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Jérémy Bleyer, Patrick De Buhan. Yield surface approximation for lower and upper bound
yield design of 3d composite frame structures. Computers and Structures, Elsevier, 2013, 129,
pp. 86-98. <10.1016/j.compstruc.2013.08.011>. <hal-00870789>

HAL Id: hal-00870789

https://hal-enpc.archives-ouvertes.fr/hal-00870789

Submitted on 8 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Yield surface approximation for lower and upper bound yield
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Abstract

The present contribution advocates an up-scaling procedure for computing the limit
loads of spatial structures made of composite beams. The resolution of an auxiliary
yield design problem leads to the determination of a yield surface in the space of axial
force and bending moments. A general method for approximating the numerically
computed yield surface by a sum of several ellipsoids is developed. The so-obtained
analytical expression of the criterion is then incorporated in the yield design calcu-
lations of the whole structure, using second-order cone programming techniques. An
illustrative application to a complex spatial frame structure is presented.

Keywords: yield design, limit analysis, composite frames, yield surface
approximation, second-order cone programming, finite element method

1. Introduction

The computation of structural limit loads using limit analysis or, in a more gen-
eral manner, yield design theory, relies on performing mathematical programming
techniques. Until recently, efficient interior-point algorithms were only available for
linear programming (LP) problems. For this reason, many authors have treated
yield design problems numerically, using piecewise linearization of the material yield
surface to obtain LP problems [1, 33, 36–38]. It should also be mentioned that piece-
wise linearization has also been advantageously used for a wide range of elasto-plastic
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analyses of frame structures (e.g. step-by-step non-holonomic analyses, single step
holonomic, hardening, softening...) in [9, 21, 39] and references cited therein.
Recent advances in mathematical programming have extended interior point algo-
rithms to second-order cone programming (SOCP) problems [2, 15, 19, 20]. SOCP
encompasses a larger class of convex optimization problems and an important num-
ber of the usual strength criteria can be formulated using SOCP constraints [5, 22],
allowing us to obtain numerical estimates of limit loads with higher accuracy and
small computation times. For these reasons, limit analysis using SOCP formulations
has gained increasing attention and was successfully applied to 2D plane strain or
plane stress problems [8, 23, 24, 27] as well as plates in bending problems [6, 17, 18].

In the case of yield design of frame structures made of composite sections, two
approaches can be considered. First, one can treat the beam element as a 3D contin-
uum and formulate the local yield criterion in terms of three-dimensional stress states.
This was done in [16, 30] for reinforced concrete (RC) beams using a discrete zone
model to define the internal stress state in the beam element. Obviously, the main
drawback of this method is that it requires the construction of three-dimensional
fields for which yield criteria have to be checked locally at an important number of
points of the cross-section. It is, therefore, restricted to simple section geometries
and reinforcement layouts.
The second approach formulates the section yield criterion in terms of generalized
stresses such as axial forces, bending moments... According to this method, the
frame members are considered as one-dimensional beam elements and equilibrium
equations are written in terms of generalized stresses. This method is, therefore,
particularly attractive from an engineering point of view, provided that the yield
surface can be easily constructed. This approach has, notably, been used in plastic
hinge yielding models for steel or composite frame structures [14, 42].
Early works considered linear programming to produce collapse mechanisms and re-
lated limit loads of frames with a yield criterion formulated on bending moments only
[12, 28, 41]. In the early 80’s, Nguyen-Dang Hung et al. [29] developed a computer
software (CEPAO) to treat limit analysis with proportional loading and shakedown
analysis with repeated cyclic loading on 2D frames, by linearizing the N −M inter-
action yield surface. The method was extended in [13] to 3D steel frames using a
16-facet yield surface combining axial force and bending moments interaction. Piece-
wise linearization of the yield surface was also used in [25] for shakedown analysis on
RC frames and in [4] for shakedown with parametrized load domains.
Computing accurate yield surfaces in combined axial force and bending moments has
received increased attention in the literature [7, 11, 32, 34]. Convex nonlinear yield
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surfaces are obtained for general composite sections and a convenient approximate
representation is thus required to formulate an optimization problem. Piecewise
linearization often requires an important number of polyhedral facets to obtain a
sufficiently accurate approximation, which can have an important effect on the qual-
ity of the estimated bounds [31]. Since the yield criterion has to be verified for a
large number of points throughout the whole structure, one often has to find a com-
promise between accuracy and computation time for large-scale problems.

To the authors’ knowledge, the only attempt at treating limit and shakedown
analysis of general composite frames under nonlinear yield surfaces was suggested by
Skordeli and Bisbos [35]. In this work, steel frame yield surfaces were approximated
by inner and outer ellipsoids so that the arising optimization problem became a
SOCP problem. The global limit analysis problems with approximate yield surfaces
were successfully solved by Mosek [26], the standard industrial software package for
large-scale and sparse SOCP problems. Results obtained in this paper seemed very
promising and motivated our present work.
The novelty of this paper is to propose an accurate approximation procedure using
more complex primitives than planes (piecewise linearization) or than one single el-
lipsoid (Skordeli and Bisbos [35]). The crucial part of the procedure is that only a few
primitives will be needed to obtain a good approximation and to reduce the number
of constraints for each criterion checking. In this paper, we propose an approxima-
tion using a sum of ellipsoids. This particular choice has two important advantages :
first, formulating the yield surface as a sum of ellipsoids permits a simple analytical
expression of the criteria in both primal and dual spaces; secondly, if the original
yield surface is replaced by a sum of ellipsoids, the optimization problems arising in
the static and kinematic limit analysis approaches both reduce to SOCP problems.
As a result, a description of the yield surfaces using few parameters combined to
the efficiency of SOCP solvers overcome the previously mentioned difficulty of the
piecewise linearization approach and will allow to compute limit loads on complex
structures with very low computational times.
First, we derive a dual description of general yield surfaces of composite sections
(section 2). The approximation procedure will be detailed in section 3. The finite
element method will be used in section 4 and 5 to formulate the static and kinematic
approaches with the approximate yield surfaces as SOCP problems. Finally, the
efficiency of the proposed method will be illustrated in section 6.
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Figure 1: Composite beam section with different regions Si associated to a local yield criterion Gi

Figure 2: Auxiliary yield design problem

2. Combined biaxial bending interaction surface

Consider a beam oriented along direction x and of section S in the transverse
(y, z) plane. Section S is made of different subsections Si representing different ma-
terials and, in each Si, the local yield criterion is defined through the corresponding
domain Gi in the stress space (see figure 1). Perfect bonding is assumed between the
subsections Si.
Let σi

t (resp. σi
c) denote the ultimate strength in tension (resp. in compression)

associated with yield criterion Gi, defined by :

σi
t = max{σ | σex ⊗ ex ∈ Gi}

σi
c = |min{σ | σex ⊗ ex ∈ Gi}|

2.1. Auxiliary yield design problem

Our study is restricted to frame members infinitely resistant with respect to
shear effects as well as torsion. Hence, yield surfaces will be drawn in the 3D space
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involving axial force N and bending moments My and Mz. In order to compute such
a generalized yield surface, the following auxiliary yield design problem is defined on
a representative segment of length L of the composite beam (figure 2) :

• smooth contact with a fixed vertical plane at x = 0

ux(x = 0, y, z) = 0 (1)

σxy(x = 0, y, z) = σxz(x = 0, y, z) = 0 (2)

• smooth contact with a plane rotating about ∆ = {(y, z) | δ − zχy − yχz = 0}
at x = L

ux(x = L, y, z) = δ − zχy − yχz (3)

σxy(x = L, y, z) = σxz(x = L, y, z) = 0 (4)

• lateral boundary ∂Ωlat is stress free

σ · n = 0 on ∂Ωlat (5)

• external body forces are zero

(δ, χy, χz) may be interpreted as the generalized kinematic variables associated
by duality to the generalized stress variables (N,My,Mz). Indeed, one can write, for
all virtual velocity field û kinematically admissible (i.e. satisfying (1) and (3)), the
virtual work of external loads as :

Pext(û) =

∫

∂Ω

n · σ · û dS

which yields using (1) to (5) :

Pext(û) = δ

(∫

S(x=L)

σxxdS

)
+ χy

(
−

∫

S(x=L)

zσxxdS

)
+ χz

(
−

∫

S(x=L)

yσxxdS

)

Now, defining the axial force and bending moments as the following stress resultants
:

N =

∫

S(x=L)

σxxdS

My = −

∫

S(x=L)

zσxxdS

Mz = −

∫

S(x=L)

yσxxdS
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the generalized strain and stress variables are, then, said to be in duality in the
following sense :

Pext(û) = δN + χyMy + χzMz

which corresponds to a 3 parameters loading mode.

2.2. Computation of the generalized yield surface

In the following, it will be assumed that the generalized yield surface is conve-
niently described from using the following uniaxial stress fields :

σ =

{
σi
t ex ⊗ ex if δ − zχy − yχz > 0 and (y, z) ∈ Si

−σi
c ex ⊗ ex if δ − zχy − yχz < 0 and (y, z) ∈ Si

With S+
i = Si ∩ {δ − zχy − yχz > 0} and S−

i = Si ∩ {δ − zχy − yχz < 0}, we
introduce the following definition :

(N,My,Mz) ∈ Gu ⇐⇒ ∃(δ, χy, χz)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

N =
∑

i

(∫

S+

i

σi
tdS −

∫

S−

i

σi
cdS

)

My =
∑

i

(∫

S−

i

zσi
cdS −

∫

S+

i

zσi
tdS

)

My =
∑

i

(∫

S−

i

yσi
cdS −

∫

S+

i

yσi
tdS

)
(6)

This definition states that Gu is obtained by considering uniaxial stress fields
reaching their maximum strength capacity in each region, either in tension or in
compression, for different positions of the neutral axis ∆. Actually, we can only say
that Gu is a lower bound estimate of the true yield surface G ⊃ Gu, but many design
codes consider Gu as the true yield surface. The same assumption will be made in
the following.

2.3. Dual formulation

The support function of Gu is defined by :

π(δ, χy, χz) = sup
(N,My,Mz)∈Gu

{δN + χyMy + χzMz}

or using (6),

π(δ, χy, χz) =
∑

i

∫

S+

i

σi
t (δ − zχy − yχz) dS +

∫

S−

i

σi
c |δ − zχy − yχz| dS
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which can also be written as :

π(δ, χy, χz) =
∑

i

(∫

Si

sup
{
σi
t (δ − zχy − yχz) ;−σi

c(δ − zχy − yχz)
}
dS

)
(7)

This equation shows that for a fixed direction in the dual space of generalized strains
(δ, χy, χz), the support function of Gu can be easily computed from a numerical
integration based on a discretization of the composite beam section.

2.4. Remarks and example

Both direct (6) and dual formulations (7) both show that it is no easy task to
obtain a simple relationship between N , My and Mz describing the Gu boundary,
making its use as a yield surface in a global limit analysis problem, impossible.
To illustrate the previous remark, an L-shaped reinforced concrete beam section was
considered (figure 3(a)). Its yield surface was numerically computed using the above
procedure in the (n,my, mz) non-dimensional space with n = N/N0, my = My/My0

and mz = Mz/Mz0 where Σ0 = (|minΣ|+maxΣ)/2 for Σ = N , My or Mz. One can
observe in figure 3(b) that the obtained interaction surface is of a quite complicated
shape and, thus, cannot be correctly described by a simple analytical formula. A
specific approximation procedure using numerical tools is thus required to obtain a
simple description with few parameters.

3. Approximation of yield surfaces using a sum of ellipsoids

3.1. Illustrative example

Let us consider in this subsection the 2D yield surface of figure 4(a) representing
a typical interaction curve between axial force N and bending moment My for a
rectangular concrete section reinforced by one steel bar.
The traditional way of approximating such a yield surface is to use an inscribed or
circumscribed polyhedron, as illustrated in figure 4(b) with n = 16 points. For yield
surfaces in dimension 3 or even more, the required number of points to linearize a
yield surface with a given accuracy becomes increasingly large. This is known as the
”curse of dimensionality”.
The Minkowski sum1 of elementary objects (or primitives) allows us to represent
convex sets with much fewer elements. For example, the unit cube in a d-dimensional
space is made of 2d vertices but can be described as the Minkowski sum of only d

1The Minkowski sum of two sets A and B is noted A⊕B and defined as A⊕B = {c | ∃(a, b) ∈
A×B such that c = a+ b}
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(a) Geometry (concrete in gray, steel reinforce-
ments in red)

(b) Yield surface Gu in the (n,my,mz) space

Figure 3: L-shaped reinforced concrete section. Considered strength values were σc = 30 MPa and
σt = 1.8 MPa for concrete and σc = σt = 435 MPa for steel reinforcement.

unit segments along each direction.
Our idea is to use a Minkowski sum of ellipsoids to be more general than a sum
of segments to approximate yield surfaces of beams, the main advantage being that
the Minkowski sum of two ellipsoids does not produce an ellipsoid. In figure 5, we
compared the convex set obtained by the Minkowski sum (in blue) of the two or
three ellipses represented in black to the original interaction surface (in red). We can
observe that with only three ellipses the quality of the approximation is as good as
the one obtained with a n = 16 polytope.

3.2. Support function of a sum of ellipsoids

An ellipsoid E(Q, q) can be characterized by a symmetric positive semi-definite
matrixQ defining its orientation and the length of its axis, and by a vector q collecting
the coordinates of its center. Its support function can then be written as :

πE(d) =
√

Td ·Q · d+Tq · d = ‖C(Q) · d‖+Tq · d

where C(Q) is the Cholesky factorization of matrix Q. Appendix A presents other
useful relations between the ellipsoid equation and its support function.
A very interesting property of the Minkowski sum of two sets A and B is that the
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Figure 4: Illustrative example in 2D
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Figure 5: Approximation of the interaction surface with nell ellipses
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support function of A ⊕ B is equal to the sum of the support functions of A and
of B. Hence, we will have for two ellipsoids E1(Q1, q1) and E2(Q2, q2) the following
relation :

πE1⊕E2(d) = πE1(d) + πE2(d) = ‖C(Q1) · d‖+ ‖C(Q2) · d‖+
T(q1 + q2) · d

3.3. Approximation procedure

Our objective is to approximate Gu by a sum of n ellipsoids. This is equivalent
to approximating its support function πGu

by the support function πn of a sum of n
ellipsoids. Therefore, we look for C(Qi) for i = 1, . . . , n and q such that :

πGu
(d) ≈ πn(d) =

n∑

i=1

‖C(Qi) · d‖+
Tq · d ∀d = (δ, χy, χz)

To solve this problem, we chose to minimize the gap between both support functions
in the least square sense for M points dj belonging to the unit sphere in R

3. Support
functions are, indeed, positively 1-homogeneous, so that we can restrain their values
to the unit sphere. Considering the coefficients of C(Qi) and q as an unknown vector
x ∈ R

6n+3 such that :

C(Qi) =



x6i−5 x6i−4 x6i−3

0 x6i−2 x6i−1

0 0 x6i


 ; q =





x6n+1

x6n+2

x6n+3





the minimization problem reduces to :

min
x∈R6n+3

M∑

j=1

(
πGu

(dj)−

n∑

i=1

||C(Qi) · dj|| −
Tq · dj

)2

(8)

This is a general nonlinear least-square problem which was solved with the nonlinear
solver implemented in Matlab using the sequential quadratic programming (SQP)
algorithm.
Let us mention that, since such approximations will be used in lower (resp. up-
per) bound limit analysis problems, we are interested in obtaining inscribed (resp.
circumscribed) approximations. Various strategies can be imagined to obtain such
lower and upper bound approximations. The first one consists in adding to problem
(8) a nonlinear constraint : πGu

(dj) − πn(dj) ≥ 0 (resp. ≤ 0) for all j. However,
this strategy would require to solve two non-linear optimization problems. Numeri-
cal experiments tend to show that minimization problems for upper approximations
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yielded better solutions in general. Hence, we propose to solve problem (8) only with
the πGu

(dj)− πn(dj) ≤ 0 constraint and, thus, compute :

1

α−

= max
j

πn(dj)−
Tq · dj

πGu
(dj)−Tq · dj

Then, it can easily be seen that we have for all j :

π−
n (dj) = α−(πn(dj)−

Tq · dj) +
Tq · dj ≤ πGu

(dj) ≤ πn(dj)

π−
n is then a lower approximation of πGu

obtained from scaling πn by a factor α−

with respect to the center q so that the furthest supporting plane of πn from πGu

corresponds now to a supporting plane tangent to πGu
.

3.4. Illustration

The preceding approximation procedure has been applied to the L-shape RC
beam example of subsection 2.4. Minimization problem with M = 10 000 points on
the unit sphere were solved with the fmincon Matlab function. Optimal sums of
ellipsoids were obtained for different values of n. Computation times ranged between
a few seconds for one ellipsoid to less than five minutes for 5 ellipsoids.
In order to evaluate the quality of the approximation, we considered the relative
error defined for all j by

ǫ(πn)j =
|πn(dj)− πGu

(dj)|

πGu
(dj)−Tq · dj

and its associated L2 and L∞ norms :

‖ǫ(πn)‖2 =

(
1

M

M∑

j=1

(ǫ(πn)j)
2

)1/2

‖ǫ(πn)‖∞ = max
j

ǫ(πn)j

In table 1, values of the error norms were given for different numbers of ellipsoids for
both lower and upper approximations. We can see that with only a few ellipsoids
(n = 3 for instance) the maximal error made on the exact criterion is less than 10%
which is quite satisfactory.

The outer approximate yield surface obtained with 3 ellipsoids was represented in
figure 6(a) in comparison to the exact one (in gray). A polyhedral outer approxima-
tion with 192 vertices was also represented in figure 7(a) to underline the difference
of efficiency between the polyhedral approximation and the proposed method. Rel-
ative errors on the support functions for both methods were also plotted on the unit
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n ‖ǫ(π−
n )‖2 (%) ‖ǫ(π−

n )‖∞ (%) ‖ǫ(πn))‖2 (%) ‖ǫ(πn)‖∞ (%)
1 16 17 6.4 23
2 11 12 2.9 14
3 8.6 9.5 1.9 10
5 5.4 6.6 1.1 7.3

Table 1: Norms of the relative errors for the different approximations

(a) 3D representation of outer approximation
(red dots)

(b) Map of the relative error ǫ(π3) on the unit
sphere

Figure 6: Approximation with 3 ellipsoids

sphere in the dual space of generalized strains in figure 6(b) and 7(b). The maximal
error for the polyhedral approximation is about 12% and the mean squared error is
3.2% which shows that the proposed method gives better results with 3 ellipsoids
than a polytope with 192 vertices.

Intersections with different planes mz = cst were plotted in figure 8 for outer and
inner approximations with 3 ellipsoids. Even if inner approximations are of lesser
quality than outer approximations with the retained strategy, their precision is still
acceptable for their use in limit analysis.

12



(a) 3D representation of outer approximation
(red lines)

(b) Map of the relative error on the unit sphere

Figure 7: Approximation using a polytope with 192 vertices

4. Numerical formulation of the kinematic approach for the global struc-

ture

4.1. Finite element discretization

The global structure is discretized using 3D beam elements with 2 nodes and 6
degrees of freedom (dof) per node [3] : axial displacement of the beam u along x,
transversal displacements v and w in directions y and z and rotations around each
axis : θx, θy and θz (see figure 9). The Euler-Bernoulli conditions can be written as :

θy =
dw

dx
and θz =

dv

dx

and curvatures are thus given by :

χy =
d2w

dx2
et χz =

d2v

dx2

while we have δ =
du

dx
for axial extension and ω =

dθx
dx

for torsion strain. The

expression of the finite element strain matrix are given in appendix Appendix B.
Assuming that in each point, the local yield criterion has been approximated by

a sum of n ellipsoids (with Ji matrices and center vector q obtained from the outer
approximation procedure of section 3.3), we introduce the support function of the
yield criterion where torsion has been penalized :
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Figure 9: Displacement finite element

π(δ, χy, χz, ω) =
n∑

i=1

∥∥∥J̃i · d
∥∥∥+Tq̃ · d

where J̃i =




0
Ji 0

0
0 0 0 Tpen


 , q̃ =





q

0





and d =





δ
χy

χz

ω





(9)

where Tpen is a penalization term equal to 102 · max Ji. It is worth noting that
such a yield criterion is now written in the 4-dimensional space including torsion and
that it is very easy to add a torsion term in the particular form of the ellipsoidal
approximation.

4.2. Upper bound limit analysis problem

We assume that the external loads can be decomposed as λF + F0 where F0

represents a dead load and λF is the multiplicative load for which we are inter-
ested in finding the limit value at collapse through the multiplier λ. Hence, in a
given kinematically admissible displacement field U , the power of external loads is
Pext(U) = λTF · U +TF0 · U .
The maximum resisting work is given by the integral of the local support function
on the whole structure Ω :

Prm(U) =

∫

Ω

π(d[U ]; x)dΩ

where d[U ] is the strain vector related to U at point x.
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The upper bound limit analysis problem consists in solving the following mini-
mization problem :

λUB = min
TF ·U=1

(
Prm(U)−TF0 · U

)

4.3. Formulation as a standard SOCP problem

For the sake of notation simplicity, we will consider that the local yield criterion
is the same for each point of the structure and can be written in the form of equation
(9). Obviously, generalization to a structure made of different types of beam sections
will only have to consider different parameters Ji and q at each finite element e and
varying values of n with e.

Due to the non-linearity of the local support functions, integration at the element
level has to be performed using a Gaussian quadrature rule withm points ξg ∈ [−1; 1]

for g = 1, ..., m. Thus, letting Ri,g,e = J̃i · Be(ξg) we have :

Prm =
Ne∑

e=1

m∑

g=1

ce,g

(
n∑

i=1

‖Ri,g,e · Ue‖+
Tq̃ · Be(ξg) · Ue

)

where ce,g are weighting coefficients coming from the quadrature rule. Finally, in-
troducing auxiliary variables ri,g,e = Ri,g,e · Ue and ti,g,e = ‖ri,g,e‖, we obtain the
following discrete minimization problem :

λUB = min

Ne∑

e=1

m∑

g=1

ce,g

(
n∑

i=1

ti,g,e +
Tq̃ · Be(ξg) · Ue

)
−TF0 · U

TF · U = 1
ri,g,e = Ri,g,e · Ue

ti,g,e ≥ ‖ri,g,e‖
∀i, e, g = 1, ..., n ·m ·Ne

(10)

Problem (10) consists in the minimization of a linear function of U under 1+4n·m·Ne

linear equality constraints and n · m · Ne quadratic cone constraints which is the
standard formulation of an SOCP problem.

4.4. Remarks

If piecewise linearization of the yield surface with p vertices had been chosen,
support functions would be expressed as a maximum of p linear functions of U at
each integration point. This would lead to a LP problem involving p ·m ·Ne linear
inequality constraints.
For example, considering a structure made of Ne = 500 elements, using a m = 3
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Figure 10: Equilibrium finite element

points quadrature rule, the ellipsoidal approximation with n = 3 ellipsoids would
produce 18 000 linear equality constraints and 4 500 conic constraints. On the other
hand, for the same problem, a polyhedral approximation with p = 192 vertices would
produce 288 000 linear inequality constraints...

5. Numerical formulation of the static approach for the global structure

5.1. Equilibrium finite element

In order to solve a lower bound limit analysis problem, the structure is discretized
into finite elements on which local equilibrium equations are verified. We chose a
classical two noded element with linear distribution of the bending moments My and
Mz, the constant normal force N , and the torsional moment MT . More details can
be found in [10, 40]. Local equilibrium between the 6 nodal stress variables TΣe =
(N,MT ,My1,Mz1,My2,Mz2) and nodal forces and moments of the beam element
fe = (fe,j)j=1,...,12 (figure 10) is expressed through an elementary equilibrium matrix
he such that fe = he · Σe. Global equilibrium is then obtained after assembling
elemental contributions in a global matrix H such that we have :

H · Σ = λF + F0

where Σ is the global vector of stress parameters. We note thatH is aNq×6Ne matrix
where Nq is the number of equilibrium equations after taking boundary conditions
into account.

5.2. Global yield criterion constraints

In the following, we will assume that, for a given finite element e, the local yield
criterion expressed in terms of generalized variables Tσ = (N,My,Mz,MT ) ∈ R

4 can
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be written as a sum of ellipsoids of the following type :

σ ∈ G =

n⊕

i=1

Ẽi(Ji, 0)⊕ q (11)

where parameters Ji and q are given by the approximation procedure described in
the previous section and include the same penalization term for torsion as for the
kinematic approach. Equation (11) can also be expressed as :

σ ∈ G ⇐⇒ ∃ σ1, . . . , σn s.t.

{
σ = σ1 + . . .+ σn + q

σi ∈ Ẽi(Ji, 0) ∀i = 1, . . . , n

Or, equivalently :

σ ∈ G ⇐⇒ ∃ τ1, . . . , τn s.t.

{
σ = TJ1 · τ1 + . . .+TJn · τn + q
||τi|| ≤ 1 ∀i = 1, . . . , n

(12)

which is a standard form of SOCP constraints involving auxiliary variables τi.

We also note that, due to the choice of linear (or constant) interpolation of stress
parameters over an element and the convexity of the yield surface, the yield criterion
has only to be checked at the nodes of a given element e. Hence, constraint (12) will
be enforced for Tσe1 = (N,My1,Mz1,MT ) and for Tσe2 = (N,My2,Mz2,MT ).

Finally, the discretized static approach leads to the following maximization prob-
lem :

λLB = maxλ
H · Σ = λF + F0

Σ =TJ · τ +Q
‖τi,e‖ ≤ 1 ∀i, e = 1, ..., 2n ·Ne

(13)

where the last two constraints express the global form of constraint (12). Problem
(13) reduces to the maximization of a single variable λ under Nq+(8+2n) ·Ne linear
equality constraints and 2n · Ne quadratic cone constraints which is the standard
formulation of a SOCP problem.

6. Illustrative application

The purpose of this section is to illustrate the performance of the proposed
method on a complex frame structure. Figure 11 represents the isometric view of
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Figure 11: 3D view of the considered structure (section a in blue, section b in green, section c in
red and section d in magenta)

Figure 12: Geometry of the different sections : principal beams (section a), secondary beams
(section b), columns (section c) and footbridge (section d). Materials : concrete in gray (σc = 30
MPa, σt = 1.8 MPa), construction steel in blue and reinforcement bars in red (σc = σt = 435 MPa)
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(a) Elevation view of the structure and considered dead loads

(b) Plane view of the structure and considered wind loading

Figure 13: Elevation and plane views
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Figure 14: Piecewise linear approximations in a 2D space : inscribed approximation connecting
ultimate axial force and bending capacities (dashed black line) and circumscribed approximation
tangent to ultimate capacities (solid black line)

a 3-storey building frame consisting of four different structural groups : principal
beams (represented in blue), secondary beams (represented in green), columns (rep-
resented in red) and two footbridges (represented in magenta). Members of the same
structural group have the same section which are represented in figure 12. Principal
and secondary beams are reinforced concrete sections, columns are steel H-section
filled with concrete whereas footbridges’ section consists of a RC slab supported by
a steel H-section.
Uniform loading of intensity g1 = 100 kN/m on every principal beams and g2 = 30
kN/m on both footbridges corresponds to a dead load (weight), collected in F0 (figure
13(a)). Wind loading is modeled via nodal forces applied to beam-column connec-
tions on West, South and East sides of the building (figure 13(b)). Considering a
force of intensity λP making an angle α with the X−axis :

• nodal forces on West side will be λP cosαeX if 0◦ ≤ α ≤ 90◦ and 0 otherwise

• nodal forces on East side will be λP cosαeX if 90◦ ≤ α ≤ 180◦ and 0 otherwise

• nodal forces on South side will be λP sinαeY for 0◦ ≤ α ≤ 180◦

The frame was discretized using 10 elements for each principal beam and foot-
bridge, 8 elements for each secondary beam and 6 elements for each column, making
a total of 540 elements. The element size was refined near beam-column connections
and m = 3 Gauss points were used for the upper bound kinematic approach.
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The approximation procedure described in section 3.3 was performed on the 4 dif-
ferent section types. Yield surfaces were approximated using n = 3 ellipsoids and
maximal relative errors for inner and outer approximation are given in table 2. The
optimization step took around 4 minutes in each case to find the optimal ellipsoids.
The lower bound and upper bound SOCP problems (10) and (13) were solved using
the previously mentioned Mosek software package.
The problem was also analyzed using a piecewise-linear inscribed approximation by
a polytope with p = 6 vertices (corresponding to ultimate normal force and bending
moment capacities) and a piecewise-linear circumscribed approximation using a box-
shaped polytope with p = 8 vertices (whose facets are tangent to the ultimate normal
force and bending moment capacities). An illustration in a 2D case is represented
in figure 14. The corresponding optimization problems were formulated as standard
linear programming (LP) problems and also solved using Mosek.

Limit loads were computed for 40 different values of wind incidence α using the
lower bound static approach combined with inscribed approximations and the upper
bound kinematic approach combined with circumscribed approximations. Values of
the obtained limit load estimates are represented in figure 15. First, one can observe
that static approaches with inscribed approximations produce lower estimates than
kinematic approaches with circumscribed approximations. As expected, ellipsoidal
approximations produce closer bounds than the considered polyhedral approxima-
tions. With the ellipsoidal approximation technique, one can expect to bracket the
limit load with ±8% relative accuracy (as an average on all load cases) whereas with
the polyhedral approximation only ±30% can be expected. It is also worth noting
that, for a given load case, the global optimization step took, as an average, 3.8 s
for the polyhedral lower bound, 3.4 s for the polyhedral upper bound, 1.8 s for the
ellipsoidal lower bound and 2.6 s for the ellipsoidal upper bound. Thus, despite the
small number of vertices for the polyhedral approximations and the fact that SOCP
problems are expected to be more difficult to solve than LP problems, the ellipsoidal
approximation technique seems highly advantageous in terms of computing time as
well as accuracy.

Obviously, when considering computational costs, one has also to consider the cost
of the approximation procedure for finding the optimal ellipsoidal approximation. In
the case of a structure consisting of an important number of section geometries, this
step can represent a non-negligible aspect of the computing time. Nevertheless, it
is important to keep in mind that it is only a preprocessing step. Indeed, since
only a few parameters are required to describe the yield surface, these can easily be
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Section type Inscribed Circumscribed
Principal beam 11.0% 12.3%
Secondary beam 12.0% 13.7%

Column 11.4% 12.9%
Footbridge 8.2% 8.9%

Table 2: Maximal relative errors (in %) made with n = 3 ellipsoids for the different section types

saved once and for all for a given geometry section. Moreover, one difficult aspect of
non-linear structural analysis is that different load cases cannot be combined using
the superposition principle as in linear elastic analysis. Engineers are thus often
constrained to consider a limited number of loading cases for non-linear analysis.
With such direct methods as limit analysis, one can easily compute an important
number of different loading cases, once the yield surfaces have been determined.

7. Extension of the approximation procedure for other types of yield sur-

faces

In this work, we proposed to approximate the considered convex yield surfaces by
a Minkowski sum of ellipsoids. Unfortunately, this method cannot be applied to all
convex sets. Mathematical results on convex geometry show that a sum of ellipsoids
is not dense in the set of convex sets.
In this work, the considered yield surfaces represent a particular class of convex
sets called ”zonoids”. A zonoid is a convex body which can be approximated by
a finite sum of segments. Expression (7) shows that Gu is, indeed, a zonoid since
the integrand at a point (y, z) on the section S corresponds to the support function
of a segment. Hence, the support function can be approximated with an arbitrary
precision by a finite sum of support functions of segments (by simply performing
a quadrature of the integral). Since a sum of segments is a special case of a sum
of ellipsoids, the considered yield surfaces in this work can be approximated by a
finite sum of ellipsoids. However, this is only due to the fact that we considered only
uniaxial strength of the local material.
Therefore, yield surfaces are not zonoids in general and the presented approximation
method will inevitably fail in other cases. Nevertheless, we would like to underline
that the main idea of this work is to develop approximation procedures of convex yield
surfaces so that they can be analytically described by a few parameters and so that
corresponding optimization problems can be efficiently treated by a dedicated SOCP
solver. Future work will, thus, consist in developing new approximation techniques
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Figure 15: Limit loads obtained with different approximations
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following these objectives. A current work is investigating the possibility of using a
convex hull of ellipsoids for general convex yield surfaces approximation.

8. Conclusion

In the present work, the application of static and kinematic approaches of yield
design theory to three-dimensional structures consisting of composite beam sections
is investigated. Integration of the local material strength at the section level permits
us to obtain a generalized yield surface characterizing the ultimate strength domain
of the section in the space of axial force and bending moments. Computation of such
yield surfaces on different types of composite sections shows that these convex bodies
cannot be easily described and, therefore, cannot be injected into a mathematical
optimization solver. To overcome such a difficulty, a classical approach is to linearize
the considered yield surfaces from inside or from outside given the type of approach
we want to conduct. However, a large number of planes is often required to perform
such piecewise linearizations, introducing an important number of auxiliary variables
in the optimization problem formulated at the structure level.
To improve computational efficiency, one can consider more complex geometric prim-
itives for yield surface approximation. In the particular case of composite beams, we
proposed to use a sum of ellipsoids, for which an analytical description is easily avail-
able. Moreover, this choice makes it possible to use efficient interior point algorithms
to solve the associated SOCP problem for both static and kinematic approaches. An
approximation procedure using the support function description and nonlinear op-
timization solvers was proposed to compute optimal ellipsoids. Numerical examples
showed that very good accuracy can be obtained with only a few ellipsoids.
The proposed method was subsequently applied to a complex frame structure con-
sisting of different types of composite sections. Both static and kinematic approaches
were formulated using the finite element method and solved with the Mosek soft-
ware. Limit loads were obtained within seconds on a personal computer which un-
derlines the attractiveness of the method from an engineering point of view. Our
work has only considered limit analysis of frames for the sake of simplicity, but it
can be extended without any supplementary difficulty to shakedown analysis.
Despite the fact that a sum of ellipsoids can only be used in this particular case, this
work shows that efficient approximation techniques can be combined with optimiza-
tion solvers to tackle complex yield design problems. Extension of this approach to
macroscopic yield surfaces, obtained via a homogenization procedure, will make it
possible to compute limit loads of complex structures made of heterogeneous mate-
rials in the near future.
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Appendix A. Ellipsoids and support function

Let us consider an ellipsoid E of half axis lengths a1, a2 and a3 in the three
orthogonal unit directions n1, n2 and n3 and centered at a point q. Its equation
reads : (

Σ1 − q1
a1

)2

+

(
Σ2 − q2

a2

)2

+

(
Σ3 − q3

a3

)2

≤ 1

where Σi =
TΣ · ni and qi =

T q · ni. Hence, introducing the rotation matrix R =T

[n1 n2 n3] and J = diag (a1, a2, a3) · R, we also have :

E =
{
Σ s.t.

∥∥TJ−1 · (Σ− q)
∥∥ ≤ 1

}
(A.1)

Its support function can then be easily obtained :

π(D) = sup
Σ∈E

TΣ ·D = sup
‖Σ̃‖≤1

T Σ̃ · J ·D +Tq ·D

π(D) = ‖S ·D‖+Tq ·D =
√

TD ·Q ·D +Tq ·D (A.2)

with Q = TJ · J = TR · diag (a21, a
2
2, a

2
3) · R. Let us remark that this expression is

still valid even in the case when the ellipsoid degenerates (some ai = 0). Hence, an
ellipsoid can thus be characterized by a symmetric semi-definite positive matrix Q
(or its Cholesky factorization C(Q) = J) along with a vector q.

Appendix B. Generalized strain matrix for a displacement finite element

The chosen displacement finite element uses the classical cubic Hermite interpo-
lation for transversal displacements v and w. Interpolation of axial displacement u
and rotation θx are both linear. Hence, for a given finite element of length l, the re-
lations between the strain vector d and the 12 dof of a given element with endpoints
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1 and 2 are given ∀ξ = x/l ∈ [0; 1] by :

δ(ξ) =
〈
−1/l 1/l

〉{u1

u2

}

χy(ξ) =
1

l2
〈
12ξ − 6 6ξl− 4l −12ξ + 6 6ξl − 2l

〉




w1

θz1
w2

θz2





χz(ξ) =
1

l2
〈
12ξ − 6 6ξl − 4l −12ξ + 6 6ξl− 2l

〉




v1
θy1
v2
θy2





ω(ξ) =
〈
−1/l 1/l

〉{θx1
θx2

}

(B.1)

which can be condensed under the following form d = be(ξ) · ue where ue represents
the 12 elemental dof vector expressed in the local axis of the current element. One
still has to apply a rotation matrix to express generalized strains in terms of degrees
of freedom expressed in the global axis of the structure d = be(ξ) ·Re ·Ue = Be(ξ) ·Ue.
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