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Abstract

Disordered solids are known to exhibit quantitative universalities at low temperatures, the most striking of

which is the ultrasonic attenuation coefficient Q−1(ω). The established theory of tunneling two state systems

(TTLS) in its original form (i.e. without extra fitting functions and parameters), is unable to explain this

universality. While the TTLS model can be modified, particularly by including long range phonon induced

interactions to explain the universal value of Q−1, (a) it is not clear that the essential features of the original

model that has been successful in explaining the experimental data is preserved, and (b) even if it is, it is

not clear that the postulates of the original model remain necessary.

The purpose of this study is to derive the universal acoustic absorption and related quantities observed

in disordered solids by starting from a many-body quantum theory of unspecified amorphous blocks that

mutually interact through the strain field.

Based on very generic assumptions and having no adjustable fitting parameters, the frequency and initial

state averaged macroscopic attenuation 〈Q−1〉 of a group of interacting disordered blocks is calculated in

the low temperature regime (T � ω) by a novel “trace method”, which then is iterated up-to experimental

length scales through a real space renormalization group approach. Then using a heuristic second-order

perturbation argument, the frequency dependence of Q−1(ω) is found, and combined with the previous

result to yield the observed universal values in the MHz-Ghz range of frequencies.

It is concluded that the TTLS postulates are not necessary in order to explain, at least the thermal

conductivity, velocity shift and sound attenuation of disordered media in the low temperature regime.
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A famous Zen koan asks, “Two hands clap and there is a sound; what is the sound of one hand?”. The

present work suggests, “to logarithmic accuracy, it does not matter”.
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Chapter 1

Introduction

The generic term “disordered solid” (or “amorphous solid”) is typically used to describe a large variety of

condensed matter including metallic and dielectric glasses, disordered crystals, polymers, quasi-crystals and

proteins. Starting from the pioneering work of Zeller and Pohl [?] it has become clear that the thermal,

acoustic and electromagnetic response of disordered solids are (1) remarkably different than crystals, and

(2) are remarkably similar among themselves. To put the problem posed by these two statements in proper

context, it will be necessary to give a little background on the low temperature properties of both disordered

and non-disordered condensed matter.

1.1 A Comparison of Crystalline and Disordered Solids

According to Debye’s theory of crystalline insulators, at sufficiently low temperatures the amplitude ~r of

atomic motion remains small enough to consider only the first order term in the inter-atomic force Fi =

2µijrj . Thus, the low temperature acoustic and thermal properties of all crystalline insulators are determined

by a Hamiltonian which can be diagonalized into phonon modes, quantized with uniform increments of E = ω.

In this framework, the standard text-book procedure [?] to obtain crystalline specific heat is to simply

integrate over these modes to find the average energy density,

〈E〉 =
∑
p

∫ ωD

0

ωD(ω)n(ω, β)dω, (1.1)

where the summation is over phonon polarizations, and n is the number of phonons at a given temperature

T = 1/β,

n =
1

eβω − 1
(1.2)
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and D is the phonon density of states per volume v, at wave number ~k

D(ω) =
|k|2

2π2

d|k|
dω

. (1.3)

The upper cut-off ωD of the integral in eqn(1.1) is the energy of a phonon with wavelength λ equal to inter-

atomic distance a0. Such high end cutoffs are commonly used in condensed matter theories, including the

present study (cf. Chapter 2), since they conveniently exclude smaller length scales for which the physical

assumptions no longer hold. This of course, limits the validity of the theory to energy and temperatures

below ∼ hc/a0.

In the continuum limit, λ� a0, the linear dispersion relation

ωl,t = kcl,t (1.4)

holds, where cl, t is the transverse t or longitudinal l speed of sound in the limit ωl,t → 0. At low temperatures

T � ωD, eqn(1.1) can be easily integrated to yield the famous T 3 temperature dependence for the specific

heat.

cv =
∂〈E〉
∂T

=
12π4

5
N

(
T

ωD

)3

. (1.5)

Let us now turn to the thermal conductivity, K. Since phonons are the main heat carriers of heat in

a dielectric crystal, K(T ) can be calculated analogously to the kinetic theory of gases. If l̄ and c̄ is the

frequency averaged mean free path and velocity of a phonon,

K ≈ 1

3
cv c̄l̄ (1.6)

Of course, for a plane wave propagating in a perfect infinite crystal whose atoms interact harmonically, l

and thus K is infinite. However in practice, the phonons are restricted by the finite geometric scale l = L

of the sample. Thus, if there are no impurities and the temperature is low enough to neglect anharmonic

interaction between atoms, from eqn(1.5) we roughly get K ∼ T 3.

At first sight, the Debye theory seems equally applicable to disordered solids, since these materials are

known to exhibit well-defined phonon modes, as seen from Brillouin scattering experiments below 33 GHz

[?] and phonon interference experiments below 500 GHz [?]. Thus, at energy scales for which the thermal

or acoustic wavelength exceeds a0 there is no a priori reason for the thermo-acoustic response of a solid,
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disordered or not, to deviate from that of the elastic continuum described above.

However, experimentally, disordered solids behave nothing like their crystalline counterparts (for two

comprehensive reviews, see [?, ?]). The specific heat, measurements reveal[?] an super-linear temperature

dependence of specific heat below T0,

Cv ∝ T 1+α (1.7)

with α ∼ 0.1− 0.3. Remarkably, at 25mK this term dominates the Debye phonon contribution by a factor

of about 1000. Above Tc the specific heat raises faster before reaching the Debye limit, which manifests

as a bump in the Cv/T
3 vs T curve (a historical convention used to compare the glassy specific heat to a

“crystalline reference”). T0 is a more-or-less material dependent temperature, and typically varies between

1− 30K.

According to specific heat measurements, it is clear that something other than phonons is being thermally

excited in disordered solids. In the established model of amorphous solids, these are assumed to be “tunneling

two level systems”. In the present work, we acknowledge the presence of these degrees of freedoms but do

not make any specific assumptions regarding their nature. A more complete description of both models will

follow below.

Turning now to the thermal conductivity, measurements reveal a sub quadratic temperature dependence

[?, ?]

K ∝ T 2−β . (1.8)

with β ∼ 0.05 − 0.2. Again, around a temperature that empirically coincides with the “bump” in specific

heat, T0, this gradually changes to a temperature independent plateau. it is important to note in the present

context, that even though Cv and K are traditionally fit to power laws, as we will see below, logarithmic

corrections Cv ∼ T/ lnT and K ∼ T 2 lnT , lead to indistinguishable functional forms below T0)

The universality of disordered solids go as beyond these “exponents” in temperature dependences: In a

disordered solid, heat is transported by phonons [?], allowing the use of eqn(1.6) to obtain the ultrasonic

attenuation coefficient defined in terms of the phonon mean free path,

Q−1 ≡ λ/(2π2l). (1.9)

Below T < T0, with T0 again roughly coinciding with that defined above, the mean free path displays
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an amazing degree of universality[?, ?, ?]: In this regime sound waves travel about 150 times their own

wavelength, regardless of the chemistry or composition of the amorphous matrix. Above T0, λ/l rapidly

increases to a (non-universal) constant of the order one.

Two other universalities are the ratios [?] of transverse and longitudinal sound velocity and phonon

coupling,

ct
cl
≈ 0.6 (1.10)

χt
χl
≈ 0.4 (1.11)

In the present work we will provide some theoretical justification to these ratios, and use their experi-

mental values [?] as inputs to obtain the value of Q−1, and related quantities.

In addition to these quantitative universalities, disordered solids display a series of very unusual acoustic

non-linearities that are not present in crystals. For example, above a critical sound intensity Ic, the acoustic

absorption is “saturated”[?]; i.e. above Ic, the solid becomes transparent to sound:

χ ∼ 1√
1 + I/Ic

.

A second example is the spectacular echo experiments. These are the acoustic analogs of the magnetic

response of a spin particle in a nuclear magnetic resonance setup, where the amorphous sample is cooled

down below T < ω. Then two consequent pulses of equal frequency ω separated by time τs � τp are applied

for a duration of τp and 2τp respectively. The two elastic pulses surprisingly induces a “spontaneous” third

one, precisely τs after the second pulse.

It is remarkable that, although less pronounced, the universalities hold for metallic glasses as well.

However, we limit our considerations in this thesis only to amorphous insulators, since the electron-electron

and electron-phonon interactions add an extra layer of complexity to the problem. Further, we will focus

only on the universality of linear acoustic properties of disordered solids in the resonance regime, and the

thermal conductivity below Tc. We will not discuss the nonlinear properties, or the acoustic response in the

relaxation regime.

1.2 A Brief Review of the Tunneling Two Level System Model

The theoretical interpretation of the low temperature data on amorphous materials has for 40 years been

dominated by the phenomenological “tunneling two state system” (TTLS) model [?, ?], which has two
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main assumptions; the first is that, within all disordered solids there exists entities that tunnel between two

metastable states |L〉 and |R〉 (conventionally called “left” and “right”, although the tunneling coordinate

is not specified; cf. below). The tunneling entity is described by a reduced double well Hamiltonian,

HTTLS =

 ∆ −∆0

−∆0 −∆

+ e

 γ 0

0 −γ


Here ∆ is the double-well asymmetry, ∆0 is the tunneling matrix element expressed by the standard WKB

formula

∆0 ∼ Ωe−ξ

ξ = d
√

2M0V (1.12)

M0 is the mass of the tunneling entity, Ω is the ground frequency of each (harmonic) well, d is the separation

between wells, and V is the double well barier height. The TTLS couples to strain e (and of course, the

thermal phonons) through the coupling constant γ.

The second fundamental assumption of the TTLS theory is that the two level parameters of an ensemble

of TTLS are distributed according to the probability density

P (∆,∆0, γ) =
P̄ δ(γ − γ0)

∆0

The 1/∆0 factor can be obtained by assuming that the parameter ξ in the exponent is uniformly dis-

tributed. γ is assumed to be the same for all tunneling entities.

At the cost of introducing a fairly large number of fitting parameters, the TTLS theory gives an attractive

explanation to the nonlinear acoustic effects[?] and a specific heat linear with temperature cv ∼ T and

quadratic in thermal conductivity K ∼ T 2 [?, ?] reasonably close to experiment below T0 (see however, Fig5.2

and corresponding discussion in Chapter 5). Moreover it gives the temperature and frequency dependences

of the mean free path and sound velocity[?, ?] (although the latter requires an additional fit function with

no physical basis).

The dominant response of a TTLS to a sound wave in the regime T < ω occurs through “resonant

absorption”. A single phonon interacts with a TTLS with matching energy separation at thermal equilibrium.
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The mean free path is found from Fermi’s golden rule for transition rates 1/τ . Using l = cτ ,

λl−1(T, ω) ≡ 2π2Q−1 = 2π2 γ
2P̄

ρc2
tanh

(ω
T

)
(1.13)

this equation can be plugged in the Kramers-Kronig principal value integral

c(T )− c(0) ≡ ∆c =
1

π
p.v.

∫ ∞
0

c2l−1(ω′)

ω2 − ω′2
dω′ (1.14)

to yield a logarithmic velocity shift for kT ∼ h̄ω [?]

∆c

c
= −γ

2P̄

ρc2
log
(ω
T

)
(1.15)

Since T � ω is experimentally difficult to attain, this equation is usually tested in the regime T > ω with

respect to an (arbitrary) reference temperature T0,

c(T )− c(T0)

c(T )
=
γ2P̄

ρc2
log

(
T

T0

)
(1.16)

Therefore, (with one exception [?]) most of our direct knowledge regarding Q−1 (and thus its universality)

in the resonance regime comes indirectly, through measuring the velocity shift at high temperatures and

then obtaining Q−1 from the Kramers-Kronig integral that goes the other way around.

For higher temperatures T > ω, the dominant mechanism for sound absorption is quite different than that

described above, through a “relaxation” process. This is when a low frequency sound wave modulates the

TTLS energy E, causing the population ratio n of excited to unexcited TTLS to differ from its equilibrium

value

n̄ ∝ e−βE .

It is not difficult to see how acoustic energy is converted to heat this way: The pulse must do work to widen

the levels of an excited TTLS, which then is “lost” when the TTLS emits a thermal phonon to decrease the

overpopulated n. In the limit ωτmin � 1 (which corresponds to higher temperatures), the theory predicts

half the value of the absorption in the resonance regime, again independent of temperature and frequency

Q−1 =
P̄ γ2

2ρc2
(1.17)

where τmin is the minimum relaxation time among the TTLS with splitting E = kT .
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1.3 Problems with the Standard TTLS Model

The first difficulty of the TTLS model is the uncertainty regarding its microscopic nature. Although the

configuration coordinate is typically referred to as “left” and “right”, neither the entity undergoing the

tunneling motion, nor the nature of its motion is known. The TTLS may correspond to a single atom

translating between two relatively low density regions in the solid, or two atoms may be sliding or rotating

by each other. A recently discovered isotopic effect[?] proposes that the TTLS is as large as ten or twenty

atoms.

Various mechanisms that could give rise to tunneling two levels were suggested for individual amorphous

solids, such as the mixed phase metallic NbZr alloy domains[?] or the hydroxyl ion impurities in vitreous

silica [?]. The tunneling impurities are also known to be present in disordered crystals, such as KBr-KCN

solutions [?] and are extensively studied. However the following questions remain: First of all, even if two

level excitations are present in (at least some) disordered media, obviously the are not the only kind of

excitation that is possible. Why then should the thermo-acoustic response of disordered media be entirely

governed by two level excitations? And furthermore, even if these excitations are present and dominant

among all, it is not clear why their distribution of parameters P (∆,∆0, γ) should be so similar in every

amorphous material.

Ideally, a theory for disordered condensed matter should start from assumptions that holds equally true

for a very wide class of materials. Even if the TTLS hypothesis is one that is effectively correct, it seems

important to base its assumptions on a firm physical basis.

Secondly, although the standard TTLS model can explain qualitative features such as phonon echoes

and saturated absorption as well as approximate temperature dependences of quantities such as the specific

heat and ultrasonic absorption [?, ?], in its simplest form (i.e. without ad-hoc additional fit parameters and

fit functions) it fails to explain velocity shift and absorption data at low temperatures[?, ?, ?], in addition

to the the “bump” and “plateau” that appears in the specific heat Cv(T ) and thermal conductivity K(T )

data at temperatures above Tc[?, ?].

Thirdly, in the temperature regime where the TTLS model is supposed to work (T < 1K), it fails to

explain the quantitative and qualitative universalities [?, ?] the most striking one of which is the ultrasonic

attenuation Q−1 [?]; it is not at all obvious[?, ?, ?] that the coefficient of eqn(1.13)

α =
γ2P̄

ρc2
(1.18)

should be material independent. In fact, the quantities in the numerator and denominator are independent
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parameters of the TTLS theory, and if we restrict ourselves to dielectric glasses and polymers, while µl = ρc2l

varies from material to material by nearly three orders of magnitude, Q−1 remains around (3 ± 2) × 10−4.

It seems extremely unlikely that γ2 and P̄ happen to correlate with µ to this extent by pure coincidence.

Finally, the model, in its original form, neglects the fact that, as a result of interaction with the the

phonon field, the stress of each TTLS’s must be coupled[?]. Although the original paper was formulated

in the language of the TTLS, its outcome is neither sensitive to the number of levels of the interacting

excitations, nor to the probability distribution function of their parameters. The only requirement is that

the stress is coupled to the phonon field linearly (c.f. Appendix-A).

Recently this interaction was incorporated in the TTLS paradigm[?], and was shown that it leads to

the experimentally observed small universal value of Q−1. However, it seems legitimate to ask whether the

original features of TTLS, such as those that give rise to saturation of absorption and echoes will survive

this significant modification. Furthermore, it may be that the original assumptions of the TTLS model may

be unnecessary after this modification. It is possible that the presence of elastic interactions gives rise to

the anomalous glassy behavior, regardless of what is interacting.

In [?, ?] it was conjectured that if one starts from a generic model in which at short length scales there

is a contribution to the stress tensor from some anharmonic degrees of freedom, and take into account their

phonon mediated mutual interaction, one will obtain the significant features of glasses below 1K. The goal

of this project is to quantitatively justify this conjecture, by calculating the frequency and temperature

dependence of Q−1 and the quantities related to it in the low temperature “resonance” regime T � ω.

The relaxation regime, non-linear effects or the intermediate temperature (T > Tc) behavior will not be

considered in this work.

The layout of the thesis is as follows: In chapter-2 the precise details of the model is defined, and the

central object of the study, namely, the dimensionless stress-stress correlation, whose thermally-averaged

imaginary part is the measured ultrasonic absorption Q−1 is introduced. In section 3 a real-space renormal-

ization calculation of the average of Q−1m (ω) over the frequency ω and the starting state m (for details of

the notation see below) is carried out. Here it is shown that this quantity vanishes logarithmically with the

volume of the system and for experimentally realistic volumes, and has a small value ∼ 0.015. In section

4, on the basis of a heuristic calculation up to second order in the phonon-induced interaction, it is argued

that the functional form of Q−1(ω) at T = 0 should be (lnω)−1, and that when we combine this result with

that of section 3, the numerical value of Q−1 for experimentally relevant frequencies should be universal up

to logarithmic accuracy and numerically close to the observed value 3 × 10−4. In section 5 we attempt to

assess the significance of our calculations.
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Chapter 2

The Model

Imagine the disordered solid as being composed of many (statistically identical) cubes of size L. The precise

value of L need not be specified, so long as it is much smaller than the experimental sample size, yet much

larger than the (average) inter-atomic distance a. For this system we can define the strain tensor as usual

eij =
1

2

(
∂ui
∂xj

+
∂uj
xi

)
(2.1)

where ~u(~r) denotes the displacement relative to some arbitrary reference frame of the matter at point

~r = (x1, x2, x3).

The Hamiltonian can be defined as a Taylor expansion up-to terms first order in strain eij

Ĥ = Ĥ0 +
∑
ij

eij T̂ij +O(e2) (2.2)

where the stress tensor operator T̂ij is defined by

T̂ij = ∂Ĥ/∂eij (2.3)

Note that, in general, in a representation in which Ĥ0 is diagonal, T̂ij will have both diagonal and off-diagonal

elements.

We can define the static elasticity modulus χ(0), a fourth order tensor, as

χ
(0)
ij:kl ≡

1

L3

∂〈T̂ij〉
∂eij

∣∣∣∣∣
e(T )

≡ 1

L3

〈
∂2Ĥ

∂eij∂ekl

〉∣∣∣∣∣
e(T )

(2.4)

where the derivative must be taken at the thermal equilibrium configuration. For L � a an amorphous

solid is rotationally invariant. Due to this symmetry, any component of χ
(0)
ij:kl can be written in terms of two
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independent constants [?], for which we pick the transverse χt and longitudinal χl response;

χ
(0)
ij:kl = (χl − 2χt)δijδkl + χt(δikδjl + δilδjk) (2.5)

In the approximation of an elastic continuum, these are related to the velocities cl and ct of the corresponding

longitudinal and transverse sound waves (of wavelength λ such that a� λ� L) by

χl,t = ρc2l,t (2.6)

where ρ is the mass density of the material. As expected, the continuum approximation leads to Q−1 = 0.

Clearly, we must take into account a Hamiltonian more general than (2.2) to describe the acoustic properties

of disordered solids.

2.1 The Stress-Stress Correlation Function

To go beyond the continuum approximation, we add an arbitrary “non-phonon” term Ĥ ′(eij) to eqn(2.2),

Ĥ(eij) ≡ Ĥel(eij) + Ĥ ′(eij) (2.7)

Here, the purely elastic contribution Hel, is given by

Ĥel(eij) = const. +

∫
1

2
d3r

∑
ijkl

χ
(0)
ij:kleij(~r)ekl(~r) +

1

2

∑
i

ρ~̇u2i (~r) (2.8)

Of course, the second term is meaningful if the velocity field ~̇u is slowly varying over distances a. The

“non-phonon” term H ′(eij) is completely general; we neither assume that it is small compared to the purely

elastic contribution Hel, nor do we identify it with any particular excitation or defect. As above, we define

the “elastic” contribution to the stress tensor T̂ij by

T̂
(el)
ij ≡

∑
ijkl

χ
(0)
ij:klekl, (2.9)

and as we have done in (2.2) and (2.3) we can define the “non-phonon” contribution to the stress tensor by

Ĥ ′ = Ĥ ′0 +
∑
ij

eij T̂
′
ij +O(e2) (2.10)

T̂ ′ij = ∂Ĥ ′/∂eij (2.11)
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Note that the strain eij may be due to thermal phonons, as well as experimental probing strains. Since all

the contribution to Q−1 comes from the non-phonon contributions, for the sake of simplifying our notation

we will omit the primes in Ĥ ′0 and T̂ ′ij from now on, and used the unprimed symbols Ĥ0 and T̂ij to denote

non-phonon contributions.

We will now define the non-phonon linear response function at scale L. A sinusoidal strain field with

infinitesimal (real) amplitude eij ,

eij(~r, t) = eij [e
i(~k.~r−ωt) + e−i(

~k.~r−ωt)] (2.12)

will give rise to a stress response, 〈Tij〉 (which in general is complex):

〈Tij〉(~r, t) = 〈Tij〉ei(
~k.~r−ωt) + 〈Tij〉∗e−i(

~k.~r−ωt), (2.13)

The complex linear response function χij:kl(~q, ω) is defined in the standard way

χij,kl(q, ω) =
1

V

∂〈Tij〉(~q, ω)

∂ekl
(2.14)

In practice, we will be interested in the λ� a limit. We may therefore work in the linear dispersion limit

χ(ω, ~q) ≈ χ(ω, ω/cl,t) ≡ χ(ω) (2.15)

It is not immediately obvious that the non-phonon response function χij:kl(~q, ω) will have the isotropic

form analogous to (2.5), especially at the latter stages of the renormalization where we will be considering

amorphous cubes with sizes comparable to the wavelength; however, since it is clear that any complications

associated with this consideration are sensitive at our arbitrary choice of building-block shape, we will assume

that a more rigorous (q-space) calculation will get rid of them, and thus assume that χijkl(ω) will have the

same isotropic form as (2.5), thereby defining “longitudinal” and “transverse” response functions χl,t(ω) for

cubes of size L� a.

We may now calculate the absorption time τ−1 = cl−1, in terms of the imaginary part of the linear

response function. From Fermi’s Golden rule,

Q−1α (ω) ≡ λ

2π2l
=

1

πρc2α
Imχα(ω) (2.16)

11



where the quantity Imχα(ω) is given explicitly, in the representation in which Ĥ0 is diagonal, by the formula

Imχij:kl(ω) =
∑
m

pmχ
(m)
ij:kl(ω) (2.17)

χ
(m)
ij:kl(ω) =

π

L3

∑
n

〈m|Tij |n〉〈n|Tkl|m〉δ(En − Em − ω) (2.18)

where |m〉 and |n〉 denote exact many-body eigenstates of Ĥ0, with energies Em, En, and pm is the probability

that at thermal equilibrium the system initially occupies state m,

pm =
1

Zβ
e−βEm (2.19)

where Z is the partition function.

Our main objective is to calculate (2.17), which depends on many-body energy levels and stress tensor

matrix elements. Note that the formula is quite general; substituting TTLS assumptions and parameters in

it directly gives eqn(1.13).

As an interesting side note, we point out that the TTLS mean free path is independent of frequency at

zero temperature, which causes the Kramers-Kronig integral

∆c

c
=

2

π

∫ ∞
0

Imχ(ω′)

ω′
dω′ (2.20)

to diverge logarithmically at zero frequency. This suggests that the actual zero temperature form of Qα(ω) is

a weakly decreasing function of decreasing ω. We will discuss this matter further in Chapter-4, and propose

that the actual frequency dependence is ∼ log−1(U/ω), which is the closest form to a constant that prevents

(2.20) from diverging1

2.2 Virtual Phonon Exchange between Blocks

Let us define a “block” to be all the non-phonon degrees of freedom in a region enclosed by a cube of

volume L3 and consider a large collection of bare uncorrelated blocks as described by the Hamiltonian

(2.10). Since the strain eij includes the phonon field, the exchange of phonons must give rise to an effective

coupling between pairs of block stress tensors. The phonon degrees of freedom are harmonic; therefore the

1strictly speaking, we require Q−1(ω) = limε→0+ 1/ log1+ε U/ω.
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stress-stress coupling should have the generic form

H
(12)
int =

∫
V1

d~r

∫
V2

d~r′
∑
ijkl

Λijkl(~r − ~r′)Tij(~r)Tkl(~r′). (2.21)

The function Λijkl(~r − ~r′) is calculated in the paper of Joffrin and Levelut[?]. For “large” r − r′. it has the

form[?]

Λijkl(~r − ~r′) =
1

ρc2t

1

2π|~r − ~r′|3
Λ̃ijkl(~n)

Λ̃ijkl = −(δjl − njnl)δik +

(
1− c2t

c2l

)
[−δijδkl − δikδjl − δilδjk

+3(δijnknl + δiknjnl + δilnknj + δjkninl + δjlnink + δklninj)− 15ninknknl] (2.22)

where ~n is the unit vector along ~r−~r′. The interaction ceases to have the 1/r3 form for length scales smaller

than r0, where

〈V (r0)〉 ∼ hc

r0
≡ U0. (2.23)

Beneath this length-scale (beyond this energy scale) the interaction becomes oscillatory, and this can be

taken into account by introducing a cutoff energy level U0 to any integral or sum over energies. In the

present theory, the cutoff energy associated with the “microscopic” blocks is one of the input parameters,

and will be discussed further in the next section.

Due to condition (2.23), the virtual phonon wavelengths considered in any stage of this calculation will

be larger than the block size. Thus, we will assume that ~r − ~r′ can be replaced with the distance between

the center points of two blocks R1 −R2, and that the stress

Tij ≈
∫
vs

T̂ij(~r)d~r

is uniform throughout a single block. Then, the interacting many-body Hamiltonian for a collection of

blocks can be written as

ĤN =

N∑
s=1

Ĥ
(s)
0 +

N∑
s,s′=1
s<s′

∑
ijkl

Λijkl(~Rs − ~R′s)T
(s)
ij T

(s′)
kl . (2.24)

Eqn(2.24) represents the Hamiltonian H0 of the “super block” (of side ∼ N1/3L) composed by the N blocks
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of side L; in principle, we can redefine the energy levels and stress tensor matrix elements for a super

block and iterate the procedure untill we reach experimentally realistic length scales. At a given stage of

renormalization, every pair T (s)T (s′) comes together with a Λ which is proportional to L−3 (note the same

factor in the definition of χ). Thus it is not difficult to see that the procedure is scale invariant, and the

renormalization group equation of Q−1 might converge to a fixed point with increasing volume.

Given infinite computational resources, one could start from arbitrary microscopic forms of Ĥ0 and

T̂0, turn-on the interactions (2.21) between blocks, diagonalize the N-body Hamiltonian HN , and Tij =

∂HN/∂e
(N)
ij and iterate the procedure to see whether or not the final forms HN and Tij at the macroscopic

scale are independent of the starting Ĥ0 and T̂0.

Unfortunately, the number of levels and matrix elements grow exponentially with increasing volume.

Therefore it is not feasible to solve the problem stated in this form. We will instead narrow down our input

parameters and focus on few output observables that can be deduced analytically.

2.3 Input Parameters

We believe that it is one of the strengths of the present work that our results do not rely on adjustable

parameters, or the existence of other microscopic (unmeasurable) universal ratios to explain the observable

one [?, ?, ?, ?, ?] (though cf.[?]). The only two inputs on which our outcome depends sensitively are the

ratios cl/ct and χl/χt (cf. below for details of the notation) both of which are observed experimentally to

vary little between different amorphous systems (cf. also Appendix). Our third input r0, which is the size

of a “microscopic amorphous block” (defined below) only enters into our equations logarithmically.

2.3.1 Microscopic Building-Block Size

As discussed in the introduction, the temperature dependence of thermal conductivity and specific heat

changes at a critical temperature Tc ∼ 1K − 30K. At 10K the dominant phonons have wavelengths of the

order 50Å, and in [?] it is argued that this is just the scale at which we get a crossover from “Ising” to

“Heisenberg” behavior. Essentially, it is this length scale at which the approximations used in obtaining the

simple R−3 form of Λ, eqn(2.21) breaks down. Therefore, we take the microscopic starting size to be about

r0 ∼ 50Å, which is still much greater than a. We identify the ultraviolet cutoff U0 with Tc, and expect the

universality to break down as the block size becomes comparable to atomic size.

U0 is the only quantity in the present work that is not directly measurable. However we should emphasize

that (a) strictly speaking U0 is not a free parameter, since on a priori grounds we can assign an approximate
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value to it (b) it can be experimentally obtained indirectly, from thermal conductivity and specific heat

data through Tc = hc/r0. Most importantly, (c) our results, if they depend at all, depend on U0 only

logarithmically.

2.3.2 Meissner-Berret Ratios

The second and third input parameters we will be using are the ratio of longitudinal to transverse speed of

sound ct/cl and phonon coupling constants χt/χl, which are known to be universal among materials up to

a factor of 1.2 (cf. ref[?], Fig.1 and 3). Even though we use as inputs the experimentally obtained values, it

is not difficult to produce first-principle theoretical justifications for either (cf. below).

Suppose that the inter-atomic interactions (which reduce to (2.8) for small strains) is due to some

arbitrary inter-atomic (or inter-block) interaction φ(r). Namely,

Ĥel(eij) = const. +

N∑
ab

φ(rab) +
1

2

∑
i

ρ~̇u2i (~r) (2.25)

According to the virial theorem, the potential energy expectation value of a harmonic degree of freedom is

equal to that of the kinetic energy, therefore for the purposes of obtaining the ratio cl/ct without loss of

generality we will drop the latter, and the const. term.

〈H〉 =
∑
ab

〈φab〉. (2.26)

Further, suppose that the relative displacement uab of two blocks a and b are proportional to the distance

rab between them. By definition of e, it follows that.

uab,x = exyrab,y (2.27)

uab,x = exxrab,x (2.28)

While this is clearly true for length scales for which r � a, in an amorphous structure large deviations from

this may occur locally for r of the same order as a. However these should even out in the thermodynamic

limit N →∞.

The speed of sound is related to the real part of the zero frequency response function according to (2.6).

χ0t,l ≈
∂2

∂e2ij

N∑
a<b

〈φ(rab)〉

∣∣∣∣∣
eij=0

=

N∑
a<b

[
∂|rab|
∂e2ij

∂φ(rab)

∂rab
+
∂2φ(rab)

∂r2ab

(
∂rab
∂eij

)2
]
eij=0

(2.29)
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where i 6= j and i = j give χt and χl respectively. The first term of the right hand side must be zero due

to stability requirements. Thus all we need to do is to substitute (2.27) into the second term. For a purely

transverse strain

rab =
√

(rab,x + exyrab,y)2 + r2ab,y + r2z , (2.30)

which can be differentiated twice and substituted in (2.29). Letting
∑
ab → L−3

∫
r2drdΩ,

χ0t =
1

L3

∫
φ′′(r)

r2
r2dr

∫
r2xr

2
ydΩ. (2.31)

where Ω is the solid angle. Similarly, for a purely longitudinal strain

rab =
√

(rab,x + exxrab,x)2 + r2ab,y + r2z . (2.32)

Doing the same as above, we get

χ0l =
1

L3

∫
φ′′(r)

r2
r2dr

∫
r4xdΩ. (2.33)

Then, the ratio for the speeds of sounds only depend on the angular integrals,

ct
cl

=

√
χ0t

χ0l
=

1√
3

(2.34)

which is 6% larger than the experimental (average) value.

The second ratio Imχt/Imχl is not as trivial to obtain, since these ratios come from the non-phonon

degrees of freedom. However an argument similar to the above can be made if we consider a second order

perturbation expansion of the ground state in the interaction V , and differentiate it twice with respect to

strain e. Then the (short range) interaction φ(r) must be replaced with the square of the (long range) elastic

coupling (2.21), and the above argument goes through.
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2.3.3 Many-Body Density of States

On general grounds, we can assume that the normalized density of states of the interacting and noninteracting

system, can be written as a power series,

f(ω) =
∑
k

ckω
k (2.35)

f0(ω) =
∑
k

c0kω
k (2.36)

with dominating powers much larger than unity. Note that the density of states F (E) of a composite system

is given by the convolution of the density of states fi(E) of the constituent objects;

F (E) = (f1 ∗ f2 ∗ f3 ∗ . . .)(E) (2.37)

where

(f1 ∗ f2)(E) ≡
∫ ∞
−∞

f(E − ω′)f(ω′)dω′ (2.38)

From which it follows the dominating power of the density of states must be proportional to the number of

particles if the system is extensive in energy. Thus, (2.35) and (2.36) holds quite generally.

Finally, while the actual many-body density of states we deduce from the specific heat data (cf. Appendix-

B),

f(E) = const.e(NE/ε0)
1/2

(2.39)

is consistent with the form assumed above, as we will see, none of our results will be sensitive to the precise

choice of cn.

2.3.4 Initial State Dependence

Finally, we will specify the initial state |m〉 dependence of the response function, which will be the simplest

possible choice consistent with our general assumptions, namely the “random form”,

χ(m)
α (ω) = const.θ(Em + ω) = (ρc2α)Q−10 θ(Em + ω) (2.40)
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Important: This form will not be used until we consider the frequency dependence of Q−1 in Chapter 4

(cf. eqn. 4.9). Any conclusion we reach in Chapter 3 is not sensitive to this assumption!

It should be carefully noted that the TTLS form of χ
(m)
α is not a special case of eqn(2.40); this may be

seen by noting that the form of Q−1 given by the latter is approximately,

Q−1(ω, T ) = Q−10 (1− e−ω/T ). (2.41)

which is different from eqn (1.13), though not qualitatively so. An important point that should be emphasized

is, if the non-phononic hamiltonian consisted entirely of harmonic oscillators Q−1 would be independent of

temperature, which is qualitatively very different than eqn(1.13). Intuitively, the ansatz (2.41) describes a

model intermediate between a harmonic-oscillator and the TTLS one, but in some sense close to the latter.

In principle, with the knowledge of the many body density of states (and thus partition function), a more

accurate functional form for the initial state dependence can be found. It is our hope that a more realistic

m-dependence does not qualitatively alter the calculations that will follow in the next sections.
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Chapter 3

The Universality of the Average
Attenuation

We introduce this chapter by discussing a simpler system (cf. [?, ?]) in which a collection of spin-like objects

couple to strain through a coupling coefficient γ. As a result of this interaction we will get an effective

“spin-spin” interaction which is roughly of the form g/r3, where

g =
ηγ2

ρc2

with η a dimensionless number of order 1. If the single-spin excitation spectrum P̄ is assumed to be

independent of energy, it follows on dimensional grounds [?] that

P̄ ∝ 1

g
.

In this model, the dimensionless attenuation coefficient is simply

Q−1 =
πγ2P̄

2ρc2
.

Furthermore if we include all phonon modes (longitudinal and transverse) this number if reduced by a factor

of 3. Our purpose in this chapter is to generalize this argument [?] to a more generic model. We will (a) not

necessarily assume “single particle” excitations, and (b) take into account not only different phonon modes,

but all tensor components, and show that (a) and (b) alone lead to a surprisingly small value of frequency

and initial state averaged attenuation, 〈Q−1〉.
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3.1 Coupling Two Generic Blocks

The central quantity we will be interested in this sectionis the frequency and initial state averaged ultrasound

attenuation coefficient, defined as

〈Q−10 〉 =
1

U0Nb

∑
n

∫ U0

0

Q−1n (ω − En)dω

where Nb is the number of levels of the block, and U0 is an energy level of the order U0 = hcα/L, but the

precise value is not essential for our purposes below.

Our strategy will be to evaluate the quantity M = Tr(V 2) in the H0 and H0 + V eigenbasis. Let us

start by considering two blocks only, labeled by 1 and 2. We will follow Einstein’s summation convention

for tensor indices.

V̂ 2 =
(

ΛijklT̂1,ij T̂2,kl

)2
= ΛijklΛi′j′k′l′T1,ijT1,i′j′T2,klT2,k′l′

If H0 has eigenvectors {|n0〉} M can be evaluated as

M =
∑
mn

ΛijklΛi′j′k′l′〈m0|T1,ijT1,i′j′ |n0〉〈n0|T2,klT2,k′l′ |m0〉 (3.1)

Remember that Λ depends on the relative positions of block 1 and 2.

Any expression of the form

I =
∑
n

F (En − Em)〈n0|Tij |m0〉〈n0|Tkl|m0〉 (3.2)

can be written in terms of an integral of χ0 by inserting unity inside the sum,

I =

∫ ∑
n

F (En − Em)δ(En − Em − ω)〈n0|Tij |m0〉〈n0|Tkl|m0〉dω (3.3)

=

∫
F (ω)χ0m,ijkl(ω)dω (3.4)

Doing this twice in eqn(3.1) the the trace can be written in terms of χ0(ω)

M = v1v2
∑
n1n2

∫ ∫
ΛijklΛi′j′k′l′χ0,n1,iji′j′(ω

′)χ0,n2,klk′l′(ω
′′)dω′dω′′ (3.5)
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Here v1 and v2 are the volumes of block 1 and 2 respectively and both the sums and integrals are over the

whole spectrum. A brief reminder of notation: The first subscript 0 means χ is the response of “noninter-

acting” blocks. the second ones n1 and n2 denote the eigenstate block 1 and 2 initially occupy. The primed

and unprimed i, j, k, l are tensor components.

Since an amorphous solid is isotropic all 38 components of χiji′j′χklk′l′ can be expressed in terms of two

independent constants. We chose the longitudinal χl and transverse χt elastic coefficients.

χijkl = (χl − 2χt)δijδkl + χt(δikδjl + δilδjk)

This holds true for any initial state (to avoid clutter we drop the initial state subscript till eqn(3.8)). Let us

define x,

x+ 2 ≡ χl
χt

so that

χijkl = (xδijδkl + δikδjl + δilδjk)χt.

which simplifies the massive sum of eqn(3.5) into,

ΛijklΛi′j′k′l′χiji′j′χklk′l′ =ΛijklΛi′j′k′l′(xδijδi′j′ + δii′δjj′ + δij′δji′) (3.6)

×(xδklδk′l′ + δkk′δll′ + δkl′δlk′)χ
2
t . (3.7)

The symmetries of Λijkl simplifies matters a bit further,

Λijkl = Λkjil = Λilkj = Λklij .

Substituting the experimental values [?] of µl/µt and χl/χt into ˜Lambdaijkl, the entire sum can be evaluated

in terms of x,

1

µ2
t

˜Lambdaijkl ˜Lambdai′j′k′l′χ0,iji′j′χ0,klk′l′ ≈ 122Q−20t ≡ KQ
−2
0

a number independent of the relative orientation of the blocks. Thus, eqn(3.5) becomes

M = K
v1v1
v212

∑
n1n2

∫ ∫
Q−10,n1

(ω′)Q−10,n2
(ω′′)dω′dω′′ (3.8)

where v12 is the volume of the sphere with radius equal to the distance between the two blocks. Notice that

M is precisely proportional to the square of 〈Q−1〉. Assuming that the blocks are statistically identical, we
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can write

M0 = K
vavb
v2ab

U2
0N

2
b 〈Q−10 〉2 (3.9)

Now that we have evaluated M in the eigenbasis of H0 which allowed us to express it in terms of Q0, Nb

and U0, we could also repeat the same steps, this time in the eigenbasis of H = H0 + V , and express the

trace in terms of the above quantities Q, Nb and U , now modified due to the presence of V .

M = K
v1v1
v212

U2N2
b 〈Q−1〉2 (3.10)

Note that 〈Q−1〉 is not necessarily the averaged absorption of the superblock 1+2 (or even related to it by

a simple numerical factor), because the definition of the latter involves the squared matrix elements of the

total stress tensor of the superblock, (T̂
(1)
ij + T̂

(2)
ij ) and thus contains terms like 〈n|T̂ (1)

ij |m〉〈m|T̂
(2)
ij |n〉 (where

|m〉, |n〉 now denote eigenstates of Ĥ); while such terms were originally (in the absence of V̂ ) uncorrelated, it

is not obvious that they remain uncorrelated after V̂ is taken into account. We shall, however, argue that on

average those terms are likely to be small compared to terms of the form |〈m|T (s)
ij |n〉|2, because V̂ involves

all tensor components of T̂ (1) and T̂ (2) while the correlation only involves the same component of T̂ (1) and

T̂ (2). If this argument is accepted, we can identify the 〈Q−1〉 in (3.10) with the physical inverse absorption

of the superblock.

TrV̂ is a scalar, and of course its value is independent of which basis we evaluate it. Equating (3.10) to

(3.9)

U2
0 〈Q−10 〉2 = U2〈Q−1〉2. (3.11)

To relate 〈Q−10 〉 to the interacting one 〈Q−1〉, we must find (U)/(U0). This will be done using the

following argument: Let us square our interacting Hamiltonian of eqn(2.24) and consider its trace over the

same manifold as that defined by the integration limits in (3.1).

Tr(H2) = Tr(H2
0 ) + Tr(H0V ) + Tr(V H0) + Tr(V 2) (3.12)

Since pairs of stress tensors are uncorrelated, we can neglect the second and third terms when evaluating

the expression in the noninteracting basis. Thus,

Tr(H2)− Tr(H2
0 ) = TrV 2 (3.13)
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The lhs is the change in the variance of energy levels. Since the rhs is positive, we can see that the physical

effect of the interaction is to spread the energy levels. This equation can simply be written in terms of the

density of states and eqn(3.10),

∫ U

0

ω2f(ω)dω −
∫ U0

0

ω2f0(ω)dω = K
vavb
v2ab

U2
0N

2
b 〈Q−10a 〉〈Q

−1
0b 〉. (3.14)

In general, a macroscopic quantum mechanical system has a density of states roughly given by f(ω) ∝ ωn,

where n is a large exponent proportional to the number of constituent particles. However we can afford to

be more general and assume

f0(ω) =
∑
n

c0nω
n0 (3.15)

f(ω) =
∑
n

cnω
n. (3.16)

where the dominating terms have power much greater than unity (cf. eqn(3.18)). Note that the experi-

mentally measured temperature dependence of specific heat Cν ∼ T is consistent with this form for the

many-body density of states. In Appendix-B this consistency is shown, and (although not necessary for the

present argument) the precise form of cn, as well as an approximate closed form for f is derived. For each

set of coefficients cn and c0n the normalization conditions require that the two body system has N2
b levels

whether they interact or not

p∑
n=0

c0n
Un0+1
0

n0 + 1
=

p∑
n=0

cn
Un+1

n+ 1
= N2

b

(3.17)

Since both integrals in eqn(3.14) have the form

I =

∫ U

0

ω2f(ω)dω =
∑
n=0

cn
Un+3

n+ 3
,

if the terms for which n+ 3 ≈ n+ 1 dominate the density of states, we can use eqn(3.17) to write

I = U2
∑
n=0

cn
Un+1

n+ 3
≈ U2N2

b . (3.18)
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Figure 3.1: A superblock of unit length consisting of 8 blocks.

Thus, eqn(3.14) becomes

N2
b (U2 − U2

0 ) = 〈Q−10a 〉〈Q
−1
0b 〉N

2
b U

2
0K

vavb
v2ab

. (3.19)

Eqn(3.19) and eqn(3.11) are sufficient to solve for 〈Q−1〉 ≡ 〈Q−1a+b〉.

〈Q−1〉 =

[
1

〈Q−10a 〉〈Q
−1
0b 〉

+K
vavb
v2ab

]−1/2
. (3.20)

This equation connects the attenuation coefficient of two non-interacting blocks to that of two interacting

blocks.

3.2 Coupling N Generic Blocks: Renormalization Group

We shall use eqn(3.20) to continue adding blocks till we reach experimental length scales. Let start by

putting two blocks of side r0 next to each other, so that we have a super-block with dimensions 2r0× r0× r0

(Such as A + H in Fig3.1). For this super-block (sb1).

(
vavb
v2ab

)
sb1

=
1

16π2/9
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and

〈Q−1sb1〉 =

[
1

〈Q−10 〉2
+

9K

16π2

]−1/2
.

Next we combine two sb1’s to obtain a larger super-block (sb2) with dimensions 2r0 × 2r0 × r0 (Such as AH

+ BC in Fig3.1). This time, (
vavb
v2ab

)
sb2

=
4

16π2/9

and

〈Qsb2〉 =

[
1

〈Q−10 〉2
+

9K

16π2
+ 4

9K

16π2

]−1/2
.

Finally, we extend one more time to obtain a super-block with the same shape as the original (sb3), but

with dimensions 2r0 × 2r0 × 2r0 (Such as AHBC + FEGD in Fig3.1).

(
vavb
v2ab

)
sb3

=
16

16π2/9

and denoting Q−1sb3 = Q−12L and Q−10 = Q−1L , we relate the attenuation of a cube with sides 2L to that of a

cube with sides L

〈Q−12L 〉 =

[
1

〈Q−1L 〉2
+

9K

16π2
+ 4

9K

16π2
+ 16

9K

16π2

]−1/2
=

[
1

〈Q−1L 〉2
+K0

]−1/2
(3.21)

where K0 ≈ 150. Eqn(3.21) is our central result. It has the very attractive feature that the value of 〈Q−1〉

is very weakly dependent on v0 = r30, and Q−10 , since K � 1/〈Q−10 〉. We now consider the effect of iterating

the step which led to (3.21), by combining eight cubes of size 2L to make one of size 4L; for convenience we

keep the original definition of the low-energy manifold (Em < U0), though other choices are also possible.

Since the only point at which U0 actually enters the result is implicitly in the definition of the “average” in

Q̄−1 the scale invariant nature of the problem implies that all considerations are exactly the same as at the

first stage, and we simply recover (3.21) with the replacement of L by 2L and 2L by 4L. Continuing the

iteration up to a spatial scale R, we find

〈Q−1(R)〉 =
[
〈Q−10 〉2 +K0 log2(R/r0)

]−1/2
(3.22)

where r0 is the linear dimension of the starting block.

Eqn(3.22) predicts a remarkable counter-intuitive low-temperature effect that would be interesting to
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test experimentally: As v → ∞, the attenuation vanishes logarithmically (see Fig3.2). While we know of

no reason why this behavior must be unphysical, in practice we would guess that for any finite ultrasound

wavelength λ, R would be replaced by a quantity of the order λ.

0 5 10 15 20 25 30 35

z

0.02

0.04

0.06

0.08

0.10

<QHzL>

Figure 3.2: The (numerical) renormalization of 〈Q〉. Each increment in z corresponds to an 8-fold increase
in volume. z = 27 corresponds to r ∼ 1m

It is well known that the temperature dependence of the thermal conductivity of amorphous materials

changes at a temperature of the order of 1K; in fact, most such materials show a pronounced “plateau”

extending very roughly between 1 and 30K. At 10K the dominant phonons have wavelengths of the order

of 50Å, and in [?] it is argued that this is just the scale at which we get a crossover from “Ising” to

“Heisenberg” behavior (formally, at smaller scales the approximations used in obtaining the simple R−3

form of Λ, eqn(2.22) breaks down). Thus, we take the “starting” block size, r0, to be ∼ 50Å(which is still

comfortably greater than a). Notice that the result (3.22) depends only logarithmically on r0, and thus the

value of Q−1 in the experimentally accessible lengthscales will not be particularly sensitive to this choice.

Thus, for experimentally realistic values of R we find

〈Q−1〉 ∼ 0.015. (3.23)

This value is surprisingly small, and more importantly very weakly dependent on the inputs Q0 and r0;

however 〈Q〉 is larger than the experimental values measured in the MHz-GHz range. This is likely due to

the contribution to the average value, of the rapid increase in Q−1 at higher frequencies, as manifest in the

thermal conductivity data around 10K. To obtain the experimentally observed absorption in the MHz-GHz

range, we will consider the frequency dependence of Q−1(ω) in the following chapter.
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Chapter 4

The Frequency Dependence of the
Attenuation Coefficient

4.1 Level Shifts

The reader should be warned that the argument presented in this section is rather heuristic and unorthodox.

Suppose that upon turning on the interactions the change in χ is solely due to the change in the two body

density of states f0(ω). In other words, we will be ignoring the changes in the matrix elements of T̂ . The

two body density of states f(ω) after turning on the interactions V = ΛT1T2 can be approximately written

as

f(ω) =

∫ U0

0

f0(x)δ(x− ω −∆(ω))dx

where

∆(En) =
∑
k

V 2
kn

En − Ek
(4.1)

is the second order correction to the energy level En. From these two equations,

Q−1(ω)

Q−10 (ω)
≈ f(ω)

f0(ω)
≈ 1

|1 + d∆(ω)/dω|
(4.2)

We could write ∆ in terms of Q, as described in eqn(3.3)

∆(ω) = −K0

∫ ∞
−En101

∫ ∞
−En202

Qn1
(ω′)Qn2

(ω′′)θ(U0 − |ω′ + ω′′|)
ω′ + ω′′ − ω

dω′dω′′, (4.3)

where En101 +En202 = ω. The unit step function θ imposes the ultraviolet cutoff such that |En −Ek| < U .

In order to take the integral we must know the initial state |n1〉 and |n2〉 dependence of the absorption. For

this, we use the “random” form discussed in subsection (2.3.4),

Q−1n (ω) = θ(ω + En)Q−10 (4.4)
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where the attenuation coefficient of an input block Q−10 is a constant. This would happen for example, if

the level distribution and matrix elements were both uniformly distributed for a starting block. Then the

integral in eqn.(4.3) can be obtained analytically

∆(ω) = K0[−ω − U − ω log(ω/U0)] (4.5)

Thus, upon turning on the interactions the density of states transforms as

f(ω) =
f0(ω)

|1 +K0Q
−2
0 ln(ω/U0)|

(4.6)

This of course, can be generalized to a “single shot” calculation where all blocks within volume R3 contribute.

The result is to simply replace the factor K0 by K0 log2(R/L):

Q−1(ω) =
Q−10

|K0Q
−2
0 log2(R/L) ln(U0/ω)− 1|

(4.7)

≈ const.(ln(U0/ω)) if ω � ω0 (4.8)

4.2 Heuristic Considerations

While eqn 4.7 seems at least qualitatively consistent with the experimental data (see chapter 5), it is not

even approximately universal since the constant is inversely proportional to Q−10 , and even given a cutoff at

ω ∼ U0 does not satisfy (3.22).

There are two obvious reasons form (4.7) cannot be taken to be literally. First of all, the denominator

of (4.6) is the absolute value of a negative number. Physically this means that the perturbation is so strong

that the levels are crossing. Of course, we know that this cannot happen due to the “no-level-crossing”

theorem. We will nevertheless assume that when the perturbation is calculated up to infinite order, the

overall effect of the higher order terms are small in the level structure, and that the density of states is, at

least in the limit ω → 0 qualitatively similar to that given by the first order correction.

The second difficulty is the high-frequency divergence of χ, which indicates that the levels are coming too

close. While this too can obviously not be literally true (due to level repulsion) there may be some physical

truth in this divergence too, since we know from the thermal conductivity data, that around Tc the phonon

mean free path rapidly increases by few orders of magnitude, and the divergence we are seeing in the first

order correction might correspond to this rapid rise. We suppose that higher order terms in the perturbation

expansion will prevent Q−1 from diverging, and therefore place a cut off to the high end by a large value

28



Q̃−10 (which need not be equal to the microscopic Q0 defined above, but presumably of the same order of

magnitude). Thus, we will consider the following qualitative functional form for the attenuation coefficient

Q−1(ω) =
1

Q̃0 +A log(U/ω)
. (4.9)

It is possible to support the ansatz (4.9) further: We know from mean free path measurements, that

Q−1 is not “noticeably dependent” on ω. However if we accept this statement literally, the zero frequency

velocity shift as obtained by the Kramers-Kronig formula

∆c

c
= ∆

∫ ∞
0

Q−1(ω′)dω′

ω′
(4.10)

diverges logarithmically. To obtain a finite speed of sound, Q−1 must vanish faster with decreasing ω. In

fact, it can be shown that the closest form to a constant with non-divergent speed of sound is Q−1 ∼

limepsilon→0+ 1/ log1+ε(U/ω).

We shall therefore accept eqn(4.9) to be the frequency dependence of Q−1(ω), without necessarily as-

suming “its value” A.

4.3 The Value of Q−1(1MHz)

Let us now ask what the value of A must be, in order for eqn (4.9) be consistent with result (3.23). The

frequency average can be evaluated analytically,

〈Q〉 =
1

U0

∫ U0

0

dω

1/Q0 +A log(U0/ω)
=
−e1/(AQ0)

A
Ei(−1/(AQ0)).

Here, Ei(x) is a special function, defined as

Ei(x) =

∫ x

−∞

et

t
dt

which has the asymptotic form

lim
x→0+

e2Ei(−x)

x2
= e2γ

where e2γ ≈ 3.172 . . . is the Euler-Mascheroni constant. Thus,

〈Q〉 =
−e1/(AQ0)

2A
log

(
e2γ

A2Q2
0

)
, (4.11)
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from which one can obtain the value A ∼ 350 that produces 〈Q〉 = 0.015. Now that we know A, we may use

eqn(4.9) to find the value of Q in the universal regime. The experimental probing frequencies ω are typically

of the order of MHz, therefore we find

Q(ω = 1MHz) = 2.7× 10−4.

which is precisely the “typical” experimental value. The dimensionless inverse mean free path λ/l is then

λ/l ≈ 1/200

We emphasize that our central result, namely eqn(3.21), concerns the value of Q, which is averaged over ω

and m symmetrically. Therefore if our assumptions on ω and m were interchanged (or if an assumption pair

suitably “in between” was used), one would still get similar numbers.

Let us relax some of our assumptions and see how sensitive the value of Q is. For example, if dominating

power in the density of states was not a large number, but an arbitrary one, it is not difficult to see that

this introduces an extra factor between 1/3 and 1 in eqn(3.18), which in turn alters the value of 〈Q〉 by a

factor of about 1.7, very much within experimental variability per material. Note also that eqn(4.11) is very

robust to fluctuations in Q0. Namely,

∂〈Q〉
dQ0

∣∣∣∣
Q0≈1

� 1.

Since the equation (4.9) was obtained by heuristically, it is also interesting to see how sensitive the value

of Q−1 is to the precise details of the functional form. For example, consider more general forms that are

“near-constant”, and repeat the above procedure to find A(s).

Q−1(ω) =
1

[Q−s0 +A(s) log(U/ω)]s
(4.12)

The dependence of the value of Q to the exponent s and microscopic value Q0 (cf. eqn(4.12)) is displayed

in table-1, which suggests that the universality is more general than that required by the precise form (4.9).

s = 0.5 s = 0.7 s = 0.9
Q0 = 0.1 0.0024 0.0011 0.0006
Q0 = 1 0.0024 0.0010 0.0004
Q0 = 10 0.0024 0.0010 0.0003

Table 4.1: The dependence of the average value of Q−1(1MHz) to the details of its functional form
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Chapter 5

Predictions

In the previous two chapters we deduced the ultrasonic absorption at zero temperature from generic assump-

tions and arguments. Unfortunately, to the best of our knowledge no experiment has directly measured Q−1

in the regime T � ω. Therefore we will compare our results with indirect measurements from which Q−1 is

deduced. Two such quantities are the thermal conductivity K and the ultrasound velocity shift ∆c/c. As

we have done in chapter 4, we will assume that the renormalized χm(ω) is roughly independent of initial

state |m〉 (apart from θ(ω + Em)) and hope that a more realistic m dependence will not qualitatively alter

the results.

5.1 Temperature Dependence of Ultrasonic Velocity Shift

In the TTLS model, the absorption coefficient is calculated by averaging over that of many TTLS. As

discussed in the introduction, in the “resonance regime” this is given by

Q−1 = Q−1hf tanh
( ω

2T

)
(5.1)

where the coefficient Q−1hf is predicted to be independent of frequency. The resonance behavior of a generic

amorphous block is rather similar to that of a TTLS; since T � ω the unexcited distribution of occupied

levels are well separated from the excited distribution. Let us therefore designate p1 and p2 as the probability

that the amorphous block occupies a level in the former and latter groups respectively. In thermal equilibrium

we have, as usual

p1 + p2 = 1 (5.2)

p2
p1
≈ eω/T . (5.3)
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The transitions are due to absorption of a phonon and stiumlated emission,

dp1
dt

= −W12p1 +W21p2

where the transition rates W12 and W21 are given by Fermi’s Golden Rule. From these equations it is trivial

to calculate the phonon lifetime,

τ−1ph = (1− e−ω/T )
∑
m

πωQ−1m
e−Em/T

Z(T )

Thus, taking into account the assumption regarding initial state inpdependence Q−1m can be calculated from

the phonon mean free path

Q−1(ω, T ) = Q−1hf (1− e−ω/T )

where now,

Q−1hf ∝
1

ln(U0/ω)
.

Note that for ω � T , Q−1 is only logarithmically dependent on frequency, and independent of temperature,

consistent with experiment [?], and qualitatively similar to the TTLS prediction (5.1). We can find the

velocity shift from the Kramers Kronig relation;

∆c

c
= −∆

χ0

ρc2
= −∆

∫ ∞
0

dω

ω
Q−1(ω, T ) (5.4)

If we insert (5.1) into (5.4) we obtain for T � ω

∆c

c
= Q−1hf ln

(
T

T0

)
(5.5)

Note that while this form works quite satisfactorily for low temperatures, it significantly departs from

experimental data for higher temperatures [?]. The standard way this difficulty is resolved is by introducing

an additional fit function to the TTLS density of states P (ω) = P̄ , so that

P (ω) = P̄ (1 + aω2)

where a is a free parameter. The present model does a better job without such additional fit functions. If

we treat Q−1hf as a constant the integral (5.4) can be taken analytically.
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Figure 5.1: Normalized inverse mean free path (left) and velocity shift (right). The present theory
(solid) is compared against TTLS without the ω2 term (dashed) and experiment [?, ?] (dots). While the
functional forms predicted by both models are qualitatively similar at low temperatures, the TTLS model
must use an additional fitting function n(ω) = n0(1+aω2) for the density of states to resolve the discrepancy
in fitting ∆c/c data (right).

∆c/c = ∆(Q−1hf /2)[−eω/TEi(−ω/T )− e−ω/TEi(ω/T )] (5.6)

which is precisely the same result as (5.5) in the ω � T limit. In the presence of [ln(U0/ω)]−1, the integration

must be done numerically, and is shown in Fig5.1 and compared with the TTLS result (with unmodified

density of states) as well as experimental data [?, ?].
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Figure 5.2: Temperature Dependence of Thermal Conductivity. The present theory (solid) K ∼
T 2 lnU0/T is compared against TTLS prediction K ∼ T 2 and experiment [?] (dots) below the “plateau”.
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5.2 Temperature Dependence of Thermal Conductivity

As already mentioned in the introduction, despite the anharmonic degrees of freedom, phonons are the main

heat carriers in disordered solids. Thus, using the kinetic formula (1.6),

K(T ) ≈ cphν (T )c̄(T )l̄ph (5.7)

= const.T 2Q(ω, T ) (5.8)

where cphν (T ) = const.T 2 is the phononic specific heat and c̄(T ) and l̄ph are the speed of sound and phonon

mean free path averaged over frequency. Since at temperature T , the frequency distribution function is

sharply peaked at ω ∼ 4K we can evaluate the frequency averages (“dominant phonon approximation”),

K(T ) = const.T 2 ln(U0/T ),

which is similar to TTLS prediction of K = const.T 2, but fits the experimental data better (see Fig5.2).
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Chapter 6

Conclusions

Our main goal in this work has been motivated by providing an explanation to the universal acoustic

response of disordered solids at low temperatures, which for us entails a description that does not use ad-hoc

fit functions and parameters or postulate other (unobservable) universal quantities or entities.

We believe that we have been successful in doing so, in that we have shown that (a) simply starting from

arbitrary uncorrelated blocks and coupling them elastically yields a 〈Q−1〉 factor that is universal, in the

sense that its precise value depends sensitively only to measurable quantities ct/cl and χt/χl, both of which

fluctuate only by a factor of 1.2 across different materials. (b) That given the ansatz derived in chapter 4 for

the frequency dependence of Q(ω), the experimentally probed Q(1MHz − 1GHz) is close to the measured

value. (c) Other quantities related to Q−1, namely the temperature dependences of the mean free path,

thermal conductivity and velocity shift, are consistent with our generic model. Finally, we note that the
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Figure 6.1: 〈Q−1〉 vs 〈Q−10 〉 . Notice that the former can never be larger than O(10−2)

essential ingredient of the present model is the existence of non-phonon degrees of freedom that couples the

the strain field linearly. Thus, our arguments should apply equally well to disordered crystals (cf. [?]), with

a slightly different angular dependence of the coupling coefficient Λijkl. That being said, our conclusion

does not imply that all disordered solids must have the same Q−1: If the attenuation coefficient of the

“microscopic blocks” are significantly smaller than the canonical value, then so will be the macroscopic one.

However, a Q−1 appreciably larger than the canonical value would tell against our hypothesis (see Fig6.1).
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Appendix A

Derivation of the Phonon-Induced
Stress-Stress Coupling

For the sake of completeness we give the derivation of the phonon induced stress-stress coupling defined in

section 2 (also, cf. [?] and [?]). Consider two generic “defect modes”, with (non-phonon) stress tensors T̂1

and T̂2 residing at points ~r1 and ~r2, such that they are coupled to the phonon field at eij(~r1) and eij(~r2)

linearly. The full Hamiltonian, includes three terms: The defects Hd, the phonons Hel, and the coupling Hc

H = Ĥd + Ĥel + Ĥc

= Ĥd(T̂1) + Ĥd(T̂2) +
∑
qµ

(
|p̂qµ|2

2m
+
mω2

qµ

2
|ûqµ|2

)
+

∑
αβ

eαβ(~r1)T̂1αβ + eαβ(~r2)T̂2,αβ (A.1)

Where Hd corresponds to the internal energy of the defects, uiα(~r) is the α vector-component of the dis-

placement of the atom at position ~r, of defect i, the subscript µ indicates the phonon branch and ûqµ is

the Fourier component of the phonon mode with momentum q. Namely, if ~e is the unit vector along the

direction of ~q,

u1α =
1√
N

∑
qµ

Uqµeqµβe
i~q. ~x1 .

In the formal treatment of phonons in a crystal, N stands for the number of atoms in a unit cell. While

defining such a cell (or for that matter defining phonons) is rather questionable for a glass, we may think

of N as an (arbitrary) number such that the above equation is meaningful for phonons with wavelength

satisfying Na� λ. Let us write Hc explicitly from the definition of strain;

Ĥc =
1√
N

∑
qµ

uqµiqβεqµ,α(ei~q.~r1) (A.2)
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The effect of Hc is to shift the equilibrium positions of atoms such that phonon modes can be defined with

respect to this equilibrium. We shall define a new phonon coordinate for each q and µ,

ũqµ = uqµ − u0qµ

in terms of this new equilibrium coordinate u0qµ, which can be found from setting

(
∂H

∂uqµ

)
= 0.

That is ∑
qµ

mωqµu0qµ =
−1√
N

∑
qµ

iqβεqµ,α(T1,αβe
i~q.~x1 + T2,αβe

i~q.~x2)

Thus,

û0,qµ =
−iqβεqµ,α
mω2

qµ

√
N

(T1,αβe
i~q.~x1 + T2,αβe

i~q.~x2)

Then the full hamiltonian can be written in terms of this coordinate,

H = Hd +
∑
qµ

(
p2qµ
2m

+
mω2

qµ

2
|ũqm|2 −

mω2
qµ

2
|û0qm|2

)

Note that the first two terms in the paranthesis is formally identical to the phonon Hamiltonian, whereas

the third, Vc explicitly depends on relative defect positions. That is,

Vc = −
∑
qµ

qβqδεqµ,αεqµ,γ
2mω2

qµN
(T1,αβe

i~q.~x1 + T2,αβe
i~q.~x1)(T1,γδe

i~q.~x1 + T2,γδe
i~q.~x1)

Let us substitute ωqµ = qcm, keeping in mind not to sum momentums with q > 2π/a. Separating the

position dependent and constant terms Vc = const. + V (~R) with ~R = ~r1 − ~r2, we find

Vc = const.−
∑
qµ

qβqδ
q2

εqµ,αεqµ,γ
mNc2µ

T̂1,αβT̂2,γδ cos(~q. ~R)

Of course, constant part is rather uninteresting (Hd could as well be redefined to include these constants,

so that the defects are “dressed” with phonons). It is the position dependent term that mixes the energy

levels of the blocks, and correlates their stress matrices.

For a longitudinal mode µ = l,

eql,α =
qα
|q|
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whereas for transverse modes µ = t1, t2,

eqt1,αqα = eqt2,αqα = 0

and ∑
µ=t1t2

eqµ,αeqµ,β = δαβ −
qαqβ
|q|2

These can be substituted in V̂ (~R) when summing over µ

V̂ (~R) =
∑
q

qβqδqαqγ
mNq4

T̂1,αβT̂2,γδ cos(~q. ~R)(
−1

c2l
+

1

c2t
) (A.3)

−
∑
q

qβqδδαγ
mNc2t q

2
T̂1,αβT̂2,γδ cos(~q. ~R) (A.4)

Letting ∑
q

→ V

8π3

∫ 2π/R

0

d3q

we may evaluate V (~R). Ommiting the angular dependences

qαqβqγqδ/q
4

and

qαqδ/q
2

it can be seen immediately that

V̂ =

∫ 2π/R

0

q2T̂1,αβT̂2,γδ ∝
T̂1,αβT̂2,γδ

R3
.

The angular dependence can be taken into account to give Eqn. (2.22).

38



Appendix B

Many-Body Density of States of
Disordered Solids

This appendix connects assumption (2.35) to experiment, particularly the temperature dependence of specific

heat Cv(T ). We also find the density of states the many-body density state of amorphous solids in closed

form.

The amorphous specific heat, as found from experiment is,

Cv(β) =
a

β
.

The average energy is related to the partition function as

U = −∂β logZ (B.1)

Since the specific heat of glasses are linear in temperature, the U must have the form,

U = aT 2 + b =
a

β2
+ b

At zero temperature the block is in its ground state, which we (arbitrarily) chose to be zero. Thus

b = 0.

Then from eqn(B.1),

Z = Aea/β (B.2)

Here the constant A is the degeneracy of the ground state. This is because

lim
β→∞

Z = lim
β→∞

∑
n

e−βEn
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is equal to number of states for which En is exactly equal to zero. We can now find the density of states

f(E) from

Zβ =

∫ ∞
0

f(E)e−βEdE

by substituting eqn(B.2) on the lhs and expand both the partition function and the density of states,

Aea/β = A(1 +
a

β
+ . . .) =

∫ ∞
0

[f (1)(E) + f (2)(E) + . . .]e−βEdE.

The first term of the left hand side can be obtained if

f (1)(E) = Aδ(E),

whereas the second can be obtained if

f (2)(E) = aA.

This way we can get f(E) up-to all orders. The result is,

f(E) = A[δ(E) + S(E)]

where

S(E) =

∞∑
n=1

En−1an

n!(n− 1)!
. (B.3)

One may ask why there is a delta function in the density of states. This is because, for ε close the level

spacing, the integral ∫ ε

−ε
f(E)dE

must give A, the number of levels at E = 0, consistent with our choice of E0 and eqn(B.2). Let’s look at for

which value of n is the most prominent in eqn(B.3). We will assume that k � 1, since these are the typical

energies accesible to experiment.

Sk = log

[
ckEk−1

k!(k − 1)!

]
= k log c+ (k − 1) logE − log k!− log(k − 1)!
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Using Stirling’s approximation, log k! = k log k − k + 1

logSk = k(log c+ logE)− logE − k log k + 2k − 3− k log(k − 1) + log(k − 1).

differentiating with respect to k and setting it to zero, we find

k(k − 1) = cE.

Thus, at energy E, the term k ≈
√
cE � 1 dominates the density of states.

S√cE = 2
√
cE − 2

One can find a closed form for f(E) by using an asyptotic form of the modified bessel function of the first

kind, Iν(z). For z � 1, we can approximate

I1(z) ≈ ez√
2πz

since the density of states can be written in terms of this special function

f(E) = A

[√
cI1(2

√
cE)√

E
+ δ(E)

]
(B.4)

we can simplify

f(E) ≈ Ac1/4 e2
√
cE

81/4π1/2
(B.5)

This asymptotic form of the modified bessel function of the first kind is well known. It is derived from a

saddle point approximation, by writing

∑
k

Sk ≈
∫
Skdk =

∫
elnSkdk

and expanding lnSk at its sharp peak up to second order.
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