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Abstract

We consider the class non-surjective irreducible endomorphisms of the free group Fn. We show

that such an endomorphism φ is topologically represented by a simplicial immersion f : G→ G of

a marked graph G; along the way we classify the dynamics of ∂φ acting on ∂Fn: there are at most

2n fixed points, all of which are attracting. After imposing a necessary additional hypothesis on φ,

we consider the action of φ on the closure CV n of the Culler-Vogtmann Outer space. We show that

φ acts on CV n with “sink” dynamics: there is a unique fixed point [Tφ], which is attracting; for

any compact neighborhood N of [Tφ], there is K = K(N), such that CV nφ
K(N) ⊆ N . The proof

uses certian projections of trees coming from invariant length measures. These ideas are extended

to show how to decompose a tree T in the boundary of Outer space by considering the space of

invariant length measures on T ; this gives a decomposition that generalizes the decomposition of

geometric trees coming from Imanishi’s theorem.

The proof of our main dynamics result uses a result of independent interest regarding certain

actions in the boundary of Outer space. Let T be an R-tree, equipped with a very small action of

the rank n free group Fn, and let H ≤ Fn be finitely generated. We consider the case where the

action Fn y T is indecomposable–this is a strong mixing property introduced by Guirardel. In

this case, we show that the action of H on its minimal invariant subtree TH has dense orbits if and

only if H is finite index in Fn. There is an interesting application to dual algebraic laminations;

we show that for T free and indecomposable and for H ≤ Fn finitely generated, H carries a leaf

of the dual lamination of T if and only if H is finite index in Fn. This generalizes a result of

Bestvina-Feighn-Handel regarding stable trees of fully irreducible automorphisms.
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Chapter 1

Introduction

1.1 Overview of Outer Space

In [17], Culler and Vogtmann defined a contractible, finite dimensional topological space on which

the outer automorphism group Out(Fn) of the free group acts properly; this space, which we

denote by CVn, has come to be known as Outer space. Culler and Vogtmann showed that there

is an Out(Fn)-equivariant deformation retraction of CVn onto its spine Kn ⊆ CVn, on which the

Out(Fn)-action is cocompact; this allowed them to prove that Out(Fn) is of type VFL and that

Out(Fn) has finite virtual cohomological dimension. The idea of Culler-Vogtmann was to introduce

an Out(Fn)-analogue of Teichmüller space, so as to allow for an adaptation of the Thurston program

for studying (mapping classes of) surface diffeomorphisms to the study of elements of Out(Fn).

We now give an intuitive explanation of Outer space; see also Section 2.3. Let B′ denote the

set of bases of Fn; there is a transitive action of Aut(Fn) on B′, and the stabilizer of a point

B ∈ B′ is just the group of permutations of the elements of B. Taking the point of view that

two bases B1, B2 ∈ B are not so different if they are conjugate, i.e. if there is g ∈ Fn such that

B2 = {gbg−1|b ∈ B1}, one is left with the set B of conjugacy classes of bases of Fn, and the group

of inner automorphisms acts trivially on B. Hence the action of Aut(Fn) on B factors through to

an action of Out(Fn) on B, and this action is transitive and has finite point stabilizers. One wants

to embed B into some space in which it is possible to continuously deform a particular (conjugacy

class of a) basis into a different basis.

Fix a basis {x1, ..., xn} for Fn, and let Γ denote the associated Cayley graph, which is a regular

2n-valent tree, and carries a free action of Fn; the quotient Γ/Fn is a wedge of n circles, which

one may think of as being labeled by x1, ..., xn. Now consider the automorphism α ∈ Aut(Fn),

α(x1) = x1x2, and α(xi) = xi for i 6= 1. One gets a “twisted” action Fn on Γ, where for each
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x ∈ Γ, and each g ∈ Fn, one defines g.x := α(g)x. Again, the quotient Γ/Fn is a wedge of n circles;

however, the labeling has changed: the edge formerly labeled by x1 is now labeled by x1x
−1
2 ,

representing the fact that in the twisted action x1 acts as x1x2 on the original tree Γ. There is a

clear way to “deform” the original labeled graph to this new labeled graph: drag the endpoint of the

x1-edge across the x2 edge in the “negative direction.” To make sense of this, one needs to orient

the edges of Γ/Fn; further, metrizing Γ/Fn gives a way of parametrizing the process described.

A finite graph G has rank n if rank(π1(G)) = n. Let X ′n denote the set of rank n graphs G such

that G is not homotopy equivalent to a proper subgraph, such that no vertex of G is of valence-2,

such that every edge of G has been identified with closed interval R of finite, non-zero length, and

such that the sum of the lengths of these intervals is 1. A marking on a (oriented, metric) graph

G ∈ X ′n is an identification ρ : π1(G) ∼= Fn; one calls (G, ρ) a marked metric graph. Let Xn denote

the set of marked metric graphs. For any (G, ρ) ∈ Xn, one has that the universal cover G̃ is a

simplicial R-tree (see Chapter 2), and ρ gives an isometric action of Fn on G̃. According to [16],

the set Xn maps injectively into the space of projective length functions on Fn, and this gives a

way of topologizing Xn (see Chapter 2); the resulting space is CVn, the Culler-Vogtmann Outer

space. In a precise sense, CVn is a “deformation space of hyperbolic structures on Fn,” in strong

analogy with Teichmüller space. Further, by [16], CVn has compact closure in the space of length

functions, so CVn has a “Thurston compactification” CV n, whose elements are homothety classes

of (very small) actions of Fn on R-trees [17, 9, 2].

1.2 Irreducible Endomorphisms

In what follows, Fn denotes the rank n free group; CV n denotes the “Thurston compactification”

of the Culler-Vogtmann Outer space; and cvn denotes the space of very small actions of Fn on

R-trees, so CV n consists of projective classes [T ] of trees T ∈ cvn; see Section 2.3 for definitions.

In [6] Bestvina and Handel introduce the notion of an irreducible outer automorphism of the

free group Fn (see Section 3); this class of (outer) automorphisms serves as an analog of the

class of (mapping classes of) pseudo-Anosov diffeomorphisms of a hyperbolic surface. Bestvina and

Handel introduce train track represetatives for irreducible elements of Out(Fn); these are topological

representatives that allow for very close control over rates of growth of conjugacy classes. It is shown
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in [6] that any irreducible outer automorphism of Fn has a train track representative; see Section

3.1.2.

The terminiology of train tracks in [6] seems to anticipate the work in [3], where to each

irreducible automorphism of Fn there is associated a pair of abstract laminations. These abstract

laminations on Fn are formalized by Coulbois, Hilion, and Lustig in [12] via the notion of an

algebraic lamination (see Subsection 2.4); this formalism, as well as its applications in [13, 14],

does well to compliment the theory of train tracks for studying free group (outer) automorphisms.

The algebraic laminations associated to a free group automorphism are analogous to the geodesic

surface laminations associated to a pseudo-Anosov surface diffeomorphism: they are a sort of

asymptotic invariant encoding limits of iterates of the automorphism (and its inverse) on primitive

elements–the free group analogs of essential simple closed curves on a surface. Generalizations

of the tools of [3] and [6] were used by Bestvina-Feighn-Handel to prove the Tits Alternative for

Out(Fn) [4, 5].

Building on the techniques of [3], Levitt and Lustig show in [34] that any irreducible outer

automorphism of Fn acts on CV n with north-south dynamics. This is analogous to the well-known

result that a pseudo-Anosov mapping class acts on T (S) with north-south dynamics, though, as

appears to be typical, the result for Out(Fn) is much more difficult to prove.

Inspired by the applicability of these dynamical techniques for understanding elements of

Out(Fn), we study non-surjective irreducible (outer) endomorphisms of Fn from a dynamical view-

point. An endomorphism φ : Fn → Fn is irreducible if no power of φ maps a non-trivial, proper

free factor of Fn into a conjugate of itself, and if this condition holds for any power of φ as well;

see Section 3.

Suppose that φ : Fn → Fn is irreducible; it follows from work of Bestvina-Feighn-Handel [3]

that one may associate to φ an algebraic lamination Λφ and a (projective) stable tree [Tφ] ∈ CVn;

see Subsections 3.4.1 and 3.1.2. There is a natural right action of φ on the set of R-trees, equipped

with minimal, isometric actions of Fn, and [Tφ] has the property that [Tφφ] = [Tφ]. Using the

techniques of [3], Coulbois-Hilion have shown that for irreducible α ∈ Out(Fn), the stable tree Tα

has a strong mixing property–it is indecomposable [10]; see Definition 4.16. In constrast with the

case of outer automorphisms, we obtain (Proposition 3.21):
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Proposition 1.1. Let φ : Fn → Fn an irreducible endomorphism that is non-surjective. There is

a free simplicial Fn-tree Tφ such that [Tφ]φ = [Tφ].

This immediately gives (Corollary 3.23):

Corollary 1.2. Let φ : Fn → Fn an irreducible endomorphism that is non-surjective. Then (the

outer class of) φ is topologically-represented by a train track map with no illegal turns.

Building on the techniques of [3], Levitt and Lustig show in [34] that any irreducible outer

automorphism of Fn acts on CV n with north-south dynamics: there are exactly two fixed points,

one attracting and one repelling, such that convergence to the attractor is uniform on compact

subsets avoiding the repeller.

Unlike in the case of Out(Fn) one needs to impose an additional assumption on a non-surjective

irreducible endomorphism φ to ensure that the action of φ on the set of Fn-trees induces an action

on CVn; we call such φ admissible (see Section 3.5). In this case we consider the dynamics of the

action of φ on CVn; we show (Theorem 5.21):

Theorem 1.3. Let φ : Fn → Fn be an admissible irreducible endomorphism that is non-surjective.

Then φ has a unique fixed point [Tφ] ∈ CVn, which is free and simplicial; for any [T ] 6= [Tφ] one

has that [T ]φk → [Tφ]; and for any compact nieghborhood N of [Tφ], there is k = k(N) such that

CV nφ
k ⊆ N .

It should be noted that Theorem 1.9 is novel in the sense that φ is not assumed to be invertible.

This result turns out to be much more difficult to prove than North-South dynamics for irreducible

automorphisms of Fn [34], which is in turn much more difficult to prove than North-South dynamics

for pseudo-Anosov surface automorphisms. The latter two results use “backwards iteration” in an

essential way, and it is reasonable to say that many of the complications in the present work stem

from the lack of an inverse.

Theorem 1.3 implies that for k sufficiently large, the subgroups φk(Fn) have a strong rigidity

property (Corollary 5.22), which seems interesting to us:

Corollary 1.4. For any C > 1, there is a finitely generated, non-abelian subgroup H ≤ Fn, such

4



that for any non-trivial h, h′ ∈ H and any trees T, T ′ ∈ cvn, one has lT (h) > 0 and

1

C
≤ lT (h)/lT (h′)

lT ′(h)/lT ′(h′)
≤ C

1.3 Indecomposable Trees in the Boundary of Outer Space

The proof of Theorem 5.21 makes use of a result that, for certain actions T ∈ cvn, strongly restricts

the way that a finitely generated subgroup H ≤ Fn can act on its minimal invariant subtree.

Let G be a finitely generated group, and suppose that G y T is an action by isometries of G

on an R-tree T .

Definition 1.5. Following [25], we say that the action G y T is indecomposable if for any non-

degenerate arcs I, J ⊆ T , there are elements g1, ..., gr ∈ G such that J ⊆ g1I ∪ ... ∪ grI and such

that giI ∩ gi+1I is non-degenerate for i ≤ r − 1.

It is important to note that the intersections giI ∩ gi+1I need not be contained in J , or even

interect J non-degenerately; see [25] for further discussion. Indecomposability of the action Gy T

is a strong mixing property; it prohibits the existence of a transverse family for the action Gy T

(see Definition 3.13). In particular, if the action Gy T is indecomposable, then Gy T cannot be

written as a non-trivial graph of actions (see [32, 25]). If H ≤ G is a finitely generated subgroup

containing a hyperbolic isometry of T , then there is a canonical minimal subtree TH for the action

H y T ; notice that if the action Gy T has dense orbits, and if H ≤ G is a finitely generated, finite

index subgroup, then the action H y T has dense orbits as well. The main result of this paper

says that, in some sense, certain indecomposable actions cannot contain any interesting subactions

other than the obvious ones.

Let cvn denote the unprojectivised closed Outer space, i.e. the space of very small actions of

Fn on R-trees (see Definition 2.4); we show (Theorem 4.11):

Theorem 1.6. Suppose that T ∈ cvn is indecomposable, and let H ≤ Fn be finitely generated. The

action H y TH has dense orbits if and only if H has finite index in Fn.

There is a nice application of Theorem 4.11 to algebraic laminations: associated to any action

Fn y T of Fn on a tree is a dual lamination L2(T ) ⊆ ∂2(Fn), which is an algebraic analog of a
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surface lamination; here ∂2(Fn) := ∂Fn × ∂Fn −∆ (see section 2.3 for an brief introduction, and

[12, 13] for details). We say that a finitely generated subgroup H ≤ Fn carries a leaf l ∈ L2(T ) if

l ∈ ∂2(H) ⊆ ∂2(Fn); the following result appears as Corollary 4.15 below.

Corollary 1.7. Suppose that T ∈ cvn is indecomposable and free with dual lamination L2(T ), and

let H ≤ Fn be finitely generated. Then H carries a leaf of L2(T ) if and only if H is finite index in

Fn.

The reason for the assumption that the action be free comes from the definition of the dual

lamination of an action Fn y T ; namely, if K ≤ Fn has a fixed point in T , then ∂2(K) ⊆ L2(T ).

Further, since the action Fn y T is minimal, it is the case that K is infinite index in Fn.

The results of this paper can be thought of as a dynamical-algebraic analogy between indecom-

posable trees in the boundary of Outer space and ending laminamtions on surfaces. A lamination

L on a compact surface S (possibly with boundary) is minimal if every half leaf of L is dense in

L, and L is filling if all complimentary regions are ideal polygons or crowns. If L is minimal and

filling, then L is called an ending lamination (see [8] for background on suface laminations). If

S1 → S is a finite cover, and if L1 is the lift of L to S1, then L1 is an ending lamination. Indeed,

a finite cover of an ideal polygon (resp. crown) is an ideal polygon (resp. crown), and it is an

exercise to check that L1 is minimal.

In [41] Scott proves that suface groups are subgroup separable (or LERF); his proof is geometric:

he finds, for any finitely generated subgroup H ≤ π1(S), a finite cover S1 → S, a compact surface

S′, along with a π1-injective embedding ι : S′ → S1 such that π1(ι)(π1(S′)) = H. This geometric

description of subgroups of π1(S) gives a clear picture of which subgroups of π1(S) are able to

“encode” leaves of the lamination on S. Say that a finitely generated subgroup H ≤ π1(S) carries

a leaf l of L if there are S1, ι, and S′ as above, such that a lift of l in S1 is contained in ι(S′). If S is

equipped with an ending lamination L, it is evident that the lifted lamination L1 on S1 intersects

ι(S′) in finite arcs, unless ι(S′) = S1, i.e. unless H is finite index in π1(S). It follows that no

finitely generated subgroup of infinite index carries a leaf of L. Now suppose that L = (L, µ) is a

measured lamination with L an ending lamination, and let L1 = (L1, µ1) the lift of L to S1. Let

TL denote the R-tree dual to L , and let TH ⊆ T the minimal invariant subtree for the action of

H on T . Evidently, TH is “dual” to L ′
1 := (L1 ∩ ι(S′), µ1|ι(S′)), so the action H y TH is discrete,
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again unless H is finite index in π1(S). Hence, it follows that H carries a leaf of L if and only if H

is finite index in π1(S) if and only if the action H y TH is indiscrete.

It is an exercise to check that if an action π1(S) y TL is dual to a measured ending lamination

L on S, then the action is indecomposable; see [25, Proposition 1.25]. On the other hand, it

follows from Skora’s duality theorem [43] and the Rips theory ([1], [21]) that any indecomposable,

relatively elliptic action π1(S) y T is dual to an ending lamination on S; here relatively elliptic

means that the (maximal) elliptic subgroups of the action π1(S) y T are precisely the peripheral

subgroups of π1(S). There are other natural examples of indecomposable trees. The first come

from the Rips theory: any geometric tree dual to a minimal band complex is indecomposable (see

[1] for explanation of terminology and [25] for a proof); this includes the “surface trees” mentioned

above as well as the so-called thin (or exotic, or Levitt) trees (see [1, 21, 30, 25] for details). Finally,

stable trees of fully irreducible (iwip) automorphisms are indecomposable; this can be shown using

the machinery of [6] and [3]. There are examples of such “iwip trees” that are not geometric [1].

As mentioned above, the main results of this paper are known for surface trees. Using train

track machinery, Bestvina-Feighn-Handel establish these results in the special case of stable trees

of fully irreducible automorphisms ([3, Theorem 5.4] and [3, Proposition 2.4]. We remark that it

follows from the North-South dynamics [34] that any stable tree of a fully irreducible automorphism

is uniquely ergodic (see Section 3.0 below); on the other hand, [35] establishes the existence of non-

uniquely ergodic thin band complexes, so the theorem is saying something new even in the case of

geometric trees.

The inspiration for the proof of the main result is precisely the discussion presented above

regarding the dynamical-algebraic properties of ending laminations and their dual trees; in fact,

the skeleton of the current proof is essentially identical to that surface theory argument. The first

ingredient is Lemma 4.8, which says that any “finite cover” of an indecomposable action G y T

is also indecomposable. We then establish a certain measure-theoretic approximation of actions

Fn y T ∈ cvn with dense orbits: we show that any such action is “supported almost everywhere”

on a finite forest of arbitrarily small measure, and this allows us to construct from the action

Fn y T a finitely generated pseudogroup (see Definition 2.14) with well-controlled dynamics (see

Lemma 4.2). All this is combined with an inequality of Gaboriau-Levitt-Paulin to greatly restrict
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the “shape” of families {gTH}g∈Fn for e-algebraically closed subgroups H ≤ Fn (see Definition 4.4).

Finally, the strong subgroup separability of Fn is used to conclude.

1.4 Structure of Trees in the Boundary of Outer Space

Along the way to proving Theorem 1.3, we introduce the rudiments of a decomposition theory of

individual trees T ∈ cvn. At the heart of this approach is a study of the space M0(T ) of invariant,

non-atomic length measures on T (Section 5); these objects, introduced by Paulin, generalize

measured laminations on surfaces. In [23] Guirardel uses length measures as part of an approach

to study the dynamics of Out(Fn) acting on the boundary of CV n; there he shows that for T ∈ cvn

with dense orbits, the projectivization of M0(T ) embeds in the boundary of CV n. This shows, in

particular, that the space M0(T ) is finite dimensional.

We now briefly recall the structure of trees dual to measured laminations on surfaces, in order

to contrast with the trees in cvn. Let L = (L, µ) be a measured lamination on a surface S, and

let T = TL denote the dual tree; see, for example, [38] or [30]. If L is not minimal, then T can be

decomposed in a way that parallels the decompositon of L into minimal components–T is a graph of

actions; see Section 3.2. A feature of (minimal) arational measured laminations is that every half-

leaf is dense; this implies that a tree dual to an arational measured laminiation is indecomposable.

It follows that, if L has no compact leaf, then either T is indecomposable, or T splits as a graph of

indecomposable actions.

The structure of some trees in cvn is divergent from this picture: there are trees T ∈ cvn such

that T is neither indecomposable nor a graph of actions; see Example 5.9. There is a holonomy

pseudogroup associated to T , which is completely analogous to the holonomy pseudogroup associ-

ated to a lamination, and this psuedogroup contains an exceptional set, in contrast with the surface

case; see Section 5. To understand the dynamical structure of T , it is useful to consider certain

projections of T ; for this approach it is critical that the dynamics of the action Fn y T are “visible”

to length measures. This is accomplished via the following (Proposition 5.16):

Proposition 1.8. Let T ∈ cvn have dense orbits. Suppose that T does not split as a graph of

actions and that T contains an exceptional set X. Then there is µ ∈M0(T ) supported on X.
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A non-empty Fn-invariant subset X ⊆ T is called exceptional if for any finite subtree K ⊆ T ,

X ∩K is empty, finite, or a Cantor set with finitely many points added. According to Proposition

1.8, given a tree T ∈ cvn with dense orbits, such that T is not a graph of actions and such that T

contains an exceptional set X, we can find an invariant measure µ supported on X. We may then

pass to a projection of T : the measure µ gives rise to a pseudometric dµ on T , where dµ(x, y) :=

µ([x, y]). Making this pseudometric Hausdorff gives a tree Tµ, equipped with an isometric action

of Fn (see [23, 11]); in a precise sense, the action Fn y Tµ isolates the dynamics of Fn y X.

Note that an Fn-tree T can be non-uniquely ergodic, even if it has strong mixing properties:

examples already come from non-uniquely ergodic, arational laminations on surfaces [31]. Define a

partial order ≤ on M0(T ) via µ ≤ µ′ if and only if Supp(µ) ⊆ Supp(µ′); this gives an equivalence

with classes [[µ]] = {ν ∈ M0(T )|Supp(ν) = Supp(µ)}, which serve as candidates for the “com-

ponents” of T . Indeed, in the case that T is dual to a measured lamination (λ, µ0) on a surface

with boundary, the set of [[.]]-classes of invariant (non-atomic) length measures on T bijectively

corresponds to the set of sublaminations of λ.

Having understood that some dynamical structure of T is clarified by considering projections of

T , we complete our analogy with measured laminations by associating to every [[.]]-class of ergodic

measures in M0(T ) a canonical mixing action (Definition 5.27, Proposition 5.29, and Corollary

5.32). Below we give a simplified form of our decomposition result (Theorem 5.34).

Theorem 1.9. Let T ∈ cvn have dense orbits, and let {ν1, ..., νr} be a maximal set of mutually-

singular ergodic measures.

(i) For each νi with non-degenerate support, there is associated to [[νi]] a mixing action H([[νi]]) y

T ([[νi]]), such that T ([[νi]]) is unique up to translation in T ,

(ii) For each νj with degenerate support, there is a projection T → T[[νj ]], such that:

(a) dim(M0(T[[νj ]])) < dim(M0(T )),

(b) for all ν ′j ∈ [[νj ]], M0(Tν′j ) is naturally identified with M0(T[[νj ]]),

(c) for all ν ′j ∈ [[νj ]], L
2(Tν′j ) = L2(T[[νj ]])

In the statement, M0(T ) denotes the space of non-atomic invariant length measures on T . The

subtree T ([[νi]]) ⊆ T is “equal to” the support set Supp(νi), and H([[νi]]) is the setwise stabilizer
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of T ([[νi]]). In short, part (i) of Theorem 2 is analogous to the usual dynamical decomposition of

measured surface laminations, and, more generally, the decomposition of geometric trees coming

from Imanishi’s Theorem; see [21]. So, part (ii) illustrates only non-geometric phenomena.

Theorem 1.9 is related to ongoing work (in preparation) of Guirardel and Levitt about actions

of finitely presented groups on R-trees [26]; see the Acknowledgements, as well as Sections 5 and

5.3 for further discussion.

1.5 Organization

In Chapter 2 we collect basic background material about R-trees, Outer space, algebraic lam-

inations, the observers’ topology on trees, length measures, and pseudogroups; this section is

expository, except for Lemma 2.12.

Chapter 3 introduces topological representatives, train tracks and stable trees; there we intro-

duce expansive (Definition 3.8) endomorphisms and show (Proposition 3.11) that an irreducible

endomorphism is either expansive or an automorphism; this gives, via Corollary 3.10, that stable

trees of non-surjective irreducible endomorphisms are free.

Section 3.2 is devoted to defining and giving basic properties of graphs of actions (Definition

3.14), which are used in Section 3.3 to show (Proposition 3.21) that the stable tree of a non-

surjective irreduicble endomorphism is free and simplicial. This immediately implies that such an

endomorphism is topologically represented by a simplicial immersion (Corollary 3.23). The proof

of Proposition 3.21 shows (Corollary 3.22) that for φ : Fn → Fn irreducible and non-surjective, ∂φ

acts on ∂Fn with finitely-many fixed points, all of which are attracting.

We then turn to the question of the dynamics of φ acting on Outer space, denoted CVn, and its

closure, denoted CV n. Section 3.4 introduces the stable lamination, denoted Λφ, associated to φ.

We then state the convergenge criterion that will be used for the sequel: Proposition 3.24, which

is due to Bestvina-Feighn-Handel. This immediately gives that φ acts on CVn with precisely one

(attracting) fixed point–the stable tree of φ.

Before proceeding to consider the dynamics of φ acting on CV n, we must impose a condition

to ensure that φ acts on CV n; we explain what can go wrong in Section 3.5, and then give the

definition for admissible endomorphisms (Definition 3.27). So that we may apply our convergence
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criterion, we show that being admissible is equivalent to a condition on Λφ, namely that no leaf of

Λφ is carried by a vertex group of a very small splitting of Fn (Proposition 3.32).

Using Proposition 3.32 along with Proposition 3.24, in Section 3.6 we get convergence for trees

in the boundary of Outer space that split as a non-trivial graph of actions.

In Chapter 4, we prove the results needed to handle convergence for indecomposable actions

(Definition 4.16); the main result is Theorem 4.11. In Section 4.3 we handle convergence for

indecomposable actions.

Chapter 5 collects the relevant measure theory on trees. We use the key result of Guirardel

(Proposition 2.15), that for T with dense orbits, the space M0(T ) of invariant non-atomic measures

on T is finite dimensional. Next, we define exceptional sets (Definition 5.8) and provide Example 5.9

to show that such things actually occur. We present an iterative procedure (see Remark 5.11), due

to Guirardel-Levitt [26], for building transverse families (Definition 3.13) of subtrees. In Subsection

5.1.4, we prove the critical result (Proposition 5.16) for the rest of the paper: if T is a tree in the

boundary of Outer space with dense orbits, and if T does not split as a graph of actions, then any

exceptional set in T supports an invaraint measure.

In Section 5.2 we combine Proposition 5.16 with Lemma 2.12 to get convergence for the re-

mainder of actions in CV n. The dynamics of φ acting on CV n (Theorem 5.21) then easily follows.

Section 5.3 elaborates upon the measure-theoretic techniques introduced in Section 5 to present

an approach to decomposing trees in the boundary of Outer space. For the remainder of the paper,

we consider a tree T with dense orbits. In Subsection 5.3.1, we define a transverse family F that

gives a coarse decomposition of T (Lemma 5.23). We then bring Proposition 5.29 and Corollary

5.32 to show how to associate to every invariant measure on T a canonical mixing action; these

actions are “building blocks” of T . We collect the results of Section 5.3 to give our decomposition

result, Theorem 5.34.
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Chapter 2

Background

In what follows Fn denotes the free group of rank n; for g ∈ Fn let [g] denote the conjugacy class

of g.

2.1 Basics About R-Trees

A metric space (T, d) is called an R-tree (or just a tree) if for any two points x, y ∈ T , there is

a unique topological arc px,y : [0, 1] → T connecting x to y, and the image of px,y is isometric to

the segment [0, d(x, y)] ⊆ R. We let [x, y] stand for Im(px,y), and we call [x, y] the segment (also

called an arc) in T from x to y. A segment is called non-degenerate if it contains more than one

point. Hence, the first examples of R-trees are just connected subsets of R. We let T stand for

the metric completion of T . Unless otherwise stated, we regard T as a topological space with the

metric topology.

2.1.1 Simplicial R-Trees

A simplicial tree is (the geometric realization of) a 1-dimensional CW-complex containing no em-

bedded copy of S1. If T is a simplicial tree, then T can be given the structure of an R-tree as follows:

choose for each edge e of T a number l(e) ∈ R>0, and identify e with the segment [0, l(e)] ⊆ R. It

is important to note that the metric topology on T will be weaker than the cellular topology in the

case that T is not locally finite.

We will say that an R-tree T is simplicial if T can be obtained from a simplicial tree via the

above procedure.

Example 2.1. Let ||.|| denote the Euclidean norm on Rn, and consider a metric ρ given by

ρ(x, y) := ||x − y||, if there is r ∈ R such that y = rx, and ρ(x, y) := ||x|| + ||y|| otherwise. Then
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(Rn, ρ) is a simplicial R-tree.

Intuitively, the metric ρ regrads Rn as the union of rays eminating from the origin.

2.1.2 non-Simplicial R-Trees and Branch Points

In the definition of a simplicial R-tree, there is a well-defined notion of “vertex,” coming from the

underlying combinatorial structure; “branching” can occur at only such points, and though the set

of these vertices is not necessarily discrete, it is, in some sense, quite small.

More precisely, if T is an R-tree, and x ∈ T , then x is called a branch point if the cardinality of

π0(T −{x}) is greater than two. For x ∈ T , the elements of π0(T −{x}) are called directions at x.

We see that there is single branch point in the tree of Example 2.1.

Example 2.2. Consider a metric ρ′ on R2 given by ρ′((x1, y1), (x2, y2)) := |y1 − y2| if x1 = x2,

and ρ′((x1, y1), (x2, y2)) := |y1| + |y2| + |x1 − x2| otherwise. Then (R2, ρ′) is an R-tree that is not

simplicial, as every point on the “x-axis” is a branch point.

2.2 Group Actions on Trees

2.2.1 Isometries of R-trees

We now recall some standard facts about isometries of R-trees; see, for example, [16]. Let T be an

R-tree, and let h ∈ Isom(T ). If h ∈ Isom(T ) fixes a point of T , then h is called elliptic, and the

collection A(h) := {y ∈ T |h(y) = y} is a closed, convex subset of T . If h is not elliptic, i.e. for

each x ∈ T , h(x) 6= x, then h leaves invariant a unique isometric copy A(h) of R contained in T ;

A(h) is called the axis of h. In this case, one says that h is hyperbolic, and for each x ∈ A(h), one

has d(x, h(x)) = infy∈T d(y, h(y)) =: lT (h), the translation length of h. Hence, h acts on A(h) as a

translation.

2.2.2 Group Actions on R-trees

Let T be an R-tree. An isometric (left) action of finitely generated group G on T is a group

morphism ρ : G→ Isom(T ); as usual, we always supress the morphism ρ and identify g ∈ G with

ρ(g). A tree T equipped with an isometric action will be called an G-tree, and we denote this
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situation by G y T . An action G y T induces an action of G on the set of directions at branch

points of T . We identify two G-trees T, T ′ if there is an G-equivariant isometry between them.

Given a G-tree T , we have the so-called hyperbolic length function lT : G→ R, where

lT (g) := inf{d(x, gx)|x ∈ T}

The number lT (g) is called the translation length of g, and for any g ∈ G, the infimum is always

realized on A(g), so that g acts on A(g) as a translation of length lT (g). The fuction lT is constant

on conjugacy classes in G. If H ≤ G is a finitely generated subgroup containing a hyperbolic

isometry, then H leaves invariant the set

TH := ∪lT (h)>0A(h)

which is a subtree of T , and is minimal in the set of H-invariant subtrees of T ; TH is called the

minimal invariant subtree for H. An action Gy T is called minimal if T = TG; a minimal action

Gy T is non-trivial if T contains more than one point.

For an action G y T , and for x ∈ T , let Gx := {gx|g ∈ G} denote the orbit of x. An action

Gy T has dense orbits if for some x ∈ T , we have Gx = T . Note that if some orbit is dense, then

every orbit is dense.

2.2.3 Topology on the Set of G-Trees

Fix a group G. Recall that for each action G y T of G on a tree, one has the associated length

function lT : G→ R≥0. Note that lT = lTG , i.e. length fuctions encode information about minimal

actions. Hence, an action Gy T is trivial if and only if lT = 0.

One says that an action Gy T is abelian if lT (ghg−1h−1) = 0 for all g, h ∈ G.

Lemma 2.3. [16] Let Gy T1, Gy T2 be non-abelian actions on trees. If lT1 = lT2, then there is

a G-equivariant isometry T1 → T2.

Hence, setting X(G) := {minimal, non-trivial, non-abelian G-trees}, we get an injective map

X(G) → RG, and we take the induced topology on X(G), i.e. a sequence (Ti) of non-ablelian

G-trees converges to a G-tree T if and only if lTi(g)→ lT (g) for all g ∈ G.
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The group R>0 acts on X(G) by scaling the metric on a tree, and we let PX(G) denote the

quotient space.

2.2.4 Out(G) acts on X(G)

There is a natural action of Aut(G) on X(G): for α ∈ Aut(G), lTα(g) := lT (α(g)). As noted

before, length functions are constant on conjugacy classes, so Inn(G) lies in the kernel of this

action; hence, we have an induced action of Out(G) = Aut(G)/Inn(G) on X(G). This action

descends to an action of Out(G) on PX(G).

2.3 Outer Space and its Closure

Recall that Fn denotes the rank-n free group. An action Fn y T is free if for any 1 6= g ∈ Fn one

has lT (g) > 0. If X ⊆ T , then the stabilizer of X is Stab(X) := {g ∈ Fn|gX = X}–the setwise

stabilizer of X. We say that an action Fn y T is very small if:

(i) Fn y T is minimal,

(ii) for any non-degenerate arc I ⊆ T , Stab(I) = {1} or Stab(I) is a maximal cyclic subgroup of

Fn,

(iii) stabilizers of tripods are trivial.

An action Fn y T is called discrete (or simplicial) if the Fn-orbit of any point of T is a discrete

subset of T ; in this case T is obtained by equivariantly assigning a metric to the edges of a (genuine)

simplicial tree; see subsection 2.1.1.

Let T, T ′ be trees; a map f : T → T ′ is called a homothety if f is Fn-equivariant and bijective,

and if there is some positive real number λ such that for any x, y ∈ T , we have dT ′(f(x), f(y)) =

λdT (x, y); in this case T, T ′ are called projectively equivalent or homothetic.

Definition 2.4.

1. The unprojectivised Outer space of rank n, denoted cvn, is the topological space whose un-

derlying set consists free, minimal, discrete, isometric actions of Fn on R-trees; it is equipped

with the length function topology.
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2. [17] The Culler-Vogtmann Outer space of rank n, denoted CVn, is the topological space whose

underlying set consists of homothety classes of free, minimal, discrete, isometric actions of

Fn on R-trees; it is equipped with the projective length function topology.

3. The unprojectivised closed Outer space of rank n, denoted cvn, is the topological space whose

underlying set consists of very small isometric actions of Fn on R-trees; it is equipped with

the length function topology.

4. The closed Outer space of rank n, denoted CV n, is the topological space whose underlying set

consists of homothety classes of very small isometric actions of Fn on R-trees; it is equipped

with the projective length function topology.

As in Subsection 2.2.3 points in CVn can be thought of as projective classes of such length

functions, i.e. CVn ⊆ PRFn ; and CVn is topologized via the quotient of the weak topology on

length functions. It is the case that the closure CV n of CVn is compact and consists precisely of

homothety classes of very small FN -actions on R-trees [9, 2]. For more background on CVn and its

closure, see [46] and the references therein.

2.4 Algebraic Laminations

Here, we present a brief and restricted view of dual laminations of Fn-trees; see [12] and [13] for

a careful development of the general theory. Let ∂Fn denote the Gromov boundary of Fn–i.e.

the Gromov boundary of any Cayley graph of Fn; let ∂2(Fn) := ∂Fn × ∂Fn −∆, where ∆ is the

diagonal. The left action of Fn on a Cayley graph induces actions by homeomorphisms of Fn on

∂Fn and ∂2Fn. Let i : ∂2Fn → ∂2Fn denote the involution that exchanges the factors. An algebraic

lamination is a non-empty, closed, Fn-invariant, i-invariant subset L ⊆ ∂2Fn.

Fix an action Fn y T with dense orbits; following [34] (see also [13]), we associate an algebraic

lamination L2(T ) to the action Fn y T . Let T0 ∈ cvn (i.e. the action Fn y T0 is free and discrete),

and let f : T0 → T be an Fn-equivariant map, isometric when restricted to edges of T0. Say that

f has bounded backtracking if there is C > 0 such that f([x, y]) ⊆ NC([f(x), f(y)]), where NC

denotes the C-neighborhood. For T0 ∈ cvn, denote by vol(T0) := vol(T0/Fn) the sum of lengths of

edges of the finite metric graph T0/Fn.
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Proposition 2.5. [34, Lemma 2.1] Let T ∈ cvn; let T0 ∈ cvn; and let f : T0 → T be equivariant

and isometric on edges. Then f has bounded backtracking with C = vol(T0).

For T0 ∈ cvn, we have an identification ∂T0
∼= ∂Fn. If ρ is a ray in T0 representing X ∈ ∂Fn,

we say that X is T -bounded if f ◦ ρ has bounded image in T ; this does not depend on the choice

of T0 (see [3]).

Proposition 2.6. [34, Proposition 3.1] Let T ∈ cvn have dense orbits, and suppose that X ∈ ∂Fn

is T -bounded. There there is a unique point Q(X) ∈ T such that for any f : T0 → T , equivariant

and isometric on edges, and any ray ρ in T0 representing X, the point Q(X) belongs to the closure

of the image of f ◦ ρ in T . Further the image of f ◦ ρ is a bounded subset of T .

The (partially-defined) map Q given above is clearly Fn-equivariant; in fact, it extends to an

equivariant map Q : ∂Fn → T ∪ ∂T , which is surjective (see [34]). The crucial property for us is

that Q can be used to associate to T an algebraic lamination.

Proposition 2.7. [13] Let T ∈ cvn have dense orbits. The set L2
Q(T ) := {(X,Y ) ∈ ∂2(Fn)|Q(X) =

Q(Y )} is an algebraic lamination.

Following [13], we mention that there is different, perhaps more intuitive, procedure for defining

L2(T ). Let T ∈ cvn (not necessarily with dense orbits, but not free and discrete), and let Ωε(T ) :=

{g ∈ Fn|lT (g) < ε}, where lT is the hyperbolic length function for the action Fn y T . The set Ωε(T )

generates an algebraic lamination L2
ε (T ), which is the smallest algebraic lamination containing

(g−∞, g∞) = (...g−1g−1, gg...) ∈ ∂2(Fn) for every g ∈ Ωε. One then defines L2
Ω(T ) := ∩ε>0L

2
ε (T ).

In [13] it is shown that for an action Fn y T ∈ cvn with dense orbits, L2
Ω(T ) = L2

Q(T ), as defined

above.

Definition 2.8. Let Fn y T ∈ cvn be an action with dense orbits. The dual lamination of Fn y T

is L2(T ) := L2
Q(T ) = L2

Ω(T ).

2.4.1 The Observers Topology

In [11], a weaker topology on R-trees is considered. Let T be a tree with Gromov boundary ∂T and

metric completion T ; put T̂ := T ∪∂T . The metric topology on T canonically extends to T , and we
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may extend this topology to T̂ as follows: for a ray ρ in T representing [ρ] ∈ ∂T , a neighborhood

basis at [ρ] is taken to be the set of components of T \ {pt.} meeting ρ in a non-compact set. For

p, q ∈ T̂ , the direction of q at p the component dp(q) of T̂ \{p} containing q. The observers topology

T̂ is the topology with subbbasis the collection of directions in T̂ .

With this topology the map Q : ∂Fn → T ∪ ∂T is continuous [11, Proposition 2.3]. Further,

when restricted to finite subtrees of T , the observers topology agrees with the metric topology; in

particular, we have the following:

Lemma 2.9. [11, 13] Let T ∈ cvn have dense orbits. For any x ∈ T , the set Q−1(x) ⊆ ∂Fn is

compact.

The aim of [11] is to investigate to what extent L2(T ) determines T for trees T ∈ cvn with

dense orbits. For the following equip trees T ∈ cvn with the metric topology, and equip T̂ with the

observers topology.

Proposition 2.10. [11, Theorem I] Let T1, T2 ∈ cvn have dense orbits. Then L2(T1) = L2(T2) if

and only if T̂1 is homeomorphic to T̂2.

Let T ∈ cvn have dense orbits; fix q ∈ T ; and let (pk) be a sequence in T . Put Im := ∩k≥m[q, pk],

so Im = [q, rm], and we have Im ⊆ Im+1. The inferior limit of (pk) from q is the limit limq pk :=

lim rm. The following gives a characterization of convergence in T̂ :

Lemma 2.11. [11, Lemma 1.12] If a sequence (pk) in T̂ converges to p, then for any q ∈ T̂ ,

p = limq pk.

A map f : T → T ′ between trees T, T ′ is continuous on segments if for any finite segment

I ⊆ T , the restriction f |I : I → T ′ is continuous. The following result, along with the approach of

Sections 5 and 5.3 provide a sort of converse of the work in [15].

Lemma 2.12. Let T, T ′ ∈ cvn have dense orbits, and suppose that there is an equivariant bijection

f : T → T ′ that is continuous on segments. Then f extends to a unique homeomorphism f̂ : T̂ → T̂ ′;

in particular, L2(T ) = L2(T ′).

Proof. Let T, T ′, and f as in the statement, and let Tobs, T
′
obs denote T, T ′ regarded as subspaces

of T̂ , T̂ ′. We first show that f induces a homeomorphism Tobs → T ′obs. Let p, q ∈ T , and notice
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that dp(q) = ∪p/∈[q,q′][q, q
′]. As f is continuous on segments and bijective, we have that f(dp(q)) =

∪f(p)/∈[f(q),f(q′)][f(q), f(q′)] = df(p)(f(q)), hence f is open. Applying essentially the same argument

to f−1 gives that f is continuous, hence f is a homeomorphism Tobs → T ′obs.

Let pk ∈ T̂ with pk → p ∈ T̂ \ T . By the discussion following Proposition 2.10, we have for

any q ∈ T̂ , p = limq pk. Set Im = ∩k≥m[q, pk] = [q, rm], so that lim rm = p. Since f is continuous

on segments and bijective, we have that f(Im) = [f(q), f(rm)], hence the sequence f(rm) has

a well-defined limit r′ ∈ T̂ ′. If r′ ∈ T ′ ⊆ T̂ ′, then there is r′′ ∈ T such that f(r′′) = r′; in

this case f([q, r′′]) = [f(q), r′]. Further [q, r′′] evidently contains each Im, hence [q, r′′] contains

∪mIm 3 lim rm = p, a contradiction. Hence, r′ ∈ T̂ ′ \ T ′, and we define f̂(p) = r′.

Now note that for any p′ ∈ T̂ ′ \ T ′ and any q′ ∈ T ′ there is a sequence r′m in T ′ such that

[q, r′m] ⊆ [q, r′m+1] with p′ = lim r′m. We find q, rm ∈ T such that f(q) = q′ and f(rm) = r′m,

and it follows from the preceding arguments that there is a unique p ∈ T̂ \ T with f̂(p) = p′;

hence f̂ is bijective. Futher, it is easy to check as above that f̂ is continuous and open, so f̂ is a

homeomorphism. The fact that L2(T ) = L2(T ′) then follows from Proposition 2.10.

2.5 Subgroups of Free Groups

In this section, we briefly recall Stallings’ approach to finitely generated subgroups of free groups;

see [44, 29] for details. Put Rn :=
∨n
i=1 S

1. Fix a basis A = {a1, ..., an} for Fn; this gives an

identification Fn ∼= π1(Rn) by labeling the ith copy of S1 with ai.

The universal cover T := R̃n is a simplicial tree, which we may regard as an R-tree by identifying

each edge with [0, 1] ⊆ R. Lift the labeling of Rn to T . Let H ≤ Fn be finitely generated; then H

acts (freely) on T ; as before, let TH denote the minimal invariant subtree for the action H y T .

We have an embedding TH/H =: ΓH → T/H, and the restriction fH of the covering f : T/H → Rn

to ΓH is an immersion. The immersion fH : ΓH → Rn is called the core Stallings graph for H with

respect to the basis A. The immersion fH : ΓH → Rn differs from the usual Stallings graph in that

there is no “base point” involved; hence ΓH provides information about the conjugacy class of H,

rather than H.

Let Γ be a directed graph, labeled by elements of A. One says that Γ is folded if for every

vertex v ∈ V (Γ) and every ai ∈ A, there is at most one each of incoming and outgoing edges
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labeled by ai at v. Choose a base vertex v0 ∈ Γ, and let ∗ denote the vertex of Rn. There is a

map f = f(Γ, v0) : (Γ, v0)→ (Rn, ∗), which is an immersion as long as no vertex other than v0 has

valence-1. Any finitely generated subgroup H ≤ Fn is represented by such an immersion: choose

a basis {h1, ..., hk} for H, and let wi be the unique reduced work in A representing hi, and let |.|

denote word length. Subdivide the ith edge of Rk into |wi| segments and label these segments by

wi to get a pointed, labeled, directed graph (Γ0, ∗). Then Γ0 is homotopy equivalent to a folded

graph, in which no vertex other than the image of ∗ has valence-1.

One says that a folded, labeled graph Γ is regular if for every vertex v ∈ V (Γ) and every

ai ∈ A, there are incoming and outgoing edges at v with label ai. In this case, the immersion

f : (Γ, v0)→ (Rn, ∗) is a covering.

2.6 Length Measures

Let T be an R-tree.

Definition 2.13. [23] A length measure (or just measure) µ on T is a collection µ = {µI}I⊆T of

finite positive Borel measures on the finite arcs I ⊆ T ; it is required that for J ⊆ I, µJ = (µI)|J .

As these measures are defined locally on finite arcs, all the usual measure-theoretic definitions

are similarly defined: a set X ⊆ T is µ-measurable if X ∩ I is µI -measurable for each I ⊆ T ; X has

µ-measure zero if X ∩ I is µI -measure zero for each I; and so on. The Lebesgue length measure,

denoted µL, on T is the collection of Lebesgue measures on the finite arcs of T . If T is equipped with

an action of a group G, then we say that a measure µ is G-invariant if µI(X ∩ I) = µgI(gX ∩ gI)

holds for each µ-measurable set X and each g ∈ G. Note that if the action Gy T is by isometries,

then the Lebesgue measure is invariant. We let M(T ) = M(G y T ) stand for the set of invariant

measures on T .

Suppose that Gy T is an action by isometries, with G a countable group. Say that the action

is finitely supported if there is a finite subtree K ⊆ T such that any finite arc I ⊆ T may be covered

by finitely many translates of K by elements of G; in this case, we say that the action G y T is

supported on K. Note that, if G is finitely generated, then any minimal action G y T is finitely

supported.
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Let K be a compact topological space.

Definition 2.14. A collection Γ of homeomorphisms between subsets of K is called a pseudogroup

if the following are satisfied:

(1) the identity mapping is an element of Γ,

(2) if γ ∈ Γ, then γ−1 ∈ Γ, where Dom(γ−1) = Ran(γ),

(3) if γ1, γ2 ∈ Γ, then γ1 ◦ γ2 ∈ Γ

(4) if γ1, γ2 ∈ Γ, and if γ1(x) = γ2(x) for all x ∈ Dom(γ1) ∩ Dom(γ2), then if γ1 ∪ γ2 is a

homeomorphism, then γ1 ∪ γ2 ∈ Γ, and

(5) if γ1 ∈ Γ, then the restriction of γ1 to any Borel subset of Dom(γ1) is in Γ.

We say that {γ1, ..., γk, ...} generate Γ if any γ ∈ Γ can be obtained from the γi via the operations

in the definition of a pseudogroup. A measure µ on K is said to be Γ-invariant if for any measurable

X ⊆ K, we have µ(X ∩ dom(γ)) = µ(γ(X ∩ dom(γ))) for each γ ∈ Γ. We let M(K) = M(Γ,K)

stand for the set of Γ-invariant measures on K.

Let G y T be an isometric action supported on the finite subtree K ⊆ T . We consider the

(countably generated) pseudogroup Γ := {g|K′ : g ∈ G,K ′ ⊆ K, gK ′ ⊆ K} of restrictions of

the isometries G to Borel subsets of K. Since the action is supported on K, there is a bijective

correspondence between M(T ) and M(K).

A non-trivial measure µ ∈M(T ) is called ergodic if any G-invariant subset is either full measure

or zero measure. A G-tree T is called uniquely ergodic if there is a unique, up to scaling, G-invariant

measure µ on T ; in this case µmust be ergodic. LetM0(T ) denote the set of non-atomic, G-invariant

measures on T , and let M1(T ) := {ν ∈ M0(T )|ν ≤ µL}. Note that both M0(T ) and M1(T ) are

convex.

Proposition 2.15. [23, Corollary 5.4] Let T ∈ cvn be with dense orbits. Then M0(T ) is a finite

dimensional convex set, which is projectively compact. Moreover, T has at most 3n − 4 non-

atomic ergodic measures (up to homothety), and every measure in M0(T ) is a sum of these ergodic

measures. Further M1(T ) is compact.
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2.6.1 Finite Systems of Isometries

A (closed) finite tree is a tree that is the convex hull of a finite set; a finite forest is a finite union

of finite trees. A finite pseudogroup is a finitely generated pseudogroup S = (F,A), where F is a

finite forest. Let S = (F,A) be a finite pseudogroup generated by A = {a1, ..., an}; we require that

dom(ai) be a closed finite tree. For ai ∈ A, let Bi := dom(ai) × I; regard Bi as foliated by leaves

of the form {pt.} × I. Form the suspension Σ(S) of S from the disjoint union K tB1 t ...tBn by

identifying dom(ai)× {0} with dom(ai) and y = (x, 1) ∈ dom(ai)× {1} with ai(x). Put a relation

Rl on points of Σ(S), where x, y ∈ Rl if and only if x, y are contained in a leaf of some Bi; let Rl

be the smallest equivalence relation containing Rl; and regard Σ(S) as foliated by leaves that are

the classes of Rl. Note that for x ∈ K, the leaf l(x) containing x intersects K precisely in the orbit

S.x.

Let B denote the set of branch points of K, and let E denote the set containing all endpoints

of all dom(ai); put C := B ∪ E. A leaf l of Σ(S) is called singular if l ∩ C 6= ∅; any leaf that is

not singular is called regular. Suppose that Σ(S) contains a finite regular leaf l = l(x), then for

y ∈ K close to x, l(y) is finite and regular. It follows that there are y1, y2 ∈ K with x ∈ [y1, y2] and

d(y1, y2) maximal, such that for z ∈ (y1, y2), l(z) is finite and regular. Hence, Fx := ∪z∈(y1,y2)l(z)

is a (y1, y2)-bundle over some leaf l(z) ∈ Fx. The set Fx is called a maximal family of finite orbits,

and the transverse measure of Fx is d(y1, y2). Evidently, l(yi) are singular, so there are finitely

many maximal families of finite orbits in Σ(S). This gives a coarse decomposition of Σ(S), which

is the starting point for a refined decomposition of Σ(S), see [21] for the statement as well as for

details regarding the above discussion.

Suppose that S = (F,A) is a finite pseudogroup; define the following:

1. m := total measure of F

2. d := the sum of measures of domains of generators

3. e := the sum of transverse measures of maximal families of finite orbits.

We regard m, d, and e as functions {finite pseudogroups} → R. Say that S has independent

generators if no reduced word in the generators A and their inverses defines a partial isometry of

F that fixes a non-degenerate arc.
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Proposition 2.16. [21, Proposition 6.1] Let S, F , A as above, and suppose that S has independent

generators, then e(S) + d(S) = m(S).
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Chapter 3

Irreducible Endomorphisms

Let φ : Fn → Fn be an endomorphism. The outer class of φ is the set Φ := {ιg ◦ φ|g ∈ Fn}, where

ιg is the inner automorphism ιg(f) = gfg−1; we call Φ an outer endomorphism. We will frequently

be discussing both outer classes of endomorphisms and particular endomorphisms in a class; we

will always use capital letters to denote outer classes and lower case letters to denote particular

endomorphisms, surpressing futher comment when confusion is unlikely to arise. Further, we will

frequently take liberties in replacing φ by a power with little or no comment, as throughout we are

studying asymptotic behavior.

3.1 Train Tracks

3.1.1 Topological Representatives

This subsection closely follows [6], to which the reader should refer for details. The (n-petal)

rose is Rn := ∨ni=1S
1, the wedge of n copies of S1; once and for all, we make the identification

Fn = π1(Rn). A marked graph is a finite graph G of rank n, along with a homotopy equivalence

τ : Rn → G; this gives an action of Fn on G̃ by deck transformations, hence an identification of

π1(G) with Fn. This action is well-defined up to conjugation, i.e. up to choosing a preferred lift

of a base point in G. Denote by V = V (G) = {v1, ..., vl} and E = E(G) = {e1, ..., ek} the sets of

vertices and edges of G, respectively.

Let Φ be an outer endomorphism of Fn, and let G be a marked graph. A map f : G→ G is a

topological representative for Φ if:

• f(V ) ⊆ V ,

• for any e ∈ E, f |e is either locally injective, or f(e) is a vertex, and
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• f induces Φ.

Topological representatives always exist; one can take the obvious map with G = Rn. Fix a

topological representative f : G→ G. The transition matrix of f is the k × k matrix M(f) whose

(i, j)-entry is the number of times the f -image of ej crosses ei (in either direction). Any transition

matrix is a non-negative integral matrix, and it is evident that M(f)r = M(f r). We say that a

non-negative integral matrix M is (fully) irreducible if:

• for any (i, j), there is N(i, j) such that (MN(i,j))i,j > 0, and

• the prior condition holds for any power of M .

A subgraph G0 ⊆ G is called invariant if f(G0) ⊆ G0. The topological representative f is

admissible if there is no invariant non-degenerate forest.

Definition 3.1. [6] An endomorphism φ : Fn → Fn is irreduicble if any admissible topological

representative for Φ has irreducible transition matrix.

A free factor system F for Fn is a decomposition Fn = Fn1 ∗ ... ∗ Fnr ∗ F ′, where each Fni is

a non-trivial proper subgroup. An endomorphism ψ : Fn → Fn preserves F if ψ(Fni) ≤ F gini for

some elements gi ∈ Fn.

Lemma 3.2. [6] If φ : Fn → Fn be irreducible, then φ does not preserve any free factor system for

Fn.

Corollary 3.3. Let φ : Fn → Fn be an irreducible endomorphism. Then φ is injective.

Proof. An easy argument using Nielsen moves shows that ker(φ) contains a non-trivial free factor

of Fn; the corollary then follows from Lemma 3.2.

Let f : G → G be a topological representative with M(f) irreducible. A turn in G is a set

T = {ei, ej} of directed edges of G with a common initial vertex; a turn is degenerate if ei = ej .

The topological representative f induces a map Tf on the set of turns in G by sending an edge e to

the first edge in the path f(e). A non-degenerate turn T is called illegal if (Tf)r(T ) is degenerate

for some k. A turn is called legal if it is not illegal, and a path is called legal if it crosses only legal

turns. For any path α in G, denote by [f(α)] the immersed path homotopic to f(α) (rel endpoints).
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Definition 3.4. [6] An admissible topological representative f : G→ G for Φ is a train track map

for Φ if [f r(e)] = f r(e) for every e ∈ E.

3.1.2 Train Tracks and the Stable Tree

The following result is proved in [6] for irreducible outer automorphisms of Fn; however, with no

modification their proof works for all irreducible endomorphisms. This result is established by

different means by Dicks-Ventura in [18].

Proposition 3.5. [6, 18] Let φ : Fn → Fn be irreducible, then Φ has a topological representative

that is a train track map.

The Perron-Frobenius theory gives for any any irreducible matrix M a unique positive normal-

ized eigenvector v with associated eigenvalue λ > 1 (see [42]). Let φ : Fn → Fn be irreducible, and

let f : G→ G be a train track representative for φ. We equip G with the Perron-Frobenius metric:

identify edge ei with the segment of length vi. With this metric, the map f expands lengths of

legal paths by the factor λ. For g ∈ Fn we let αg stand for the immersed loop representing [g].

Lemma 3.6. [3] Let φ : Fn → Fn be irreducible, and let f : G→ G be a train track representative

for Φ with Perron-Frobenius eigenvalue λ. For g ∈ Fn put

lTΦ
(g) := lim

k
λ−kL([fk(αg)])

Then the following hold:

(i) lTΦ
is the length function for an R-tree TΦ ∈ cvn,

(ii) TΦ is independent of the choice of train track representative, and

(iii) lTΦ
(φ(g)) = λΦlTΦ

(g),

Let φ : Fn → Fn be irreducible, and let f : G → G be a train track representative for Φ with

associated Perron-Frobenius eigenvalue λ. Note that it follows from that above lemma that λ is

determined by Φ. Equip G with the Perron-Frobenius metric, and put T0 := G̃ with the lifted

metric. Let f̃ : T0 → T0 be a lift of f ; the choice of f̃ amounts to choosing some representative

26



ψ ∈ Φ, and we prefer to take f̃ corresponding to φ when convenient. Note that for any g ∈ Fn,

one has f̃(gx) = φ(g)f̃(x). Let T ′k denote the minimal Fn-invariant subtree of T0 with the action

twisted by φk; so T ′k = f̃k(T0). Define Tk to be T ′k with the metric rescaled by λ−k. The sequence

of Fn-trees (Tk) converges in the Gromov-Hausdorff topology to the tree TΦ. The map f̃ : T0 → T0

gives maps fk : Tk → Tk+1, which give rise to a map fφ : TΦ → TΦ satisfying:

• Length(fφ([x, y])) = λΦLength([x, y]),

• fφ(gx) = φ(g)fφ(x)

Definition 3.7. The tree TΦ is called the stable tree of Φ.

Any endomorphism ψ : Fn → Fn acts (on the right) on the set of Fn-trees via

lTψ(g) = lT (ψ(g))

If one restricts attention to a space X of nontrivial trees such that φ acts on X, then the action

of φ on X gives an action on the set of projective classes of trees coming from X. If [T ]ψ = [T ],

then Tψ is Fn-equivariantly isometric to T with the metric rescaled by some number c. This data

is witnessed by a function H : T → T satisfying:

• Length(H([x, y])) = cLength([x, y]),

• H(gx) = ψ(g)H(x)

Call such a map H a ψ-compatible c-homothety, or just a homothety if ψ and c are clear from

context (see [19]). Conversely, if Y is an Fn tree, η : Fn → Fn some endomorphism, then the

existence of a η-compatible homothety H : Y → Y implies that [Y ]η = [Y ]. The map fφ : TΦ → TΦ

is a φ-compatible λΦ-homothety, so [TΦ]φ = [TΦ].

3.1.3 Expansive Endomorphisms

Definition 3.8. Fix a basis B for Fn. An endomorphism φ : Fn → Fn is expansive with respect to

B if for any real number L there is a number K such that for any 1 6= g ∈ Fn, one has ||φk(g)||B ≥ L

whenever k ≥ K.
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The definition of expansive involves a particular basis for Fn; however, it is clear that if an

endomorphism is expansive with respect to some basis then it is expansive with respect to any

basis. The following lemma is an easy application of the definition of a train track map.

Lemma 3.9. [3] Let f : G→ G be a train track map with associated eigenvalue λ, and let p be a

path in G. Then the sequence L([fk(p)]) either is uniformly bounded or grows like Const.λk.

Corollary 3.10. Let φ : Fn → Fn be irreducible, and suppose that φ is expansive. Then TΦ is free.

Proof. Considering Lemma 3.9 and the construction of TΦ we see that an elements g ∈ Fn is elliptic

in TΦ if and only if the conjugacy class of g is represented by a loop αg in G such that the length

of [fk(αg)] is uniformly bounded. If φ is expansive, this is only possible for g = 1.

We now establish a dichotomy for irreducible endomorphisms of the free group. The result

follows easily from a theorem of M. Takahasi [45](see also [29]), but we include a proof, as the

techniques are relevant to the sequel.

Proposition 3.11. Let φ : Fn → Fn be irreducible, then either φ ∈ Aut(Fn) or φ is expansive.

Proof. Suppose that φ : Fn → Fn is irreducible and not expansive. Let Sk = S(φk(Fn)) denote the

Stallings subgroup graph of φk(Fn), and let xk ∈ Sk be the base point (see [29] for background).

Denote by ik the injectivity radius of Sk (with the simplicial metric). Since φ is not expansive, it

follows that the sequence (ik)k∈N is bounded. Hence, by replacing φ by a suitable power, we can

find a labeled graph S′ with basepoint x′ ∈ S′ along with embeddings fk : S′ → Sk sending x′ to

the projection of xk onto the image of fk.

Let f : G→ G be a train track representative for Φ. Since the action Fn y R̃n is quasi-isometric

to the action Fn y G̃, after replacing φ by a power if necessary, we get that the collection of

subgraphs of Sk that are unions of short loops gives rise to a collection of subgroups that invariant

under φ up to conjugacy. Each of these subgroups is a free factor of Fn as its conjugacy class

corresponds to a subgraph of each Sk for k >> 0, which implies that there is a free factorization of

Fn mapping onto this collection. Since φ is injective and irreducible, we get that S′ surjects onto

each Sk so that φ is an automorphism.
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Remark 3.12. The above proof shows that for any endomorphism ψ : Fn → Fn that is not

expansive, after possibly replacing ψ by a power, we can find a collection of free factors Fn1 , ..., Fnr

of Fn that are preserved by ψ up to conjugacy such that the restriction of ψ to each Fni is an

automorphism. In this case, there are inner automorphisms ιgni such that ∩k(ιgni ◦ψ)k(Fn) = Fni.

3.2 Graphs of Actions

To begin in earnest our study of the structure of stable trees of irreducible endomorphisms, we recall

the following notion of decomposability for group actions on trees. Let G be finitely generated group

acting on an R-tree T .

Definition 3.13. A G-invariant family Y = {Yv}v∈V of non-degenerate subtrees Yv ⊆ T is called

a transverse family for the action G y T if for Yv 6= Yv′, one has that Yv ∩ Yv′ contains at most

one point.

Note that if Y is a transverse family for the action G y T , we may replace each Yv by its

closure in T ; the resulting collection also will be a transverse family. Let {Yv}v∈V is a transverse

family of closed subtrees of T . If, in addition, for any finite arc I ⊆ T , one has that I is contained

in a finite union Yv1 ∪ ... ∪ Yvr , then the collection Y is called a transverse covering of T [25].

Definition 3.14. [32, 25] A graph of actions G = (S, {Yv}v∈V (S), {pe}e∈E(S) consists of:

(i) a simplicial tree S, called the skeleton, equipped with an action (without inversions) of G,

(ii) for each vertex v ∈ V (S) of S an R-tree Yv, called a vertex tree, and

(iii) for each oriented edge e ∈ E(S) with terminal vertex v ∈ V (S) a point pe ∈ Yv, called an

attaching point.

It is required that the projection sending Yv → pe is equivariant and that for g ∈ G, one has

gpe = pge. Associated to a graph of actions G is a canonical action of G on an R-tree TG : define a

pseudo-metric d on
∐
v∈V (S) Yv: if x ∈ Yu, y ∈ Yv, let e1...ek be the reduced edge-path from u to v

in S, i.e. ι(e1) = u, τ(ek) = v, and τ(ei) = ι(ei+1), then
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d(x, y) = dYu(x, pe1) + dYτ(e1)
(pe1 , pe2) + ...+ dYv(per , y) (3.1)

Making this pseudo-metric Hausdorff gives an R-tree, called the dual of G , which we denote by

TG . If T is an R-tree equipped with an action of G by isometries, and if there is an equivariant

isometry T → TG to the dual of a graph of actions, then we say that T splits as a graph of actions.

See [24, 32] for details.

The following result shows that graphs of actions and transverse coverings are equivalent ideas.

Lemma 3.15. [25, Lemma 1.5] Assume that T splits as a graph of actions with vertex trees

{Yv}v∈V (S), then {Yv}v∈V (S) is a transverse covering for T . Conversely, if T has a transverse

covering {Yv}v∈V , then T splits as a graph of actions whose non-degenerate vertex trees are {Yv}v∈V .

We now recall a sketch of the proof of the second statement of Lemma 3.15. Suppose that

the action G y T has transverse covering Y = {Yv}v∈V ; we find a graph of actions structure for

Gy T . First we define the skeleton S; V (S) = V0 ∪V1, where the elements of V0 are in one-to-one

correspondence with the elements of Y , and the elements of V1 are in one-to-one correspondence

with intersection points of distinct elements of Y . There is an edge from v1 ∈ V1 to v0 ∈ V0 if and

only if the point corresponding to v1 is contained in the tree corresponding to v0. One checks that

there is an induced action of G on S without inversions and that association given above of trees

to the elements of V (S) defines a graph of actions structure on Gy T (see [25]).

The following is a simple application of the preceding discussion.

Lemma 3.16. Let G y T be an action of a finitely generated group on an R-tree, and suppose

that T = {Tv}v∈V is a transverse covering for G y T . If the action G y T is free, then each

Stab(Tv) is a free factor of G.

Proof. Let G = (S, {Tv}v∈V (S), {pe}e∈E(S)) be the graph of actions structure on G y T defined

above. Note that edge stabilizers in the action G y S arise from stabilizers of attaching points.

Since G y T is free, edge stabilizers in G y S are trivial. Since vertex stabilizers in G y S

correspond to the stabilizers of the trees Yv, we see from the Bass-Serre theory that each such

stabilizer is a free factor of G.
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To conclude this section, we state the following result of Levitt.

Proposition 3.17. [32, Theorem 5] Let G y T be an action of a finitely generated group on an

R-tree; suppose that the action is not simplicial and not with dense orbits. Then G y T splits

as a graph of actions G = (S, {Tv}v∈V (S), {pe}e∈E(S), where each Tv is either a finite segment or

Stab(Tv) y Tv is with dense orbits.

If T ∈ cvn does not have dense orbits, then there is some discrete orbit; according to the above

result the union of discrete orbits in T is a forest F with a positive lower bound on the diameter of

each component. The set of components of T \ F consists of finitely many orbits of subtrees of T ,

such that the stabilizer of each component acts on it with dense orbits. The union of components

of T \ F with closures of components of F is a transverse covering of the action Fn y T . We call

the set of closures of components of F the simplicial part of T .

Remark 3.18. Graphs of actions are ubiquitous in the sequel, so it seems appropriate to give a

bit of motivation; for this we reach to the source of the idea. The definition of a graph of actions

generalizes the decomposition of a tree dual to surface lamination that comes from the decomposition

of the lamination into its minimal components. Indeed, if a surface S is equipped with measured

lamination (L, µ), and if T is the R-tree dual to (L, µ), then there is, for each sublamination L′ of

L, a transverse family TL′ of subtrees in T that are dual to the various lifts of L′ to S̃. It is easy

to see that if L1, ..., Lk are the minimal sublaminations of L, then there is a transverse covering,

namely T = TL1 ∪ ...∪TLk , of T , containg k orbits of trees; this corresponds to the decomposition

of L into minimal components.

3.3 Structure of the Stable Tree

In this section we investigate the structure of the stable tree of an irreducible non-surjective endo-

morphism of Fn; the first step is to show that if some orbit is discrete, then every orbit must be

discrete. To that end we recall the following result of Levitt-Lustig:

Lemma 3.19. [34, Corollary 2.5] Let T ∈ cvn have dense orbits. Given p ∈ T and ε > 0, there is

a basis {a1, ..., an} of Fn such that Σn
i=1d(p, aip) < ε.
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The next lemma is our first step in characterizing the structure of the stable tree of an irre-

ducible, non-surjective endomorphism of Fn.

Lemma 3.20. Let φ : Fn → Fn be an irreducible endomorphism, and let TΦ be its stable tree.

Then either the action Fn y TΦ has dense orbits or Fn y TΦ is free and simplicial.

Proof. In the case that φ ∈ Aut(Fn) this result follows from [3]. Hence, in light of Proposition

3.11, we may assume that φ is expansive, and by Corollary 3.10 we have that TΦ is free. Toward a

contradiction we assume that the action Fn y TΦ is not discrete but does not have dense orbits. In

this case Corollary 3.17 gives that Fn y TΦ splits as a graph of actions with vertex trees simplicial

edges or trees with dense orbits.

Put T = TΦ, and let f : T → T be a homothety witnessing [T ]φ = [T ]. Immediately one has that

for ε > 0, φ takes elements of ε-short translation length to elements of λε-short translation length.

Recall that the action Fn y Tφ is precisely the action φ(Fn) y Tφ(Fn) of φ(Fn) on its minimal

invariant subtree Tφ(Fn). There are finitely many orbits of vertices in the skeleton of the graph of

actions structure on T ; each vertex group either acts with dense orbits on the corresponding vertex

tree or is trivial, in the case that the corresponding vertex tree is contained in the simplicial part

of T .

Let G = (S, {Tv}v∈V (S), {pe}e∈E(S)) be the graph of actions structure on T guaranteed by

Proposition 3.17 and described above. As the action Fn y T is free, the action Fn y S is a free

decomposition of Fn. Choose representatives V1, ..., Vr of conjugacy classes of vertex groups with

Vi = Stab(Tvi) such that the action Vi y Tvi has dense orbits. According to Lemma 3.19, for any

ε > 0 and points pi ∈ Tvi , we can find bases Bi for Vi such that Σb∈Bid(pi, bpi) < ε. Taking ε small

with respect to the minimal length of a simplicial edge in T and recalling Formula 3.1, we see that

each Bi is mapped under φ into a single vertex group of the graph of actions structure on Fn y T .

Since there finitely many conjugacy classes of these vertex groups, it follows that there is some Vj

such that φ(Vj) ≤ V g
j for some g ∈ Fn; by Lemma 3.2, we arrive at a contradiction to irreducibility

of φ.

Let T be a tree with base point x ∈ T . To each x 6= y ∈ T , there is associated a (one-sided)

cylinder Cx(y) that consists of rays ρ in T based at x that contain the segment [x, y]. The cylinder

Cx(y) is regarded as a subset of ∂T .
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To complete this section, we bring the following result, ruling out the possiblity that the stable

tree T of a non-surjective irreducible endomorphism φ could have dense orbits. The proof of this

result contains a characterization of the dynamics of ∂φ acting on ∂Fn (Corollary 3.22), which we

see to be incompatible with the existence of a map Q for T (refer to Subsection 2.4).

Proposition 3.21. Let φ : Fn → Fn be an irreducible endomorphism, and assume that φ /∈

Aut(Fn). Then TΦ is free and simplicial.

Proof. Put T = TΦ, f = fφ : T → T , λ = λΦ, and note that since φ is not an automorphism, we

have λ > 1 and that φ is expansive. Further, by Corollary 3.10, TΦ is free, and by Lemma 3.20 TΦ

either has dense orbits, or TΦ is simplicial.

Toward a contradiction suppose that the action Fn y T is free with dense orbits. By [20] there

are finitely many Fn-orbits of branch points in T and finitely many orbits of directions at branch

points in T . By the equation f(gx) = φ(g)f(x) we have that f induces a well-defined map on the

set of orbits of branch points in T . By replacing f with some power, we get a branch point x ∈ T

such that f(x) = gx, for some g ∈ Fn. Replace f by g−1f , which is easily seen to be a homothety

representing ιg−1 ◦φ. This gives f(x) = x. As the map f is a homothety, it is injective; since there

are finitely many directions at x, we may replace f by a power to ensure that f fixes each direction

at x.

Let d be some direction at x, and let ρ be a ray in T based at x in direction d. It follows that

there is y ∈ d such that [x, y] ⊆ f(ρ) ∩ ρ. Since f is a λ-homothety and since λ > 1, we can find a

sequence yk ∈ d such that fk([x, yk]) = [x, y]. It follows that [x, y] ⊆ ∩kfk(T ).

Let Q = QT : ∂Fn → T be the map defined in Proposition 2.6. Recall that Q is Fn-equivariant

and surjective, so for any z ∈ [x, y] the set Q−1(z) ⊆ ∂Fn is non-empty, and by Lemma 2.9 Q−1(z)

is compact. The commutativity of the below diagram follows easily from the definition of the map

Q; see Subsection 2.4.

∂Fn
∂φ //

Q

��

∂Fn

Q

��
T

h // T

By definition (∂φ)k(∂Fn) = ∂φk(Fn). As [x, y] ⊆ ∩kfk(T ), for each z ∈ [x, y], we have that the

sets Zk := Q−1(z) ∩ (∂φ)k(∂Fn) form a nested sequence of non-empty compact subsets of ∂Fn,
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so Z := ∩kZk is non-empty. Hence, ∂φ(∪z∈[x,y]Z) = ∪z∈[x,y]Z ⊆ ∩k∂(φk(Fn)); in particular,

∩k∂(φk(Fn)) is infinite. We show that this is impossible.

Fix a Cayley tree T ′ for Fn. Let S′k := S(φk(Fn)) be the Stallings subgroup graph for φk(Fn),

and let Sk := Core(S′k) be the core of S′k (see [29]). A fundamental domain for the action φk(Fn) y

T ′
φk(Fn)

can be got by “unfolding” Sk in Tφk(Fn), and such a fundamental domain is the union of

exactly 2n (possibly overlapping) segments eminating from 1 ∈ T ′. It follows that ∂φk(Fn) is

contained in the union of 2n cylinders, say C1,k, ..., C2n,k. Let gi,k ∈ Fn be chosen to define Ci,k.

Notice that since φ is expansive we have for any N some k(N) such that lT ′(gi,k(N)) ≥ N for

each i. It follows that ∩k(∪iCi,k) is a finite set; on the other hand ∩k∂(φk(Fn)) ⊆ ∩k(∪iCi,k), a

contradiction.

As the dynamics of ∂φ acting on ∂Fn is of independent interest, we include the following

corollary, which follows immediately from the above proof.

Corollary 3.22. Let φ : Fn → Fn be an irreducible endomorphism, and assume that φ is not an

automorphism. The induced map ∂φ : ∂Fn → Fn has finitely many fixed points X1, ..., Xr such that

r ≤ 2n, and each Xi is attracting. If N ⊆ ∂Fn is some compact neighborhood of {X1, ..., Xr} then

there is K such that (∂φ)k(∂Fn) ⊆ N for any k ≥ K.

The following corollary is a restatement of Proposition 3.21 in the language of train tracks.

Corollary 3.23. Let φ : Fn → Fn be an irreducible endomorphism, and assume that φ is not an

automorphism. Then Φ is topologically represented by a train track map with no illegal turns.

Proof. From Proposition 3.21 we have that the action Fn y TΦ is free and simplicial. Let f :

TΦ → TΦ be a homothety witnessing the fact that [TΦ]φ = [TΦ]; then f descends to a map

f : TΦ/Fn → TΦ/Fn that is easily seen to be a simplicial immersion inducing Φ, i.e. a train track

representative with no illegal turns.

3.4 Dynamics on CVn

In this section we classify the dynamics of an irreducible non-surjective endomorphism φ acting on

CVn. Recall that, in this case, by Proposition 3.11, we have that φ is expansive; and by Proposition

3.21 there is a fixed point for the action, namely [TΦ].
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3.4.1 The Stable Lamination

Let φ : Fn → Fn be irreducible. Following [3] we associate to Φ an algebraic lamination. Let

f : G → G be a train track representative for Φ with transition matrix M = M(f), and equip G

with the Perron-Frobenius metric (see Subsection 3.1.2). By Corollary 3.23, we can assume that f

is an immersion.

Let ei ∈ E(G); by irreducibility of M , there is a natural number k such that the (i, i)-entry of

Mk is non-zero. Since Mk = M(fk), this gives that the f -image of ei crosses ei. This gives a fixed

point x of fk in the interior of ei. LetN(x) be a small ε-neighborhood of x in the interior of ei. There

is a unique orientation-preserving isometry l0 : (−ε, ε)→ N(x) : 0 7→ x. Each f r|ei is an immersion;

hence, there are unique orientation-preserving isometric immersions ln : (−λnkε, λnkε)→ G : 0 7→ x

satisfying ln(y) = fk(ln−1(λ−ky)). The sequence (ln) gives an isometric immersion l : R→ G that

is fk-invariant in the sense that fk ◦ l : R→ G is a reparametrization of l.

Let LΦ stand for the set of isometric immersions l′ : R→ G obtained via the above procedure;

this set is essentially the lamination defined in [3]. The marking τ : Rn → G gives a free action of

Fn = π1(Rn) on G̃, which gives an identification ∂Fn ∼= ∂G. This gives a homeomorphism from the

space of immersed lines in G̃ (with the weak topology) to ∂2Fn. For any l ∈ LΦ there are various

lifts of l to G̃, and the collection of lifts to G̃ of lines l ∈ LΦ evidently gives an Fn-invaraiant

subset LΦ ⊆ ∂2Fn. The stable lamination of Φ, denoted ΛΦ, is defined to be the smallest algebraic

lamination containing LΦ.

3.4.2 The Convergence Criterion

In this subsection we state a result of Bestvina-Feighn-Handel from [3] that gives a sufficient

condition on a tree T ∈ cvn to ensure that [T ]φk converges to [TΦ]; this will immediately give a

dynamics statement for an irreducible, non-surjective endomorphism acting on Outer space.

Let T0 ∈ cvn and T ∈ cvn; an equivariant map f : T0 → T has bounded backtracking if there

is a constant C such that the f -image of a segment [p, q] is contained in the C-neighborhood of

the segment [f(p), f(q)]. The smallest such C is called the backtracking constant of f , denoted

BBT (f). It is a fact that for T0, T , and f as above, it is always the case that f has bounded

backtracking (see [34] and the references therein).
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Proposition 3.24. [3][34, Proposition 6.1] Let T ∈ cvn. Suppose that there is a tree T0 ∈ cvn,

an equivariant map f : T0 → T , and a bi-infinite geodesic γ0 ⊆ T0 representing a leaf of ΛΦ such

that f(γ0) has diameter greater than 2BBT (f). Then f(γ0) has infinite diameter and there exists

a neighborhood V of [T ] in CV n such that φp|V converges uniformly to [TΦ].

We cite the result of [34], as it is completely clear that their proof works in our context; Propo-

sition 6.1 is proved for laminations associated to irreducible outer automorphisms of Fn, but the

proof goes through without modification for the case of non-surjective irreducible endomorphisms.

Actually, the proof could be simplified by considering only the case of an irreducible expansive

endomorphism, as one has in this case the luxury of a train track representative with no illegal

turn.

Proposition 3.24 can be restated in terms of dual laminations. Let T ∈ cvn have dense orbits.

For any ε > 0, Proposition 2.2 of [34] ensures the existence of a simplicial tree T0 ∈ cvn and an

equivariant map f : T0 → T with BBT (f) < ε. If Z = (X,Y ) ∈ ∂2Fn is some point such that

for all f with small backtracking, a line representing Z in T0 is sent under f to a small diameter

subset of T , then Z ∈ L2(T ). Hence, we may apply Proposition 3.24 to get convergence for a tree

T ∈ cvn as long as some leaf of ΛΦ is not contained in L2(T ); note that by irreducibility of φ, if

some leaf of ΛΦ is contained in L2(T ), then every leaf of ΛΦ is contained in L2(T ).

Corollary 3.25. Let φ : Fn → Fn be irreducible and non-surjective. For any [T ] ∈ CVn, we have

[T ]φk → [TΦ].

Proof. For any T ∈ cvn and any Z ∈ ∂2Fn, Z is represented by an infinite line in T ; the result

follows by applying Proposition 3.24.

The convergence of Corollary 3.25 is uniform on compact subsets of CVn; the goal of the next

several sections is to show that the convergence is actually uniform over all of CVn. The next

section deals with obvious obstructions.

3.5 Endomorphisms Acting on CV n

It is evident that φ acts on CVn as long as φ is injective. However, for a tree T ∈ cvn, it could

be the case that Tφ is trivial even if φ is injective, and in this case φ would not act on CV n. The
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aim of this section is to first illustrate exactly how an endomorphism can fail to act on CV n and

to give a sufficient condition for an irreducible endomorphism to act on CV n.

3.5.1 Admissible Endomorphisms

Example 3.26. Let F3 = F (a, b, c), and define φ : F3 → F3 by:

a 7→ a

b 7→ bab−1

c 7→ b2ab−2

Suppose that T ∈ cv3 is the Bass-Serre tree of the splitting F (a, b, c) = 〈a, b〉 ∗ 〈c〉. The endomor-

phism φ is injective, but the tree Tφ is trivial, since φ(F3) fixes the vertex of T corresponding to

〈a, b〉.

The endomorphism φ does not act on CV 3, hence we must restrict attention to a proper

subsemigroup of the semigroup of injective endomorphisms of Fn.

Definition 3.27. An endomorphism φ : Fn → Fn is called admissible if for all T ∈ cvn, one has

that Tφ is non-trivial.

It follows from [22] that any very small action Fn y T with trivial arc stabilizers can be

approximated by a simplicial very small action Fn y T ′ such that a subgroup V ≤ Fn fixes a point

x ∈ T if and only if V fixes some vertex x′ ∈ T ′; hence we get the following characterization of

admissibility.

Lemma 3.28. An endomorphism φ : Fn → Fn is admissible if and only if for any simplicial tree

T ∈ cvn, one has that Tφ is non-trivial.

Lemma 3.28 shows that Example 3.26 is quite generic and immediately emphasizes the impor-

tance of vertex stabilizers in simplicial trees in cvn in the present context. Hence, we bring the

following:

Definition 3.29. A splitting of Fn is called very small if it corresponds to a simplicial tree in cvn.
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The following is a translation of [3, Definition 2.2] into the formalism of algebraic laminations.

Definition 3.30. Let H ≤ Fn be finitely generated; say that (the conjugacy class of) H carries a

point Z ∈ ∂2Fn if for any T ∈ cvn, there is g ∈ Fn such that Z ∈ ∂2THg .

The stable lamination ΛΦ and its relationship to the dual lamination L2(T ) of a tree T ∈ cvn

is of primary importance to us if we wish to apply the convergence criterion given by Proposition

3.24; hence, we now begin working to develop a characterization of admissibility involving only ΛΦ.

Lemma 3.31. Let T ∈ cvn, and let H ≤ Fn be finitely generated. Then TH = T if and only if H

is finite index in Fn.

Proof. Let T and H be as in the statement, and suppose that TH = T . First suppose that T = R̃n

is the “standard” Cayley tree for Fn = F (A), and regard T as a labeled directed tree. Then T/H

is a labeled directed finite graph, which is A-regular (see [29]), and choosing a basepoint in T/H

gives an immersion representing a subgroup H ′ ≤ Fn that is conjugate to H. As T/H is A-regular,

this immersion is a covering map, and it follows that H ′ is finite index in Fn; hence, H is finite

index in Fn.

Now let T ∈ cvn be arbitrary, and choose a spanning tree G0 ⊆ T/Fn; collapsing the lifts of G0

in T to points gives a map f : T → T0 onto a Cayley tree. By replacing H by its image under some

α ∈ Aut(Fn), we may suppose that T0 is the Cayley tree R̃n. It is easy to see that (T0)H = f(TH),

and so by above, we get that H is finite index in Fn.

Conversely, suppose that H ≤ Fn is finite index, so there is k such that for all f ∈ Fn, one has

fk ∈ H. Since A(fk) = A(f), it follows that TH = ∪16=h∈HA(h) = T .

3.5.2 The Admissibility Criterion

We now establish a characterization of admissibility in the case of irreducible endomorphisms; the

following lemma allows us to use the convergence criterion of Proposition 3.24 to understand the

action of an admissible irreducible endomorphism on the simplicial trees in CV n.

Proposition 3.32. Let φ : Fn → Fn be irreducible. Then φ is admissible if and only if no leaf of

ΛΦ is carried by a vertex group of a very small splitting of Fn.
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Proof. If φ is not admissible, then, by Lemma 3.28, there is some simplicial tree Y ∈ cvn, such

that Y φ is trivial. In this case some vertex group of the splitting corresponding to Y carries every

leaf of ΛΦ.

So, assume that φ is admissible. Put T := TΦ, and let f : T → T be the φ-compatible λ := λΦ

homothety of T . As in the proof of Proposition 3.21, after possibly passing to a power of f , we

may find a branch point x ∈ T that is fixed by f and such that every direction at x is fixed by f

as well. It is easy to see that there is, in each diretion at x, an infinite ray based at x that is fixed

setwise by f . Denote this infinite multipod by X; it follows that ∂2X ⊆ ΛΦ.

Toward a contradiction, suppose that some leaf of Λ = ΛΦ is carried by a vertex group V of

a very small splitting of Fn; without loss, we can assume that V is a vertex group of a one-edge

splitting. As φ is irreducible, we have that every leaf of Λ is carred by V (see [3]). The following

is easily verified:

Claim 3.33. Let H ≤ Fn be finitely generated, and let Y ∈ cvn. There is a constant C = C(H,Y )

such that if YH∩YHg has diameter greater than C, then YH∩YHg has infinite diameter, and H∩Hg

is non-trivial.

Note that if V is a vertex group of a very small 1-edge splitting and if V 6= V g with V ∩ V g

nontrivial, then V ∩ V g is cyclic and is conjugate to the edge group of the splitting.

Claim 3.34. No leaf of Λ is periodic: for any tree T ∈ cvn and any non-trivial g ∈ Fn, there is

a constant K = K(T, g) such that if l is a line in T representing a leaf of Λ, then the diameter of

l ∩A(g) is bounded above by K.

Proof. The existence of a periodic leaf would give an element f ∈ Fn such that φ(f) = hf rh−1 for

some r and some h ∈ Fn. If |r| = 1, expansivity of φ is contradicted. If |r| > 1, it follows from [2,

Lemma 4.1] that f is primitive, contradicting Lemma 3.2.

According to the above claims, after possibly replacing V with a conjugate, we have that

X ⊆ TV . As φ is irreducible, any line in X crosses every φ(Fn)-orbit of branch points in Tφ(Fn)

infinitely often. Let C = C(V, T ) be the constant guaranteed by Claim 3.33. By replacing φ by a

power if necessary, we can assume that branch points in Tφ(Fn) = f(T ) are separated by distance
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at least C. Suppose that c ∈ Fn is a generator for some (non-trivial) cyclic intersection V ∩ V f ,

and put K = K(T, c) as in Claim 3.34; increase C if necessary to ensure that C ≥ K.

Let y ∈ T be a branch point of Tφ(Fn) such that [x, y] contains no other branch points of Tφ(Fn).

By the above discussion, there is g ∈ Fn such that gTV contains an infinite multipod centered at y

that also contains the point x. Hence the diameter of Tv ∩ gTv is infinite and V ∩ V g is nontrivial.

If it were the case that V 6= V g, then V ∩ V g is cyclic; however, this is impossible by choice of C.

It follows that V = V g, and by iterating this argument, we get that Tφ(Fn) ⊆ TV .

Claim 3.35. Let Stab(TV ) denote the setwise stabilizer, then Stab(TV ) = V .

Proof. If Stab(TV ) 6= V , there is a finitely generated V ′ containing V such that TV ′ = TV . It

follows from Lemma 3.31 that V is finite index in V ′. Let Y be a Bass-Serre tree for a very small

splitting of Fn with vertex group V . It is easy to see that V ′ fixes the vertex of Y corresponding

to V , hence V ′ = V .

It follows from the above claim that for any finitely generated K ≤ Fn, if TK ≤ TV , then

K ≤ V . Therefore, we conclude that for some k, φk(Fn) ≤ V , contradicting admissibility of φ.

3.6 Convergence for Simplicial Actions and Graphs of Actions

In this section we apply Proposition 3.32 along with Proposition 3.24 to understand the action of

a non-surjective admissible irreducible endomorphism on tree that splits as a non-trivial graph of

actions.

3.6.1 Simplicial Actions in CV n

Proposition 3.36. Let φ : Fn → Fn be irreducible and non-surjective, and suppose that φ is

admissible. For any simplicial T ∈ cvn, one has [T ]φk → [TΦ].

Proof. By Proposition 3.32 we have that no leaf of ΛΦ is carried by a vertex group of a very small

splitting of Fn. By [7, Proposition 1.3] ∂Fn is naturally identified with the disjoint union of ∂T

with the union of boundaries of the vertex stabilizers. It follows that for any leaf Z ∈ ΛΦ and any

equivariant map f : T0 → T from a simplicial tree T0 to T , if l is a line in T0 representing Z, then

f(l) has infinite diameter in T . Convergence follows from Proposition 3.24.
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3.6.2 Graphs of Actions in CV n

Lemma 3.37. Let φ : Fn → Fn be irreducible, non-surjective, and admissible; let T ∈ cvn. There

is k such that Tφk is free.

Proof. Toward a contradiction suppose that there is T ∈ cvn such that for all i, Tφi is not free. By

[22] point stabilizers in T are vertex groups of a very small splitting of Fn; there are finitely many

orbits of points in T with nontrivial stabilizer, so finitely many conjugacy classes of such vertex

groups appear. Hence, we may find a sequences gk ∈ φik(Fn) and hk ∈ Fn, and a vertex group V

of a very small splitting of Fn such that ghkk ∈ V .

Again by [22], there is a simplicial tree T ′ ∈ cvn such that the set of point stabilizers in T is

equal to the set of vertex stabilizers in T ′. As ghkk fixes a point in Tφik , we have that ghkK fixes a

point in T ′φik . Since, TΦ is free, we arrive at a contradiction to Proposition 3.36.

We now consider trees in cvn that split as graphs of actions. Let T ∈ cvn, and suppose that

T splits as a grpah of actions T = TG , for G = (S, {Tv}v∈V (S), {pe}e∈E(S)) (refer to Section 3.2 for

definitions).

Lemma 3.38. Let φ : Fn → Fn be irreducible, non-surjective, and admissible; and let T ∈ cvn. If

T splits as a graph of actions, then [T ]φk → [TΦ].

Proof. Suppose that T splits as a graph of action G = (S, {Tv}v∈V (S), {pe}e∈E(S)). Let φ as in the

statement. According to Lemma 3.37, there is k such that the action Tφk is free. Keep in mind

that the action Tφk is equivariantly isometric to the action φk(Fn) y Tφk(Fn). Put Hl := φl(Fn),

and put Tl := Tφl; we regard the action Tl as a subaction of the action Fn y T ; namely, the action

Fn y Tl is precisely the action Hl y THl .

The subgroups Hl act on S, and it is evident that the union of vertex trees in T corresponding

to vertices of SHl give a transverse covering of Tl, whence Tl inherits a graph of actions structure

from G , with skeleton Sl := SHl . As Tk is free, the action Hl y Sl is with trivial arc stabilizers;

this is because arc stabilizers in the action Fn y S correspond to stabilizers of attaching points.

Thus it follows from Proposition 3.36 that there is M such that Hl y Sl is free for l ≥ M and

such that for any non-trivial h ∈ Hl, the translation length of h is at least two in the simplicial

metric on Sl. Hence, for l big enough, Sl is locally finite, and it follows from the distance formula
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for graphs of actions (Formula 3.1) that there is a positive lower bound for translation lengths of

non-trivial elements for the action Hl y Tl. Hence, for l big enough, Tl is free and simplicial, and

by Proposition 3.36 we have that [T ]φk → [TΦ].
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Chapter 4

Indecomposable Trees

4.1 Approximations of Trees

Fix a basis A for Fn and an action Fn y T ∈ cvn with dense orbits, and let µ ∈M(T ).

Definition 4.1. Say that the action Fn y T is supported µ-a.e. on a µ-measurable set X ⊆ T if

for any arc I ⊆ T and any δ > 0, there are g1, ..., gr ∈ Fn such that µ(I − (g1X ∪ ... ∪ grX)) < δ.

For a finite forest F ⊆ T , we write S = (F,A) to denote the pseudogroup generated by

restrictions of elements of A to F . Recall that µL denotes Lebesgue measure on T .

Lemma 4.2. Let T ∈ cvn be with dense orbits. For any ε > 0 and any finite forest K ⊆ T , there

are finite forests Fε and F such that:

(i) µL(Fε) < ε,

(ii) Fn y T is supported µL-a.e. on Fε

(iii) µL(F ∩K) > µL(K)− ε,

(iv) S = (F,A) satisfies m(S)− d(S) < ε

Proof. Let T , ε, and K as in the statement. By Proposition 2.15 we have that µL =
∑p

i=1 νi,

with each νi ergodic. Take Ji ⊆ T finite arcs such that νi(Ji) > 0 and
∑

i µL(Ji) < ε; put

Fε := ∪iJi. By ergodicity of the measures νi, we get that
⋃
g∈Fn gFε is a full measure subset of

T , so the action Fn y T is supported µL-a.e. on Fε. Hence, there are g1, ..., gr ∈ Fn such that

µL(K ∩ (∪igiFε)) > µL(K)− ε. Let S0 := (Fε, A) = (F0, A) the finite pseudogroup of restrictions of

elements of A to F0, and note that m(S0)− d(S0) ≤ µL(Fε) < ε. Define Fi := Fi−1 ∪
⋃
a∈A± aFi−1,

and let Si = (Fi, A). Immediately, one has m(Si)− d(Si) ≤ m(Si−1)− d(Si−1). The claim follows

by observing that for i ≥ max{|gi|A} we have ∪igiF0 ⊆ Fi.

43



Remark 4.3. If an action Fn y T ∈ cvn is indiscrete, but not with dense orbits, then T splits

as a graph of actions with vertex trees either finite arcs of T (the simplicial part of T ) or subtrees

Tv such that the action Stab(Tv) y Tv is with dense orbits (see [32, 25]). In this case, it follows

from the above argument that for any ε > 0, the action Fn y T is supported µL-a.e. on a finite

forest F ′ε with µL(F ′ε) < vol(T/Fn) + ε, where vol(T/Fn) = inf µL(S) with the infimum taken over

all measurable S ⊆ T projecting onto T/Fn under the natural map.

Definition 4.4. [37] A finitely generated subgroup H ≤ Fn is e-algebraically closed if for any

g ∈ Fn −H, one has 〈H, g〉 ∼= H ∗ 〈g〉.

Equivalently, H is e-algebraically closed if there is no non-trivial equation w(h, x) over H with

a solution w(h, g) for g ∈ Fn − H. Any free factor of Fn is necessarily e-algebraically closed;

further, if H ≤ Fn has rank r and is maximal in the poset of rank r subgroups of Fn, then H

is e-algebraically closed (see [37] for details). For the sequel, our interest in Definition 4.4 is that

free factors are e-algebraically closed; we work in the more general framework because the present

techniques potentially admit generalization; see the Remark 4.10.

Recall that for T an R-tree, equipped with an action of a group G, a G-invariant collection

{Tv}v∈V of non-degenerate proper subtrees of T is called a transverse family if whenever Tv 6= Tv′ ,

Tv ∩ Tv′ contains at most one point.

Lemma 4.5. Let T ∈ cvn be with dense orbits; let H ≤ Fn a finitely generated subgroup with

minimal invariant tree TH ⊆ T . Suppose that the action H y TH has dense orbits and that H is

e-algebraically closed. The family of translates {gTH}g∈F is a transverse family.

Proof. Let T and H as in the statement of the lemma. Note that since H is e-algebraically closed,

if H is a proper subgroup of Fn, then H is infinite index in Fn. If H = Fn, then the statement

is trivial, so we suppose that H has infinite index in Fn. Choose a basis B for H. Let F ⊆ TH

be a finite forest; since the action Fn y T has dense orbits and is very small, arc stabilizers are

trivial [34], so H y TH has trivial arc stabilizers as well. Hence, the pseudogroup S = (F,B)

generated by restrictions of the elements of B to F has independent generators; this follows from

the fact that any non-trivial word in B± represents a non-trivial element of H. Further, since H

is e-algebraically closed, it is the case that for any f ∈ Fn −H, we have 〈H, f〉 = H ∗ 〈f〉, so the

restrictions of B ∪ {f} to F give a finite pseudogroup with independent generators.
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Toward a contradiction, suppose that there is f ∈ F −H such that fTH ∩ TH contains more

than one point. Since the intersection of two trees is convex, we have that fTH ∩ TH contains a

non-degenerate arc I. Choose ε > 0 small with respect to µL(I). Set K := I∪f−1I; by Lemma 4.2,

we may find a finite forest F ⊆ TH such that µL(F ∩K) > µL(K) − ε and such that S = (K,B)

satisfies m(S)− d(S) < ε.

Now, consider S′ := (K,B∪{f}); as noted above, S′ has independent generators. On the other

hand, it is clear from the construction that m(S′)− d(S′) < 0, a contradiction to Proposition 2.16.

It follows that fTH ∩ TH contains at most one point for each f ∈ Fn − H, so {gTH}g∈Fn is a

transverse family.

Remark 4.6. The proof actually shows something stronger: if the action H y TH is indiscrete

and if H is e-algebraically closed, then for g ∈ Fn with gTH 6= TH , we have that any non-degenerate

intersection gTH ∩ TH is contained in the simplicial part of TH (See Remark 4.3).

Further, the proof shows that if H is e-algebraically closed and if H is a proper subgroup of Fn,

then TH is a proper subtree of T ; later (see Remark 4.12), we will see that for H finitely generated,

TH = T if and only if H is finite index in Fn.

4.2 Indecomposable Trees

Recall that a G-tree T is called indecomposable if for any non-degenerate arcs I, J ⊆ T , there are

elements g1, ..., gr such that J ⊆ g1I ∪ ... ∪ grI, and giI ∩ gi+1I is non-degenerate for i ≤ r − 1.

Lemma 4.7. If an action G y T is indecomposable, then there is no transverse family for the

action Gy T .

Proof. Suppose that the action G y T is indecomposable; and, toward contradiction, suppose

that {Tv}v∈V is a transverse family for the action G y T . Recall that each Tv is a proper, non-

degenerate subtree of T and that the collection {Tv}v∈V is G-invariant. Hence, we may find distinct

Tv, Tv′ along with an arc I ⊆ T such that I∩Tv and I∩Tv′ are non-degenerate. Define I0 := I∩Tv;

by indecomposability of the action G y T , there are g1, ..., gr ∈ G such that I ⊆ g1I0 ∪ ... ∪ grI0

with giI0 ∩ gi+1I0 non-degenerate. Without loss we may assume that g1I0 ∩ Tv and grI0 ∩ Tv′ are

non-degenerate. Since {Tv}v∈V is a transverse family and since giI0 ∩ gi+1I0 are non-degenerate,
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it follows that giI0 ⊆ Tv for each i. On the other hand, again since {Tv}v∈V is a transverse family

and since giI0 ∩ gi+1 ∩ I0 are non-degenerate, it follows that giI0 ⊆ Tv′ . This implies Tv = Tv′ , a

contradiction.

4.2.1 Lifting Indecomposability

We need the following technical result; an idea helpful for constructing the proof was communicated

to us by Vincent Guirardel.

Lemma 4.8. Suppose that the action Gy T is indecomposable and that H ≤ G is finitely generated

and finite index. Then the action H y T is indecomposable.

Proof. We remark that since H ≤ G is finite index, TH = T ; without loss, we may assume that

H is normal. For an arc I ⊆ T , define a subtree YI ⊆ T as follows. Put Y0 := I, and define

Yi+1 := Yi ∪
⋃
h hI, where the union is taken over elements h ∈ H such that hI ∩ Yi is non-

degenerate. Finally set YI := ∪iYi. Toward a contradiction assume that the action H y T is not

indecomposable; it follows that we may find a non-degenerate arc I ⊆ T such that YI ( T . By

construction, the collection {hYI}h∈H is a transverse family for the action H y T . The idea is to

use {hYi}h∈H to produce a transverse family for the action G y T , which will contradict Lemma

4.7.

Let {1 = g1, ..., gl} be a left transversal to H in G, and let [gi] denote the coset corresponding

to gi. Note that by indecomposibility of the action Gy T , there is g ∈ G−H such that gYI ∩YI is

non-degenerate and gYI 6= YI ; say g ∈ [gi]. Consider the collection of non-degenerate intersections

gYI ∩ hYI for g ∈ [gi] and h ∈ H. This collection is a transverse family for the action H y T ;

indeed, normality of H ensures invariance, so suppose that h(gih1YI ∩ h2YI) ∩ (gih3YI ∩ h4YI) is

non-degenerate. We have:

h(gih1YI ∩ h2YI) ∩ (gih3YI ∩ h4YI) = gih
′h1YI ∩ hh2YI ∩ gih3YI ∩ h4YI

= gi(h
′h1YI ∩ h3YI) ∩ (hh2YI ∩ h4YI)

As {hYI}h∈H is a transverse family for the action H y T , it follows that h′h1YI = h3YI and

hh2YI = h4YI . Hence h(gih1YI ∩ h2YI) = (gih3YI ∩ h4YI), as desired.
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Suppose that for any g ∈ G with g /∈ H ∪ [gi] every intersection of the form gYI ∩ gih1YI ∩

h2YI is degenerate. We claim that this implies that the family of G-translates of non-degenerate

intersections of the form gih1YI ∩ h2YI is a transverse family for the action G y T . Indeed, if

g /∈ H ∪ [gi], then g(gih1YI ∩ h2YI) ∩ (gih3YI ∩ h4YI) = ∅, and we have already checked that the

collection of translates of non-degenerate intersections of the form gih1YI ∩ h2YI is a transverse

family for the action of H. Hence, we are left to consider g ∈ [gi]; we have:

gih(gih1YI ∩ h2YI) ∩ (gih3YI ∩ h4YI) = g2
i h
′h1YI ∩ gihh2YI ∩ gih3YI ∩ h4YI

= gi(hh2YI ∩ h3YI) ∩ g2
i h
′h1YI ∩ h4YI

Since {hYI}h∈H is a transverse family for the action H y T , if the above intersection intersection

is non-degenerate, then hh2YI = h3YI , and the intersection g2
i h
′h1YI ∩ gih3YI ∩ h4YI is also non-

degenerate. On the other hand, g2
i /∈ [gi], so it must be the case that g2

i ∈ H. In this case we

get

gih(gih1YI ∩ h2YI) ∩ (gih3YI ∩ h4YI) = gih(gih1YI ∩ h2YI)

= (gih3YI ∩ h4YI)

It follows that, under this assumption, the family of G-translates of non-degenerate intersections

of the form gih1YI ∩ h2YI is a transverse family for the action Gy T , contradicting Lemma 4.7.

Hence, there must be a non-degenerate intersection of the form gYI ∩gjh1YI ∩h2YI , for g /∈ [gi].

We may continue in this way to get a non-degenerate intersection g′1YI ∩ ...∩ g′lYI , for g′i ∈ [gi]. By

the same arguments as above, the collection of all such non-degenerate intersections is a transverse

family for the action H y T ; we claim that it is also a transverse family for the action G y T .
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We have Y = g1h1YI ∩ ... ∩ glhlYI non-degenerate. Let g ∈ G, then by normality of H, we get

gY ∩ Y = g(g1h1YI ∩ ... ∩ glhlYI) ∩ (g1h1YI ∩ ... ∩ glhlYI)

= gih(g1h1YI ∩ ... ∩ glhlYI) ∩ (g1h1YI ∩ ... ∩ glhlYI)

= (gig1h
′
1h1YI ∩ ... ∩ giglh′lhlYI) ∩ (g1h1YI ∩ ... ∩ glhlYI)

= (gi1h
′
1h1YI ∩ ... ∩ gilh

′
lhlYI) ∩ (g1h1YI ∩ ... ∩ glhlYI)

Here gij is the representative for the coset gi[gj ]. Since {hYI}h∈H is a transverse family for H y TH ,

and since gij (hih
′
iYI ∩ hjYI) is non-degenerate, we get that hih

′
iYI = hjYI . Hence, {gY }g∈G is a

transverse family, a contradiction to Lemma 4.7.

4.2.2 Infinite Index Subgroups Act Discretely

The following result is of central importance to us. It is a partial restatement of Marshall Hall’s

Theorem; for a particularly beautiful proof, see [44] (see [29] for extensions of the ideas of [44]).

Theorem 4.9. [27] Let H ≤ Fn be finitely generated. There is finitely generated F ′ ≤ Fn of finite

index, such that F ′ = H ∗K.

Recall that if F0 ≤ Fn is a free factor, then F0 is e-algebraically closed in Fn. In light of this,

the above theorem states that for any finitely generated H ≤ Fn, we can find a finitely generated,

finite index subgroup F ′ ≤ F such that H is e-algebraically closed in F ′.

Remark 4.10. Our reason for proving Lemma 4.5 in the case of e-algebraically closed subgroups

of an arbitrary group G and not just in the case of free factors comes from the fact that the proof of

our main result (Theorem 4.11 below) goes through for any indecomposable action G y T , where

G satisfies Theorem 4.9, i.e. finitely generated subgroups of G are “virtually e-algebraically closed.”

It would be interesting to describe the class of groups satisfying this condition.

Theorem 4.11. Let T ∈ cvn be indecomposable, and let H ≤ Fn be a finitely generated subgroup.

The action H y TH is indiscrete if and only if H is finite index in Fn.

Proof. Let T and H as in the statement; toward a contradiction suppose that the action H y TH

is indiscrete. It follows from the discussion in Remark 4.3 that there is finitely generated H ′ ≤ H
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such that the action H ′ y TH′ is with dense orbits, so we may suppose that the action H y TH

is with dense orbits. By Theorem 4.9, there is a finitely generated F ′ ≤ Fn of finite index, such

that H ≤ F ′ is a free factor; hence H is e-algebraically closed in F ′. By Lemma 4.8 we have that

the action F ′ y T is indecomposable; on the other hand, by Lemma 4.5 as H is e-algebraically

closed in F ′, the family of F ′-translates of TH is a transverse family for the action F ′ y T . By

Lemma 4.7, we arrive at a contradiction to the indecomposability of the action F ′ y T .

Remark 4.12. A similar line of reasoning as above shows that for any finitely generated, infinite

index H ≤ Fn, we have that TH is a proper subtree of T . Indeed, by Theorem 4.9 we may find

F ′ ≤ Fn, finite index, such that H is e-algebraically closed in F ′. It follows from Remark 4.6 that

TH ( TF ′ = T .

Corollary 4.13. Let Fn y T ∈ cvn be an action with dense orbits, and let H ≤ Fn be finitely

generated. Then TH = T if and only if H is finite index in Fn.

To complete the analogy with the dynamical-algebraic properties of ending laminations, we

bring Corollary 4.15 below; as mentioned in the introduction, the hypothesis that the action Fn y T

be free is essential–it is a by-product of the definition of the dual lamination of a tree. Corollary 4.15

follows immediately from Theorem 4.11 and the following:

Lemma 4.14. Let T ∈ cvn be free with dense orbits, and let H ≤ Fn finitely generated. The action

H y TH is indiscrete if and only if H carries a leaf of L2(T ).

Proof. Suppose that the action H y TH is indiscrete, then L2(TH) := L2(H y TH) is non-empty;

from the definition of L2(T ), it is evident L2(TH) ⊆ L2(T ).

Conversely, suppose that H carries a leaf l ∈ L2(T ). Toward a contradiction suppose that the

action H y TH is discrete. Let T 0 ∈ cvn, and choose an Fn-equivariant map f : T 0 → T ; then f

restricts to an H-equivarant map fH : T 0
H → TH , which descends to fH : T 0

H/H → TH/H, which is

a homotopy equivalence, since the action H y TH is free. It follows that fH is a quasi-isometry. On

the other hand, by Proposition 2.6, if l ∈ L2(T ) is carried by H, there is a line l0 ⊆ T 0
H representing

l that is mapped via fH to a bounded subset of T , a contradiction.

49



Corollary 4.15. Suppose that T ∈ cvn is indecomposable and free with dual lamination L2(T ),

and let H ≤ Fn be finitely generated. Then H carries a leaf of L2(T ) if and only if H is finite

index in Fn.

4.3 Convergence for Indecomposable Actions in CV n

In this section we consider trees with the following strong mixing property introduced by Guirardel

in [25]; this definition is crucial for the sequel.

Definition 4.16. An action G y T of a finitely generated group on an R-tree is called indecom-

posable if for any finite, non-degenerate arcs I, J ⊆ T , there are elements g1, ..., gr ∈ G such that

J ⊆ g1I ∪ ... ∪ grI and such that giI ∩ gi+1I is non-degenerate for i ≤ r − 1.

It is important to note that the intersections giI∩J can be degenerate; see [25] for further discussion.

Theorem 4.11 allows us to handle convergence for indecomposable trees in cvn; note that The-

orem 4.11 implies that for finitely generated, infinite index H ≤ Fn, it must be the case that

H y TH is simplicial. Indeed, if not, by Proposition 3.17 there would be some finitely generated

K ≤ H such that K y TK has dense orbits.

Corollary 4.17. Let φ : Fn → Fn be irreducible, non-surjective, and admissible, and let T ∈ cvn

be indecomposable. Then [T ]φk → [TΦ].

Proof. Let φ and T as in the statement. As φ is non-surjective, we have that φ(Fn) has infinite

index in Fn; it then follows from Theorem 4.11 and the discussion above that φ(Fn) y Tφ(Fn) is

simplicial. Convergence then follows from Proposition 3.36.
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Chapter 5

Invariant Measures and Projections

In this section we establish some structure theory for trees T ∈ cvn that do not split as graphs of

actions and are not indecomposable; in short, we show how to find T ′ ∈ cvn such that L2(T ) ⊆

L2(T ′) and such that either T ′ splits as a graph of actions, or T ′ is indecomposable. The aim, of

course, is to obtain convergence for the remainder of trees in cvn. The main technical tool is the

notion of a length measure; as mentioned in the Introduction, this tool treats a tree T ∈ cvn as

a generalization of a measured lamination on a surface: the length measures are analogs of the

transverse measures.

5.1 Length Measures

Let T be an R-tree. The following definition appears in [23], where it is attributed to F. Paulin.

Definition 5.1. A length measure (or just measure) µ on T is a collection µ = {µI}I⊆T of finite

positive Borel measures on the finite arcs I ⊆ T ; it is required that for J ⊆ I µJ = (µI)|J .

As these measures are defined locally on finite arcs, all the usual measure-theoretic definitions

are similarly defined: a set X ⊆ T is µ-measurable if X ∩ I is µI -measurable for each I ⊆ T ; X is

µ-measure zero if X ∩ I is µI -measure zero for each I; and so on. The Lebesgue length measure on

T , denoted µL, is the collection of Lebesgue measures on the finite arcs of T .

If T is equipped with an action of a group G, then we say that a (length) measure µ is G-

invariant if µI(X ∩ I) = µg.I(g.X ∩ g.I) holds for each g ∈ G. Note that if the action Gy T is by

isometries, then the Lebesgue measure is invariant. We let M(T ) = M(G y T ) stand for the set

of invariant measures on T . The following lemma shows that the existence of an invariant atomic

measure has a simple interpretation.
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Lemma 5.2. Suppose that G y T has an invariant atomic measure, then T splits as a graph of

actions

Proof. Let µ be a G-invariant atomic measure on T ; without loss, we suppose that µ is ergodic.

Let x ∈ T with µ(x) > 0. Since the measures µI are finite, it follows that G.x meets any finite

subtree of T in a finite set. Consider the collection {Tv}v∈V of closures of components of T \G.x;

this family is evidently a transverse covering of T . Hence, G y T splits as a graph of actions by

Lemma 3.15.

Later we will restrict our attention to non-atomic measures; Lemma 5.2 shows that this restric-

tion is vacuous as long as the tree in question does not split as a graph of actions. The following

definition from [25] is convenient when dealing with length measures; the discussion following it

shows that global properties of length measures can be seen in finite subtrees.

Definition 5.3. Let G a group and T an R-tree equipped with an action of G be isometries; and

let K ⊆ T be a subtree. We say that the action G y T is supported on K if for any finite arc

I ⊆ T , there are g1, ..., gr ∈ G such that I ⊆ g1K ∪ ... ∪ grK.

Let G and T as above, and suppose that G is finitely generated with generating set X. Then

for any y ∈ T the convex hull of {gy}g∈X± is a finite supporting subtree for the action G y T .

For a measure µ ∈ M0(T ) and a finite tree K = I1 ∪ ... ∪ Il ⊆ T for finite arcs Ij ⊆ T , let

SuppK(µ) denote the union of support sets Supp(µI1)∪ ...∪Supp(µIl). The set SuppK(µ) is called

the K-support of µ; if K is clear from context, then SuppK(µ) = Supp(µ) is called the support

of µ. If X ⊆ T is some subset, say that the support of µ is contained in X, if for every finite

K ⊆ T , one has SuppK(µ) ⊆ K ∩X; similarly write Supp(µ) = X if for every finite K ⊆ T , one

has SuppK(µ) = K ∩X.

Recall that given an action G y T , M(T ) denotes the positive convex cone of G-invariant

measures on T . A non-trivial measure µ ∈ M(T ) is called ergodic if any G-invariant subset is

either full measure or measure zero; the G-tree is called uniquely ergodic if there is a unique, up to

scaling, G-invariant measure µ on T ; in this case µ must be ergodic. Let M0(T ) denote the set of

non-atomic, G-invariant measures on T , and let M1(T ) := {ν ∈ M0(T )|ν ≤ µL}. Note that both

M0(T ) and M1(T ) are convex.
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We equip M0(T ) and M1(T ) with the weak topology : a sequence µi converges to µ if for every

finite arc I and every continuous functional f on I, we have
∫
I fd(µi)I →

∫
I fdµI . If G y T is

an action with finite supporting subtree K ⊆ T , then M(T ) can be identified with the space of

(ordinary) maeasures ν on K that are invariant under the (closed) pseudogroup Γ = ΓK generated

by the restrictions g|K : g−1K ∩K → K ∩gK It should be noted that Γ differs from a pseudogroup

in the usual sense in that the domains of elements of Γ are closed. It is important to keep in mind

the following issue: choose an ennumeration G = {g1, g2, ...}, and suppose that there is a sequence

µl of probability measures on K with µl invariant under the restrictions {g1|K , ..., gl|K}. Since the

domains of gi|K are closed, it does not follow that µ = limµl is invariant under {g1|K , g2|K , ...};

see [23] for further discussion.

Let T ∈ cvn, and suppose that T has dense orbits; then Proposition 2.15 enusres that there

is a finite set {ν1, ..., νk} ⊆ M0(T ) of mutually singular ergodic measures spanning M0(T ). The

following simple proposition shows that the supports of these ergodic measures are arranged in T in

a simple way; the result follows from the definition of ergodicity and the fact that the “topological

dyanmics” of Fn y T determine the way Fn-invaraint sets can be arranged in T .

Proposition 5.4. With notation as above:

(i) if I ⊆ Supp(νi) is non-degenerate, then νi(I) > 0,

(ii) K = ∪Supp(νi),

(iii) if Supp(νi) ∩ Supp(νj) contains a set of positive νi-measure, then Supp(νi) ⊆ Supp(νj),

(iv) if Supp(νi) ∩ Supp(νj) contains a non-degenerate arc, then Supp(νi) = Supp(νj).

Proof. The statement (i) is immediate from the definition. For (ii), we have that ∪Supp(νi) is

a µL full measure subset of K, hence dense; but it is closed, so ∪Supp(νi) = K. For (iii) note

that, by ergodicity of νi, the union of Γ-translates of Supp(νi) ∩ Supp(νj) is a νi full measure

subset of Supp(νi), hence dense in Supp(νi). On the other hand, the union of Γ-transaltes of

Supp(νi) ∩ Supp(νj) ⊆ Supp(νj) as Supp(νj) is Γ-invariant. Since Supp(νj) is closed, it follows

that Supp(νi) ⊆ Supp(νj). The claim (iv) follows from (i) and (iii).

This immediately gives:
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Corollary 5.5. With notation as above, K = ∪Supp(νij ), where νij runs over measures in M1(T )

whose supports contain a non-degenerate arc.

5.1.1 Pullbacks and Projections

Definition 5.6. [23] Let T and T ′ be R-trees. A map f : T → T ′ is alignment-preserving if for

any x ∈ T ′, f−1(x) is a convex subset of T .

Suppose now that T and T ′ are R-trees, equipped with actions by isometries of a finitely

generated group G; and suppose that f : T → T ′ is G-equivariant and alignment-preserving.

It is observed in [23] that any non-atomic µ′ ∈ M(T ′) can be pulled-back to a measure µ =

f∗(µ
′) ∈ M(T ). Indeed, we let µ be the unique non-atomic measure such that for all J ⊆ I ⊆ T ,

µI(J) = µ′f(I)(f(J)). As pointed out in [23], the hypothesis on f can be weakened; the construction

goes through as long as f is equivariant and any finite arc I ⊆ T can be subdivided into finitely-

many subarcs such that the restriction of f to each subarc is alignment-preserving.

Let G y T be an action by isometries. Given a G-invariant non-atomic measure µ on T , one

may consider a pseudo-metric dµ on T defined by dµ(x, y) := µ([x, y]). It is easy to see that making

this pseudo-metric Hausdorff gives an R-tree Tµ, equipped with an isometric action of G. In the

situation above, the natural map fµ : T → Tµ is alignment-preserving, and if µ ≤ µL, then fµ is

1-Lipschitz.

Definition 5.7. If there is an equivariant, alignment-preserving map f : T → T ′, then we say that

T ′ is a projection of T .

Note that if G y T is indiscrete but not with dense orbits, then the map T → T ′ collapsing

each component of the simplicial part of T to a point is a projection. Indeed, in this case, by

Proposition 3.17 splits as a graph of actions with vertex trees either simplicial or with dense orbtis;

it is easy to see that restricting the Lebesgue measure of T to the trees with dense orbits gives and

invariant measure µ ∈M0(T ) such that T ′ = Tµ.

5.1.2 Exceptional Sets

Let T ∈ cvn have dense orbits.

54



Definition 5.8. An invariant subset X ⊆ T is called exceptional if for any finite subtree K ⊆ T ,

X∩K is closed and nowhere dense and if there is a finite subtree K0 ⊆ T such that X∩K0 contains

a Cantor set.

A famous theorem of Imanishi [28], rediscovered by Morgan-Shalen [38] and proved in the

present context by Levitt [21], states that given a finite 2-complex A, equipped with a codimension-

1 singular measured foliation, one is able to cut the 2-complex A along certain subsets of singular

leaves to arrange that every leaf is either finite or locally dense (see [21] or [1]); the key property

is that no leaf closure is a Cantor set.

An action Gy T of a finitely preseted group G on a tree T is called geometric if there is a finite

2-complex A, equipped with a codimension-1 singular measured foliation, such that π1(A) = G and

such that the action G y T is dual to the natural action of G on the space of leaves in Ã–the

metric comes from the transverse measure (see [38, 21, 1]). Given a geometric action Gy T with

dense orbits, the Imanishi theorem implies that Gy T splits as a graph of indecomposable actions

(see [25]). In particular, no geometric action can contain an exceptional set.

In [15], Coulbois-Hilion-Lustig show that any T ∈ cvn with dense orbits is weakly geometric

in the following sense: for any basis B of Fn, there is a canonical compact subtree KA ⊆ T such

that the action Fn y TKA dual to the restrictions of elements of A to KA contains Fn y T as

its unique minimal subaction. Here, the action Fn y T is dual to a compact 2-complex, equipped

with a codimension-1 singular measured foliation, and one might hope to generalize the theorem of

Imanishi to this context, ruling out the possibility of an exceptional set in T . However, Imanishi’s

theorem fails in this case, as is evidenced by the following example.

This example was pointed out to us independently by M. Lustig and V. Guirardel. Here, we

use the language of relative train tracks; the reader is directed to [6] for background.

Example 5.9. Let α ∈ Aut(Fn) be represented by a relative train track map f : G → G, and

suppose that there are exactly two strata, both exponential, such that the PF eiqenvalue λl of the

lower stratum is strictly larger than the PF eigenvalue λu of the upper stratum. Equip G with

a metric that restricts to the PF metrics on the exponential strata. Let f̃ be a lift of f to the

universal cover G̃ of G; set T ′k := f̃k(G̃); and finally define Tk := λ−kT ′k. It is easy to check that

the sequence (Tk)k∈N is convergent in cvn to an action Fn y T .
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Color the lower stratum green and the upper stratum red; it is evident that each action Fn y Tk

is color-preserving. By the assumption λl > λu, in the limit we get an invariant (red) set that

intersects a finite supporting subtree in a Cantor set. Hence the action Fn y T contains an

exceptional set. One can check that the action Fn y T is neither indecomposable nor a graph of

actions.

The following result establishes a useful trichotomy.

Proposition 5.10. Let T ∈ cvn have dense orbits, and let K ⊆ T be a finite supporting subtree.

Suppose that for each µ ∈M1(T ), one has that SuppK(µ) = K. Then one of the following holds:

(i) the action Fn y T is indecomposable,

(ii) the action Fn y T splits as a graph of actions, or

(iii) there is an exceptional subset of T .

The proof of Proposition 5.10 uses a technique of Guirardel-Levitt [26] that is described in the

next subsection, where we first present the proof, as it illustrates the effectiveness of the procedure.

5.1.3 The Procedure of Guirardel-Levitt

Let T ∈ cvn. For a nondegenerate arc I ⊆ T , let YI be the subtree of T that is the union of all

segments J ⊆ T such that there are 1 = g0, g1, ..., gr ∈ Fn with J ⊆ g0I ∪ g1I ∪ ... ∪ grI and such

that giI ∩ gi+1I is nondegenerate. By construction, the collection Y := {gYI}g∈Fn is a transverse

family for the action Fn y T ; and the same holds for the collection Y1 := {gYI}g∈Fn of translates

of the closure YI of YI .

Proof. (Proposition 5.10) Assume that the action Fn y T is not indecomposable; there is a nonde-

generate arc I ⊆ T such that YI 6= T . If Y1 is a transverse covering of T , then T splits as a graph

of actions by Lemma 3.15. Otherwise, the set X1 ⊆ K of points of K that are not covered by trees

in Y1 is a non-empty subset that is invariant under the pseudogroup ΓK generated by restrictions

g|K : g−1K ∩K → K ∩ gK for g ∈ Fn. Notice that X1 cannot contain a nondegenerate arc; this

follows from the assumption that any ergodic µ ∈ M1(T ) satisfies SuppK(µ) = K. In fact X1 is
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nowhere dense; indeed, let µ ∈ M1(T ) be ergodic. For any nondegenerate arc J ′ ⊆ T and any

ε > 0, there are g1, ..., gr ∈ Fn such that µ(K \ ∪igiJ ′) < ε. It follows that for any nondegenerate

arc J ⊆ T , there is some tree Y ∈ Y meeting J nondegenerately.

Recursively define Yi+1 to be the collection obtained from Yi via the following procedure: take

unions of intersecting trees in Yi to get Y ′i+1, then take closures of the trees in Y ′i+1 to get Yi+1.

Since Y1 is a transverse family, so is each Yi. Put Xi to be the collection of points of K not covered

by Yi; each Xi is a totally disconnected, nowhere dense invariant subset.

Note that each Y ∈ Y ′i+1 carries the structure of a graph of actions, with vertex trees coming

from Yi. It may be the case that for some i, Yi = {T}; in this case T splits as a graph of actions.

Alternatively, it could be that for some i, we have for Y, Y ′ ∈ Yi, Y ∩Y ′ 6= ∅ if and only if Y = Y ′.

In this case we claim that Xi is an exceptional subset of T . We already know that Xi is totally

disconnected and nowhere dense; so we need only see that Xi is perfect. This follows from the fact

that Xi could contain no isolated point (the trees Y ∈ Yi are closed).

Remark 5.11. The procedure of Guirardel-Levitt has two parts:

(I) Given an action Gy T that is not indecomposable, one is able to find a subtree YI 6= T such

that the collection Y1 := {gYI}g∈Fn is a transverse family for the action Gy T .

(II) Second, given a transverse family Yi, one applies the iterative procedure from the above proof

to obtain Yi+1:

(a) Y ′i+1 consists of trees that are (maximal) unions of intersecting trees from Yi,

(b) Yi+1 consists of closures of trees from Y ′i+1.

If the transverse family Y1 is “large enough,” then the result is either a graph of actions structure

for the action Gy T or an exceptional subset of T .

Definition 5.12. Let T ∈ cvn, and let Y1 be a transverse family. If iteratively applying procedure

II to Y1 eventually gives Yi = {T}, then we say that T is obtained by an iterated graph of actions

starting from Y1.
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5.1.4 Invariant Measures on Exceptional Sets

We now begin the analysis of trees that do not split as a graph of actions and contain an exceptional

subset; we will show that such a tree T admits a projection onto a tree T ′, such that either T ′ splits

as a graph of actions, or T ′ is indecomposable. We begin with a definition from [33], attributed

there to M. Bestvina.

Definition 5.13. Let G a finitely generated group, and let T an R-tree. An action of G on T

by homeomorphisms is called non-nesting if for any nondegenerate arc I ⊆ T and any g ∈ G, if

gI ⊆ I, then gI = I.

In [33] Levitt shows that if a finitely presented group G admits a non-trivial, non-nesting action

by homeomorphisms on an R-tree T , then G admits a non-trivial isometric action on some R-tree

T0. The key observation is the following:

Proposition 5.14. [33, Proposition 4] Let K be a non-nesting closed system of maps on a finite

tree K. Assume that K has an infinite orbit. Then there exists a K -invariant probability measure

µ on K with no atom.

A closed system of maps on a finite tree K is a variant of a finitely generated pseudo-group

of partial homeomorphisms of K, where each partial homeomorphism is required to have closed

domain. Levitt observes that if such a K has no infinite orbit, then the existence of a measure as

in the conclusion is easy to see; this is because the system decomposes into a finite union of parallel

families of finite orbits, and such a system has many invariant non-atomic measures (see [33], also

[21]). Our goal now is to use Proposition 5.14 to construct invariant measures on exceptional

subsets of certain trees in cvn.

We will need the following result of Guirardel.

Proposition 5.15. [23, Proposition 5.5] Let T be a minimal non-abelian action with dense orbits

of a finitely generated group G, and assume that T is not a line. Assume that we are given actions

Tp, T
′
p, and T ′ such that Tp → T and T ′p → T ′; further assume that we have equivariant 1-Lipshitz

maps preserving alignment qp : Tp → T ′p. Then there is an equivariant 1-Lipshitz map preserving

alignment q : T → T ′.
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As mentioned in the Acknowledgements, the proof of Proposition 5.16 was inspired by a con-

versation with Vincent Guirardel. Before talking to Guirardel, we were using [39, Theorem 3.1]

instead of proving Proposition 5.16. Guirardel pointed out that [39, Theorem 3.1] is not correct

and mentioned that it is possible to construct an invariant measure on actions that are non-nesting

and mixing.

The idea is as follows: given an action Fn y T with dense orbits such that T contains an

exceptional set X, we form an action Fn y T ′ on the space T ′ obtained from T by collapsing the

components of the complement of X to points. One checks that Fn y T ′ is a non-nesting action

on a tree T ′. We then find an invariant, non-atomic measure on T ′, and then this measure pulls

back to an invariant measure on T , supported on X.

The idea of Guirardel ensures the existence of an invariant, non-atomic measure as long as

the action Fn y T ′ is mixing. However, we cannot assume that our quotient action is mixing;

a resultant problem is that our attempt to build an invariant measure may result in an atomic

measure, which may not be invariant. Fortunately, in this case we are able to use Proposition 5.15

to obtain a graph of actions structure on Fn y T .

Proposition 5.16. Let T ∈ cvn have dense orbits. Suppose that T does not split as a graph of

actions and that T contains an exceptional set X. Then there is µ ∈M0(T ) supported on X.

Proof. Let T and X as in the statement, and fix a basis B = {g1, ..., gn} for Fn. Let x ∈ T , and

set K to be the convex hull of {gx|g ∈ B±}, so K is a finite supporting subtree.

Define a relation R0 on T by xR0y if [x, y] is contained in the closure of some component of

T \X. Let R be the equivalence relation generated by R0. We want to see that the classes of R are

closed subtrees of T . Let Y be some class of R, and let yi ∈ Y be a sequence of points converging

to y ∈ T . The segments Im := ∩k≥m[y1, yk] = [y1, pm] are contained in Y , and pm converges to y.

If y /∈ Y , then y ∈ X. For k >> 0, there is g ∈ Fn such that g[pm, y] ⊆ K; as X ∩K is a Cantor

set, by increasing m if necessary, we can assume that g[pm, y] ∩X = {y}, hence y ∈ Y .

The set T = {Yi}i∈I of non-degenerate classes of R is clearly a transverse family; further, it is

easy to see that for Y 6= Y ′ ∈ T , Y ∩Y ′ = ∅. Put T ′ to be the quotient of T by R; the natural map

f : T → T ′ is continuous on segments of T and has convex point preimages. As classes of R are

closed, T ′ is a regular Hausdorff space. Further, it is easy to see that T ′ is uniquely arc connected
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and locally arc connected, hence by [36] T ′ is an R-tree. There is by construction an action of Fn

on T ′ such that each f ∈ Fn acts as a homeomorphism on any finite subtree of T ′ . It is easy to

check that the action is non-nesting and supported on the finite subtree K ′ := f(K).

Let Ki ⊆ T be the convex hull of {gx : ||g||B ≤ i}, so K1 = K, and the sequence Ki is an

invasion of T by finite subtreees. Let Ti be the geometric action corresponding to the restrictions

of elements of B to Ki; see [21]. The set X ∩ K gives rise to an exceptional sets Xi ⊆ Ti; as

above, let fi : Ti → T ′i be the quotient map, so that we have non-nesting actions Fn y T ′i that

are dual to finite systems of maps as in [33]. By Proposition 5.14, each such action supports an

invariant measure with no atoms, so we get actions by isometries Fn y T ′′i along with equivariant,

alignment preserving maps f ′′i : Ti → T ′′i . Passing to a subsequence if necessary and rescaling, we

get a sequence of actions Fn y T ′′i that is convergent in cvn to some action Fn y T ′′.

Pulling back via f ′′i the Lebesgue measure on T ′′i , we get invariant measures µi on Ti supported

on Xi; let Yi be the tree with underlying set Ti and Lebesgue measure µL(Yi) := µL(Ti) + µi. We

get equivariant 1-Lipschitz, alignment preserving maps gi : Yi → Ti and hi : Yi → T ′′i ; further, as

each µi is non-atomic, each gi is a bijection.

For an Fn-tree U and an element g ∈ Fn, let AU (g) denote the characteristic set of g in U . Let

g ∈ Fn be hyperbolic in T ; then for i >> 0, g is hyperbolic in Ti. It follows from [23, Lemma

5.1] that f ′′i (ATi(g)) = AT ′′i (g); hence it follows that lYi(g) = lTi(g) + lT ′′i (g). On the other hand,

we have arranged that the sequences lTi(g) and lT ′′i (g) are convergent; hence, the sequence lYi(g) is

convergent. It follows that the sequence of actions Fn y Yi converges to an action Fn y Y ∈ cvn;

further, Proposition 5.15 gives 1-Lipschitz alignment preserving maps g : Y → T and h : Y → T ′′.

If the map g : Y → T is a bijection, then we are finished; indeed, in this case µL(Y )−g∗(µL(T ))

is an invariant measure with no atoms supported on X. Hence, we suppose that the sequence µi

converges to an atomic measure ν on K ′, and let y ∈ K ′ have ν({y}) = m > 0. It is easy to see that

in this case there is a germ d̂ of a direction d at y in K ′ such that the set O(d̂) := {g ∈ Fn|gy ∈ K ′

and g[y, d̂] ∩ K ′ is non-degenerate} is finite (else, the sequence µi(K
′) is unbounded). It follows

that there is a positive lower bound for the translation lengths of hyperbolic elements g ∈ Fn such

that A(g) meets Fny and non-degenerately interects Fnd. This shows that T ′′ does not have dense

orbits, i.e. T ′′ has non-empty simplicial part.
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As the map h : Y → T ′′ is equivariant, 1-Lipschitz, and alignment-preserving, Y has a non-

empty simplicial part as well. Let C = {Yi}i∈I be the transverse covering of Y by subtrees Yi,

which are either simplicial edges or have dense orbits (see Proposition 3.17); and put C0 ⊆ C to be

collection of trees with dense orbits. Evidently, g(C0) := {g(Yi)|Yi ∈ C0} is a transverse covering

of T , hence by Lemma 3.15 T splits as a graph of actions, a contradiction.

This immediately gives.

Corollary 5.17. Let T ∈ cvn have dense orbits, and let K ⊆ T be a finite supporting subtree.

Suppose that T does not split as a graph of actions. If for each µ ∈M0(T ), one has that SuppK(µ) =

K, then T is indecomposable.

Proof. By the hypothesis on M0(T ) and by Proposition 5.16, we have that T contains no exceptional

set; the result is then a restatement of Proposition 5.10,

To finish this section, we provide an example showing that the hypothesis of Proposition 5.16

is necessary and not an artifact of our proof.

Example 5.18. Let Fn y T be the action constructed in Example 5.9; as aforementioned, Fn y T

is neither indecomposable nor a graph of actions. By Proposition 5.16 we can find an invariant

measure ν supported on the exceptional set E ⊆ T ; we remark that it is easy to check that E is

µL-measure zero, where µL = µL(T ) is the Lebesgue measure for T . Further, one can show that

dim(M0(T )) = 2, i.e. µL and ν are the only ergodic measures on T up to rescaling; see [10].

Let T ′ be the tree with underlying set T and Lebesgue measure µL(T ′) = µL + ν; as ν is

non-atomic, the “identity map” f : T → T ′ is continuous on segments and bijective. By Lemma

2.12, f extends to a unique homeomorphism f̂ : T̂ → T̂ ′; refer to Subsection 2.4.1. On the other

hand, since ν is singular with respect to µL(T ), the map f is not continuous with respect to the

metric topologies on T and T ′; we leave this as an exercise to the reader.

As in Subsection 2.4.1, let q ∈ T be a base point, and let (pk) be a sequence in T . Put

Im := ∩k≥m[q, pk], so Im = [q, rm], and we have Im ⊆ Im+1. Recall that the inferior limit of

(pk) from q is the limit limq pk := lim rm. If (pk) is convergent in the metric topology to p ∈ T ,

then p = limq pk. Since f is not continuous with respect to the metric topology, we can find
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a convergent sequence (pk) of points in T such that (f(pk)) is not convergent in T ′. Since f is

continuous on segments and since lim pk = limq pk = p, we have that the sets I ′m := [f(q), f(rm)]

satisfy ∪mI ′m = f([q, p]); it follows that the distances dT ′(f(pk), [f(q), f(p)]) are bounded below by

some number c > 0. On the other hand, since lim pk = limq pk = p, we have that dT (pk, [q, p])→ 0.

Replace (pk) be a subsequence to ensure that
∑

k d(pk, [q, p]) is finite. Let yk ∈ [q, p] be defined

so that d(pk, yk) = d(pk, [q, p]), and set Jk := [pk, yk]. By the above paragraph, the lengths of f(Jk)

are bounded below by c > 0. It is an easy exercise using the fact that T has dense orbits to use

the intervals Jk to produce a finite length ray ρ in T , such that f(ρ) is unbounded in T ′. Since f

is continuous on segments, and since f̂ is a homeomorphism, we can conclude that ρ converges to

a point w ∈ T \ T , while f(ρ) converges to a point of ∂T ′.

Let w′ ∈ T be a point with trivial stabilizer; we are going to form an “HNN-extension” of T

using w and w′. Let S be the Bass-Serre tree for the splitting Fn+1 = Fn∗〈1〉. Associate to each

vertex of S is a copy of the tree T . Let τ ⊆ S be a lift of a spanning tree of S/Fn+1, i.e. τ is an

edge e of S; put pe := w and pe := w′, and extend this equivariantly to associate to each directed

edge of S an attaching point to get a graph of actions G . Let Y := TG be the tree dual to G .

By construction, the measure ν on T does not give an invariant measure on Y ; this is because

we have arranged that any finite arc of the form [z, w] would have infinite measure. On the other

hand, any invariant measure µ′ on Y clearly gives rise to an invariant measure on T . Hence,

dim(M0(Y )) = 1, i.e. Y is uniquely ergodic. The existence of the exceptional set E ⊆ T gives rise

to an exceptional set E′ ⊆ Y , and it follows that there is no measure supported on E′.

It should be noted that the trick in the example can be applied to any tree T with dense orbits

such that there exist two mutually-singular ergodic measures µ, µ′ ∈ M0(T ) such that Supp(µ) ⊆

Supp(µ′); the result will be an HNN-extension of T in which the measure µ has been “hidden.”

5.2 Dynamics on CV n

We are now in a position to prove our main dynamics result; we are left to handle convergence for

trees T ∈ cvn that are not indecomposable and do not split as a graph of actions. The results of

Section 5 shows that in this case, there is a projection T ′ of T that is either indecomposable or a
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graph of actions. We are left to show that this projection does not distort the tree T in non-obvious

ways: we need to control L2(T ′).

Lemma 5.19. Let T ∈ cvn have dense orbits, and let µ ∈M0(T ). Then L2(T ) ⊆ L2(Tµ).

Proof. Let T as in the statement, and note that if µ is absolutely continuous with respect to µL

then the result is obvious. Hence, we may reduce to the case that µ is “generic” in the sense

that there is no ν ′ ∈ M0(T ) singular with respect to µ; any generic µ can be rescaled so that

µL ≤ µ, so we assume that µL ≤ µ. Hence, a 1-Lipschitz, alignment-preserving map f : Tµ → T ,

and we need to establish that L2(Tµ) = L2(T ). It is easy to check that f is a bijection that is

continuous on segments; therefore, by Lemma 2.12, f induces a homeomorphism f̂ : T̂µ → T̂ so

that L2(T ) = L2(Tµ).

This immediately gives:

Corollary 5.20. Let T ∈ cvn have dense orbits, and suppose that T is not indecomposable and

does not split as a graph of actions. There is a projection f : T → T ′ such that:

(i) either T ′ is indecomposable, or T ′ splits as a graph of actions,

(ii) L2(T ) ⊆ L2(T ′).

Proof. Let T as in the statement; choose µ ∈M0(T ) such that Supp(µ) is set-theoretically minimal.

It follows from Propositions 5.4 and 5.16 that if T ′ := Tµ contains an exceptional set, then T ′ splits

as a graph of actions; hence, by Corollary 5.17, either T ′ is indecomposable or T ′ splits as a graph

of actions. Further, it follows from Lemma 5.19 that L2(T ) ⊆ L2(T ′).

We are now prepared to prove the main dynamics result of the paper.

Theorem 5.21. Let φ : Fn → Fn be an irreducible endomorphism, and suppose that φ /∈ Aut(Fn).

Further suppose that for any T ∈ cvn, Tφ is non-trivial. Then φ acts on CV n; there is a unique

fixed point [TΦ] ∈ CVn ⊆ CV n; and for any compact neighborhood N of [TΦ], there is k = k(N)

such that for any [T ] ∈ CV n, [T ]φk ∈ N .
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Proof. Let φ as in the statement. First note that it follows from Propositions 3.36 and 4.17, Lemma

3.38, and Corollary 5.20 that for any T ∈ cvn, we have that [T ]φk → [TΦ], hence [TΦ] is the unique

fixed point of φ acting on CV n.

Toward contradiction suppose that there is a compact neighborhood N of [TΦ] in CV n and

actions [Tk] such that [Tk]φ
k /∈ N . Note that φ induces a continuous function on CV n. It follows

that the set of accumulation points {[Tk]}k∈N is φ-invariant and does not contain [TΦ], hence this

set must be empty, a contradiction.

To finish this section we bring an immediate corollary of Theorem 5.21, showing the existence

of a certain type of rigid subgroup of Fn.

Corollary 5.22. For any C > 1, there is a finitely generated, non-abelian subgroup H ≤ Fn, such

that for any non-trivial h, h′ ∈ H and any trees T, T ′ ∈ cvn, one has lT (h) > 0 and

1

C
≤ lT (h)/lT (h′)

lT ′(h)/lT ′(h′)
≤ C

Proof. Let φ : Fn → Fn be an irreducible, non-surjective, admissible endomorphism, and set

Hk := φk(Fn). It is immediate from Theorem 5.21 that for any C > 1, there is K such that for all

k ≥ K, Hk satisfies the desired properties.

5.3 Structure of Actions in cvn

In this section we expand the results of Section 5 to give a dynamical decomposition of trees in cvn

that generalizes the dynamical decomposition of geometric trees coming from Imanishi’s theorem.

The results we obtain are similar in spirit to new work of Guirardel-Levitt [26].

5.3.1 The Transverse Family F

Suppose that T ∈ cvn is not simplicial; if T does not have dense orbits, then by Proposition 3.17

T splits as a graph of actions, with vertex trees either simplicial edges or trees with dense orbits.

So, let T ∈ cvn have dense orbtis. By Proposition 2.15 we have that M0(T ) is R>0-spanned by a

finite set B = {ν1, ..., νr} of mutually-singular ergodic measures, and by Proposition 5.4 we have
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for νi, νj ∈ B with Supp(νi), Supp(νj) non-degenerate, if Supp(νi) 6= Supp(νj), then for any finite

tree K ⊆ T , Int(SuppK(νi)) ∩ Int(SuppK(νj)) = ∅. We define a family F of subtrees of T ; a

subtree Y ⊆ T is a member of F if:

(i) Y is non-degenerate,

(ii) there is νi ∈ B and an invasion {Fk}k∈N of Y by finite subtrees Fk such that Fk = SuppFk(νi),

and

(iii) Y is maximal with respect to (ii).

It follows from Proposition 5.4 that F is a transverse family for the action Fn y T ; further,

also by Proposition 5.4, there are finitely-many Fn-orbits of trees in F .

Lemma 5.23. Let T ∈ cvn have dense orbits, and suppose that there are µ, µ′ ∈M0(T ) such that

Supp(µ) 6= Supp(µ′) are both non-degenerate. Then T splits as a graph of actions.

Proof. Let F be the transverse family defined above. Since there are µ, µ′ ∈M0(T ) with Supp(µ) 6=

Supp(µ′) both non-degenerate, the family F contains more than one tree. We apply the iterative

procedure II of Remark 5.11 to get a sequence Fk of transverse families in T . This procedure might

terminate with an exceptional set E ⊆ T ; in this case, by Proposition 5.16, either T splits as a

graph of actions, or there would be ergodic νi ∈ B supported on E. By Proposition 5.4, Supp(νi)

would be contained in the interior of Supp(νj) for some νj ∈ B with non-degenerate support; but

this is impossible by definition of F and by construction of E. So, for some k0, we have that

Fk0 = {T}; suppose that k0 is minimal with respect to this property. Then T splits as a graph of

actions corresponding to the transverse covering Fk0−1.

The proof of Lemma 5.23 also shows that if for any finite arc I ⊆ T , I is the union of finitely

many subintervals I1, ..., Ik such that Ij = SuppIj (νij ), then the set orbits of vertex trees in this

graph of actions structure for T bijectively corresponds to the set of non-degenerate support sets

of the ergodic measures ν ∈ M0(T ). In particular, this would be the case if the action Fn y T

happened to be geometric.
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Lemma 5.24. Let T ∈ cvn have dense orbits, and let F be the transverse family constucted above.

Suppose that F contains at least two orbits of trees. Then for each Y ∈ F , the set-wise stabilizer

Stab(Y ) is a vertex group of a very small splitting of Fn.

Proof. Let T and F as in the statement. By hypothesis, we can find ergodic ν, ν ′ ∈ M0(T )

such that Supp(ν) and Supp(ν ′) are non-degenerate and such that Supp(ν) 6= Supp(ν ′). Let

µL = ν1 + ... + νl be the decomposition of the Lebesgue measure on T as a sum of muntually-

singular ergodic measure νi ∈ M0(T ). Define a measures µ ∈ M1(T ) by µ := ΣSupp(νi)=Supp(ν)νi;

we get an equivariant 1-Lipschitz alignment-preserving map f : T → Tµ. We observe that if Y ∈ F

corresponds to Supp(ν ′), then the image of Y under f is a point. It follows that Stab(Y ) fixes a

point y ∈ Tµ. By [22] Stab(Y ) is contained in a vertex group of a very small splitting of Fn.

On the other hand, it is immediate that Stab({y}) = Stab(Y ). Further, it is clear that if

f ∈ Fn is hyperbolic in T , then f ∈ Stab(Y ) if and only if f ∈ Stab(Y ). Toward a contradiction

suppose that there is g ∈ Stab(Y )\Stab(Y ), then g acts elliptically on Y , and so g must fix a point

p ∈ Y \ Y . There is only one direcction (in Y ) at p, so g must fix a non-degenerate arc [p′, p] ⊆ Y .

We show this is impossible.

Let η ∈M0(T ) ergodic such that Supp(η) = Y , and let I0 ⊆ Y be a small arc. By ergodicity, for

any J ⊆ Y and ε > 0, there are g1, ..., gr ∈ Fn such that η(J \ g1I0 ∪ ...∪ grI0) < ε. It easily follows

that there are elements g′ ∈ Stab(Y ) with arbitrarily short translation length, hence Stab(Y ) acts

on Y with dense orbits, and the same holds for the action Stab(Y ) y Y . This contradicts the

above observation that g must fix a non-degenerate arc of Y and completes the proof.

5.3.2 The Case F = {T}

We turn to analyzing trees in cvn for which the family F is as simple as possible.

Proposition 5.25. Let T ∈ cvn have dense orbits, and suppose that for each ν ∈ M0(T ), if

Supp(ν) is non-degenerate, then Supp(ν) = T . There is a finite set of projections {Pi}i∈{1,...,r} =

{fi : T → Ti}i∈{1,...,r} such that:

(i) dim(M0(Ti)) < dim(M0(T )),

(ii) there is a partial order ≤ on {P1, ..., Pr} such that:
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(a) if Pi ≤ Pj, then fi factors through fj,

(b) if Pi < Pj, then dim(M0(Ti)) < dim(M0(Tj)),

(c) for Pi minimal, if Ti contains an exceptional set, then T (and Ti) splits as a graph of

actions.

(iii) for any projection T → T ′, there is Ti and is µ ∈ M0(Ti) such that T ′ is equivariantly

isometric to (Ti)µ and such that the natural map Ti → (Ti)µ is a bijection.

Proof. Let T as in the statement. We first arrange that µL is contained in the interior of M0(T ),

i.e. there is no ν ∈ M0(T ) singular with respect to µL. This is accomplished by replacing T with

Tµ for some µ ∈ M0(T ) with the desired property; the natural map T → Tµ is a bijection. By

Proposition 2.15 M0(T ) is spanned by a finite set {ν1, ..., νr} of mutually-singular ergodic measures.

In particular, there are finitely many sets Supp(ν) for ergodic ν ∈ M0(T ); let X = {X1, ..., Xs}

denote the collection of these support sets. Then X carries the obvious partial order ≤, with

unique maximal element Xi = T . By Proposition 5.16, if Xj = Supp(ν) is minimal with respect

to ≤, then if Tν contains an exceptional, then Tµ splits as a graph of actions. Define a set of

measures M = {µ1, ..., µs} ⊆ M0(T ) by µi := µL|Xi . It is then easy to check that the collection

{fi : T → Tµi |Supp(µ) 6= T} satisfy the conclusions of the proposition.

Let T ∈ cvn have dense orbits, and assume that no exceptional subset of T has non-zero

measure. For any ergodic µ ∈M1(T ), and for any finite arc I ⊆ T with SuppI(µ) non-degenerate,

the restriction µ|I determines µ in the sense that µ is the unique minimal element of M1(T )

restricting to µ|I on I. To extend the analogy between length measures and measured laminations

on surfaces, we look for invariant subsets of T that encode µ as above. As any two non-degenerate,

invariant subsets supporting µ must intersect non-degenerately, we are naturally led to consider

transverse families with one orbit of trees. We need the following result, whose proof was sketched

to us by V. Guirardel.

Lemma 5.26. [26] Let T ∈ cvn have dense orbits. Let Y ⊆ T be a non-degenerate subtree such

that for all g ∈ Fn, either gY = Y or gY ∩ Y = ∅. Then Stab(Y ) is a free factor of Fn.

Proof. We prove the result in the case that F = {T}, as the general case follows immediately from

this case. First note that Stab(Y ) is non-trivial. Indeed, let I ⊆ Y be a non-degenerate arc, then
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there is ergodic ν ∈ M1(T ) such that ν(I) > 0. For a small subarc I0 ⊆ I with ν(I0) > 0 and any

ε > 0, we can find elements g1, ..., gr ∈ Fn such that ν(I \ ∪igiI0) > ν(I)− ε. It follows that there

is some g ∈ Fn such that A(g) ∩ I contains a fundamental domain for the action 〈g〉y A(g), and

since Y is disjoint from its translates, it follows that g ∈ Stab(Y ).

Fix a basis B = {x1, ..., xn} for Fn and a point y ∈ T ; define Ki to be the convex hull of the

set {gy : ||g||B ≤ i}; and let Ti be the geometric action dual to the restrictions of elements of B to

Ki. So, T is the strong limit of the sequence Ti, and as T has trivial arc stabilizers, each Ti has

trivial arc stabilizers as well.

Replace Y with a translate if necessary to ensure that Y ∩K1 is non-degenerate. Define Yi ⊆ Ti

as follows: Y 1
i := Y ∩Ki; Y

r+1
i is the union of Y r

i and all translates of Y r
i meeting Y r

i ; Y ′i := ∪rY r
i ;

and Yi := Y ′i . Hence Yi is a closed subtree of Ti disjoint from its translates. Being geometric, Ti

splits as a graph of actions, with each vertex tree either simplicial edge or an indecomposable tree.

Evidently, if Yi meets an indecomposable vertex tree V in a non-degenerate arc, then V ⊆ Yi. By

the hypothesis F = {T}, we have that for any non-degenerate I, J ⊆ T , there is g ∈ Fn such that

gI ∩ J is non-degenerate. It follows that the splitting of each Ti into a graph of indecomposable

trees and simplicial edges can contain at most one orbit of indecomposable trees; further, since T

is a strong limit of the Ti’s, if V is an indecomposable vertex tree of some Ti, then there is j ≥ i

such that V ⊆ Yj .

We collapse to a point each tree in the orbit of Yi tree to get a tree Si, equipped with a non-

trivial action of Fn. From the above discussion, Si is a simplicial tree with trivial arc stabilizers

such that Stab(Yi) is a vertex stabilizer in Si. Hence, Stab(Yi) is a free factor of Fn. To conclude,

just note that if g1, ..., gk ∈ Stab(Y ) are hyperbolic, then there is ik such that each gj is hyperbolic

in Tik and such that A(gj) ⊆ Yik ; therefore eventually Stab(Yi) = Stab(Y ).

Definition 5.27. An action T ∈ cvn is called mixing if for any non-degenerate arcs I, J ⊆ T ,

there are g1, ..., gr ∈ Fn such that J ⊆ g1I ∪ ... ∪ grI.

Mixing differs from indecomposable in that we place no requirements on the overlaps giI∩gi+1I.

Mixing is equivalent to the following condition: for any non-degenerate arcs I, J ⊆ T , J can be

subdivided into arcs J1, ..., Jr such that there are g1, ..., gr ∈ Fn with giJi ⊆ I.
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Lemma 5.28. Let T ∈ cvn. The following are equivalent

(i) For any direction d at x ∈ T , and any non-degenerate arc I ⊆ T there is g ∈ Fn such that

gx ∈ I and gd ∩ I is non-degenerate,

(ii) the action Fn y T is mixing.

Proof. To see (i) implies (ii), let T ∈ cvn, and assume that T is not mixing. There are non-

degenerate arcs I, J ⊆ T such that J \∪g∈FngI 6= ∅; let y ∈ J \∪g∈FngI, and let d be a direction at

y meeting J non-degenerately. Evidently, there is no g ∈ Fn such that gy ∈ I and such that gd∩ I

is non-degenerate.

To see (ii) implies (i), assume that T is mixing, and let I ⊆ T be any non-degenerate arc. For

any direction d at x ∈ T , we take y ∈ d ⊆ T , so [x, y] is a non-degenerate arc. Since T is mixing

[x, y] can be divided into finitely many subarcs [x, y] = [x = y0, y1]∪ [y1, y2]∪ ...∪ [yr−1, yr] such that

there are g1, ..., gr ∈ Fn with gi[yi−1, yi] ⊆ I. Hence, gox ∈ I, and g0d ∩ I is non-degenerate.

Proposition 5.29. Suppose that T ∈ cvn has dense orbits. There is a transverse family T =

{Yi}i∈I , with orbits in T in bijective correspondence with orbits in F , such that the actions

Stab(Yi) y Yi are mixing.

Proof. Let T as in the statement; we suppose that for any µ ∈M0(T ) with non-degenerate support,

we have Supp(µ) = T , as the general case follows immediately from this case by considering the

trees in F . We proceed by induction on n. It follows from Harrison’s theorem that every T ∈ cv2

is geometric, and the result is clear in this case; indeed, it follows from Imanishi’s theorem that any

geometric tree with dense orbits is a graph of indecomposable actions. So, we suppose the result

holds for all T ∈ cvm for m < n.

If T ∈ cvn contains an exceptional set, then we are done by Lemma 5.26 and induction, so we

suppose this is not the case. It follows that for each µ ∈ M0(T ), Supp(µ) = T , hence applying

Procedure II of Remark 5.11 to any transverse family in T will eventually produce T .

Assume that there is some y ∈ T and direction d at y such that for any finite arc J ⊆ T , the

set {g ∈ Fn|gy ∈ J and gd ∩ J is non-degenerate} is finite. In this case, we may blow-up the orbit

of d as follows; split T open at y, gluing directions not in the orbit of d back to y, and for each d′
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at y in the orbit of d, glue a simplicial edge of length 1 to y; finally glue each direction in the orbit

of d to its corresponding simplicial edge. This gives a tree T ′, which, by the finiteness assumption

on d, carries an isometric action of Fn.

The obvious map f : T ′ → T is equivaraint, 1-Lipschitz and alignment-preserving. The graph

of actions structure on T ′ gives a graph of actions structure T . Further, collasping to a point every

tree with dense orbits in T ′ gives an action of Fn on a simplicial tree with trivial arc stabilizers,

where vertex stabilizers correspond to stabilizers of the trees in T ′ with dense orbits. Hence, we

get a transverse covering of T by subtrees {Yi}i∈I such that Stab(Yi) is a free factor of Fn, and the

result follows from induction.

We are left to consider the case that no direction d in T satisfies the above finiteness condition.

Claim 5.30. Let T ∈ cvn, and suppose that there is no direction d at x ∈ T such that for every

non-degenerate arc I ⊆ T , {y|y = gx and gd ∩ I is non-degenerate} is finite. Then T is mixing.

Proof. If it were the case that for any direction d at y in T and any non-degenerate arc J ⊆ T ,

the collection {gy|gd ∩ J is non-degenerate} is dense in J , the T would be mixing by Lemma

5.28. Toward contradiction, we suppose that there is a point x ∈ T , a direction d at x, and a

non-degenerate segment I ⊆ T such that there is no g ∈ Fn with gd ∩ I non-degenerate.

Define X := ∪I where I runs over all non-degenerate arcs of T not meeting d non-degenerately;

the collection X1 of path components of X is a transverse family for the action Fn y T . Note that

since for each µ ∈M0(T ), Supp(µ) = T , we have that T \X contains no non-degenerate arc; further,

by applying Procedure II of Remark 5.11 to X1 will eventually produce T . By construction, the

family X cannot be a transverse covering of T .

As in Remark 5.11, let X ′
i+1,Xi+1 denote the results of applying Procedure II to Xi. As X

is not a transverse covering of T , some member of X2 is not closed in T . Let i minimal such that

Xi+1 = {T}, then there is Y ∈ X ′
i , which is not closed in T , and such that the Fn-translates of

its closure Y give a transverse cover of T . Let x1 ∈ Y \ Y , and let d1 denote the unique direction

in Y at x1. Note that for any non-degenerate arc I ⊆ Y , the orbit Fnx1 can meet I only at its

endpoints. For any non-degenerate arc J ⊆ T , let g1, ..., gr ∈ Fn such that J ⊆ g1Y ∪ ... ∪ grY ;

it follows that {y ∈ J |y = gx1 and gd1 ∩ J non-degenerate} is finite (with cardinality bounded by

2r), a contradiction.

70



Remark 5.31. One should note that if an action Fn y T has dense orbits and is free, then

T is (uniquely) a graph of indecomposable actions. Indeed, as noted in Lemma 4.7, T is not

indecomposable if and only if there is a transverse family for the action Fn y T ; for simplicity, we

assume that for any µ ∈M0(T ), Supp(µ) = T . If T contains a transverse family, then by Procedure

II of Remark 5.11, T splits as a graph of actions, say with skeleton S. Since the action Fn y T is

free, the action Fn y S has trivial arc stabilizers; i.e. S encodes a non-trivial free decomposition

of Fn, and the claim follows by induction on rank.

Corollary 5.32. Let T ∈ cvn have dense orbits, and suppose that for all µ ∈M0(T ), Supp(µ) = T .

There is a unique conjugacy class [H] of finitely generated subgroups H ≤ Fn such that:

(i) the action H y TH is mixing,

(ii) H = Stab(TH), and

(iii) TH is maximal with respect to (i), (ii).

Proof. Let T as in the statement. As in the proof of Proposition 5.29, there are finitely-many (orbits

of) directions {di}i=1,...,k at points {xi}i=1,...,k such that for any non-degenerate arc I ⊆ T , there

are finitely many elements g ∈ Fn taking xi into I such that gdi ∩ I is non-degenerate. Splitting T

apart on the orbits of these directions gives a transverse family {gY }g∈Fn such that Stab(Y ) y Y

is mixing. The following claim follows easily from the defintion of Y .

Claim 5.33. Let Y as defined above, and let YI := ∪J , where J runs over all non-degenerate arcs

contained in T such that there are g1, ..., gr ∈ Fn with J ⊆ g1I ∪ ... ∪ grI and such that ∪igiI is

connected. For any non-degenerate I ⊆ Y , YI = Y .

Now, let K y X be a subaction satisfying (i)-(iii). Since for all µ ∈M0(T ), one has Supp(µ) =

T , it is the case that up to replacing X by a translate and replacing K with a conjugate, we can

assume that Y ∩ X is non-degenerate. Further, since K y X is mixing, we can assume that no

direction di at xi as in the first paragraph of the proof meets K non-degenerately; indeed, it is

immediate that if di met K non-degenerately, then xi ∈ X \X, but then the orbit Kxi would not be
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dense in every non-degenerate arc of K, contradicting mixing. Let I ⊆ X ∩ Y be a non-degenerate

arc. From the claim above, Y = YI ; from maximality of X, we can assume that Y ⊆ X. On the

other hand, from the fact that Y = YJ for any non-degenerate arc J ⊆ Y , it follows that Y is the

maximal mixing subaction of Fn y T containing I. Hence, X = Y , and by (ii) K = Stab(Y ).

5.3.3 Decomposing Actions in the Boundary of Outer Space

In this subsection we collect the preceding results of Section 5.3 to associate to any action T ∈ cvn

a diagram of actions that encodes the structure of T . Let ≤ denote the obvious partial order on

the finite set {Supp(µ)}µ∈M0(T ); also denote by ≤ the partial order inherited by M0(T ), i.e. µ ≤ µ′

if and only if Supp(µ) ≤ Supp(µ′). Define [[µ]] := {ν ∈M0(T )|ν ≤ µ, µ ≤ ν}; for any µ ∈ [[µL]], we

have that the natural map T → Tµ is a bijection, and there is an identification M0(T ) = M0(Tµ).

Further, by Lemma 5.19, we have that L2(T ) = L2(Tµ).

Let T ∈ cvn have dense orbits, and let F = F (T ) be the transverse family constructed in

Subsection 5.3.1. By Proposition 5.29 and Corollary 5.32 we have associated to each Fn-orbit O

of trees in F a (canonical) mixing action HO y THO , defined up to translation in T , i.e. up to

replacing HO by a conjugate. Let µ ∈ [[µL]], with f : T → Tµ the natural map. Then it is easy to

see that f(F ) := {f(Y )|Y ∈ F} = F (Tµ) and that HO y f(THO) is the mixing action associated

to the orbit f(O) in F (Tµ).

By Lemma 5.23 if F 6= {T}, then T can be recovered by the iterated graph of actions procedure

of Remark 5.11 starting from F . The family F is canonical, and Y ∈ F satisfies the hypotheses of

Proposition 5.25. Note that the projections of Proposition 5.25 are canonical if we consider them

to be defined only up to [[.]]. Hence, we obtain:

Theorem 5.34. Let T ∈ cvn have dense orbits. With notation as above:

(i) there is a transverse family F such that:

(a) the set of orbits of trees in F bijectively corresponds to the set of classes [[µ]] of ergodic

measures µ ∈M0(T ) with non-degenerate support,
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(b) associated to each orbit O of trees in F is a subtree T (O) = T ([[µ]]) ⊆ T , unique up to

translation in T , such that the action H(O) = Stab(T (O) y T (O) is mixing,

(c) the action Fn y T can be recovered via an iterated graphs of actions construction (Re-

mark 5.11, procedure II) starting from F ,

(d) if F 6= {T}, then for any Y ∈ F , Stab(Y ) is a vertex group of a very small splitting of

Fn.

(ii) there is a diagram of projections of T : associated to the class [[µ]] of an ergodic measure

µ ∈M0(T ) with degenerate support is a projection f[[µ]] : T → T[[µ]] such that:

(a) dim(M0(T[[µ]])) < dim(M0(T )),

(b) for ergodic µ′ ∈ M0(T ) with degenerate support, if µ ≤ µ′, then the projection f[[µ]] :

T → T[[µ]] factors through the projection f[[µ′]] : T → T[[µ′]].

(c) there is a unique class [[ν]] of ergodic measures ν ′ ∈M0(T ) with non-degenerate support

such that µ ≤ ν; the subgroup H([[ν]]) = Stab(T ([[ν]]) is a point stabilizer in T[[µ]].

(d) if [[µ]] is minimal, and if T[[µ]] contains an exceptional set, the T (and T[[µ]]) splits as a

graph of actions.
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