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Precise Correction of Lateral Chromatic
Aberration in Images
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Abstract. This paper addresses the problem of lateral chromatic aber-
ration correction in images through color planes warping. We aim at
high precision (largely sub-pixel) realignment of color channels. This is
achieved thanks to two ingredients: high precision keypoint detection,
which in our case are disk centers, and more general correction model
than what is commonly used in the literature, radial polynomial. Our
setup is quite easy to implement, requiring a pattern of black disks on
white paper and a single snapshot. We measure the errors in terms of ge-
ometry and of color and compare our method to three different software
programs. Quantitative results on real images show that our method al-
lows alignment of average 0.05 pixel of color channels and a residual color
error divided by a factor 3 to 6.

Keywords: chromatic aberration, image warping, calibration, polyno-
mial model, image enhancement

1 Introduction

In all optical systems refraction causes the color channels to focus slightly dif-
ferently. This phenomenon is called chromatic aberration (hereafter CA). When
the digital image is obtained, the color channels are misaligned with respect to
each other and therefore the phenomenon manifests itself as colored fringes at
image edges and high contrast areas. With the increase of sensor resolution for
many consumer and scientific cameras, the chromatic aberration gets amplified.
For high precision applications, when usage of color information becomes im-
portant, it is necessary to accurately correct such defects. Figure 1 shows the
effect of our CA correction on real image. CA is classified into two types: axial
and lateral. The former occurs when different wavelengths focus at different dis-
tances from the lens - in digital images it produces blurring effect since blue and
red channels are defocused (assuming the green channel is in focus). A lateral
defect occurs when the wavelengths focus at different points on the focal plane
and thus geometrical color plane misalignments occur.

In order to define a magnitude of high precision correction, a visual per-
ception experiment was done for different misalignment levels (in pixel units).
A synthetic disk was generated on a large image with misalignment between
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Fig. 1. Cropped and zoomed-in image from camera Canon EOS 40D, before (left) and
after (right) chromatic aberration correction by our method. Notice the attenuated
color fringes at edges between left and right images.

channels introduced, then the image was blurred in order to avoid aliasing, and
downsampled. A part of the downsampled image was cropped and zoomed-in
in Figure 2. It can be noted that 0.1 pixel misalignment is a borderline when
aberration becomes just-noticeable, while misalignments of 0.3 pixel and higher
are quite perceptible.

(a) d = 0.05 (b) d = 0.1 (c) d = 0.2 (d) d = 0.3 (e) d = 0.5 (f) d = 1

Fig. 2. Visual perception tests for chromatic aberration on synthetic disk image for
different values of displacements d (in pixels). Note that a displacement value of 0.1
pixel is just noticeable, while 0.3 pixel displacement is quite perceptible.

Rare papers propose to compensate both axial and lateral CA. The optical so-
lutions [1, 2] try to overcome this effect, but they can be quite expensive and not
always effective for the zones farther from the optical center. Another example
[3] proposes an active lens system based on modification of the camera settings
(magnification, focus, sensor shifting) for each color channel. Such approach may
not be practical since it requires taking three pictures for each channel under
different camera settings. Kozubek and Matula [4] show how to correct for both
types of aberrations in the environment of fluorescent microscopy; however, this
method cannot be applied for camera imaging systems.

As most other approaches, we address the lateral CA only but require a
single image. Like Boult and Wolberg [5], we formulate the correction as an
image warping problem, which means re-aligning color channels digitally. How-
ever, Bould and Wolberg [5] do not use any aberration model, interpolating the
correction of control points, whereas all other warping methods assume radial
nature of the distortion. Matsuoka et al. [6] provide an evaluation of the state
of art correction methods, all of which use different ways to model the radial
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distortion [7–9]. However, it is important to note that not all cameras can be
satisfactorily corrected by the same radial model. We will see that more accurate
results could be achieved with a more general bivariate polynomial model.

Our lateral CA correction is achieved through realigning the red and blue
color planes to the reference green plane. Accurate keypoints (which are centers
of disks from a circle pattern) are extracted in each channel independently as de-
scribed by Section 2. The geometric displacements between color planes is then
modelled by bivariate polynomials in Section 3. Section 4 exposes the quanti-
tative results in terms of both color and geometry misalignments, compares to
other software and provides real scene examples. We draw some conclusions in
Section 5.

2 Keypoint Detection

The calibration pattern is made of disks whose centers are used as keypoints. A
disk is a filled black circle of fixed radius. High precision requires accounting for
a tilt of the camera with respect to the pattern plane normal, thus the disks are
viewed as slightly elliptic shapes. We are thus interested in precise ellipse center
detection, which is obtained by an adjustment of a parametric model simulating
the CCD response using an iterative optimization process. The parametric model
takes into account both geometry and intensity.

The geometric model, describing the relationship between model point (x, y)
of the filled circle and image point (x′, y′), is represented by a local affine trans-
form: xy

1

 =

λ1 cos θ −λ2 sin θ 0
λ1 sin θ λ2 cos θ 0

0 0 1

 ·
x′ − tuy′ − tv

1

 , (1)

depending on the five geometry parameters, (tu, tv) (subpixel ellipse center posi-
tion, the parameters we are interested in), λ1, λ2 the elongation factors of major
and minor axes, and θ the angle between the major axis and x axis.

The intensity model assumes constant intensity in the disk center and in
the periphery with a linear transition between both. For luminance level L1 at
the disk center and L2 at its periphery (L1 < L2), the luminance transition is
represented by three line segments as in Figure 3, the gradient part being linear
with slope k. The distances − 1

k and 1
k define the border of the disk, gradient,

and periphery areas.

At a model point (x, y) of (1), the corresponding image point (x′, y′) has
luminance level L(x′, y′) according to Figure 3. We use the Levenberg-Marquardt
algorithm to minimize the sum of squared differences of the gray levels between
each pixel (x′, y′) of the elliptic patch in the image I and point (x, y) of the
theoretical CCD model L, with respect to the 8 parameters {λ1, λ2, θ, tu, tv, k,
L1, L2}:

arg minλ1,λ2,θ,tu,tv,k,L1,L2

∑
x′,y′

(I(x′, y′)− L(x, y))
2
. (2)
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Fig. 3. The luminance transition model for one disk, of parameter k.

Only the resulting subpixel center coordinates (tu, tv) are used for color channel
alignment.

The process is the following: in each color channel, R, G and B, a simple
thresholding gives rough disk locations. Each one is refined through the above
minimization and keypoints of R and B channels are paired to nearest keypoint
in G channel. This provides a discrete alignment at keypoints of these two chan-
nels to the green one. We use the green channel as reference as it is the most
represented in the standard Bayer pattern.

3 Correction Model

Lateral CA can be considered as geometric distortion between color channels.
Assuming the distortion field is smooth by nature, the main idea is to model each
distortion field, one for red and one for blue channels, by bivariate polynomials in
x and y, while keeping one channel as a reference (the green one). The polynomial
model, when compared to many other distortion models (radial, division, rational
functions), is general and can perfectly approximate the former models [10]. To
achieve high precision the degree 11 was chosen for both x and y. Experimentally
the error stabilizes for polynomials of degrees 7 to 11 [10].

The keypoints are represented in pixel coordinates as (xf , yf ) for a certain
color plane f , red (r), blue (b) or green (g). The lateral misalignments between
the red (or blue) and the green planes are corrected by identifying the parameters
of polynomials pfx, pfy approximating at best the equations

xgi = pfx(xfi, yfi)

ygi = pfy(xfi, yfi),
(3)

with the target colors f = r or f = b and i describing keypoint index.
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The polynomial model pfx of degree m and polynomial coefficients {px0 ,
px1

,· · · , px (m+1)(m+2)
2

−1
} can be expanded as:

xg =px0
xmf + px1

xm−1f yf + px2
xm−2f y2f + pxm

ymf + pxm+1
xm−1f + . . .

+pxm+2
xm−2f yf + px2m

ym−1f + px (m+1)(m+2)
2

−3
xf + . . .

+px (m+1)(m+2)
2

−2
yf + px (m+1)(m+2)

2
−1
.

The unknowns are the parameters of polynomials pfx and pfy. These are
(m + 1)(m + 2)/2 = 78 for degree m = 11 for each polynomial. Our pat-
tern is composed of about 1000 disks (we show below that we can pack so
many disks of small diameter on our pattern without deterioration of precision),
and it also means there is no risk of overfitting because the number of control
points is far higher than the number of unknowns. For a number K of keypoints
(xfi, yfi), i = 1, · · · ,K distributed all over the image, the polynomial coeffi-
cients are computed by minimizing the difference of displacements between the
reference and distorted channels:

E =

K∑
i=1

(pfx(xfi, yfi)− xgi)2 + (pfy(xfi, yfi)− ygi)2. (4)

The solution vector p of this least square problem satisfies a linear system Ap = v
with A the coefficient matrix built from the xfi, yfi. For favorable numerical
conditioning of A, these pixel coordinates need to be normalized between 0 and
1 by application of a global scale.

After the calibration is done, it is straightforward to perform the correction
for any image which was taken under the same fixed camera settings. The poly-
nomials pfx and pfy calculate the corrected pixel coordinates for each distorted
pixel coordinate (xf , yf ) as in (3), and then the color is obtained by interpolation
from the corrected coordinates.

4 Experiments

A set of experiments are performed to measure the ellipse center detection ac-
curacy at different ellipse sizes against noise and aliasing. To evaluate the CA
correction method we use two types of metrics: geometry and color. Comparison
to existing commercial software is done.

4.1 Keypoint Detection Accuracy

Synthetic disk (filled circle) 8-bit images were generated on a large image,
blurred, downsampled with scale s = 20 and finally Gaussian noise were added.
Subpixel disk center location is used as ground truth and compared to detected
disk center. Figure 4 shows the performance of the algorithm against Gaussian
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Fig. 4. Keypoint detection precision for varying disk radii, R (pixels) and downsampled
rate s = 20.

noise level added to the images (median error out of 25 iterations) and amount
of blur for different disk radii.

It can be observed that in all cases the error is less than 0.05 pixel, even for
small disk radius (10 pixels). That allows us to pack more keypoints in a given
pattern area. As expected, the error increases roughly linearly with noise level.
However, it remains constant under blur. This is important because in a Bayer
pattern image, red and blue channels are notoriously aliased. Figure 4 (b) shows
that this does not affect the disk centers detection.

4.2 Geometry Misalignment

The calibration pattern is printed on an A3 format paper. It is composed of
37 × 26 = 962 black disks of radius 0.4cm and separation of 1.1cm between
consecutive disks. Three digital reflex cameras with interchangeable lenses are
used to capture the images: Canon EOS 5D, Canon EOS 40D and Sony DSLR
A200. They are noted hereafter ’cam 1’, ’cam 2’ and ’cam 3’. RAW images are
separated in their three channels. The green channel is kept at original resolution
of the raw image by bilinear interpolation of missing pixels in the Bayer pattern.
Red and blue channels are in (aliased) half-dimension images.

The color planes keypoint displacements are presented in Table 1. Significant
reduction is observed after correction. It can be noted that the residuals are of
similar magnitude as the keypoint detection, which emphasizes the importance
of having precise keypoints.

Further details on keypoint displacements are presented for one case (cam 1
with f1 = 24mm, blue channel) in Figure 5. From the histograms it can be
seen that error distribution decreases and stays within 0.05 pixel; this numerical
result holds for most of our tests. The vector fields show how the character of the
displacement field had changed: before correction it has a fairly radial nature,
after correction it is less structured.



Precise Correction of Lateral Chromatic Aberration in Images 7

Table 1. Keypoint displacements between color planes in the format “RMSE (max-
imum)” distances in pixels before and after correction at two focal lengths for each
camera.

Uncorrected Corrected
Cameras Red/Green Blue/Green Red/Green Blue/Green

cam 1
f1 = 24mm
f2 = 70mm

0.191 (0.763)
0.488(0.835)

1.606 (3.615)
1.347 (1.584)

0.029 (0.088)
0.032 (0.113)

0.025 (0.131)
0.040 (0.134)

cam 2
f1 = 18mm
f2 = 55mm

0.654 (0.978)
0.459 (0.879)

1.419 (3.358)
1.524 (2.496)

0.029 (0.113)
0.044 (0.123)

0.058 (0.153)
0.039 (0.092)

cam 3
f1 = 18mm
f2 = 70mm

0.9106 (1.1422)
0.2502 (0.5382)

1.5371 (3.4125)
1.7066 (2.4355)

0.0344 (0.1037)
0.0492 (0.1249)

0.0373 (0.0882)
0.0429 (0.1502)
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Fig. 5. Histograms (top row) and vector fields (bottom row) of Euclidean displace-
ments of keypoints of the calibration image for blue channel with respect to green
channel taken by cam 1 with f1 = 24mm before (left column) and after (right column)
correction.
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Three software solutions were chosen to perform a comparison with our
method: DxO Optics Pro (noted as ’DxO’) [11], Canon DPP (’DPP’) [12] and
Jaliko lenstool (’JLT’) [13]. The first two use lab-computed calibration database
for each camera and each lens, and perform correction based on the database,
with possibility of manual readjustment for each image. The CA correction by
JLT method is fully automatic and for any kind of camera (no database) but
requires several images. Cam 2 was chosen for this experiment and the keypoint
displacement results are shown in Figure 6 for different focal lengths. The re-
sults demonstrate that only our method achieves precision where defects are not
visible anymore (see Figure 2): the mean always stays within 0.05 − 0.1 pixel
while for other methods the average remains around 0.4 pixels.
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Fig. 6. Comparison of our method to other software for cam 2 and different focal
lengths f , the comparison is in terms of mean (dark colored bars) and maximum
(light colored bars) misalignments for both red (positive axis) and blue (negative axis)
channels. (a) provides information on the initial uncorrected keypoint displacements
for the same focal lengths (notice the different scale).

4.3 CA Correction: Color Misalignment

To visualize the effect of CA correction, color based 3D point cloud is built for
the calibration image. Since we use a black and white pattern, it is expected that
3D color cloud of the calibration image would lie along the gray line connecting
black and white spots. If chromatic aberration is present, color channels are not
aligned and occurring blue-red hues come out at significant distance from the
gray line, thus creating a bulged 3D color cloud. Figure 7 shows two color clouds
built in RGB space before and after the correction for cam 1 at f1 = 24mm.

To get a quantitative evaluation of the color cloud, we use statistics on the
distances dx from each color point to a local gray line. To compensate the absence
of white balance in the RAW image, we use the local gray line, representing 3D
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Fig. 7. 3D color clouds of the calibration image before (left) and after (right) correction.

regression of the point cloud (obtained by eigen decomposition of the variance-
covariance matrix of the color cloud). Figure 8 shows the frequency histogram of
color pixels in the calibration image. Obviously, the majority of pixels belong to
the regions of the local black and white spots and these have naturally almost
vanishing error. To get more significant statistics, we eliminate all those majority
pixels. The distances of the remaining points to the local gray line are used to
get a quantitative measure:

S =

√∑
x d

2
x

N
. (5)

Assuming the gray line passes through two points X
(g)
1 , X

(g)
2 , the distance from

Fig. 8. Frequency histogram representation

a color point x to the gray line is expressed as: dx =

∣∣∣(x−X(g)
1 ) (x−X(g)

2 ) e3

∣∣∣
‖X(g)

2 −X
(g)
1 ‖

, with

the numerator being a determinant of a 3 × 3 matrix whose third column is

the vector e3 =
(
0 0 1

)T
. Table 2 shows the RMSE and maximum distances for

the calibration image and two cameras. The color misalignment can be reduced
up to 6 times, depending on the camera. The plot of color error around two
disks of the pattern image for cam 1 is shown in Figure 9 as gray level values
(white is maximum, black is zero). After correction, the error magnitude for
chromatic aberration is comparable with noise level, as opposed to the plot
before correction, where noise is masked by the amplitude of color error.
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Table 2. Error measures of color distribution in RMSE (maximum distance) format.

Camera
Uncorrected,
Su(du,max)

Corrected,
Sc(dc,max)

Ratio,
Su
Sc

(
du,max

dc,max
)

cam 1
f1 = 24mm
f2 = 70mm

41.54 (78.21)
30.74 (68.98)

6.91 (22.87)
5.92 (18.33)

6.01 (3.41)
5.19 (3.76)

cam 2
f1 = 18mm
f2 = 55mm

32.35 (66.07)
36.48 (78.73)

9.46 (34.08)
7.35 (31.32)

3.41 (1.93)
4.96 (2.51)

cam 3
f1 = 18mm
f2 = 70mm

19.99 (50.18)
28.51 (94.54)

5.75 (24.45)
7.22 (76.76)

3.47 (2.05)
3.94 (1.23)

Fig. 9. Error distances (eq.5) to the local gray line for the calibration image of cam 1,
before (left) and after (right) correction.

4.4 Visual Improvement for Real Scenes

To see the improvement in image quality, a zoomed-in crops of outdoor images
are shown Figure 10 and Figure 11. Red and blue fringes can be seen in original
images. They disappear after correction. The same effect can be observed in
Figure 1.

Fig. 10. Cropped and zoomed-in image from camera 1, before (left) and after (right)
correction.

5 Conclusion

We have proposed a high precision chromatic aberration correction method,
using a single snapshot of a pattern of black disks. Their centers are used as
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Fig. 11. Cropped and zoomed-in image from camera 3, before (left) and after (right)
correction.

keypoints and aligned between different channels. A dense correction vector field
is then deduced by a general polynomial model. Though already quite accurate,
the precision is limited by the keypoint location detection. Comparison tests
showed that our method outperforms existing software solutions by a significant
margin. Further work includes comparison with a pattern made of pure noise,
producing numerous SIFT [14] keypoints. Whereas their precision is likely to
be lower, their number could compensate that and may improve the overall
correction.
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