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Failure in shear bands for granular materials: thermo-hydro-chemo-
mechanical effects

M. VEVEAKIS*, I. STEFANOU{ and J. SULEM{

The failure of geomaterials in localised shear bands is one of the most common features in
geomechanics. Early studies have provided the necessary criteria for the conditions of localisation,
inclination angle with respect to the loading axes and thickness of the shear bands, when loaded at
room temperature. This work extends these criteria for the problem of simple shear of a chemically
active granular cohesionless material at higher temperatures, where thermal or chemical
pressurisation may set in and influence the response of the material. It is deduced that failure
occurs at higher positive values of the hardening modulus as temperature increases, that the shear
band thickness also depends on the chemical reaction characteristics and that micro-inertia due to
grain translations and rotations introduce the necessary rate dependency to regularise the system.
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INTRODUCTION
In classical continuum mechanics, where the continuum is
allowed only for translational degrees of freedom (dis-
placements), one may be able to predict the onset of a shear
band (Rudnicki & Rice, 1975). However, it can be shown
that the instability tends to localise in a strip of zero
thickness. This drawback of the classical theories is
attributed to the fact that they do not contain material
parameters with dimensions of length that can scale the
shear band thickness (internal length).

To compensate for this inability, Hill (1962) and Mandel
(1966) in their early approaches artificially imposed a
failure structure with width D, thus suggesting that the
solutions obtained from classical continua correspond to
the limit DR0 of a corresponding higher grade extension of
it (Vardoulakis & Sulem, 1995). Following this conclusion,
as well as experimental observation of the influence of the
effect of particle irregularities and rotations inside the shear
bands, Muhlhaus & Vardoulakis (1987) resorted to
concepts from Cosserat continuum mechanics to naturally
determine D. Thus, by allowing both particle displacements
and particle rotations, they enriched the classical con-
tinuum with additional kinematic and static fields, and
calculated that D*16d50 for sands.

In this work, the concept of the Cosserat continuum is
extended by using it in the problem of simple shear of a
saturated, chemically active, granular cohesionless mate-
rial. The effect of temperature on both the conditions of
failure and shear band thickness is studied.

PROBLEM FORMULATION
Consider a layer of saturated granular material of thickness
D that is sheared in plane strain (Fig. 1) in such a way that

there is no extensional strain in the x1-direction and
displacements u1 and u2 of material points vary only with
x2 (and time t). The additional rotational degree of freedom
of the considered two-dimensional (2D) Cosserat con-
tinuum is vc.

Constitutive equations of elasto-plasticity
The incremental constitutive equations for the considered
2D Cosserat continuum are derived from Muhlhaus &
Vardoulakis (1987). They are briefly recalled in the
following.

In a 2D Cosserat continuum, each material point has
two translational (v1, v2) and one rotational degree of
freedom _vvc. The rate of the non-symmetric deformation
tensor is given as

_EE11~
Lv1

Lx1

_EE12~
Lv1

Lx2
z _vvc

_EE21~
Lv2

Lx1
{ _vvc

_EE22~
Lv2

Lx2

(1)

and the two components of the curvature of the deforma-
tion rate (gradient of the Cosserat rotation rates) are

_kk1~
L _vvc

Lx1

_kk2~
L _vvc

Lx2

(2)

Moreover, we decompose the stresses and strain rates into
spherical and deviatoric parts

sij~sijzskkdij=2

and

_EEij~ _eeijz_EEkkdij=2
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where dij is the Kronecker delta. The following generalised
stress and strain invariants are used

s~sii=2
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where hi5[3/4,21/4,1] and gi5[3/2,1/2,1] for the so-called
static Cosserat model and R is the internal length
(Vardoulakis & Sulem, 1995), here set equal to the average
grain radius. Besides the four components of the non-
symmetric stress-tensor sij, there are two couple stresses mk

(k51,2), shown in Fig. 1.
As in classical small-strain plasticity theory, the defor-

mation rates _EEij , _kkk are decomposed into elastic _EE
e
ij , _kk

e
k and

plastic parts _EE
p
ij , _kk

p
k
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(4)

Following Sulem et al. (2011), we assume a Terzaghi
decomposition of the stress tensor in effective stress s’ij and
pore pressure p (sij~s’ij{pdij) and assume a Coulomb yield
stress and plastic potential for the effective stresses

F~tzm(szp)

Q~tzb(szp)
(5)

where the mobilised friction coefficient m and the dilatancy
coefficient b are functions only of the accumulated plastic
strain cp. Under these considerations, the rate thermo-
poro-elasto-plastic relationships are expressed as
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G
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_EE~
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K
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p
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(6)

where G and K are the elastic shear and bulk modulus,
respectively, as is the thermal dilation coefficient of the
solid skeleton and T is the temperature. The rate of plastic
deformation is written as

_ccp~
1

H
½ _ttzm( _ssz _pp)�, _EEp~b _ccp (7)

where H 5 H(cp) 5 h(s + p) (with h5dm/dcp) is the plastic
hardening modulus, which is related to the tangent

modulus Htan of the t versus c curve through the
relationship

Htan~
H

1zH=G

Governing equations
For the considered 2D Cosserat continuum and the
configuration of Fig. 1, the balance of linear and angular
momentum provides
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where m 5 m2 and m1 5 0. The stresses applied at the
boundary are a shear stress t and a normal stress sn in the
x2-direction. It is assumed that no couple stress is imposed
at the boundary. Prior to localisation, the state of stress
and strain is uniform and, considering the couple-free
boundary condition, the couple stress is identically zero in
the sheared layer. Therefore, the rock behaves as a classical
continuum before localisation.

Let us impose the presence of a first-order decomposi-
tion reaction that decomposes the solid skeleton and
produces excess pore fluid in a process called chemical
pressurisation. As an example, consider calcite decomposi-
tion, CaCO3RCaO + CO2, producing supercritical fluid
CO2. The same framework, however, could be generalised
for any other decomposition reaction imposing chemical
pressurisation. Assuming that the calcite decomposition
takes place with a rate r, given by

r&
rs

MCaCO3

A0e
{Tc=T (9)

where Tc5E/Ra is the activation temperature of the
reaction, E is the activation energy, Ra is the universal
gas constant, MCaCO3

is the molar mass of calcite and A0 is
the pre-exponential factor. Under these considerations and
assuming that the grains are plastically incompressible, the
mass balance equation provides (Sulem et al., 2011;
Veveakis et al., 2012)
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(10)

where rs is the density of the solid skeleton, rf is the density
of the fluid phase, chy is the hydraulic diffusivity, b* is the
storage capacity and L 5 (lf 2 ln)/b* is the pressurisation
coefficient, which is expressed as the difference of the
thermal expansion coefficients of the fluid (lf) and the pore
volume (ln). Notice that ln is equal to the elastic thermal
expansion coefficient of the solid fraction as (Sulem, 2010),
that the value of L is assumed in the literature to vary from
0?1 MPa/uC (Vardoulakis, 2002) to 1?5 MPa/uC (Rice,
2006) and that the coefficient f represents a concentration
ratio of the products of the reaction, calculated for the
calcite decomposition to be 1?24 (Veveakis et al., 2012).

By also assuming that all the mechanical work input is
converted into heat and that the heat is expressed through
Fourier’s law, we may obtain the diffusion–reaction
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qf qhσn

τ

σ22

σ12
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Du1(x2,t)
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Fig. 1. Problem formulation. Cosserat stresses, couple stres-
ses and degrees of freedom
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temperature equation (Sulem & Famin, 2009; Veveakis
et al., 2012)
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A0e
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where cth is the thermal diffusivity, rC is the specific heat
capacity of the mixture and |DH| < E is the specific
enthalpy of the reaction, expressing the energy consumed
during an endothermic reaction.

Boundary conditions
At the boundaries of the shear zone of Fig. 1, conditions
for displacements, rotations, pore pressure and tempera-
ture need to be imposed. To this end, constant values are
assumed for the applied stresses and couple stresses,
leading through the constitutive laws to Dirichlet (con-
stant) boundary conditions for the displacements and
rotations. For the pore pressure and temperature, we
identify the timescales of diffusion over the width D as the
time at which any pore pressure and temperature variations
will be diffused away from the shear band

thy~D2=chy

tth~D2=cth
(12)

In addition, the timescale of imposing pore pressure and
temperature variations is the timescale of the mechanical
input, determined by the boundary shear strain rate _ccb as
(Garagash & Rudnicki, 2003a, 2003b)

tmech~1= _ccb (13)

When tmech&thy,th, the mechanical input is perturbing the
thermal and hydraulic flow in slower timescales than those
of diffusion. This means that the system has time to diffuse
away all the imposed variations and maintain constant
boundary values for temperature and pore pressure. At the
other extreme, when tmech%thy,th, new mechanical input is
being accumulated to the system, not having enough time
to diffuse away perturbations. Hence, thermal and fluid
fluxes are trapped inside the shear band, in a limit that is
called undrained-adiabatic (Vardoulakis, 2002; Rice, 2006).

Typical values of the thermal and hydraulic diffusivity
are of the order of 1025–1026 m2/s for impermeable
(permeability k , 10218 m2) soils saturated in water
(Sulem & Famin, 2009). This value would mean that the
undrained-adiabatic limit would be reached once the shear
band is sheared with rates _ccb&1 for a shear zone 1 mm
thick. This limit is of particular interest in the mechanics of
faults, where cataclastic (finely granulated) shear zones
saturated in fluids experience dynamic stress drops during
co-seismic slip at such strain rates (Rice, 2006; Sulem &
Famin, 2009).

Based on this, this study is restricted to the undrained-
adiabatic limit and the values of the fluid and heat fluxes at
the boundary of the layer are fixed equal to zero. Following
the previous discussion, fluid and heat flows inside the
layer are permitted and the minimum thickness of the layer
is back-calculated for this assumption to be valid.

UNDRAINED-ADIABATIC ANALYSIS OF A CAUCHY
CONTINUUM
In the case of a Cauchy elasto-plastic material and in the
absence of inertia terms, we may linearise the system of
equations and induce a perturbation (denoted as tilded
fields (e.g. ~pp)) around its steady state value, to obtain
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where t0 is the steady shear stress (see the detailed method
described by Sulem (2010)). Then, the perturbation fields
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L~pp

Lt

~pp~p0 cos
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� �

est
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~TT~T0 cos
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l

� �
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are imposed, l and s being the wavelength and Lyapunov
exponent, respectively. The system would then be unstable
when s . 0, or as long as

Hv
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in which
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rs{rff
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Tc
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and

y~
jDHj

rC

rs
MCaCO3

A0

Tc

w0 (16b)

In the absence of any thermal and chemical effects (L 5 x
5 y5 cth 5 0), stability is ensured as long asH. 0. If only
thermal diffusion is allowed (L 5 x 5 y 5 0 and cth ? 0),
stability is ensured even for negative values of H.

The deficiency of the Cauchy continuum analysis is that
instability would set in for zero value of the wavelength, l
5 0, imposing that the undrained-adiabatic shear deforma-
tion is localised to a zero thickness band. However, it is
well known that the thickness of shear bands is finite and is
related to the internal length measures of the material. The
Cosserat continuum is a physical starting point for
considering microstructure and for developing a theory
with internal length measures.

BIFURCATION POINT AND SHEAR BAND THICKNESS
AT DIFFERENT TEMPERATURES
By linearising the resulting system of equations at different
temperatures and running standard bifurcation analysis
(linear stability analysis), the effect of each of the
mechanisms introduced can be identified. At room
temperature, where thermal pressurisation and chemical
decomposition are inactive, the system is driven by
mechanics, providing the well-known results of Muhlhaus
& Vardoulakis (1987). For associative materials under
biaxial loading, shear banding will take place at H 5 0,
forming a shear band with thickness D < 16d50, d50 being
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the mean diameter of the grain size distribution. If pressure
sensitive, dilatant medium is considered, the shear band
will be formed in the hardening regime (H . 0) as shown
by Rudnicki & Rice (1975).

Bifurcation point
If the temperature is increased in undrained conditions, so
that thermal pressurisation is active, Sulem et al. (2011)
showed that, even in the absence of dilatancy, the shear
band will be formed in the hardening regime H . 0. If
further increase of temperature is induced so that the
chemical reaction is triggered, Veveakis et al. (2012)
showed that bifurcation is taking place at even higher
positive values of H.

With these results in mind, linear stability analysis of the
Cosserat layer may be carried out. The details of the
method are comprehensively presented by Sulem et al.
(2011) and Veveakis et al. (2012), allowing application to a
7 km deep fault with the parameters listed in Table 1. The
system is thus linearised at three different temperature
regimes

N of the order of the boundary temperature, T , O(1)
N at higher temperatures where only thermal pressurisa-

tion is active, T , O(Tp) (Tp 5 sn/L)
N at elevated temperatures where chemical reaction

dominates, T , O(Tc).
The corresponding characteristic equations are solved

numerically for each temperature regime, allowing calcula-
tion of the critical values of the normalised hardening
modulus hcr 5 Hcr/(s + p) below which instability sets in.
The results are summarised in Table 2, where different
values of the dilatancy b are used, from zero to the
maximum value b 5 m (associative plasticity). We observe
that as dilatancy increases the system tends to stabilise
since hcr decreases, as also expected from equation (15).
Notice that as the temperature increases, rendering thermal
and chemical effects active, the system tends to be prone to
instabilities even at the hardening branch of the t 2 c
curve, as indicated by the large positive values of hcr.

The dependence of hcr on the thermal parameters of the
problem can be demonstrated at each temperature regime.
As shown in Fig. 2(a), at pressurisation temperatures (T ,
O(Tp)) hcr is sensitive to variations of the thermal
pressurisation coefficient L, increasing linearly with L. At
higher temperatures, where chemical reaction dominates (T
, O(Tc)) hcr increases with the frequency factor A0 of the
reaction, obtaining an upper value for strong reactions
(Fig. 2(b)).

Shear band thickness
Stability analysis of the Cosserat layer allows for determi-
nation of the shear band thickness. Defined as the critical

wavelength number at which instability propagates with
maximum finite speed, the analyses performed by Sulem
et al. (2011) and Veveakis et al. (2012) revealed that the
shear band thickness decreases with increasing tempera-
ture, having a lower threshold at D 5 3d50 at high
temperature areas where the chemical reaction is active.

By performing parametric analysis for the shear band
thickness at different temperatures, it may be noted that, at
T , O(Tp), the shear band thickness decreases hyperbo-
lically with the square root of L (Fig. 3(a)), being around
150d50 at L 5 1. At the chemical pressurisation regime (T
, O(Tc)), Veveakis et al. (2012) calculated a bounded
hyperbolic reduction with the reaction parameters, up to
the lower value D 5 3d50 (Fig. 3(b)). Since usually Tp%Tc,
as temperature increases due to shear heating, the shear
band would shrink in a thermally controlled process (see
also Veveakis et al. (2007, 2010)).

VISCOUS REGULARISATION INDUCED BY MICRO-
INERTIA
The selected wavelength corresponding to the maximum
finite propagation velocity of the instability could only be
calculated when including the micro-inertia terms on the

right-hand sides of equation (8), namely r
Lv1

Lt
, r

Lv2

Lt
and

r
R2

2

L _vvc

Lt
. Although Cosserat continuum introduces an

internal length, thus regularising the spatial ill-posedness

of the problem, it cannot regularise temporal instabilities.
As depicted in Fig. 4, when the micro-inertia terms are

Table 1. Indicative material parameters for a fault at 7 km depth, where the initial temperature is about 200uC

Parameter Value Parameter Value

p 66 MPa chy 1025 m2/s
sn 200 MPa cth 1026 m2/s
MCaCO3

0?1 kg/mol R 0?1 mm
f 1?24 G 104 MPa
b 0 K 26104 MPa
rs 2?56103 kg/m3 m 0?5
rf 103 kg/m3 Tc 800uC
rC 2?8 MPa/uC A0 106/s
L 0?5 MPa/uC |DH| 200 kJ/mol

Table 2. The first three rows correspond to temperatures that
are order one with respect to the boundary value. No thermal
effects are considered in this case. The next three rows
correspond to temperatures near the thermal pressurisation
temperatures where the chemical reaction is inactive. The last
rows correspond to temperatures near the chemical reaction’s
activation temperature Tc. As dilatancy b increases from zero to
its maximum value (the friction coefficient m), the system is
stabilised as hcr increases

Temperature b hcr

T , O(1) 0 0
m/10 22
m 215

T , O(Tp) 0 0?015a

m/10 1024

m 0
T , O(Tc) 0 6b

m/10 2?24
m 0

aSulem et al. (2011)
bVeveakis et al. (2012)
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neglected, thus assuming stress equilibrium at the Cosserat
scale, the shear band forms with infinite propagation
velocity in clear evidence of ill-posedness of the mathema-
tical system. This ill-posedness is alleviated once the micro-
inertia terms are introduced, providing finite propagation
velocities of the instability.

This regularisation technique provides identical results
to the viscous regularisation frequently used by the
community to regularise in time the ill-posed momentum
balance equation of a saturated Cauchy continuum
(Vardoulakis, 2002). With viscous regularisation, a char-
acteristic time (rate) from the microstructure is introduced
in the constitutive law of plasticity. For regularising a
Mohr–Coulomb failure criterion for a Cauchy continuum,
Vardoulakis (2002) showed that the friction coefficient m
should be allowed to vary with the plastic strain rate and
the second gradient of it

m~m( _ccp){gl2c+
2
_ccp (17)

where g (~Lm=L _ccp) is a rate sensitivity parameter and lc a
characteristic material length imposed by the regularisa-
tion. Noting that this technique not only imposes viscosity
in the material, but also actually influences its constitutive
response, inducing rate dependency, it can be inferred that
the translational and rotational inertia terms at the grain
scale (Cosserat micro-inertia) could be the origin of
possible rate dependency effects in saturated granular
media under simple shear.

CONCLUSIONS
This study generalised the classical mechanical concept of
failure for geomaterials to account for changes imposed by
thermo-hydro-chemical feedbacks. The following conclu-
sions are drawn.
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Fig. 4. Real part of the roots of the characteristic equation
when the Cosserat inertia terms are neglected (solid curve) and
included (dashed curve). Notice that in the absence of inertia
terms, the growth coefficient (Lyapunov exponent) is infinite for
finite wavelength (Sulem et al., 2011), implying that instability
propagates at infinite velocities
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N Failure during shear occurs at higher positive values of
the hardening modulus as temperature increases, due to
thermal pressurisation or chemical pressurisation.

N Apart from mechanics, shear band thickness depends on
temperature, localising with increasing temperature.
Hence, one may envision that in a real process where
shear deformation would produce heat due to friction,
considering all temperatures up to the reaction’s
activation energy, the problem could potentially have
several distinct length scales spanning from a purely
mechanical to a chemo-mechanical band at elevated
temperatures.

N Micro-inertia due to grain translation and rotation
introduces the necessary rate effects to regularise the
system during simple shear. Since rate dependency
during shearing of cohesionless granular media with
non-crushable grains was shown to be necessary to
regularise the problem of a Cauchy continuum, we
suggest that this rate dependency may originate from the
micro-inertia of the grains. This suggestion remains to
be proven rigorously, a proof that is beyond the scope of
the present analysis.
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WHAT DO YOU THINK?

To discuss this paper, please email up to 500 words to
the editor at journals@ice.org.uk. Your contribution will
be forwarded to the author(s) for a reply and, if
considered appropriate by the editorial panel, will be
published as a discussion.
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