigs despite 

increased average daily food intake (Dritz et al. 1995).  Β-glucans at a dose of 0.03% did 

not enhance the immune response to vaccination with PRRS (Hiss and Sauerwein 2003).  

It is unclear which factors affected the outcomes of these studies. 

To date, minimal research has been done to explore the effects of βG on immune 

development of the lungs in very young animals or humans.  The research presented 

herein investigates the effects of dietary βG on the development of lung-associated 

adaptive immunity in individuals less than three weeks of age.  Immune characteristics 

analyzed include T cell phenotypes, cytokine secretion, and the antibody response to 

immunization with an intramuscular influenza vaccine. 
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Materials and Methods 

Chemicals 

All chemicals were purchased from Sigma-Aldrich (St. Louis, MO), unless 

otherwise indicated.  

 

Dietary Yeast β-Glucan 

(1,3/1,6)-β-D-glucan (Wellmune WGP®) (see Appendix Figure B1) was obtained 

from Biothera, Inc. (Eagan, MN).  This compound was extracted from Saccharomyces 

cerevisiae.  The extraction process produces a whole glucan particle in which the outer 

surface of mannoprotein and inner cellular contents are removed (Babicek et al. 2007). 

WGP was provided at 1.8 mg/kg BW/day (WGP5), 18 mg/kg BW/day (WGP50) or 90 

mg/kg BW/day (WGP250).  The lowest dose provided an average WGP intake of 5 

mg/day and is consistent with Biothera's recommendation of 2 mg/kg BW/day.  The 

middle dose provided an average WGP intake of 50 mg/day. The highest dose provided 

an average WGP intake of 250 mg/d. These doses do not surpass the level generally 

recognized as safe by the United States FDA (200 mg/serving, GRN No. 239, 

www.FDA.gov accessed Oct 27, 2010).  Furthermore, these concentrations are within the 

range that has been shown to result in no observed adverse effects (NOAEL) in 

toxicological testing (2-100 mg/kg BW/day) (Babicek et al. 2007). 

 

http://www.fda.gov/
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Dietary Treatment and Animal Protocol 

Piglets (n=68) were obtained at 48 h postpartum to allow for consumption of 

colostrum.  The piglets were randomized to one of four dietary treatment groups: 1) a 

medicated sow milk replacer formula (Formula; Milk Specialties Global Animal 

Nutrition, Carpentersville, IL); 2) Formula + 5 mg/L (WGP5); 3) Formula + 50 mg/L 

(WGP50); or 4) Formula + 250 mg/L (WGP250) (see Appendix Figure B2). Piglets were 

individually housed in environmentally controlled rooms (25°C) in cages, which maintain 

six piglets separated by Plexiglas partitions.  Radiant heaters were attached to the tops of 

the cages to maintain an ambient temperature of 30°C.  Formula was offered 14 times 

daily at a rate of 360 ml/kg BW/day.  The piglets were monitored daily for normal 

growth and food intake, as well as the presence of fever, diarrhea or lethargy.  All animal 

procedures were approved by the Institutional Animal Care and Use Committee of the 

University of Illinois. 

 

Vaccination 

On d7 postpartum, approximately half of the piglets in each treatment group 

(Formula n=5, WGP5 n=6, WGP50 n=5, WGP250 n=6) were vaccinated with a 0.25 ml 

i.m. injection of human influenza vaccine (Fluzone, Sanofi Pasteur, Swiftwater, PA) 

(see Appendix Figure B3).  A blood sample was drawn from the jugular vein prior to 

administration of the vaccine. Vaccinated animals were boosted on d14 with the same 

dose of Fluzone.  Blood samples were collected longitudinally from all piglets on d14 

and d21 by jugular vein or following euthanasia, respectively.  
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Sample Collection 

On day 7 (Formula n=5, WGP5 n=5, WGP50 n=5, WGP250 n=5) or day 21 

(Formula n=12, WGP5 n=13, WGP50 n=11, WGP250 n=12) post-partum, piglets were 

sedated with an intramuscular injection of Telazol (tiletamine HCl and zolazepam 

HCl,  3.5 mg/kg BW each, Pfizer Animal Health, Fort Dodge, IA).  After sedation, blood 

was collected by cardiac puncture into non-coated vacutainer tubes (BD Biosciences, 

Franklin Lakes, NJ) for serum isolation.  Piglets were then euthanized by an intravenous 

injection of sodium pentobarbital (Fatal Plus, Vortech Pharmaceuticals, Dearborn, 

Michigan; 72mg/kg body weight) and a thoracotomy was performed.  The lungs, 

mediastinal lymph nodes (MSLN) and thoracic lymph nodes (TLN) were quickly 

excised. Sections (3-4 cm) of the lung were snap frozen in liquid nitrogen or fixed in 

Bouin‟s solution. A portion of the MSLN and TLN were snap frozen in liquid nitrogen. 

The remaining MSLN and TLN were collected for isolation of mononuclear cells. 

 

Lung histomorphology and T cell Immunohistochemistry 

Bouin‟s-fixed lung samples were embedded in paraffin, sliced to approximately 

5μm with a microtome, and mounted on glass microscope slides.  Sections were then 

stained with hematoxylin and eosin or anti-human CD3 polyclonal antibody at the 

University of Illinois Veterinary Diagnostic Laboratory.  Slides were scanned in the 

Institute of Genomic Biology at the University of Illinois using the NanoZoomer Digital 

Pathology System (Hamamatsu Corporation, Bridgewater, NJ).  Images were then 
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analyzed by a board certified veterinary pathologist at the University of Illinois School of 

Veterinary Medicine. 

 

Isolation and Phenotypic Identification of Mononuclear Cells from Tissues 

Mononuclear cells from TLN and MSLN were obtained by cutting tissues into 

pieces and dissociating using a GentleMACS Dissociator (Miltenyi Biotec, Auburn, CA).  

Cells were then sequentially passed through 100um and 40um cell strainers (BD 

Biosciences, Bedford, MA) to form single cell suspensions.  Cells were counted using a 

Countess automated cell counter (Invitrogen, Carlsbad, CA).  The number of viable cells 

was assessed by trypan blue (Invitrogen Gibco) exclusion. The phenotypes of T 

lymphocyte subpopulations from MSLN and TLN were monitored by flow cytometry 

using a panel of fluorescently labeled mAbs.  Lymphocytes were identified by anti-swine 

CD45 (Clone K252-1E4, AbD Serotec, Raleigh, NC).  Anti-CD45 was conjugated to 

Alexa 647 with a Zenon Mouse Antibody Labeling Kit (Invitrogen Molecular Probes, 

Eugene, OR).  T lymphocytes were identified by mouse anti-pig CD3:biotin (Clone 

BB23-8E6, Southern Biotech, Birmingham, AL) which was visualized with 

streptavidin:PE-Cy7 (Southern Biotech). To further differentiate T cell populations, cells 

were stained with mouse anti-pig CD4:FITC (Clone 74-12-4, Southern Biotech) and 

mouse anti-pig CD8:PE (Clone 76-2-11, Southern Biotech). All staining procedures took 

place on ice and care was taken to prevent unnecessary exposure to light.  Briefly, one 

million cells per well were blocked with a mixture of 5% mouse serum (Southern 

Biotech) and 200ug/ml purified mouse IgG (Invitrogen) for 5min. Anti-CD3 was added 

to the wells, incubated for 20 min, centrifuged, and then fluid was aspirated. Cells were 
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then incubated for 20 min in a total volume of 40µl (10µl each: diluted Anti-CD45, 

Strep-PECy7, anti-CD4 and anti-CD8). Cells were washed twice with PBS/1% 

BSA/0.1% sodium azide, and then fixed with 2% paraformaldehyde. Staining was 

assessed using an LSRII flow cytometer (BD™, Biosciences, San Jose, CA). The relative 

number of T cell subpopulations was determined using FlowJo 7.0 software (FlowJo, 

Ashland, OR).  CD45+CD3+ events were considered T cells.  CD45+CD3+CD4+ events 

were considered T helper cells.  CD45+CD3+CD8+ event were considered cytotoxic T 

cells. Gating procedure is included in Appendix B, Figure B4. 

 

Mitogenic Cell Stimulation 

A total of 2 x 10
5 

cells/ml per well TLN and MSLN were plated in 96-well plates 

in a final volume of 200 μl complete culture medium (RPMI 1620 (Invitrogen Gibco), 

20% fetal calf serum (Invitrogen Gibco), 2 mM L-glutamine (Invitrogen Gibco), 50 

ug/ml gentamicin (Invitrogen Gibco), 100 μg/ml penicillin, and 100 μg/ml streptomycin) 

for 96 h at 37° C under 5% CO2.  20 μl of LPS (0.5% 20 ug/ml), 20 μl ConA (25 μg/ml), 

or 20 μl BSA 0.075 g per 1ml was added on d0 (n=3 wells per sample per stimulant).  

Plates were incubated for 72 hours, then pulsed with 
3
H-thymidine (1 µCi/ml; Perkin 

Elmer, Boston, MA) and incubated overnight.  Plates were stored at -80°C until analyzed.  

The cells were then harvested (TomTech, Harvester 96 Mach III M, Hamden, CT) onto 

1.5 µm glass fiber filter paper (Skatron Instruments, Sterling, VA) and placed into 

scintillation vials with either 7ml Ultima Gold™ F scintillation fluid (Perkin Elmer, 

Boston, MA) or Econo-Safe (Research Products International Corporation, Mt. Prospect, 

IL). Samples were counted on a Beckman Coulter, LS 6500 Scintillation System (Brea, 
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CA).  Data are expressed as a change in counts per minute (Δcpm) which was obtained 

by subtracting counts from unstimulated control wells from counts for wells with 

mitogens.  Samples were analyzed in triplicate.  Data analysis was done on log 

transformed CPM. 

 

Fluzone™ Preparation for Ex Vivo Analyses 

Prior to use in ex vivo assays, Fluzone™ was dialyzed to remove additives that 

inhibit cell proliferation.  The Fluzone™ solution was placed into Spectra/Por® 4 dialysis 

membranes (Spectrum Laboratories, Rancho Dominguez, CA) and submerged in PBS for 

24 hours at 4°C.  A Bradford Assay (Bio-Rad Quick Start Bradford, Bio-Rad, Hercules, 

CA) was done to compare pre-dialyzed and dialyzed Fluzone™ protein levels.  Both 

samples contained 130 μg protein/mL. 

 

Assessment of Cell-Mediated Response 

The cell-mediated immune (CMI) response of the piglets was monitored by 

stimulating TLN immune cells with dialyzed Fluzone™ ex vivo as had previously been 

used to assess CMI in response to the influenza vaccine in human subjects (Keylock et al. 

2007).  Cells (2 x 10
5
) were added to each well of a round bottom microtiter plates in 150 

μL of complete cell culture media (see above).  50 μL of Fluzone™ at concentrations of 5 

μg/ml, 2.5 μg/ml, 1.25 μg/ml, 0.625 μg/ml or 0 μg/ml was added to each well (n=3 wells 

per sample per stimulant).  On d4, 
3
H-thymidine (Perkin Elmer, Boston, MA) was added 
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at a concentration of 1 μCi per well and plates were incubated overnight. Plates of cells 

were treated and analyzed as they were for mitogenic stimulation above.   

 

Assessment of Antibody Response 

An enzyme-linked immunosorbent assay (ELISA) was used to detect swine IgG 

specific for influenza antigens.  Flat-bottomed ELISA plates (Nunc, Rochester, NY) were 

coated with dialyzed Fluzone vaccine at a 1:80 dilution in coating buffer [0.5M 

Carb/Bicarb Buffer, pH 9.6] and incubated overnight at 4°C. Following incubation, 

200µL of PBS/10% FBS was added to each well to block non-specific binding. 

Following incubation (1 hour at 4°C), the plate was washed three times with 

PBS/0.05%Tween 20.  50 µL of diluted sera (1:100 PBS/10% FBS) was added to each 

well and plates were incubated for 1 hour at 37°C. Plates were washed three times with 

PBS/Tween.  50 µL of goat anti-pig IgG conjugated to peroxidase was added to each well 

at a dilution of 1:400 in PBS/10%FBS. Following a1 hour incubation at 37°C, the plate 

was washed three times with PBS/0.05%Tween.  50 µL of TMB (BD Biosciences, San 

Diego, CA) was added.  The plate was allowed to develop at room temperature for 20 

min and the enzymatic reactions were stopped by addition of 1M sulfuric acid. The plate 

was then analyzed on a microplate spectrophotometer (SpectraMax M2e, Molecular 

Devices, Sunnyvale, CA) at 450 nm.  Samples were run in duplicate.  Positive stock 

serum was run on each plate in dilutions ranging from 1:100-1:1600.  A standard curve 

was made using these dilutions.  Fluzone-specific IgG was expressed in arbitrary units 

calculated from the linear portion of the standard curve. 
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Cytokine Expression 

Total RNA was isolated and purified from snap frozen lung, TLN, and MSLN 

samples with TRIzol reagent (Invitrogen).  RNA was quantified by spectrophotometry 

using a Nanodrop 1000 (Thermo Scientific, Rockford, IL) at 260 nm.  RNA 

concentration was adjusted to 0.25 µg/l using RNase free water (Invitrogen).  RNA 

quality was analyzed by a bioanalyzer (2100 Bioanalyzer, Agilent Technologies, Inc., 

Santa Clara, CA).  All samples had an RNA integrity number (RIN) greater than 6.0.  

Reverse transcription (RT) was performed on 3 μg of total RNA in a reaction involving 

100 mM deoxyribonucleotide triphosphate (dNTP), 10X RT Buffer, 10X RT Random 

Primers, MultiScribe Reverse Transciptase, RNAse inhibitor (High Capacity cDNA 

Reverse Transcription Kit, Applied Biosystems, Foster City, CA), and DEPC water 

(Invitrogen). The final RT product was quantified by spectrophotometry as above.  The 

final RT product was adjusted to a concentration of 1:150 or 1:200 using RNase free 

water. Quantitative real-time PCR was conducted using SYBR-Green (Roche Diagnostics 

GmbH, Mannheim, Germany) and fluorescence intensity was collected using the Taqman 

ABI 7900 machine (Applied Biosystems Inc., Foster City, CA). A total of 40 PCR cycles 

were run.  The primers used are listed in Table 4.1 and final primer concentrations were 

300 nM. Beta-actin was used as an internal standard reporter gene.  Results are expressed 

using the Relative Standard Curve Method.   In short, a dilution of standard curve from a 

stock of pooled porcine spleen cDNA was made and run on each plate. Each sample was 

run with primers to assess the target gene and beta-actin. Normalized values for each 

target were calculated by dividing the target quantity mean by the β-actin quantity mean.  

A fold difference was calculated for each measurement by dividing the normalized target 
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values by the normalized calibrator sample (in this case the day 21, control diet, non-

vaccinated group average). All samples that were statistically compared to each other 

were run on the same plate. 

 

Serum Immunoglobulin Levels 

Total serum immunoglobulin levels were detected by ELISA using assays specific 

for porcine IgG, IgM and IgA Quantification Sets (Bethyl Laboratories, Montgomery, 

TX, USA).  A 96-well, flat-bottomed ELISA plate (Nunc, Rochester, NY) was coated 

with 100 µl coating antibody (µg coating antibody as suggested by the manufacturer 

diluted in 0.05M carbonate-bicarbonate buffer, pH 9.6) and incubated overnight at 4°C. 

The antibody solution was poured off, and the plate was washed three times with 

PBS/0.05% Tween20.  The plates were blocked with 300 µl of 3% BSA/PBS for 1 h at 

room temperature (RT). The plates were washed as before. Serum samples were serially 

diluted in 0.05% gelatin/PBS, added to the wells in duplicate (100 µl per well), and plates 

were incubated for 1 h at RT. Samples for standard curves were included with the 

quantification sets and were used as directed.  Plates were washed as before, and 100 µl 

HRP-conjugated detection antibody (concentration as recommended by the manufacturer) 

in 0.05% gelatin/PBS was added to each well.  Plates were protected from light and 

incubated for 1 h at RT.  Plates were washed four times with PBS-Tween 20. 100 µl 

TMB reagent solution (OptEIA, BD Biosciences, San Diego, CA) was added to each well 

and allowed to develop protected from light at RT for the time recommended by the 

manufacturer.  The reaction was stopped with 100 µl 2N H2SO4 per well.  The 

absorbance was then read at 450 nm with 570 nm correction using a microplate reader 



77 

 

(SpectraMax M2
e
, Molecular Devices, Sunnyvale, CA). Total immunoglobulin values 

were determined based on a standard curve that was run on each plate. 

 

Statistical Analysis 

Analyses were performed using the PROC GLM (generalized linear model) 

procedure within SAS (Version 9.2, SAS Institute, Cary, NC).  The initial model was 

day, diet, vaccination, day x diet, vaccination x diet.  If the model was not significant 

vaccination was not significant, vaccinated and non-vaccinated were combined.  If the 

model was still not significant, d7 and d21 data were combined.  It diet was not 

significant, diet was excluded and all diet groups at d7 were combined and all diet groups 

at d21 were combined.  Statistical significance was defined as p<0.05, with trends 

reported as p<0.10.  All data are expressed as means ± SD.  
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Results 

Formula intake, Body Weight 

 Formula intake and body weight (see Appendix Figure B5) were measured daily 

to determine if WGP affected acceptance of diet or growth.  Formula intake and body 

weight were similar across all treatment groups. The piglets in all treatment groups ate 

most of the diet provided (95-99%).  An average formula intake of 808±167 ml/day was 

consumed for the first 7 days and 1488 ± 129 ml/day over the course of 21 days.  The 

increase in body weight during the 7 or 21 day period did not differ between groups. On 

day 7, each pig weighed an average of 2.3±0.5 kg.  On day 21, each pig weighed an 

average of 4.4±0.8 kg at day 21.  Therefore, inclusion of WGP had no effect on weight 

gain or dietary acceptance. 

 

T lymphocyte Populations  

 Flow cytometry was used to analyze T cell phenotype.  Neither WGP nor 

vaccination affected T cell phenotypes.  However,  MSLN and TLN CD45+CD3+CD4+ 

T cells decreased, while CD45+CD3+CD8+ T cells increased between d7 and d21 

(p<0.05) (Figure 4.1).  Double positive (CD4+CD8+) T cells did not show the expected 

increase from day 7 to day 21 in either the MSLN or the TLN (see Appendix Figure 

B6).  In MSLN, 7.1%±0.03 of CD45+CD3+ T Cells were double positive on d7 while 

8.3%±0.03 of CD45+CD3+ T Cells were double positive on day 21 (p=0.31).  In TLN, 

7.2%±0.02 of CD45+CD3+ T Cells were double positive on d7 while 9.1%±0.04 of 

CD45+CD3+ T Cells were double positive on day 21 in TLN (p=0.24).  Therefore, 
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neither vaccination nor dietary WGP affected the expected temporal changes in the 

transition from the overwhelming CD4+ helper cell predominance to an increased CD8+ 

cytotoxic T cell presence as the animals aged.  Although the expected increase in double-

positive T cells was not observed, this seemed to be independent of dietary or 

immunization treatment, and thus an artifact of our experimental system. 

 

Assessment of Antibody Response 

 To determine if fluzone-specific IgG was up-regulated in response to dietary βG 

treatment, a fluzone-specific ELISA was developed and serum IgG concentrations were 

evaluated (see Appendix Figure B7).  Vaccinated piglets had a significantly higher 

(p<0.0001) IgG titer at d14 and d21 than non-vaccinated animals (p<0.0001). Day 21 

piglets had a greater vaccine response compared to day 14 piglets (p<0.0001). Vaccinated 

piglets had a 5.9-fold increase in serum IgG of 5.9 ± 2.2 from d7 to d21, while non-

vaccinated piglets had increase (0.49-fold) in serum IgG from d7 to d21.  While 

vaccination increased fluzone-specific serum IgG production, dietary WGP did not 

enhance the ability of piglets to produce fluzone-specific IgG. 

 

Cytokines 

 Despite an absence of dietary effects on serum IgG production, we investigated 

mRNA expression of various genes in whole tissue samples from the lung, TLN, and 

MSLN.  Day, diet, and vaccination did not affect lung dectin, IL-1α, IL-2, IL-4, IL-12, or 

TNF-α mRNA expression (See Appendix Table B1).  However, day and diet affected 
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lung TGF-β1 and TGF-β2, respectively (Figure 4.2). Although lung TGF-β1 expression 

was unaffected by WGP or vaccination, lung TGFβ-1 mRNA expression increased 

between d7 and d21 (p<0.05).  WGP affected lung TGFβ-2 mRNA expression.  On both 

d7 and d21, lung TGFβ-2 mRNA expression was lower in all animals fed WGP 

compared to those fed formula alone (p<0.01).  IL-6 mRNA expression was not 

evaluated in the lung.  Day, diet nor vaccination affected TLN IL-4, IL-6, IL-12, TGFβ-1, 

TGFβ-2 or TNF-α mRNA expression (See Appendix Table B2).  Dectin mRNA 

expression was lower in TLN at d21 compared to d7 (p<0.05) (Figure 4.3).  IL-2 and IL-

1α were not analyzed in TLN because their expression was low in TLN.  Neither WGP, 

vaccination. nor day affected MSLN mRNA expression of dectin, IL-2, IL-4, IL-6, IL-12, 

TFGβ-1 or TNF-α (See Appendix Table B3).  MSLN TGFβ-2 mRNA expression 

increased from d7 to d21 (p<0.05) (Figure 4.4).  IL-1α mRNA expression could not be 

evaluated in MSLN because expression was below the detection limits of our assay.  The 

only effect of dietary treatment with WGP was decreased TGF-β2 expression in whole 

lung tissue. No consistent effects of vaccination or dietary WGP treatment could be seen 

on tissue-wide expression of inflammatory (IL-2, IL-12, IL-6, IL-1α, TNF-α) or anti-

inflammatory (IL-4, TGF-β1, TGF-β2) cytokine mRNA. 

 

Mitogenic Cell Stimulation and Cell-mediated response 

 To determine whether cell proliferation was increased by dietary WGP or 

vaccination, cells were stimulated with Fluzone™, LPS, BSA, or ConA.   In both MSLN 

and TLN, cells stimulated with ConA proliferated significantly (p<0.05) more than those 

treated with LPS, or BSA. The average log ∆CPM was 3.4 ± 1.7 in MSLN ConA 
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stimulated cells, 1.9 ± 1.4 in MSLN LPS treated cells, and 1.3 ± 1.3 in MSLN BSA 

treated cells. The average log ∆CPM was 4.2 ± 0.85 in TLN ConA stimulated cells, 2.0 ± 

1.2 in MSLN LPS treated cells, and 1.3 ± 1.1 in MSLN BSA treated cells (see Appendix 

Table B4).  Dietary WGP did not enhance proliferation of MSLN or TLN cells.  Even in 

vaccinated animals, TLN cells treated with different concentrations (0.625, 1.25, 2.5, and 

5 μg/mL) of dialyzed Fluzone™ did not proliferate more than untreated cells (see 

Appendix Table B5).  Neither diet nor vaccination significantly affected ex vivo cellular 

proliferation. 

 

Histomorphology and Immunohistochemistry 

 In order to evaluate the effects of WGP and vaccination on morphology, lung 

sections were excised, embedded in paraffin, sliced, mounted on slides, and stained with 

H&E (see Appendix Figure B8) or anti-human CD3 polyclonal antibody (see Appendix 

Figure B9).  Slides were analyzed by a board certified veterinary pathologist at the 

University of Illinois School of Veterinary Medicine who determined that there was no 

effect of WGP®, vaccination or day on CD3+ T-lymphocytes numbers or lung 

morphology. 

 

Serum Immunoglobulin Levels 

In order to determine if circulating immunoglobulin concentrations differed 

between formula and WGP250, sera from each both groups were analyzed for IgG, IgM, 

and IgA concentrations at d7, d14 and d21.  The serum IgG concentrations were higher 
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(p<0.05) at d7 than at d14 and d21 (Figure 4.5).  Serum IgG concentrations were 

unaffected by diet and vaccination.  The complete statistical model for serum IgM 

concentrations was not significant; therefore vaccinated animals were combined with 

non-vaccinated animals.  Formula piglets had higher (p=0.04) concentrations compared 

to WGP250 piglets (Figure 4.6).  IgM concentrations were unaffected by vaccination and 

day.  Serum IgA concentrations were higher (p<0.05) at d7 than at d14 and d21 (Figure 

4.7).  Serum IgA concentrations were unaffected by vaccination and diet. 
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Discussion 

 Β-glucans are polysaccharides that occur as a principal component of cellular 

walls.  βG have been shown to affect a variety of biological responses including 

activation of neutrophils (Zhang and Petty 1994), macrophages (Adachi et al. 1994; 

Lebron et al. 2003) complement (Saito et al. 1992) and possibly eosinophils 

(Mahauthaman et al. 1988).  In addition, βG have been shown to exhibit 

hypocholesterolemic (Shin et al. 2005; Zekovic et al. 2005; Bernardshaw et al. 2006), 

anticoagulant properties (Shin et al. 2005), and anti-tumorigenic effects in vivo (Chihara 

et al. 1969; Di Luzio et al. 1979). This study utilized a neonatal piglet model to further 

explore the effects of dietary WGP on lung immunity.  Overall, lung immune 

development in neonatal piglets was minimally affected by treatment with dietary WGP 

at 5, 50 or 250 mg/day.  Additionally, WGP was found to have no negative impacts on 

growth, dietary acceptance or the immune characterisitcs analyzed.   

One primary difference between the pig and the human involves the transfer of 

passive immunity.  The pig is born with virtually no circulating immunoglobulins due to 

the lack of placental transfer (Gaskins and Kelley 1995). Pigs, therefore, depend on 

colostrum and milk consumption for immunoglobulin immunity (Bourne 1976). βG 

added to milk may contribute to the immune development of piglets.  Cytokines are one 

immune factor that help protect neonates from pathogens.  The cytokine TGF-β1 is of 

particular interest because of the immunoregulatory role it plays during pregnancy and 

birth in humans as well as its role in the Th2 bias of neonatal immune responses (Laouar 

et al. 2005).  In vitro piglet studies have demonstrated that high concentrations (10 ng/ml- 

about the amount in piglet serum in the early suckling period) of TGF-β1 suppress the B 
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cell responses, while lower concentrations (0.1 ng/ml) of TGF-β1 increased the number 

of IgM and IgA short chain in response to both LPS and rotavirus antigens (Nguyen et al. 

2007).  Similarly murine TGF-β1 (0.1-10 ng/ml) acts in both early and late phases of IgA 

production, yet it suppresses IL-5 induced IgA synthesis in culture (Chen and Qing 

1990).  TGF-β1 has also been shown to down-regulate immune activation of intestinal 

epithelial cells and lamina propria immune cells (Mennechet et al. 2004) which is likely 

to allow for initial colonization of the intestine (Nguyen et al. 2007).  It has also been 

shown that TGF-β helps regulate innate IFN-γ which is a signal that controls TH1 

development (Laouar et al. 2005).  Laouar and collegues (2005) also showed that with 

blockage of TGF-β signaling in NK cells, which are the main source of innate IFN-γ 

production, NK cells increased and, therefore, the production of innate IFN-γ also 

increased which is responsible for TH1 differentiation.  In this study, TGF-β1 mRNA 

expression in the lung increased between d7 and d21 (p<0.05).  This is interesting 

because an increase in TGF-β1 is likely contributing to a shift from a TH1 response to a 

TH2 response counter to the expected TH2 to TH1 shift. 

The pig immune system is unique from humans and some other species in that 

blood and lymphoid tissues express double positive CD4+CD8+ subpopulations.  These 

subpopulations have been shown to increase with age and immunological experience 

(Zuckermann and Gaskins 1996).  Even though there was a trend for the population of 

double positive T cells to increase in both the MSLN and TLN, this increase did not 

reach significance.   However, the size of this population in our animals was in line with 

that published by others (between 8 and 64% of the circulating pool of T cells) 
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((Pescovitz et al. 1985; Pescovitz et al. 1994; Zuckermann and Husmann 1996; 

Zuckermann and Husmann 1996; Zuckermann 1999). 

Similar to our results, previous studies have shown a higher percentage of CD4+ 

than CD8+ cells in PBMCs of piglets (CD4/CD8 ratio >1) until the 40th day of life 

(Borghetti et al. 2006).  Borghetti et al. (2006) also observed that CD4+ cells decrease 

after about one week and eventually become lower than CD8+ cells.  We observed a 

similar shift in T cell populations in the MSLN and TLN (Figure 4.1).  Typical 

developmental changes in T lymphocyte populations were not enhanced by βG in this 

study.   

Furthermore, we found that βG at varying doses did not enhance the immune 

response to vaccination with Fluzone in our 21 day old piglets.  Vaccinated piglets had a 

higher amount of Fluzone-specific IgG at d14 and d21 than the non-vaccinated animals, 

which is to be expected, but contrary to our hypothesis, βG did not increase IgG 

production.  Influenza vaccines have been known to produce a protective effect which is 

largely dependent on the vaccine's ability to stimulate circulating antibody to the 

hemagglutinin (HA) (Hobson et al. 1972).  It is possible that the βG did not substantially 

interact with the vaccine to increase stimulation of the antibody since WGP was fed 

orally and the vaccine was administered intramuscularly.  Previous studies examining the 

effect of dietary supplementation with βG on the response to systemic immunization have 

produced mixed results.  In one study, piglets vaccinated with atrophic rhinitis vaccine 

produced significantly less antibody  when fed βG (Hahn et al. 2006) while, in another 

study, pigs injected with ovalbumin and receiving βG at a dose of 0.005% mounted a 

higher antibody response (Li et al. 2005).   
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Previous studies have questioned the ability of βG to target sensitive immune 

cells through the oral route (Gallois et al. 2009).  After absorption of the βG particles and 

uptake by the Peyer‟s Patches, the βG may remain in the GALT thus limiting exposure of 

other tissues to the βG, specifically lung tissue to the βG.  

Toll Like Receptors (TLRs) and other innate receptors were not examined in this 

study.  However, dectin-1 expression was measured.  In part, dectin was chosen because 

the mechanism by which this beta-glucan receptor translates recognition into intracellular 

signaling, stimulates cellular responses, and participates in coordinating the adaptive 

immune response is well-characterized (Goodridge et al. 2009).   It has been identified as 

one of the PRRs for β-glucan.  It is expressed mainly on phagocytes, especially 

macrophages and dendritic cells.  (Brown and Gordon 2001) suggest that dectin-1 signals 

alone are sufficient to trigger phagocytosis and (Dillon et al. 2006) suggests that when 

dectin-1 collaborates with TLR signaling cytokine production is regulated.  The decrease 

in dectin-1 in TLN from d7 to d21, seen in this study, may be a developmental effect 

which may impact the amount of phagocytosis and regulate cytokine production in the 

TLN. 

Evidence suggests that biological activity of βG are associated with their structure 

which, in turn, is dependent on the source and method of extraction and isolation.  

Processing (Bohn and BeMiller 1995; Douwes 2005; Mantovani et al. 2008), solubility, 

degree of polymerization (solubility increases as degree of polymerization increases) 

(Douwes 2005; Mantovani et al. 2008), high molecular weight (100-200 kDa) fractions 

being most active while fractions from the same source with lower molecular weights 

showed no activity (Fabre et al. 1984; Kojima et al. 1986; Blaschek et al. 1992), charge 
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of polymers and structure in aqueous media, and primary structure also contribute to 

functionality of βG.  Several previous studies used Hunter and co-workers‟. (Hunter et al. 

2002) method of extraction with some modifications (Li et al. 2005) with positive 

biological results.   In this study the βG was extracted from Saccharromyces cerevisiae 

using a proprietary technology, which produced a whole glucan particle in which the 

outer surface of mannoprotein and inner cellular contents are removed to expose the β 

1,3/1,6 glucan, WGP.  Perhaps this additional processing decreased recognition of the 

particle and therefore altered the absorption of the molecule.  Also, this processing may 

have decreased the solubility of the particle leading to limited absorption or decreased 

distribution of the βG in the formula due to the tube feeding method that was utilized.   It 

is also possible that, since the βG was compartmentalized in the gut, the βG could not 

impact the vaccination response which was localized in the muscle and could not impact 

the development of lung immunity which was localized in the chest (Holmgren and 

Czerkinsky 2005). It is likely that these factors also contributed to the lack of differences 

seen in lung histomorphology or immunohistochemistry.   

To gain a perspective of systemic immune development of piglets in the formula 

and WGP250 were compared.  Total serum IgG, IgM and IgA concentrations were 

measured.  We found that the serum IgG concentrations were higher (p<0.05) at d7 than 

at d14 and d21.  Our developmental study showed similar results as did Bourne‟s work 

(Bourne 1973).  Serum IgM concentrations were higher (p<0.05) in formula piglets 

compared to WGP250 piglets.  The overall developmental pattern was similar, however 

WGP250 decreased IgM concentrations, likely due to differences in colostrum received.  

IgA serum concentrations were higher on d7 than on d14 and d21 (P<0.05).  Our 
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previous developmental study as well as Bourne‟s research suggests that this is a 

typically developmental pattern (Bourne 1973). 

In conclusion, the effects of βG on lung immunity in the healthy neonate are 

inconclusive.  While no negative effects of the dietary supplement were seen, further 

research, perhaps targeted to effects on innate immune mechanisms or acute microbial 

challenges are needed to increase our understanding of the ability of WGP to enhance the 

biological activity of the neonate‟s immune system. 
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Table 4.1: Primers Used for Quantitative Real Time-PCR. 

 

 

Gene Forward Primer (5‟ to 3‟) Reverse Primer (5‟ to 3‟) Gene Bank Accession ID 

β-actin CACGCCATCCTGCGTCTGGA AGCACCGTGTTGGCGTAGAG DQ845171.1 

Dectin CTCTCACAACCTCACCAGGAGAT CAGTAATGGGTCGCCAATAAGG FJ386384.1 

IL-2 TCAACTCCTGCCACAATGT CTTGAAGTAGGTGCACCGT EU139160.1 

IL-12 CGTGCCTCGGGCAATTATAA CAGGTGAGGTCGCTAGTTTGG NM_213993.1 

IL-4 CACAGCGAGAAAGAACTCGT GTCCGCTCAGGAGGCTCTTC NM214123.1 

IL-6 CTGGCAGAAAACAACCTGAACC TGATTCTCATCAAGCAGGTCTCC AB194100.1 

IL-1α GTGCTCAAAACGAAGACGAACC CATATTGCCATGCTTTTCCCAGAA X52731.1 

TNF-α AACCTCAGATAAGCCCGTCG ACCACCAGCTGGTTGTCTTT EU682384.1 

TGF-β1 CCTGCAAGACCATCGACATG GCCGAAGCTTGGACAGAATC AF461808.1 

TGF-β2 TGTGTGCTGAGCGCTTTTCT GAGCGTGCTGCAGGTAGACA L08375.1 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=112980806&dopt=GenBank&RID=VEASGN1201S&log$=nucltop&blast_rank=5
http://www.ncbi.nlm.nih.gov/nucleotide/224466281
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=157400586&dopt=GenBank&RID=VEAYRFTW01S&log$=nucltop&blast_rank=90
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=47522811&dopt=GenBank&RID=VEB0715P01S&log$=nucltop&blast_rank=2
http://www.ncbi.nlm.nih.gov/UniGene/seq.cgi?ORG=Ssc&SID=22341986
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=Nucleotide&list_uids=189176152&dopt=GenBank&RID=VEAUDJG201S&log$=nucltop&blast_rank=1
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Figure 4.1: CD4:CD8 T cell ratios decrease in MSLN and TLN as piglets age. Piglets were euthanized on d7 or d21.  MSLN and 

TLN were collected.  Cells were isolated and stained with a panel of fluorescently labeled mAbs including CD45, CD3, CD4, and 

CD8.  No diet or vaccination differences were detected therefore data from all day 7 or all day 21 animals were pooled.  Data are 

expressed as mean ± SD.  Different letter superscripts indicate significant differences at p≤0.05.  A) MSLN CD45+CD3+CD4+ T cells 

decreased while CD45+CD3+CD8+ T cells increased between d7 and d21 (data shown as CD4+CD8+ ratio as percentage of 

CD45+CD3+ lymphocytes).  B) TLN CD45+CD3+CD4+ T cells decreased while CD45+CD3+CD8+ T cells increased between d7 

and d21. 
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Figure 4.2: TGF-β mRNA expression in lung.  Piglets were fed formula, WGP5, WGP50 or WGP250 and euthanized on d7 or d21.  

Lung tissue sections were excised and snap frozen.  Lung mRNA was isolated, purified, and quantified using qRT-PCR.  Normalized 

values for each target gene were calculated by dividing the target quantity mean by the β-actin quantity mean.  A fold difference was 

calculated for each measurement by dividing the normalized target values by the average normalized target value for non-vaccinated, 

21 day old piglets fed the control diet. All samples that were statistically compared to each other were run on the same plate.  Data are 

expressed as mean ± SD of the fold difference relative to day 21, formula-fed, non-vaccinated animals.  Different letter superscripts 

indicate significant differences at p≤0.05.A) TGF-β1 mRNA expression increased between d7 and d21. No diet or vaccination 

differences were detected therefore data from all day 7 or all day 21 animals were pooled.   B) TGF-β2 expression in lung decreased 

with increasing dietary WGP. There were no day or vaccination differences; therefore all days and all vaccinated and non-

vaccinated groups were combined. 
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Figure 4.3: Dectin mRNA expression in TLN was lower at d21 compared to d7. Piglets were euthanized on d7 or d21.  TLN were 

excised and snap frozen.  mRNA was isolated, purified, and quantified by qRT-PCR.  Normalized values for each target were 

calculated by dividing the target quantity mean by the β-actin quantity mean.  A fold difference was calculated for each measurement 

by dividing the normalized target values by the average normalized target value for non-vaccinated, 21 day old piglets fed the control 

diet. No diet or vaccination differences were detected therefore data from all day 7 or all day 21 animals were pooled. 

All samples that were statistically compared to each other were run on the same plate.  Data are expressed as mean ± SD.  Different 

letter superscripts indicate significant difference at p≤0.05. 
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Figure 4.4: TGF-β2 mRNA expression in MSLN increased from day 7 to day 21 in all pigs. Piglets were euthanized on d7 or d21.  

TLN were excised and snap frozen. MSLN mRNA was isolated, purified, and quantified using qRT-PCR. Normalized values for each 

target were calculated by dividing the target quantity mean by the β-actin quantity mean.  A fold difference was calculated for each 

measurement by dividing the normalized target values by the average normalized target value for non-vaccinated, 21 day old piglets 

fed the control diet. All samples that were statistically compared to each other were run on the same plate. No diet or vaccination 

differences were detected therefore data from all day 7 or all day 21 animals were pooled.  All samples that were statistically 

compared to each other were run on the same plate.  Data are expressed as mean ± SD.  Different letter superscripts indicate 

significant difference at p≤0.05.  
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Figure 4.5: Serum IgG concentrations in formula and WGP250 piglets.  Sera were collected on day 7, 14, and 21. Data are 

expressed as mean ± SD. Data with different letters are significantly different (p<0.05).  Serum IgG concentrations were higher on 

day 7 than on day 14 and day 21. 
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Figure 4.6: Serum IgM concentrations in formula and WGP250 piglets.  Sera were collected on day 7, 14, and 21. Data are 

expressed as mean ± SD. Data with different letters are significantly different (p<0.05).  Complete model was not significant, 

therefore, vaccinated and non-vaccinated data were pooled.  Serum IgM concentrations were higher in formula piglets than 

WGP250 piglets. 
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Figure 4.7: Serum IgA concentrations in formula and WGP250 piglets.  Sera were collected on day 7, 14, and 21. Data are 

expressed as mean ± SD. Data with different letters are significantly different (p<0.05).  Serum IgA concentrations were higher at 

d7 than at d14 or d21. 
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Chapter 5 

Conclusions and Future Directions 

 These studies focused on understanding the effects of diet on the immune 

development of the lung, TLN, and MSLN in neonates.  Our first objective was to 

identify differences in the BALT of SR versus FF piglets.   It is important to identify 

differences in feeding modes to increase our understanding of how breastfeeding 

provides a protective effect for the neonates as compared to formula feeding.  The 

implications of this research can be far reaching, particularly when they are applied to 

improving the immune system in neonates and, thereby, decreasing the ability of 

pathogenic microorganisms to attack the host.  Overall, our results showed that immune 

development in lung, TLN, and MSLN of SR and FF piglets differ in T cell 

subpopulations and mRNA expression, as well as serum immunoglobulin levels. 

Future work could investigate various respiratory infection models in order to 

increase understanding of whether immunological differences in lung, TLN and MSLN 

affect the neonate‟s ability to protect against the respiratory infection and/or how the 

neonate recovers from the infection.  This would help identify which specific immune 

characteristics increase the neonate‟s ability to cope with infection and what if any deter 

it.   It would also be interesting to look into various lobes of the lung to compare immune 

expression in order to further understand the interaction between immune parameters 

throughout the lung.  It would be informative to carry out a longer study to see if the 

immune differences occurring in the early stages of life continue through the transition 

from formula to feed and beyond and if any benefits/impairments are recognized from the 

early immune developmental variances. 
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In the second study, our objective was to investigate the effect of yeast β-glucan 

supplemented to formula on the development of mucosal immunity in the lung and also 

investigate the immune response to immunization with an influenza vaccine.  Overall, the 

results showed that yeast β-glucan supplemented to formula did very little to alter the 

development of mucosal immunity in the lung.  Despite the lack of impact yeast β-glucan 

had on immunological development in the lung in this study, it would be interesting to 

study the effects of yeast βG supplementation in an infection model where the neonate 

was challenged.  This may enhance any immunological differences the yeast βG 

supplementation provides to the neonate.  It would also be interesting to trace the WGP 

through the immune system similar to the studies Beier and Gebert (1998) completed 

with yeast βG in order to better understand the uptake and processing of the WGP 

particle.  This work would help to further our understanding of the impact of yeast βG 

supplementation on immunological development of the neonate. 
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Appendix A 

 

Supplemental Information: SR versus FF Study 

 

The first point of contact for inhaled substances such as environmental pollutants, 

cigarette smoke, airborne allergens and microorganisms are the epithelial lining of the 

upper airways and lungs (Diamond et al. 2000).  The lungs and upper airways are 

mucosal surfaces that have two purposes. They protect the organism from invasion of 

foreign antigens and bacteria, while allowing for the exchange of materials with the 

environment.  Due to the high exposure of the lungs and upper airways to airborne 

pathogens, they are common sites for infection. Immune factors such as IgA are secreted 

in the lungs which helps protect against respiratory infections.  The goal of this research 

was to better understand the development of immune cells in the lungs in sow-reared pigs 

compared to those that are formula-fed.  In order to increase understanding of the 

development of immune cells in the lungs, MSLN, and TLN, T lymphocyte 

subpopulations were identified, cytokine mRNA expression was evaluated and total IgG, 

IgM, and IgA expression was analyzed.  

In this study, 11, colostrum fed piglets received formula medicated sow milk 

replacer formula beginning at 48 hours of life and 12 piglets received sow milk through 

the duration of the study (Figure A1).  On d7, approximately half of the piglets in each 

group were euthanized and blood and tissue samples were collected. On d21 the other 

half of the piglets were euthanized and blood and tissue samples were collected.   

This study investigated the effects of diet on the development of lung immune 

development.  Flow cytometry was used to identify T cell subpopulations.  CD4:CD8 T 

cell ratios calculated and were not significantly different in PBMC at d7 or d 21 (Figure 
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A2).  Relative abundance of mRNA expression in lung (Table A1), TLN (Table A2), 

and MSLN (Table A3) was also evaluated.  Although several age and diet effects were 

seen in mRNA expression Lung, TLN, and MSLN (see Chapter 3), no differences were 

identified in mRNA expression of IL-1β, dectin, IL-12, and TGFβ-2 in lung, TGFβ-1, 

TGFβ-2, IL-6, IFN-α, and IFN-β in TLN, and IL-1β, IL-12, IL-6,  TGFβ-1, and TNF-α in 

MSLN.  Total serum immunoglobulin ELISAs were analyzed to better appreciate the 

immune system.  Sera was collected on day 7, 14, and 21.  Serum IgM levels in SR 

compared to FF piglets did not differ at p<0.05 (Figure A3). 

In conclusion, there were several immunological developmental differences 

between sow-reared and formula fed neonatal piglets. 
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Figure A1: Experimental Design. Piglets (n=23) were assigned to one of two dietary treatment groups: sow-reared or formula-fed.  

Piglets assigned to formula group received colostrum for 48 hours prior to transition to formula.  
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Figure A2: CD4:CD8 T cell ratios are not significantly different in d7 or d21 PBMC.  

Piglets were euthanized on d7 or d21.  PBMC were collected.  Cells were isolated and 

stained with a panel of fluorescently labeled mAb including CD45, CD3, CD4, and CD8.  

Data are expressed as mean ± SD.  Statistical significance was set at a p-value of p≤0.05. 

A) PBMC CD4:CD8 T cell ratios were not significant at d7.  B) PBMC CD4:CD8 T cell 

ratios were not significant at d21. 
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Table A1: Relative abundance of mRNA expression in lung.  Data are expressed as 

mean ± SD of the fold difference relative to day 7, formula-fed piglets. Statistical 

significance was set at a p-value of p≤0.05. 

 

 

  d7  d21   P-values 

  FF SR FF SR  

IL-β 1.0±0.72 0.71±0.28 0.66±0.40 1.87±1.45 0.1191 

Dectin 1.0±0.45 1.39±0.53 1.65±0.40 1.36±0.47 0.7897 

IL-12 1.0±1.0 0.32±0.85 1.1±0.94 1.75±1.77 0.2266 

TGFβ-2 1.0±0.48 1.12±0.41 1.51±1.14 1.30±0.35 0.6035 
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Table A2: Relative abundance of mRNA expression in TLN.  Data are expressed as 

mean ± SD of the fold difference relative to day 7, formula-fed piglets.  Statistical 

significance was set at a p-value of p≤0.05. 

 

 

  d7  d21   P-values 

  FF SR FF SR  

TGFβ-1 1.0±0.58 0.66±0.13 0.60±0.44 0.65±0.27 0.3494 

TGFβ-2 1.0±1.0 0.22±0.11 0.21±0.20 0.29±0.15 0.0546 

IL-6 1.0±0.39 0.41±0.09 0.59±0.08 0.32±0.11 0.0997 

IFN-α 1.0±1.7 0.02±0.001 0.18±0.12 0.02±0.001 0.1891 

IFN-β 1.0±1.77 0.001±0.0002 0.16±0.20 0.02±0.02 0.468 
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Table A3: Relative abundance of mRNA expression in MSLN.  Data are expressed as 

mean ± SD of the fold difference relative to day 7, formula-fed piglets. Statistical 

significance was set at a p-value of p≤0.05. 

 

 

  d7  d21   P-values 

  FF SR FF SR  

IL-1β 1.0±0.63 0.29±0.17 0.92±0.61 0.82±0.49 0.1569 

TNF-α 1.0±0.39 0.37±0.06 0.94±0.34 1.09±0.98 0.2479 

IL-12 1.0±0.62 0.16±0.03 0.56±0.21 0.62±0.56 0.0595 

TGFβ-1 1.0±0.35 0.43±0.02 1.02±0.44 0.87±0.60 0.1539 

IL-6 1.0±0.37 0.51±0.24 1.03±0.47 1.02±0.76 0.348 
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Figure A3: Serum IgM levels in SR and FF piglets.  Sera collected on day 7, 14, and 

21. Data are expressed as mean ± SD.  Statistical significance was set at a p-value of 

p≤0.05. 
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Appendix B 

 

Supplemental Information: β-Glucan Study 

 

Influenza is a major cause of morbidity and mortality in children worldwide, 

accounting for about 36,000 American deaths every year (CDC 2010).  It is generally 

believed that breast-fed infants are less susceptible to respiratory infections compared to 

formula-fed infants; however, a large percentage of infants are fed formula at some point 

during their first year of life.  Several studies have looked at the effects of adding various 

bioactive components to formula to enhance formula and the immunological protection it 

provides (Carver et al. 1990; Uauy et al. 1990; Newburg et al. 2005; Boehm and Stahl 

2007).  The goal of this research was to investigate the effect of yeast β-Glucan 

supplemented to infant formula on the development of mucosal immunity in the lung and 

explore the immune response to immunization with an influenza vaccine.  To better 

understand the effects of yeast β-Glucan supplemented to infant formula, fluzone specific 

serum IgG was assessed, histomorphology and immunohistochemistry in lung was 

analyzed, mRNA expression in MSLN, TLN, and Lung was evaluated, T cell populations 

were investigated using flow cytommetry, and mitogenic and fluzone cell stimulated 

were performed.   

In this study, 68 2-day-old piglets were divided into 4 groups with each group 

receiving formula with a differing amount of WGP® 1/3-1/6 β-D-glucan (Figure B1) 

((1) a medicated sow milk replacer formula  (Formula; Milk Specialties Global Animal 

Nutrition, Carpentersville, IL);  2) Formula + 1.8 mg WGP/kg BW/day (WGP5); 3) 

Formula + 18 mg WGP/kg BW/day (WGP50); or 4) Formula + 90 mg WGP/kg BW/day 

(WGP250))  (Figure B2).  On d7 approximately one third of the piglets in each group 
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were euthanized and blood and tissue samples were collected.  Approximately half of the 

remaining piglets in each treatment group (Formula n=5, WGP5 n=6, WGP50 n=5, 

WGP250 n=6) were vaccinated with a 0.25ml i.m. injection of human influenza vaccine 

(Fluzone, Sanofi Pasteur, Swiftwater, PA) (Figure B3).  A blood sample was drawn 

from the jugular vein prior to administration of the vaccine. Vaccinated animals were 

boosted on d14 with the same dose of Fluzone.  Blood samples were collected 

longitudinally from all piglets on d14 and d21 by jugular vein or following euthanasia, 

respectively.   The piglets were monitored daily for normal growth and food intake, as 

well as the presence of fever, diarrhea or lethargy, no differences were found across 

treatments groups for growth or food intake (Figure B5).  Formula was offered 14 times 

daily at a rate of 360 ml/kg BW/day.   

This study investigated the effects of dietary βG on the development of lung-

associated adaptive immunity.  One of these immune parameters was relative abundance 

of mRNA expression in Lung (Table B1), TLN (Table B2), and MSLN (Table B3).  

Although some age and diet effects were seen in mRNA expression in Lung, TLN, and 

MSLN (see Chapter 4), no differences were identified in mRNA expression of dectin, IL-

1α, IL-2, IL-4, IL-12, TNF-α in lung, IL-6, IL-12, TGFβ-1, TGFβ-2, and TNF-α in TLN, 

and dectin, IL-2, IL-4, IL-6, IL-12, TGFβ-1, and TNF-α in MSLN.   

Expression of T cell subpopulations was another immune parameter that was 

analyzed in TLN and MSLN.  Expression of double positive CD45+CD3+CD4+CD8+ T 

cells as a percentage of CD3+ lymphocytes were not different in respect to age or diet 

group (Figure B6).  Figure B4 exhibits the flow cytommetry gating procedure that was 

used to identify CD4+, CD8+, CD4+CD8+, and CD4-CD8- subpopulations. First the 
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lymphocyte population was selected on the side scatter vs. forward scatter plot.  Stained 

CD45+ cells were selected after comparing an unstained sample to a stained sample.  The 

region of positive CD45+ cells was identified by the area in the unstained sample graph 

that had <0.1% of the unstained cells in it.  That region was then mimicked in the stained 

sample graph. Stained CD3+ cells were selected after comparing the stained and 

unstained populations in a similar fashion.  Then CD8+, CD4+, and CD4+CD8+ cells 

were identified by comparing stained set to unstained set.   

Influenza specific serum IgG (Figure B7) was also analyzed.  While vaccination 

did increase influenza-specific serum IgG production, dietary WGP did not enhance the 

ability of piglets to produce fluzone-specific IgG.  Vaccinated piglets had a significantly 

higher (p<0.0001) IgG titer at d14 and d21 than non-vaccinated animals (p<0.0001). Day 

21 piglets had a greater vaccine response compared to day 14 piglets (p<0.0001). 

Vaccinated piglets had a fold increase in serum IgG of 5.9 ± 2.2 from d7 to d21 while 

non-vaccinated piglets had a fold increase in serum IgG of 0.49 ± 0.05 from d7 to d21.   

Mitogenic (Table B4) and Fluzone™ cell stimulation (Table B5) were completed 

to determine if WGP and/or vaccination enhanced cell proliferation.  MSLN and TLN 

cells were stimulated with LPS, BSA, or ConA. It was found that neither WGP nor 

vaccination enhanced cell proliferation in MSLN or TLN.  Cells stimulated with ConA 

proliferated significantly (p<0.05) more than those treated with LPS, or BSA.   TLN cells 

were stimulated with either 5 µg/ml, 2.5 µg/ml, 1.25 µg/ml, 0.625 µg/ml, or 0 µg/ml of 

dialyzed Fluzone™.  It was found that neither WGP nor vaccination enhanced cell 

proliferation.  
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Lastly, histomorphology (Figure B8) and immunohistochemistry (Figure B9) in 

lung were two other immune parameters that were examined. Vaccination, age and 

dietary WGP seemed to have an impact on the histomorphology or 

immunohistochemistry of lung tissue in piglets.  In conclusion, WGP only minimally 

impacted the neonatal piglet immune response. 
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Figure B1:  Structure of WGP® 1/3-1/6 β-D-glucan.  The β-glucan particulate is 

extracted from S. cerevisiae using acid and alkaline extraction techniques that results in 

stripping the outer mannoprotein sheath and loss of the inner cellular lipids and proteins, 

leaving the β-glucan shell (Babicek et al., 2007).   
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Figure B2: Experimental Design. Piglets (n=68) were randomized to one of four dietary treatment groups: a medicated sow milk 

replacer formula (Formula, Milk Specialties Company, Carpentersville, IL); Formula + 5 mg/L WGP® 1/3-1/6 β-D-glucan (WGP5); 

Formula + 50 mg/L WGP® 1/3-1/6 β-D-glucan (WGP50); or Formula + 250 mg/L WGP® 1/3-1/6 β-D-glucan (WGP250). 
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Figure B3:  Vaccination and sampling design. Piglets were euthanized on day 7 or day 

21.  Blood samples were taken on day 7 prior to vaccination, in animals being vaccinated, 

and day 14 in all animals.  Half of the animals in each diet group were vaccinated on day 

7.  These animals were boosted, with same dose, on day 14. 
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Figure B4: Flow cytometry gating procedure.  The lymphocyte population was selected on the side scatter vs forward scatter plot.  

Stained CD45+ cells were selected after comparing stained lymphocyte population to unstained lymphocyte population.  Stained 

CD3+ cells were selected after comparing the stained and unstained populations.  Then CD8+, CD4+, and CD4+CD8+ cells were 

identified by comparing stained set to unstained set.  
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Figure B5: Piglet weight and formula intake.  Data are expressed as mean ± SD.  

Statistical significance was set at p≤0.05.  The increase in body weight during the 7 or 21 

day period did not differ between groups.  On day 7, each pig weighed an average of 

2.3±0.5 kg.  On day 21, each pig weighed an average of 4.4±0.8 kg at day 21. Formula 

intake and body weight were similar across all treatment groups.  An average formula 

intake of 808±167 ml/day was consumed for the first 7 days and 1488±129 over the 

course of 21 days. Formula was offered 14 times daily at a rate of 360 ml/kg BW/day.    
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Figure B6: Expression of double positive CD45+CD3+CD4+CD8+ T cells as a percentage of CD3+ lymphocytes.  Data are 

expressed as mean ± SD.   Statistical significance was set at a p-value of p≤0.05.  A) MSLN CD45+CD3+CD4+CD8+ T cells B) TLN 

CD45+CD3+CD4+CD8+ T cells. 
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Figure B7: Influenza Specific Serum IgG.  IgG was measured by ELISA. Data are 

expressed as mean ± SD.  Statistical significance was set at p≤0.05.  Vaccinated piglets 

had a significantly higher (p<0.0001) IgG titer at d14 and d21 than non-vaccinated 

animals (p<0.0001). Day 21 piglets had a greater vaccine response compared to day 14 

piglets (p<0.0001). Vaccinated piglets had a fold increase in serum IgG of 5.9 ± 2.2 from 

d7 to d21 while non-vaccinated piglets had a fold increase in serum IgG of 0.49 ± 0.05 

from d7 to d21.  While vaccination did increase influenza-specific serum IgG production, 

dietary WGP did not enhance the ability of piglets to produce influenza-specific IgG. 
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Figure B8: Histomorphology: Haematoxylin and Eosin Stained Lung Images.  
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Figure B9: Immunohistochemistry, CD3+  Stained Lung Images. 
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Table B1: Relative abundance of mRNA expression in Lung.  Data are expressed as mean ± SD of the fold difference relative to 

day 21, formula-fed, non-vaccinated. Statistical significance was set at p≤0.05. 

 

 

 Day 7 Day 21 P-values 

 Formula WGP5 WGP50 WGP250 Formula WGP5 WGP50 WGP250 Model 

IL-1α 0.56±0.38 0.63±0.36 0.43±0.12 0.47±0.21 1.0±0.98 0.94±1.33 0.46±0.30 0.74±0.60 0.7502 

Dectin 0.97±0.61 0.71±0.35 0.71±0.35 0.69±0.15 1.0±0.75 0.62±0.52 0.89±0.14 0.85±0.41 0.6488 

IL-2 1.65±1.93 0.52±0.38 0.43±0.17 1.44±1.35 1.0±0.56 1.69±2.24 0.50±0.33 2.3±2.27 0.2178 

TNF-α 0.89±0.36 0.97±0.36 0.63±0.45 0.92±0.63 1.0±0.48 1.38±1.81 1.34±0.9 1.62±0.70 0.7021 

IL-4 0.85±0.40 0.70±0.38 0.40±0.07 0.53±0.17 1.0±1.0 0.91±0.87 0.81±0.78 0.93±0.70 0.7183 

IL-12 1.41±1.62 0.92±0.54 0.34±0.17 1.34±1.25 1.0±0.64 2.07±2.31 0.85±0.56 2.23±2.05 0.1761 
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Table B2: Relative abundance of mRNA expression in TLN.  Data are expressed as mean ± SD of the fold difference relative to 

day 21, formula-fed, non-vaccinated. Statistical significance was set at p≤0.05. 

 

 

 Day 7 Day 21 P-values 

 Formula WGP5 WGP50 WGP250 Formula WGP5 WGP50 WGP250 Model 

IL-6 1.43±0.55 1.21±0.28 0.72±0.25 1.73±0.88 1.0±0.31 1.18±0.81 1.64±0.79 0.90±0.48 0.0786 

IL-12 1.08±0.44 0.92±0.95 0.68±0.78 1.44±1.48 1.0±0.46 1.14±1.14 0.68±0.71 0.73±0.69 0.8443 

TGFβ-1 1.31±0.76 1.14±0.18 0.46±0.27 0.83±0.39 1.0±0.60 1.32±1.02 1.46±1.13 0.582±0.13 0.1055 

TGFβ-2 2.8±2.92 2.0±1.91 0.49±0.51 1.32±1.49 1.0±0.88 1.14±0.92 1.37±1.06 0.61±0.21 0.0739 

TNF-α 2.7±2.89 0.57±0.27 0.82±0.25 0.83±0.35 1.0±0.48 1.10±1.36 1.5±1.07 0.59±0.36 0.0775 
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Table B3: Relative abundance of mRNA expression in MSLN.   Data are expressed as mean ± SD of the fold difference relative to 

day 21, formula-fed, non-vaccinated. Statistical significance was set at p≤0.05. 

 

 

 Day 7 Day 21 P-values 

 Formula WGP5 WGP50 WGP250 Formula WGP5 WGP50 WGP250 Model 

Dectin 1.65±0.7 1.42±1.3 0.97±0.6 1.14±0.7 1.0±0.5 1.75±1.6 1.27±0.8 2.03±1.6 0.5942 

IL-12 2.83±1.8 0.97±1.3 0.26±0.1   0.32±0.3 1.0±0.8 1.03±2.2 1.03±2.2 0.15±0.07 0.0851 

TNF-α 1.24±0.3 0.96±0.6 0.75±0.5 0.70±0.3 1.0±0.4 0.85±0.5 0.91±0.5 1.57±1.3 0.3444 

IL-4 1.55±0.9 1.38±1.2 0.88±0.6 1.01±0.6 1.0±0.5 1.64±1.4 1.16±0.9 1.95±1.5 0.5738 

IL-6 1.39±0.6 0.84±0.3 0.78±0.7 0.71±0.4 1.0±0.5 0.97±0.4 1.06±0.4 1.19±0.9 0.539 

TGFβ-1 1.05±0.4 0.80±0.3 0.69±0.3 0.64±0.2 1.0±0.4 1.15±0.7 0.95±0.6 1.29±0.8 0.4093 

IL-2 2.49±1.5 0.86±0.5 1.09±1.0 1.21±1.2 1.0±0.4 1.41±1.0 1.12±0.5 1.87±0.6 0.0749 
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Table B4: Mitogenic Cell Stimulation (log ΔCPM) of TLN cells isolated from 21-day-old animals. Data are expressed as mean ± SD.  

Statistical significance was set at p≤0.05.  In both MSLN and TLN, cells stimulated with ConA proliferated significantly (p<0.05) 

more than those treated with LPS, or BSA.  Neither dietary WGP or vaccination enhanced proliferation were significant, therefore 

data from vaccinated and non-vaccinated animals and all diet groups were pooled.  Data within the same row with different letters are 

significantly different. 

 

 

 ConA LPS BSA 

MSLN 3.4±1.7
a 

1.9±1.4
b 

1.3±1.3
b 

TLN 4.2±0.85
a 

2.0±1.2
b 

1.3±1.1
b 
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Table B5: Fluzone Cell Stimulation (average non-log-transformed CPM) of TLN cells isolated from 21-day-old animals.  Data were 

expressed are mean ± SD.  Statistical significance was set at p≤0.05.  

 

 

 Non-vaccinated Vaccinated 

 Formula 

N=7 

WGP5 

N=7 

WGP50 

N=6 

WGP250 

N=6 

Formula 

N=5 

WGP5 

N=6 

WGP50 

N=5 

WGP250 

N=6 

Unstimulated  258.4±237.4 331.7±257.2 148.0±119.6 424.9±363.5 163.1±123.4 275.1±211.2 515.6±190.9 447.7±342.3 

5 μg/mL 

 

161.2±140.4 225.1±229.6 70.6±38.2 203.9±163.4 109.2±24.0 165.7±99.6 188.0±121.56 288.6±218.6 

2.5 μg/mL 

 

210.4±196.9 310.0±85.9 118.8±38.1 243.2±98.8 178.6±73.4 212.6±142.7 252.8±108.2 538.8±428.7 

1.25 μg/mL 

 

234.0±232.1 351.5±62.2 140.3±102.7 382.2±334.9 225.5±181.1 256.3±150.0 338±244.0 398.8±210.0 

0.625 μg/mL 

 

168.6±125.0 250.7±146.8 184.4±141.0 323.3±253.1 344.8±296.5 257.9±152.0 460.5±359.6 347.9±402.6 
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