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Abstract

In recent years, tomographic 3D reconstruction approaches using Electrons

rather than X-Rays have become popular. Such images produced with a

Transmission Electron Microscope (TEM) make it possible to image nanometer-

scale materials in 3D. However, they are also noisy, limited in contrast, and
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most often have a very poor resolution along the axis of the electron beam.

The analysis of images stemming from such modalities, whether fully or semi

automated, is therefore more complicated. In particular, segmentation of

objects is difficult. In this article, we propose to use the continuous maxi-

mum flow segmentation method based on a globally optimal minimal surface

model. The use of this fully automated segmentation and filtering procedure

is illustrated on two different nano-particle samples and provide comparisons

with other classical segmentation methods. The main objectives are the mea-

surement of the attraction rate of polystyrene beads to silica nano-particle

(for the first sample) and interaction of silica nano-particles with large unil-

amellar liposomes (for the second sample). We also illustrate how precise

measurements such as contact angles can be performed.

Keywords : electron tomography; image analysis; continuous optimization

; Hough circles; transmission electron microscopy.

1 Introduction

In this paper, we study the application of image analysis to nano-tomography

images and we present an image segmentation technique for this purpose. Im-

age segmentation is the task of decomposing an image into a set of disjoint

components that are each semantically consistent within themselves (e.g.
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finding the red blood cells in histology samples, or people in a photograph).

It is an essential task for further image-based studies since it enables mea-

surements to be made on objects, which otherwise would be indistinguishable

collections of pixels. Segmentation is one of the fundamental tasks of com-

puter vision, and there exist no generic method to achieve it. In the rest

of the paper, we will perform segmentation by finding good-quality contours

(in 2D) or surfaces (in 3D) around objects of interests.

Here, we focus on the automated segmentation and interaction measure-

ments of nano-particles in electron tomography. While there exists a number

of papers that have already applied image analysis to nano-particle stud-

ies (Fisker et al., 2000, Woehrle et al., 2006), segmentation of such particles

can be especially difficult, for reasons outlined below.

Motivation

Nanometer-scale particles possess singular physical and chemical properties

due to their dimensions, which have motivated a rapidly growing interest

in recent years (Fendler, 1998, Schmid, 2004). These new-found properties

have led to the novel applications of these nanomaterials to many areas, such

as catalysts, semiconductors, sensors, drug carriers, and personal care prod-

ucts (Chan, 2006, Rosi & Mirkin, 2005, Valden et al., 1998). Commercial
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products including engineered nano-materials in their make-up are expected

to become more frequent in the near future. As a consequence, both con-

sumer and professional exposures to these materials are likely to increase in

proportion to their use in the society. However, these nanomaterials can be

potentially harmful to human and environment due to the large percentage of

atoms lying on their surface and unusually high reactivity (Nel et al., 2006).

It is therefore important to study nano-materials both at the chemical

and physical level. For this, Transmission Electron Microscopy (TEM) is the

method of choice for nano-particle samples (Le Bihan et al., 2009). However,

while standard TEM can provide sufficient two-dimensional resolution, it has

insufficient depth sensitivity to detect internal three-dimensional structure.

The main limitation is that it is a 2D projection of a 3D object. The tech-

nique does detect internal 3D structures, but as a 2D projection. To palliate

this problem, electron tomography, initially proposed by W. Hoppe in the

1970’s Hoppe (1974), has become increasingly popular (Downing et al., 2007)

in order to obtain 3D views of nano-scale materials. Electron tomography

works broadly on the same principles as X-ray tomography, but uses electrons

instead. Also, instead of a dedicated instrument, standard TEM equipment

with relatively minor add-on can be used to acquire the data. The sample

under study is placed in an automated stage control, which tilts at regularly

spaced angles and the microscope digitally acquires a projected image. To-

4



mography software is then used to perform a 3D reconstruction from these

projections. Due to limitations in the achievable tilt angle, the resolution of

the images that are obtained is usually very poor along the electron beam

axis, and can also be noisy and feature low contrast. We recommend (Midg-

ley et al., 2007) for further reading.

In this work, we are interested in assessing two different nano-article

interaction studies with image analysis techniques. For the first one, the

objective is to get an insight into the surface contact of polystyrene beads

with silica nano-particles extracted from tomographic reconstructions. One

slice of a sample can be seen in Fig. 1 1. The interest of the segmentation lies

in the measurement of the attraction rate of the beads to the nano-particle.

The attraction is measured by the contact angle.

For the other sample, we focus on interaction of silica nano-particles with

large unilamellar liposomes (see Fig. 2 for an image slice example) 2.

Automated image analysis

Once the image is obtained, the next step is often to analyse the content

through for instance particle counting, size measurements, composition and

interaction studies. While a manual analysis of nano-tomography data is of

1The material and the problem is described in more detail in Taveau et al. (2008).
2 More details on the material for this application can be found in Le Bihan et al.

(2009).
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course possible (Nickell et al., 2005), it is often not desirable. One reason

is that the data is inherently 3D, which is difficult to represent on paper

or on computer screen, and difficult to interact with. Although 3D viewing

software packages have made enormous progress, interactive segmentation

(i.e. finding the contour or the enclosing surface) of objects can still take

months. Typically, practitioners endeavor to detour objects in 2D interac-

tively slice by slice, or they try to set a global threshold in order to find a

suitable grey-level iso-surface. Specifying surface elements manually is gener-

ally infeasible. Specifying contours slice-by-slice is technically possible when

contours are easily visible, but even then can lead to inconsistent topol-

ogy (Kang et al., 2004). It is also very difficult when contour information

is not reliable, as is the case in nano-tomography. When noise is present

in high levels, finding a suitable iso-surface by thresholding can prove chal-

lenging and time-consuming. There is also a potential for human error due

to fatigue, perception bias and operator variations. These effects have been

well-documented in 2D studies and also in 3D in the context of medical imag-

ing, which is similar in many respects (Martin et al., 2001, Senan et al., 1999).

Therefore, there is a need for methods that are able to find the contour of

objects reliably, even in the presence of high levels of noise.

On the other hand, while human operators find it typically difficult to

detour objects in 2D or 3D, they are usually able to identify objects reliably
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and so are able to guide segmentation through interaction. It is therefore im-

portant to provide a segmentation method which allows operators to interact

easily with the results obtained (Grady, 2010).

The need for a specific segmentation method

Often sufficiently precise contours are necessary for accurate segmentation

of image data. For this, we need the following conditions to be satisfied by

a segmentation method: 1) have objective optimization criteria; 2) feature

few arbitrary parameters; 3) be little sensitive to noise; 4) be able to op-

tionally interpolate missing data due to the missing wedge effect; 5) allow

interactivity; and 6) feature as few inherent artifacts as possible.

Since the late 1980s, optimization methods have been used to address a

wide variety of problems in computer vision, including segmentation. Early

optimization approaches were formulated in terms of active contours and sur-

faces (Kass et al., 1988a) and then later level sets (Sethian, 1999b). These

formulations were used to optimize energies of varied sophistication (e.g.,

using regional, texture, motion or contour terms (Paragios, 2000)) but gen-

erally converged to a local minimum, generating results that were sensitive

to initial conditions and noise levels. Consequently, more recent focus has

been on energy formulations (and optimization algorithms) for which a global
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optimum can be found.

The max-flow/min-cut problem on a graph is a classical problem in graph

theory, for which the earliest solution algorithm goes back to Ford and Fulker-

son (Ford & Fulkerson, 1956). Initial methods for global optimization of the

boundary length of a region formulated the energy on a graph and relied on

max-flow/min-cut methods for solution (Boykov & Jolly, 2001, Kolmogorov

& Zabin, 2004). It was soon realized that these methods introduced a so-

called grid bias (also called metrication error) for which various solutions

were proposed. One solution involved the use of a highly connected lattice

with a specialty edge weighting (Boykov & Kolmogorov, 2003a), but the

large number of graph edges required to implement this solution could cause

memory concerns when implemented for large 2D or 3D images.

To avoid the gridding bias without increasing memory usage, one trend

in recent years has been to pursue spatially continuous formulations of the

segmentation problem (Appleton & Talbot, 2006, Chambolle, 2004, Nikolova

et al., 2006). Historically, a continuous max-flow (and dual min-cut problem)

was formulated by Strang (Strang, 1983b). Strang’s continuous formulation

provided an example of a continuization (as opposed to discretization) of a

classically discrete problem, but was not associated to any algorithm. Work

by Appleton and Talbot (Appleton & Talbot, 2006) provided the first PDE-
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based3 algorithm to find Strang’s continuous max-flows and therefore optimal

min-cuts.

This method, named in the remainder Continuous Maximum Flows (CMF)

is essentially a convex reformulation of the classical Geodesic Active Contour

(GAC) framework (Caselles et al., 1997a), which is widely used in 3D im-

age segmentation. Being convex means, that the PDE can be solved by the

broken-line algorithm and it provides a globally optimal solution with no

metrication artifact. It is not a limitation on the form of the object which

can be non-convex or non smooth. In addition, the method is efficient in 3D,

and is therefore a good candidate for our purpose.

In the present work, we are applying the CMF method and both pre-,

and post-processing image analysis methods to two different nano-material

problems.

2 Electron nano-tomography

Electron nano-tomography originally proposed in the 1970s that uses a Trans-

mission Electron Microscope (TEM) as an illuminating source for 3D object

tomography, but has lately become more popular due to the increased avail-

3PDE–Partial Differential Equation, are a type of differential equation, i.e., a relation
involving an unknown function of several independent variables and their partial deriva-
tives. Partial differential equations are used to formulate, and thus aid the solution of,
problems involving functions of several variables.
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ability of effective reconstruction software.

Principles

While more standard tomography techniques use X-Rays as source, nano-

tomography uses electrons instead. The main benefit of using electrons is

the significant increase in resolution compared to X-Rays. As electrons in

TEM behave in some ways as waves with a very high frequency, they allow

for nanometer scale resolution, while X-Ray sources are typically limited to

about micrometer scales resolution.

The general principles of electron nano-tomography (ET) are broadly

similar to standard X-ray tomography (Kak & Slaney, 1999), in the sense

that projection images around the volume of interest are used, and the re-

construction of a 3D image of this volume is effected through the use of in-

verse tomography algorithms (for instance filtered back-projections, iterative

methods, etc). Electrons traverse the material to be imaged, and are either

left untouched, absorbed, diffracted or deflected as a result. The projection

of the intensities as recorded by the TEM’s imaging device is, under suitable

conditions, comparable to an attenuation image, although many artifacts are

typically present.

The sample, rather than the device, is rotated along one (or sometimes
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two axes), and projection images are recorded at regular angles. See Fig. 3

for simplified schematics. Similarly with CT scan, the angle(s) of tilt can be

automatically associated with all recorded projection.

Features and limitations of the technique

One feature of TEM is that since electrons are negatively charged fermions,

they readily interact with matter and are easily scattered by positively charged

atom nuclei. As a result, unlike X-Rays, electrons cannot penetrate much

into matter, and are affected by sample chemical contents: heavy atoms de-

viate electrons more than lighter ones. As a result, this so-called chemical

(or Z-number) contrast is present in addition to absorption contrast. This

effect can be used productively in Z-number contrast tomography Midgley

et al. (2007). The loss of energy in exiting electrons resulting from this inter-

action can also be used to derive chemical content in other modalities such

as EFTEM Möebus & Inkson (2003).

However , due to this interaction with matter, preparation for TEM imag-

ing implies thinning the sample under study as much as possible, so as to

make it mostly transparent to electrons, using physical processes such as ion

mills for instance. For some materials and high resolution needs, the final

sample may be only a few hundreds of nanometer thick at its thinnest point.
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Because the final sample is then extremely fragile, it is currently impossible

to obtain such thinness over a large area, and much less in such a way that

the final sample is thin in two directions at once (like a thread or a needle).

In other words, the final sample is most often like a thin layer in a relatively

deep well, as illustrated in Fig. 4. Even in naturally flat, thin samples, such

as nanoparticles dispersed on a carbon grid, the grid holding the sample

induces shadowing at high angles.

As a direct consequence, the sample cannot be illuminated in all directions

around it, unlike a patient in a CT scanner. This means that the electron

beam cannot illuminate the sample in directions that are too far away from

the normal to the thin layer. Finally, in a typical ET scanner the specimen

holder sits inside the objective lens pole piece so there is very limited space for

tilting, even if the sample would be string-like. Typically, illumination much

beyond 70◦ from the normal is difficult or impossible, and a complete set of

projections cannot be obtained, from which to derive a complete tomographic

reconstruction. To ameliorate the situation somewhat, tilt sequences can be

recorded along several angles, but in fine there is most often a so-called

“missing wedge” in the projection space.

In practice, this translates into 3D images that exhibit noise and weak or

elongated edges in the direction of the normal to the surface of the sample

(i.e. the direction of the beam when the sample is untitled), but relatively
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strong features in the perpendicular directions to this normal. Fig. 5 shows

some of these effects. This is an image of a polystyrene ball. Along the

“equator” of the ball, edges are strong, but at the “poles”, edges are weak.

Image analysis challenges

Segmentation of nanotomography images is difficult because of these char-

acteristics, as we illustrate on Fig. 6. In particular, because of the missing

wedge and strong noise, thresholding is unreliable (see Fig. 6(a)). For the

same reasons, watershed Beucher & Lantuéjoul (1979), Meyer & Beucher

(1990) is prone to leaking (see Fig. 6(b)). More recent methods, such as

graph cuts Boykov & Jolly (2001), Boykov & Kolmogorov (2003b) are more

successful but due to their anisotropic formulation, they tend to find edges

that are aligned with the principal directions of the image sampling grid

(see Fig. 6(c)), leading to clipped results. Here, the need for a segmentation

solution which is little sensitive to noise, globally optimal and isotropic is

essential. In the following section, we describe an improved solution.
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3 Continuous maximum flows and minimal sur-

faces

In this section, we describe the continuous maximum flows model used for the

segmentation of particles of nano-tomography images. We assume sufficient

regularity for all functionals whose practice is usually met in physical systems.

As a fundamental idea, let g be a function on Ω ⊂ C(Rn) that defines a

local metric cost, i.e. the value of g at point x is the cost of traversing point

x. We will assume that g is scalar and provides values in R, and we will

call this function our cost function. Furthermore, let S (source) and P (sink)

be two disjoint subsets of Ω. Let all closed simple hyper-surfaces4 s with

finite area (not necessarily connected) be those that do contain the source

and do not contain the sink. In some sense, we can define the source of the

segmentation as a marker for the interior of the object to be segmented, and

the sink as a marker for its exterior.

Then we can define the following functional:

E(s) =

∮

s

gds, (1)

called the total weight or total cost of s. As E(s) ≤ area(s) · max(g) is

4A simple hyper-surface is a curve in 2D or a surface in 3D that does not intersect
itself.
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finite for bounded g. Furthermore, there exists at least one hyper-surface

M exhibiting minimum weight (Strang, 1983a). In a discrete domain this

minimum surface can be computed using the Ford and Fulkerson maximum

flow graph algorithm (Ford & Fulkerson, 1962), which was improved in the

digital image context by Boykov & Kolmogorov (2003b).

In the continuous domain, M can be computed directly for every cost

function g and sets P , T using for example active contours or surfaces meth-

ods (Kass et al., 1988b), or level-sets methods (Caselles et al., 1997b, Sethian,

1999a). However, these methods compute surfaces iteratively via gradient

descent schemes, and thus the solution is only locally optimal. Hence, the

solution depends on initialization and noise levels. On the other hand, the

algorithm presented by Appleton & Talbot (2006) provides a globally opti-

mal solution to this problem. The solution is obtained in form of a smooth

quasi-binary function5 monotonically decreasing from source to sink. The

iso-surfaces of this function will represent the minimum surface. As with the

continuous nature of the algorithm, in some cases, it provides a sub-pixel

accurate positioning of the minimal surface.

The differential geometric approach, that is to say, segmentation by opti-

mization (Eq.1) is advantageous in cases where only parts of the contour are

known. These are parts of the image where g is close to a constant. In this

5One for which most values are either 0 or 1.
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case, this approach interpolates the known area with patches of minimum

surfaces (in the geometric sense).

The solution with the maximum flows method depends on choices of: 1) a

relevant cost-function g to our problem; 2) sources and 3) sinks. Examples

of syntethic objects can be found on Fig. 7.

3.1 The choice of the image function

In the current framework, we are seeking the optimal curve (the one that has

the optimal integral) around the source of an object. However, on point-wise

sources E(s) =
∮

s

dG =
∮

s

gdx ≤ surf(s) · max
s

g → 0 if we take smaller and

smaller surfaces around S. So, that if we take a small surface around S, it

will have small cost, but not on the contour of the object, like in Fig. 8. This

can be overcome in two ways. The first possibility is that impose S to have

some minimum length or surface. The boundary ∂S will then have non-zero

cost, so that we can find the contours if they are smaller than the cost of

the boundary. The second possibility is to modify our cost function with a

particular weighting. For example, in a constant image L, lets define g as:

gI(P ) :=
1

d(P, S) · (1 + ∇L)
(2)

Here, d(A, B) denotes the distance of A and B.
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Now let us look at the circles with ray r around the point-wise S:

∮

|x|=r

gI(x) dx =

2π∮

0

r

d













r sin(t)

r cos(t)







, S







︸ ︷︷ ︸

r

· (1 + ∇L)

dt =

2π∮

0

dt

1 + ∇L
(3)

If L is constant then Eq.3 gives 2π for all the circles around S. It can also

be proven that these circles are the minimum cost curves of this measure. If

∇I is different from 0 at some point A (For example there is one point in I),

then the "cheapest" curve will be the circle that contains A.

The following, complementary way to look at the problem is also true:

if an image I is constant between the parts of the contour, then on these

parts the solution will be interpolated with a circle. This approach is used

in section 4.2.

We can extend this idea and define any set of curves D which do not inter-

sect. It can be proven that there exists a weighting W , where the minimum

cost curves are those of D.

This approach will tend to put the surface near the high frequency places

before the curves of D. So it has a limited usage if the noise is at the level

of the contours, like in Section 4.2, Fig. 9. Also there are cases where the set

of curves is more difficult to define, like in section 4.3, Fig. 10.
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The remaining challenges are how to choose sources and sinks. In the

next few sections we present the ways we have solved this in the cases of

weak gradient or/and high noise.

3.1.1 Calculation of the cost function

A relatively easy way to attract a minimal surface near object contours is to

consider the following cost function, given by g = 1

1+‖∇I‖
. This cost function

is high in relatively constant parts of the image, but drops to zero near

edges, which are areas of high gradient. However, in regions where g is near-

constant (in our images, this will occur near the extremities of objects under

study that are along the electron beam, i.e. near the “poles” of objects),

the minimum surface is a portion of plane. This means that the minimum

surfaces will be attracted by the global noise. In this case the key observation

is that the reconstruction-created noise shows parallelism with the axes. The

result of this initial segmentation is close to a truncated sphere. To correct

this defect, we used a modified g. More precisely, we used separable spline-

interpolated gradient (available in (Foundation, 2010)) in direction from the

source to the point and the sphere weighting introduced in Section 3.1.

The formal definition follows:

For a one-dimensional vector x, its continuous spline interpolation is de-

noted with fx. For a 3D image I, the three axial vectors that contain the
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point P are denoted with xP , yP and zP , respectively. The gradient of the

image I in point P is defined by ∇IP =











∂fxP

∂fy
P

∂fzP











.

To calculate the directional gradient in point P we use the direction vector

c := CP. The final cost function used in this case is

g(P ) =
1

d2(P, S)
︸ ︷︷ ︸

∗

· (1 + c · ∇I
︸ ︷︷ ︸

**

)
(4)

Here, (**) is the gradient in direction of c and (*) is the square of the

distance from the source. The square exponent is needed because the area of

the minimum surface is proportional to the square of the radius of the object.

This cost function filters the artifacts in the direction z and the closer we

are to the direction, the more we ignore the noise. An example of an image

of a polystyrene ball segmented by the CMF method is shown in Fig. 9(a).

Fig. 9(b) shows the ball segmented without the cost function weighting. We

can observe an incorrect reconstruction due to weak gradient in this area of

the image. In Fig. 9(c), 9(d) a better segmentation results are shown. It was

achieved using the 1

r
weighting described above.
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3.1.2 Curvature estimation

Curvature estimations were provided in some key areas of the image, for in-

stance near points of contact between nanoparticles and liposomes as well as

in the case of the membrane of the liposome. In the presence of a reliable

surface segmentation and in the continuous domain, the local curvature is

well-defined mathematically and can be estimated using local second deriva-

tives. Curvature estimation is also possible from implicit surface representa-

tions (Goldman, 2005). However, in our case we found that the precision of

these methods was not good enough due to discretization and noise. A scale

must be chosen at which to estimate the curvature and appropriate smooth-

ing must be applied with some caution, in particular in order to preserve

topology.

Instead, we developed semi-local representations of curvature appropriate

to our problem, in particular given our priority regarding topology preser-

vation. We started from the medial axis representation of our segmented

result S (Blum, 1961) and found the extremities of this representation. The

medial axis is the locus of the centers of maximal disks (2D) or balls (3D)

included in S. Maximal balls are such that no ball can strictly contain them

and still be included in S. Their center lie at local centers of symmetry for

S, and they touch (and are in fact tangent to) the border of S on at least
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two distinct points. The superset of the medial axis that is connected and

topologically equivalent to S is called the skeleton of S, and there exists effi-

cient algorithms for computing the medial axis and the skeleton in 3D, see for

instance (Lobregt et al., 1980, Zrour & Couprie, 2005). Skeleton extremities

can be detected using local configurations (e.g. points with a pre-determined

number of connected neighbors).

3.2 Source and sink determination

One of the keys to maximum flow segmentation is the choice of the source.

In the model we assume three things: the source is inside the object, the sink

is outside of it and we segment only one object at a time. While there exists

situations where the choice of the source can be arbitrary placed within the

object, in many cases, however, the segmentation can be improved with a

good choice of source. While segmenting more objects at a time is theoreti-

cally possible, the topology of the final object is not guaranteed. There exist

examples where more isolated sources still lead to a single object after the

segmentation.

In our case, due to the missing wedge effect, a more precise choice of source

and sink can considerably improve the segmentation results. In Section 4.2

we have used a preprocessing technique to determine the "centres" of the
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objects. From these carefully chosen sources we could apply a position-based

noise filtering on the cost function g which led to our final segmentation.

In general, sinks are made of 3D bounding boxes around known objects

of interest and do not present a strong challenge. In other cases, they might

be derived from previous segmentations.

3.3 Calculation of the optimal surface

The continuous maximum flow system is described by the following system

of equations:

∂P

∂τ
= −∇ · F (5)

∂F

∂τ
= −∇P (6)

|F| ≤ g (7)

Here P represents a scalar (pressure-like) field and F a flow vector field (a

speed-like field). P is forced to 1 on the source and 0 on the sink. The

equation can be solved numerically (by simulation). Assuming convergence
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for a given g, the steady-state solution is:

∇ · F = 0 (8)

∇P = 0 if |F| < g (9)

∇P = −λF if |F| = g (10)

The Eq. 8 simply restates the conservation of the flow. Eq. 9 applies if

the flow has stabilized during the evolution without the constraint (Eq. 7).

At stability, direction or magnitude of the flow vector field cannot change.

From Eq. 6,7 we can deduce that ∇P · F ≤ 0, which means that P is a

monotonically decreasing function along the flow lines. If F is dense, as it

is divergence-free, these flow lines can only initiate in the source and end at

the sink.

Now, we define set A = {x|P (x) > p} with 0 < p < 1. On the iso-

surface Y := ∂A the ∇P 6= 0 by construction, which means, that in these

points (Eq.7) applies thus:

∫

A

∇ · FY =

∮

Y

NY · FdY =

∮

Y

gdY =

∮

Y

dG (11)

This implies, that every iso-surface of P is a minimal surface. If there is only

one minimum, this also means that the P field can be 0 ≤ P ≤ 1 only on a
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zero measure set.

Computation of minimal surfaces by this flow simulation is reasonably

fast. For instance, in the case of section 4.2, steady-state convergence of a

116x116x116 pixel image is reached in 2000 iterations in 80 seconds on a

dual-core AMD 2.5GHz Opteron CPU. Memory consumption is in the order

of 4 times the initial image size in single-precision floating point format.

4 Segmentation and interaction analysis of nano-

particles

4.1 Image acquisition

The volume images are reconstructed from a series of projected 2D im-

ages. The object is turned around its axe and full 2D attenuation pattern is

recorded at each angle. In this application, a 5 µl sample was deposited onto

a holey carbon coated copper grid, while the excess was blotted with a filter

paper. The grid was plunged into liquid ethane, cooled with liquid nitrogen

(Leica EM CPC). Specimens were maintained at a temperature of approxi-

mately -170 ◦C, using a cryo holder (Gatan). For the acquisition, the images

were observed with a FEI Tecnai F20 electron microscope operating at 200 kV

and at a nominal magnification of 50 000× under low-dose conditions. Im-
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ages were recorded with a 2000×2000 slow scan CCD camera (Gatan). For

cryo-electron tomography, tilt-series were collected automatically on both

FEI Tecnai F20 and Tecnai G2 Polara from −60◦ to +60◦ with 2◦ angu-

lar increment using the FEI tomography software. Images were recorded on

CCD camera at a defocus level between -8 µm and -4 µm. The pixel size at

the specimen level varied between 0.5 nm and 0.36 nm. The sample was in-

jected with high intensity particles before the recording, so the exact position

of the carbon grid could been determined. For image processing, colloidal

gold particles were used as fiducial markers. The 2D projection images were

then binned by a factor of two and aligned with the IMOD software (Mas-

tronarde, 1997). Finally the tomographic reconstructions were calculated by

weighted back-projection using Priism/IVE package (Chen et al., 1996).

Orientation particles can be seen as white spots in Fig. 11. However, as

the carbon grid can only be turned around within about 120 degrees (due

to the thickness of the grid), there are some parts of the object which are

not present in the volume image. The result of the microscopy are three-

dimensional images, however the signal-to-noise ratio becomes very low near

object’s poles due to missing wedge effect. An example can be observed in

Fig. 5.

In this situation, it is desirable to present both the reliable segmentation,

i.e. the part of the contour that was detected based on strong edge infor-

25



mation, and the interpolated ones. In the following, we are detailing the

filtering and the segmentation procedure with the described algorithm of the

maximum flows and its optimization applied for two types of samples.

4.2 Polystyrene beads nucleated around silica nanopar-

ticles

The material consists of polystyrene nodules and silica bead embedded in

a substrate. These roughly spherical objects of size range 100-300 nm are

nucleated around an existing silica bead. One slice of a sample can be seen in

Fig. 1. The work by Taveau et al. (2008) details all materials and methods.

The aim is to get an insight into the surface contact of polystyrene beads

with silica nano-particles extracted from tomographic reconstructions. For

this, the particles are automatically segmented and then their contact angles

are also automaticlaly measured.

In order to prove the uselfulness of the max-flow method, we compare its

performance to other widely used segmentation algorithms: simple thresh-

old, watershed algorithm and the combinatorial graph cuts (that is the Ford-

Fulkerson maximum flow algorithm). In the test images, we first applied a

median filter, then we segmented the same filtered image by all the compari-

son algorithms and CMF. The final segmentation results are superimposed on

26



the original image. This example shows the side-effects of these segmentation

algorithms.

The Ford-Fulkerson, graph-cut and watershed may perform similarly on 2D

images, whereas they have radically different performances when the problem

becomes 3D on this data. The results of these four different methods can be

seen in Fig. 6. In this case, the simple threshold of the image cannot produce

any usable propositions Fig. 6 (d). We can see that the Ford-Fulkerson algo-

rithm will converge on flat limiting planes instead of spherical ones and that

watershed cannot find the limits of the objects at all, making thus the object

reach the borders of the image. Considering these examples, the continuous

maxflow algorithm equipped with the specialized gradient described earlier

can be a good alternative over these methods. It can interpolate the missing

(or weak) parts of the gradient with a simple form; in this case close to a

sphere, but concave objects would also be possible. More complex objects,

like facets of a crystal have not yet been tried, but would be an interesting

problem to look at.

In order to segment the image with the maximum flows method from

section 3, it is desirable to filter out the noise. As well, we need to specify a

source and a sink.

As a preprocessing step, in order to reduce the noise in the original data

(see Fig. 1) we used several filtering steps. 3D median filter was used in order
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to reduce speckle and salt-and-pepper noise. 2D edge extraction with the first

derivative on a large scale in order to smooth out the noise. Afterwards, a

3D connectivity filter was used in order to eliminate smaller connected areas

after thresholding Breen & Jones (1996). A series of morphological openings

and closings were useful in reconnecting and reconstructing the 2D circles.

These filtering results can be observed in Fig. 12 .

Due to the missing wedge effect, on some slices, insufficiently recon-

structed bead poles appear very dim, while well-reconstructed bead slices

near the equator appear well separated from the background as in Fig. 5.

For this sample, in order to compensate for this drawback, we have used

a preprocessing technique to determine the centres of the particles as closely

as possible. The complete bead surface is interpolated by segmentation of

its circles from the fully reconstructed (horizontal) image slices. The bead

surfaces are used as sources for the maximum flow method segmentation.

In order to detect circles from 2D slices of the image volume, the Hough

circle transform was used. The original Hough transform (Hough, 1962)

and its derivatives have been largely applied and recognized as a robust

technique (Illingworth & Kittler, 1988) even in the presence of heavy noise.

The circle Hough method did indeed succeed in localizing circle centres and

radii even from incomplete initial circles (see Fig. 13).

Once the centres have been determined, these centres were used as sink for
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the maximum flow method. We have considered one bead at a time. In this

case the extent of the beads is predictable. To facilitate our task without the

loss of generality we could assume that a bead is fully contained within 0.7R

to 1.2R, where R is the estimated radius of the bead6. For the segmentation

of each bead, as a source marker, a sphere with radius 0.7R centered in C

was used. The complement of a sphere with radius 1.2R centered in C was

used as the sink marker. This step accelerated the speed of the segmentation

as the region excluded was omitted during the segmentation.

Due to the gradient’s high sensitivity to noise, we used the gradient of a

cubic spline (Foundation, 2010) with some improvements: First the gradient

is calculated on each line in each direction with an approximating spline. A

spline is a function defined in our case on a line. At each integer point the

value of the spline is the same as the image intensity and its derivatives up

to degree 3 can be computed analytically.

Here the key observation was, that the noise is roughly parallel to the

axes. We could therefore filter the noise from the gradient by calculating a

directional gradient from the centre. This is done as follows: for a point

A to which we would like to know the value of the directional gradient, we

consider the ray7 OA, where O is the centre of the bead. At point A we

6the estimated radius is a byproduct of the Hough transform
7half-line
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calculate the sum of the scalar products of the gradients in each direction

gd = OA · gx + OA · gy + OA · gz. The higher degree is used to avoid local

fluctuations caused by the noise. Finally, the segmentation was performed

using the continuous maximum flows method and the results can be observed

in Fig. 14.

4.2.1 Contact angle measurement

The interest of the segmentation lies in the measurement of the attraction

rate of the beads to the nanoparticle. The attraction is measured by the

contact angle.

The common way of the angle calculation is Axisymmetric Drop Shape

Analysis (Cheng et al., 1990). In this method a model of the bead is fitted

to the image while minimizing the quadratic difference from the image. This

way accurate angle measurements can be performed.

However, this method supposes that the physical model of the bead is

known and precise. In our case, we do not make any assumptions about the

physical properties of the material, so we perform direct angle measurements.

In our case, the image plane is projected to the x y plane using an angle-

preserving conformal map. Secondly, we find the contact point, and finally,

we interpolate the contact arcs with a circle calculating the angle between

the upper and lower interpolating circles.
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Projection of the image We consider the two center points of the beads

A and B. We want to consider the planes containing the line AB. For the

rotation, we use x as the reference vector and AB× x as the third vector of

the base. The basis B
1

=
[
x,x × AB,AB

]
will be our reference basis.

As we want to calculate the angle for every possible cut, we rotate the

basis B1 around the axis AB. For this, we project the basis into the origo

(O) and then we apply the rotation transformation. Formally:

R =















cos α − sin α 0 0

sin α cos α 0 0

0 0 1 0

0 0 0 1















will be the rotation transformation and

O =















1 0 0 0

0 1 0 0

0 0 1 0

1 1 1 1















will represent the origin basis. T = R · O−1 will project the reference basis

to the origo, with z matching AB. From this B
2

=
(
T−1 · R · T

)
· B

1
will

represent the projection basis which is the reference basis B
1

rotated with
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angle α. For the angle measurement, we want to project the axe AB to the

axe y, so we swap the third and the second column of B
2
. We will mark this

with B’

2
. In the last step we calculate the projection matrix

PR = B’

2
· O−1

The PR matrix will project the points of the x y plane to the plane around

the axe AB. From this we calculate the actual intensity by nearest neighbour

interpolation.

Isolation and interpolation of the contact arcs As shown in Fig. 15,

we can now conformingly map the cutting planes to 2D images. The neck of

the object can be found by a simple pass on the image looking for the closest

point to the axis.

For the angle interpolation, we consider the radius r from the bottle neck

point and we separate the upper and the lower arcs. The circles, which

minimize the square error will represent the interpolation of the derivatives

of the images.

Finding the best fitting circle For the best circle fit we use a modified

version of the ellipse fitting algorithm from Fitzgibbon et al. (1999). The

description of the algorithm follows:
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Let’s assume, that our circle is defined by the equation:

a
(
x2 + y2

)
+ bx + cy + d = 0, (12)

where a = {a, b, c, d}T and x = {x2 + y2, x, y, 1}
T
.

To find the fitting circle, we minimize the algebraic distance:

dist(a) =
N∑

i=1

(
aT · x

)2
(13)

If we reformulate Eq. 12 to the conventional form:

(

x +
b

2a

)2

+
(

y +
c

2a

)2

+

(

d −
b2

4a2
−

c2

4a2

)

= 0, (14)

from Eq. 14 we can see that the condition for Eq.12 being a circle is:

d −
b2

4a2
−

c2

4a2
< 0 (15)

0 < 4a2d − b2 − c2 (16)

As the circle equation is overdetermined (namely the a constant), we can

impose Eq. 15 as constraint 4a2d − b2 − c2 = 1. With these considerations
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we can reformulate the problem as a Lagrange minimization:

min
a

||D · a||2 s.t. aT · C · a = 1 (17)

Here, D denotes the design matrix of size N × 4:

D =















x2
1 + y2

1 x1 y1 1

x2
2 + y2

2 x2 y2 1

...
...

...
...

x2
n + y2

n xn yn 1















and C denotes the constraint matrix:

C =















0 0 −2 0

0 1 0 0

−2 0 1 0

0 0 0 0















Following the argumentation of Fitzgibbon et al. (1999), the Lagrange system
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can be rewritten as

S · a = λC · a (18)

aT · C · a = 1 (19)

where S is the scatter matrix, S = DT · D. This system is readily solved by

considering the generalized eigenvectors of (18). If (λi,ui) solves (18), then

so does (λi, µui). Giving

µi =

√

1

uT
i · C · ui

=

√

1

uT
i · S · ui

(20)

and setting ai = µiui solves Eq.19.

The solution of the eigensystem Eq. 18 gives four results. These four

results are all local minima of the equation, so selecting the vector which

minimizes Eq. 13 yields be the optimal vector.

Verification of the method We will demonstrate the correctness of the

algorithm by statistical measurements. We model the beads by two spheres

which intersect each other. The contact angle will be the angle measured at

the contact ring. This angle can be calculated from geometrical considera-

tions as seen in Fig. 16. We can see that angle α is the complementer angle
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of β, whereas β can be calculated from the area of the triangle O1O2PI :

S =
1

2
r1r2 sin β (21)

S =
1

4

√
(
r2
1 + r2

2 + d2
O1,O2

)2
− 2

(
r4
1 + r4

2 + d4
O1,O2

)
(22)

Here, Eq. 21 is the SAS8 theorem, while Eq. 22 denotes Heron’s formula.

Final formula:

α = π − asin





√
(
r2
1 + r2

2 + d2
O1,O2

)2
− 2

(
r4
1 + r4

2 + d4
O1,O2

)

2r1r2



 (23)

gives us the reference angle. In the test we generate two randomly posed

intersecting spheres and follow the procedure described above. The measured

angles are then averaged and compared with the artificial angle estimation.

Results During the tests we have measured more than 600 pairs of random

circles and measured a mean absolute difference of 3.3% compared to the

artificial estimations. An example of the interpolated image can be seen in

Fig. 17.

The contact angle provides an important information concerning the rate

8side-angle-side
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of attraction of the particles. While the contact angle can be measured by

hand, the automated measurement can provide more consistent and objective

information about the chemical forces inside the substrate. An example of

the superposed angles can be seen on Fig. 15. In this image, the angle is

calculated at several different angles. From these we calculate the average

angle. Higher angles correspond to higher attraction forces.

4.3 Nanoparticle transport across phospholipid mem-

brane

For this application, we focus on the interaction of silica nano-particles with

large unilamellar liposomes (see Fig. 2 for an image slice example).

While many past studies focused on measuring the end-point nanomate-

rials and the distribution of their particles, relatively few studies have been

dedicated to the understanding of molecular interactions between nanoma-

terials and cell membrane, which may provide the necessary information to

understand how nanomaterials bind and enter cells (Banerji & Hayes, 2007).

Nano-particle transport across cell membrane is important in the devel-

opment of drug delivery systems, as well as in the question of nano-particle

poisoning. We know that hydrophilic nano-particles interact with the lipid

membranes. However, if they succeed to enter into the cell and to which
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extent, we do not know. Several models have been proposed based from the

membrane curvature to even the complete form of the particle.

It was generally believed, that the particles did not enter into mam-

malian cell by endocytosis9. As evidence (Geiser et al., 2005) and (Rothen-

Rutishauser et al., 2006) argumented with the entry of ultra fine particles into

the red blood cells and cyt-D blocked macrophages10. Both of these cells are

known for their lack of endocytotic capabilities. However, (Banerji & Hayes,

2007) revealed11 that in some cases the molecules did not pass through the

membranes as expected. This suggests that the nano-particle transport re-

quires an interaction with the membrane. Unlike the nano-particles larger

than 30 nm, these 20 nm particles could not “break into” the membrane.

The results of the study (to which this paper has partially contributed)

provided in Le Bihan et al. (2009), indicate that silica particles, which are

bigger than 30 nm can enter into the liposomes composed of phosphocholine

lipid, while smaller particles cannot. This is due to the favourable balance

between the adhesion strength and membrane curvature. Smaller particles

will not be able to enter because of the less favourable balance.

In this segmentation in addition to the above presented techniques, we

9Endocytosis is a process where cells absorb material (such as nanoparticles) from the
outside by engulfing (wrapping around) it with their cell membrane.

10White blood cells that absorb material foreign to the body (bacteria, etc).
11In a study made with gold molecules and a liposomes that mimics the biological

membrane.
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used a special method for determining the source. Because of the asymmetric

shape of the object, a simple constraint bias was not sufficient. We have

extracted instead several 2D slices from the image, which we have segmented

with the same method, then we have created a complex 3D source from the

result. The created source is presented in Fig. 18.

Our segmentation results are summarized in Figures 10, 19, and 20.

These show a slice of the input image together with the borders of the seg-

mented objects superimposed in white. We used this evidence to visually

check the correctness of the segmentation and the estimation of curvature,

which we measured in places of interest (Fig. 21 and Fig. 22).

5 Discussion and conclusion

In this article, we have demonstrated the usefulness of the continuous maxi-

mum flow framework for the segmentation of electron nano-tomography im-

ages. Despite the presence of noise, lack of contrast and low resolution of

images, the method was extended to provide for the interpolation of miss-

ing parts of data as well as to cope for the structural noise. Its algorithmic

design allows high level of parallelisation which makes it suitable for high

resolution images. Moreover, a free implementation exists Couprie (2011),

which makes it suitable for research and a useful option for inclusion into
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other image processing frameworks.

The method performs reasonably fast in all the above applications.

The method was further improved by adding shape constraints, optimis-

ing its performance for the shape-corrupted objects due to the missing wedge

effect inherent to the image modality.

The filtering and the segmentation procedure with the maximal flows

algorithm and its optimization were applied for two types of nano-material

samples.

In the first example, the aim was to find the size of some polystyrene

beads and location with respect to a silica bead. The presented method was

compared with other classical segmentation methods: thresholding, water-

shed and graph-cut, and shown to present significantly better performance.

Moreover, we have presented an automatic contact angle measurement

algorithm and its statistical evaluation on simulated data. Such automated

measurement can provide more consistent and objective information about

the chemical forces inside the substrate.

In the second image sample, the max-flow technique was shown to be use-

ful in understanding of molecular interactions between nano-materials and

cell membrane, which may provide the necessary information in the under-

standing of binding and entering of silica nano-particles and large unilamellar

liposomes.
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As future work, the presented methods will be tested on larger data sets

and validated by specialists. In the case of high volume datasets, or many

images to segment, the algorithm is implementable on GPU architecture. A

GPU implementation would improve the segmentation speed by an order of

magnitude.

In the improvement of the algorithm, we also envisage an extension to

optimize the flow according to an arbitrary convex-set-function as compared

to the simple sphere in the original proposition: Instead of |F| ≤ g we could

enforce F(x) ∈ Γ(x) where Γ(x) is a convex set defined in each point. This

would make it possible to optimize the flow for more complex family of curves.
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Figure 1: An original TEM image slice on the polystyrene beads nucleated
around a silica one.
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Figure 2: An original image slice of silica nano particles with large unilamellar
liposomes.
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Figure 3: Simplified schematics of a transmission electron microscope for
nano-tomography. A: electron source, B: Sample, C: Tiltable stage, D: Con-
denser magnetic lens, E: Diffraction lens, F: Projection lens, G: Sensor, .
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Figure 4: As the sample is thin in one direction only, it is not possible to
rotate it fully around the electron beam. The maximum tilt angle is usually
around 70◦ or so.
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Figure 5: This image represents some artifacts of the missing wedge effect
commonly observed in electron nanotomography. Because it is not possible
to rotate the sample fully around the beam, edges perpendicular to the main
beam direction are weak and elongated due to missing wedge effect, and the
image is very noisy.
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(a) (b)

(c) (d)

Figure 6: Application of various 3D segmentation methods on nanotomog-
raphy images. (a) Optimal threshold ; (b) Watershed ; (c) Graph cuts ; (d)
Continuous maximum flows. Only this last method provides a good result in
our case.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7: Examples of continuous maximum flow segmentation. The sources
are marked in red. The sinks are the border of the images. In the image
(a), the constraint-field is affected with a circular bias, whereas the images
(b) and (c) are not altered. We can see, that the segmentation succeeds
even on incomplete or concave objects. Images (d), (e) and (f) represent the
partially converged pressure fields, while images (g), (h) and (i) are the final
segmentations.

50



T

S

Figure 8: We assume that our image is constant 1 everywhere except on the
black curve, where its value is small (ε). Now if we consider the integral on
the black curve, than this integral will also be small. We specify pointwise
source and sink S and T respectively. We would like to find the optimum
curve, however as we take curves towards the source (the red curves), the
integral tends to zero. A small curve around the source (blue) will have
smaller integral than the black curve.
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(a) (b) (c)

(d)

Figure 9: Slice of a segmented ball with the maximum flows method.
(a) Original data. (b) Unweighted cost function segmentation result in green
(in blue - marker). (c) Weighted cost function result (same color coding as
in (b)). (d) 3D segmentation result.
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Figure 10: Nanoparticle entering into the cell. The membrane has been cut
in half for better visibility.
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Figure 11: Summary of segmentation procedure results: segmentation accu-
racy of nanoparticle, membrane and radii of curvature. Results superimposed
in white over the original image data.

54



(a) (b)

(c)

Figure 12: The pre-processing steps: (a) Median filter. (b) First derivatives.
(c) Morphological opening and closing results.
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Figure 13: A pre-processed image slice together with the Hough circle trans-
form result.
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Figure 14: Polystyrene and silica beads embedded in a substrate. The col-
oration is arbitrary.
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(a) (b) (c)

(d)

Figure 15: Contact angle measurement. The segmented object (a), the esti-
mated angle (b), the angle superimposed to the object (c) and the cut plane
in the 3D image (d)
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Figure 16: Contact angle measurement of two artificial spheres
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Figure 17: Circe fitting on two arcs
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Figure 18: The inner yellow object is the source that have been generated
by segmenting the 2D slices with good visibility.
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Figure 19: Nanoparticle penetrated into the cell. The inner membrane wraps
around the particle.
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Figure 20: Interaction of the lipidic membrane with the nanoparticle. The
red pieces are the gold markers that were used for the reconstruction.
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Figure 21: Curvature estimation. R1 is the radius of the inner maximal
ball, R1 the radius of the external maximal ball and R3 the radius to the
nano-particle. Depending on the configuration either R2 or R3 yield a robust
curvature estimation.
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(a) (b) (c)

(d)

Figure 22: The estimated curvatures.
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